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Abstract To enhance the performance of a vibra-

tion-based energy harvester, typical approaches

employ frequency-matching strategies by either using

nonlinear broadband or frequency-tunable harvesters.

This study systematically analyzes the nonlinear

dynamics and energy harvesting performance of a

recently emerging tunable low-frequency vibration-

based energy harvester, namely, a double-mass pen-

dulum (DMP) energy harvester. This energy harvester

can, to some extent, eliminate frequency dependence

on pendulum length but exhibit vibration-amplitude-

dependent softening nonlinearity. The natural fre-

quency of the DMP structure is theoretically derived,

showing several unique characteristics compared with

the typical simple pendulum. The DMP energy

harvester exhibits alternate single-period, multiple-

period, and chaotic vibration behaviors with increase

in excitation amplitudes. The analysis of gross output

power indicates that the rotating motion, regardless of

chaotic or periodic rolling motions, improves the

energy harvesting performance in terms of power leap

and broader bandwidth. Based on the parameter space

analysis, the rotating motions usually occur at the

shift-left locations of frequency ratios 1 and 2; a

smaller damping ratio corresponds to a lower on-

demand excitation amplitude for the rotating-motion

occurrence. Numerical results confirm that the DMP is

suitable for low-frequency energy harvesting scenar-

ios, suggesting the realization of rotating motion for

improving energy harvesting performance. Moreover,

a shake table test was performed, and the experimental

results validated the accuracy and effectiveness of the

DMP modeling analysis. Practical issues related to

DMP energy harvesters under different types of

excitations are finally discussed. Although the analysis

is for the DMP, the corresponding conclusions may

shed light on other pendulum-type energy harvesters.

Keywords Energy harvesting � Nonlinear
dynamics �Double-mass pendulum �Rotating motion �
Chaos

1 Introduction

Vibration-based energy harvesting, a technique con-

verting vibration energy into electrical energy, has

attracted substantial attention, given its wide applica-

tion potential [1–3]. The vibration sources include, but

are not limited to, vibrations of vehicle suspensions

[4], railway tracks [5], and civil structures [6] caused

by different environmental loads. A typical
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configuration of the vibration-based energy harvester

consists of a linear or nonlinear oscillator, an energy

transducer (such as electromagnetic [7], piezoelectric

[8], electrostatic transducers [9]), and an energy

harvesting circuit (e.g., buck–boost converter [10]).

These vibration-based energy harvesters share a very

similar concept with wave energy converters (WECs)

that generate energy from ocean waves-induced

motions. They are often tuned to match excitation

frequencies to achieve optimal output power.

However, in practice, environmental vibrations are

usually broadband and time-variant. To enhance

output power, the frequency-matching strategies by

using either nonlinear broadband harvesters [11, 12] or

frequency-tunable harvesters [13] are the classical

approaches, wherein the nonlinear frequency band-

width or tunable frequency range is expected to cover

vibration frequencies. Particularly, corresponding to

typical low-frequency vibration scenarios, such as

human motions (& 1 Hz), ocean wave-induced

vibrations (\ 1 Hz), and civil structural vibrations

(\ 10 Hz) [14], a number of low-frequency linear or

nonlinear energy harvesters have been reported with

different structural configurations, such as the clips-

pendulum structure [15], X-shape structure [16], and

sprung eccentric rotor structure [17]. Among them,

beam-like configurations or their variants are a well-

known family.

Meanwhile, pendulum-type energy harvesters have

been granted relatively less attention, although they

show superiority in some aspects. For example, they

are free from fracture issues under large amplitudes

because of limited interior stress, and they possess

relatively lower frequencies than beam-like structures.

In recent years, the concept of beam-pendulum

configuration emerged, demonstrating more or less

success in numerical and experimental studies for

specific targets. The coupled device can harvest multi-

direction vibration energy by adding a simple pendu-

lum to the tip of a piezoelectric cantilever-beam

energy harvester [18]. The prototype was successfully

tested in the frequency range of approximately

3–10 Hz. Similar structural versions were reported

as an inverted beamwith a simple pendulum [19] and a

cantilever beam with a double pendulum [20].

In addition to the beam-pendulum configurations,

pendulum-only configurations are investigated

[21, 22]. Abbas Hassan et al. [23] presented a self-

tuning, variable-length simple pendulum for energy

harvesting, realizing a tunable frequency range from

0.47 Hz to 0.68 Hz. Dai [24] proposed a rotary

pendulum-based energy harvester that consisted of

two symmetric sector masses on the two sides of the

bearing. The strong nonlinearity resulted in a 3 dB

bandwidth of 3.2 Hz at 0.5 g root-mean-square (RMS)

acceleration. Marszal et al. [25] analyzed the energy

harvesting performance of an oscillation-motion sim-

ple pendulum-based energy harvester in 2:1 reso-

nance. They found energy harvesting performance

was more efficient for the shorter reduced pendulum

length. Kumar et al. [26] investigated the dynamics of

a double pendulum-based energy harvester subjected

to base excitations. They claimed that the pendulum

that exhibited chaotic motions could considerably

increase the harvested power. Malaji and Ali [27]

investigated a pendulum-type energy harvester that

consists of two coupled simple pendulums connected

by a spring, experimentally demonstrating that such a

configuration enhances the energy harvesting perfor-

mance in terms of magnitude and bandwidth. Other

case studies on pendulum-type energy harvesters

included, but were not limited to, Ma et al. [28] and

Jia et al. [29]. In some studies, pendulum-type energy

harvesters were also regarded as vibration control

devices, forming dual-function dampers [1, 30–32].

Furthermore, attempting to reduce the direct effect

of pendulum length on its natural frequencies,

Yurchenko and Alevras [33] proposed the concept of

the N-mass pendulum. They experimentally studied

the dynamic responses of a tri-mass pendulum [21, 34]

and numerically presented the stochastic dynamics of

a parametric rotating pendulum under realistic wave

profiles [35]. They designed the parametrically excited

pendulums for WECs. However, whether such a

pendulum version benefits energy harvesting perfor-

mance is unanswered. Cai and Zhu [13] developed a

new surge–pitch-type WEC, wherein a novel double-

mass pendulum (DMP) energy harvester was proposed

and employed as an oscillator in WEC. The experi-

mental frequency was tunable in the range from

0.2 Hz to 1.4 Hz, much lower than most low-fre-

quency devices. In the wave flume test, the output

voltage could be dramatically improved by up to 170%

with frequency tuning; meanwhile, the DMP exhibited

softening nonlinearity under large wave heights.

Therefore, the systematic nonlinear analysis of the

DMP will be inevitable to guide the frequency tuning

techniques in the nonlinear conditions. In addition, the
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advantages and disadvantages associated with the

nonlinearity of the DMP structure for energy harvest-

ing are worthy of discussion. Particularly, how the

rotating motions of the pendulum-type energy har-

vesters affect the energy harvesting performance

largely remains unknown. The conditions for realizing

the rotating motions of the DMP also need to be

investigated.

This study aims to systematically analyze the

nonlinear dynamics and energy harvesting perfor-

mance of the emerging DMP structure, which is

necessary to address the aforementioned unanswered

questions. The contributions of this study are reflected

by the following works that were done for the first

time: (1) analytically investigating the frequency

characteristics of the undamped DMP and numerically

investigating the nonlinear characteristics of the

damped DMP; and (2) illustrating the benefits of

rotating motions in DMP energy harvesters and

revealing the corresponding conditions for realizing

rotating motions. Although the nonlinear analysis was

conducted for the DMP structure, the methodology

and the conclusions can be easily extended to other

pendulum-type energy harvesters in the future. The

study is organized as follows: after the introduction,

Sect. 2 analytically introduces the frequency charac-

teristic of undamped DMP and highlights the merits

compared with the traditional simple pendulum.

Section 3 reports the nonlinear dynamics of the

DMP energy harvester through a bifurcation diagram,

phase diagram, and Poincaré map. Subsequently,

Sects. 4 and 5 present the power analysis and match-

ing conditions of the rotating motions for the DMP

energy harvester, respectively. Then, Sect. 6 discusses

the parametric analysis of the DMP energy harvester

by considering different influencing factors. Section 7

shows shake table tests of a scaled DMP model to

partially validate nonlinear dynamics and energy

harvesting analysis. Section 8 discusses randomly

excited DMP energy harvesters. Finally, the major

conclusions are summarized.

2 Theoretical formulation

Figure 1a presents the structural configuration of a

DMP consisting of two mass blocks. Despite their

similar names, the DMP studied in this paper is

completely different from traditional double

pendulums. A DMP is a single-degree-of-freedom

(SDOF) structure, while a double pendulum is a 2DOF

structure. By adjusting the locations of double masses,

a DMP can realize remarkably low frequency in the

case of limited space. Thus, it is highly suitable for

low-frequency energy harvesting.

By utilizing DMP’s ultra-low frequency character-

istic that matches fairly with the wave frequencies, Cai

and Zhu [13] designed and tested a DMP-based WEC,

wherein the DMP energy harvester was regarded as an

energy-extraction unit. Figure 1b shows the DMP

energy harvester prototype developed by Cai and Zhu

[13], which will also be used in the experimental tests

presented in this study. The DMP energy harvester is

essentially a damped DMP structure.

2.1 Undamped DMP

An undamped DMP structure is analyzed first in this

subsection. If two identical masses mup = mlow = mm

are used, the governing equation of the DMP without

considering the damping effect and bar mass is as

follows:

mm l21 þ l22
� �

€hþ mmg l1 � l2ð Þ sin h ¼ 0 ð1Þ

where l1 and l2 are the distances from the pivot to the

lower and upper masses, respectively. Evidently,

l2\ l1. mm is the mass of each block. Although two

mass blocks are used, the DMP is an SDOF pendulum

(i.e., rotation angle h). The initial frequency x0 of the

DMP under small vibration amplitude is as follows:

Fig. 1 Introduction of DMP
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x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g 1� að Þ
l1 1þ a2ð Þ

s

ð2Þ

where a is the ratio of the upper- and lower-mass

locations, as follows:

a ¼ l2=l1; 0� a� 1 ð3Þ

According to Eq. (2), when a = 1, DMP becomes a

zero-frequency device; when a = 0, it becomes a tradi-

tional simple pendulum. By setting the vertical position

(h = 0) as the zeropotential energyplane, the total system

energy can be obtained as the sum of the kinetic energy

and potential energy of two masses, as follows:

E ¼ 1

2
mml

2
1 1þ a2
� �

_h2 þ mmgl1 1� að Þ 1� cos hð Þ

ð4Þ

In the undamped free vibration cases, the system

vibration energy E is constant, and thus the angular

velocity can be represented as follows:

_h2 ¼ 2E � 2mmgl1 1� að Þ 1� cos hð Þ
mml

2
1 1þ a2ð Þ ð5Þ

If the DMP vibrates within h 2(- p, p), the angular
velocity becomes zero in the case of h = hmax.

E ¼ mmgl1 1� að Þ 1� cos hmaxð Þ ð6Þ

where E\ 2mmgl1(1 - a). Combining Eqs. (5) and

(6) yields

_h2 ¼ 2x2
0 cos h� cos hmaxð Þ ð7Þ

By using the trigonometric identity, Eq. (7) can be

further rewritten as follows:

_h ¼ 2x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2
hmax

2

� �
� sin2

h
2

� �s

ð8Þ

Setting

sin
h
2
¼ sin

hmax

2
sinu ð9Þ

k ¼ sin
hmax

2

� �
\1 ð10Þ

where u is a variable defined to facilitate the

integration by substitution. Subsequently, an integral

equation is formed by separating the variables:

t0 ¼
KðkÞ
x0

¼ 1

x0

Z p=2

0

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 u

p ð11Þ

where t0 = T/4 represents one-quarter of the period,

and K(k) is the elliptic integral of the first kind. The

period of the DMP can be obtained as follows:

T ¼ 4K kð Þ
x0

¼ 4

x0

Z p=2

0

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 u

p ð12Þ

If the DMP swings over the vertical upright position

corresponding to the maximum potential energy (i.e.,

E[ 2mmgl1(1 - a)), the rotational motions occur,

which means that (1) the angular velocity does not

decay to zero, and (2) the maximum rotation angle

hmax does not exist. Therefore, the maximum angular

velocity _h0 at the vertical position h = 0 is applied to

estimate the dynamics of the DMP. In this study, the

rotating motions are defined as the behavior that the

DMP swings over the vertical upright position (i.e., h
exceeds p or- p). Such rotation motions can be either

periodic or chaotic, where the former are termed

periodic rolling motions, and the latter are termed

chaotic motions that are unpredictable.

_h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_h20 � 4x2
0 sin

2 h
2

� �s

ð13Þ

A new parameter j is defined as follows:

j ¼ 2x0

_h0
\1 ð14Þ

According to Eqs. (13) and (14), the DMP period is

derived as follows:

T ¼ 2jK jð Þ
x0

¼ 2j
x0

Z p=2

0

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2 sin2 u

p ð15Þ

Notably, if E = 2mmgl1(1 - a), the period

becomes ?. The corresponding energy

E = 2mmgl1(1 - a) is referred to as the critical system
energy that determines whether the swing-over rota-

tional motions will occur or not.

The circular frequency of the undamped DMPxd is

summarized as follows:

xd ¼

x0p
2K kð Þ if E\2mmgl1 l1 � að Þ
0 if E ¼ 2mmgl1 l1 � að Þ

x0p
jK jð Þ if E[ 2mmgl1 l1 � að Þ

8
>>><

>>>:

ð16Þ
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The frequency expression in Eq. (16) is similar to

that of a simple pendulum; thus, the DMP structure

evidently shows some similar features to a simple

pendulum.

Figure 2 shows the frequency features of the DMP

with a variation of the system energy (i.e., the sum of

the potential and kinetic energy in Eq. (4)), wherein

the frequencies are normalized by the initial frequency

x0, and the system energy is normalized by the critical

energy threshold 2mmgl1(1 - a). The system param-

eters are set as the same as those in the following

numerical analysis. The variation trend of the DMP

frequency is a piecewise function. If the system energy

E is less than the critical energy threshold, the DMP is

in an oscillation state, i.e., h 2(- p, p), and the DMP

frequency decreases with the increase in normalized

energy. A zero frequency appears at the critical

energy. When the system energy is larger than the

critical energy threshold, the DMP essentially is in the

periodic rolling-motion state, and the DMP frequency

increases with the increase in system energy. In the

vicinity of the critical energy threshold, a very wide

frequency bandwidth appears. Such a frequency trend

confirms that DMP is, to some extent, similar to a

simple pendulum.

2.2 Damped DMP

The DMP structures were originally proposed for low-

frequency energy harvesting scenarios, such as WECs

[13]. As shown in Fig. 1b, an electromagnetic trans-

ducer is connected to the rotating shaft of the DMP to

realize the energy transduction function, forming a

DMP energy harvester. The DMP energy harvester is

essentially a damped DMP from the view of structural

dynamics, wherein the damping effects are jointly

contributed by the structural inherent damping, and the

parasitic and electromagnetic damping of the trans-

ducer. Depending on the energy efficiency, part of the

damping power is converted to the output power in the

energy harvesting applications. Therefore, in this

study, the DMP damping power is analyzed as

approximate gross output power to evaluate energy

harvesting performance, which is also a common

practice in the field of vibration-based energy har-

vesting [36]. The energy conversion efficiency is

influenced by multiple factors, and its discussion is out

of the scope of the current study.

The governing equation of the DMP energy

harvester is as follows:

mml1 1þa2
� �

€hþct 1þa2
� �

_hþmmg 1�að Þsinh¼0

ð17Þ

where ct is the total damping coefficient (unit: N�s/m),

including the DMP inherent damping and transducer

damping.

If the DMP is subjected to a horizontal base

excitation (or ground motion), the corresponding

governing equation is derived as follows:

mml1 1þ a2
� �

€hþ ct 1þ a2
� �

_hþ mmg 1� að Þ sin h
¼ �mm €xg 1� að Þ cos h

ð18Þ

Assuming the horizontal base acceleration as

follows:

€xg ¼ Ag cos xtð Þ ð19Þ

where Ag is the harmonic motion amplitude, and x is

the excitation frequency. Then, Eq. (18) can be

rewritten as follows:

€hþ 2nx0
_hþ x2

0 sin h ¼ �x2
0c cos xtð Þ cos h ð20Þ

Without loss of generality, Eq. (20) is further

nondimensionalized, as follows:

€~hþ 2n _~hþ sin ~h ¼ �c cos ksð Þ cos ~h ð21Þ

where

n ¼ ct=2mmx0 ð22Þ

c ¼ Ag

�
g ð23Þ

k ¼ x=x0 ð24Þ
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Fig. 2 Frequency of DMP with a variation of system energy
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s ¼ x0t ð25Þ

~h sð Þ ¼ h tð Þ ð26Þ

_~h ¼ _h
.
x0 ð27Þ

€~h ¼ €h
.
x2

0 ð28Þ

where k and c are the normalized excitation frequency

(the ratio of the excitation frequency to the initial

frequency) and normalized excitation amplitude (the

ratio of the excitation amplitude to the gravitational

acceleration), respectively. The dimensionless gov-

erning equation of the DMP harvester, i.e., Eq. (21), is

nearly identical to that of a damped simple pendulum.

Notably, the parameters h and its derivatives, as

calculated in Eq. (20), are time variants with respect to

t; whereas the corresponding dimensionless parameter

eh and its derivatives in Eq. (21) are with respect to s.
The average DMP damping power (treated as the

gross output power) is computed as follows:

Pd ¼
1

te � ts

Z te

ts

ct l
2
1 þ l22

� �
_h2dt

¼ 1

te � ts

Z te

ts

2nx0mml
2
1 1þ a2
� �

_h2dt ð29Þ

where ts and te are the start and end measurement time,

respectively. Correspondingly, the dimensionless

power form is defined as follows:

~Pd ¼
1

se � ss

Z se

ss

2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� að Þ3

1þ a2ð Þ

s
_~h
2
ds ð30Þ

where the a-related items are retained in the dimen-

sionless power expression. The power item in this

study refers to the average value unless otherwise

stated.

2.3 Unique DMP characteristics

Although the DMP and the traditional simple pendu-

lum share similar dynamic equations, the DMP

possesses the following unique characteristics, espe-

cially for the related dynamics with varying l1 and a
(i.e., l1 and l2):

(1) DMP can effectively eliminate frequency

dependence on pendulum length, realizing low fre-

quency. Based on Eqs. (2) and (3), the DMP can easily

realize extremely low initial natural frequency (even

zero frequency) by tuning the l1 and a. However, a
traditional simple pendulum requires an extremely

long pendulum length (often become impractical) to

realize a low initial frequency.

Figure 3 shows the normalized natural frequency of

the DMPwith a variation of dimensionless upper-mass

position a and vibration amplitude, given a fixed

lower-mass position l1. The DMP natural frequency is

normalized by using (g/l1)
1/2 in this figure. When a is

increased from 0.2 to 0.96, the initial frequency

decreases from 0.88 to 0.14, demonstrating that the

additional upper mass could effectively reduce the

pendulum frequency. The natural frequency of DMP

decreases further with the increased vibration ampli-

tude, considering the effect of softening nonlinearity.

Given the vibration amplitude hmax = 0.95p, close to

Fig. 4 Potential function of DMP with a variation of upper-

mass position and rotation angle

Fig. 3 Natural frequency of DMP with a variation of upper-

mass position and vibration amplitude. The calculated param-

eters are selected from the DMP prototype in the experimental

test, adopted in Fig. 4 as well
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the critical energy threshold, the natural frequency can

even decrease to 40% of the initial frequency setting.

The possible low-frequency coverage demonstrates

that the DMP is highly suitable for low-frequency

energy harvesting or vibration control applications. As

shown in Eq. (16) and Fig. 2, the frequency will be

different once the rolling motion occurs, which will be

discussed in the later section.

(2) The critical energy threshold (i.e., the potential

energy barrier) of the DMP and simple pendulum are

as follows:

Edmp ¼ 2mmgl1 1� að Þ ð31Þ

Esp ¼ 2mmgl ð32Þ

where l is the pendulum length of the simple

pendulum.

A low-frequency simple pendulum requires a long

pendulum length, resulting in a high critical energy

threshold. In contrast, a low-frequency DMP can be

achieved by keeping a small l1 value and increasing a.
Consequently, a lower-frequency DMP has a lower

potential well. Figure 4 shows the normalized poten-

tial energy of the DMP with the variations in

dimensionless upper-mass position a and rotation

angle h. The potential energy is normalized by using

2mmgl1.

(3) A DMP energy harvester possesses more

controllable parameters. The gross output power of a

simple pendulum can be represented as follows:

Psp ¼
1

te � ts

Z te

ts

ctl
2 _h2dt ¼ 1

te � ts

Z te

ts

2nx0mml
2 _h2dt

ð33Þ

Considering Eqs. (21) and (29), if the parameters k,
c, n, andx0 are identical for damped simple pendulum

and DMP, their corresponding angular velocities

would be identical as well. In this scene, the power

item of the simple pendulum is determined by themass

block mm only because the pendulum length has been

determined by the initial natural frequency.

On the contrary, as indicated in Eq. (29), the DMP

gross output power can be optimized by mm and a,
considering the different combinations of l1 and a to

achieve the same x0. For example, parameters

l1 = 0.10 m and a = 0.454 can realize an initial

frequency of 1.06 Hz, the same as that of l1 = 0.125

m and a = 0.36.

Equation (34) presents the basic calculation of a to
obtain a target x0 value by varying l1,

a ¼ �gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 4x4

0l
2
1 þ 4x2

0l1g
q� ��

2x2
0l1 ð34Þ

The condition of b2 C 1, wherein b = g/l1x0,

should be satisfied to obtain a positive a. The

following analysis is based on a constant l1.

3 Nonlinear dynamics

The exact solution of the period (or frequency) cannot

be obtained analytically after introducing the damping

effect. Although some approximate analytical meth-

ods (e.g., harmonic balance method) enable solving

the periodic steady-state responses of dynamic sys-

tems, they can hardly be applied to obtain high-

precision results of complex nonlinear responses (e.g.,

chaotic behavior); therefore, efficient numerical meth-

ods are often adopted for nonlinear analyses [37]. In

this section, the fourth-order Runge–Kutta method

with a time step of 0.002 s is applied to obtain the

numerical solution representing the nonlinear dynam-

ics of the DMP energy harvester. Correspondingly, the

numerical precision of this study is limited to

O(0.0025). The parameters of the experimental DMP

model, as shown in Table 1, are used in the numerical

simulations in this section.

Angular velocity is often used to exhibit the period

results of the pendulum-type structures, considering

that the rotating motion achieves complete revolutions

[38]. Figure 5a shows the bifurcation diagram of the

dimensionless angular velocity
_eh by setting the

dimensionless upper-mass position a = 0.36 (the cor-

responding damping ratio n& 8.71%), the normalized

Table 1 DMP prototype parameters

Item Value

Individual mass, mm 0.947 kg

Lower mass position, l1 0.125 m

Upper-mass position, l2 0.035–0.125 m

Inherent damping ratio, ns 0.002

Total dampinga, ct 1.1 N s/m

a The total damping includes the transducer and structural

inherent damping
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excitation frequency k = 1/1.06,
_eh = 0, and

eh0 = - 1/2p. With increase in excitation amplitude

ratio c, the DMP exhibits single-period, multiple-

period, and chaotic behavior. Figure 5b shows a small

range of excitation amplitude ratio c (from 0.95 to 1.5)

in detail. Under the given conditions: (1) if c\ 0.968,

the DMP harvester is in a single-period oscillation

state; (2) when 0.967 B c B 1, a multiple-period

vibrating structure is observed, wherein the multiple-

period cascade is defined as the striking multiple-

period ([ 1) behavior in this study; (3) when

1\ c\ 1.038, the DMP harvester returns to vibrate

in a single-period state; (4) near c = 1.04, chaotic

behavior is exhibited; (5) with increasing c, the DMP

harvester becomes a periodic vibrating structure until

c increases to approximately 1.22. These alternate

occurrences of single-period, multiple-period, and

chaotic vibrations demonstrate the complicated non-

linear dynamics of the DMP energy harvester.

Besides, it is noted that when the initial conditions

vary, the bifurcation results may be very different [39].

Correspondingly, Fig. 6 shows the bifurcation

diagram of the maximum rotation angle ehmax that is

redefined to lie between - p and p to avoid the

indecipherable infinite y-axis space. It not only

exhibits similar vibrating period results to that of

rotation velocity (i.e., Fig. 5), but also indicates the

threshold of c = 1.04 entering the rotating-motion

state (see the red spot) in this special case.

Considering c = 0.5, 0.98, 1.4, and 1.5 as repre-

sentative examples, Fig. 7 presents the corresponding

phase diagrams. Under the excitation amplitude ratio

c = 0.5, the rotation angle–velocity relationship shape

spirals like an approximate ellipse. When c = 0.98 and

1.4, the vibration behavior becomes multiple-period

oscillation and rolling motion, respectively. Further-

more, the DMP energy harvester is like a chaotic

system at c = 1.5. The red dots in Fig. 7 represent the

Poincaré map (also known as the state-space orbit),

Fig. 5 Bifurcation diagram of angular velocity with excitation

amplitude ratio: k = 1/1.06

Fig. 6 Bifurcation diagram of rotation angle with excitation

amplitude ratio: k = 1/1.06

Fig. 7 Phase diagram and Poincaré map of the DMP energy

harvester under different excitation amplitude ratios c
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indicating the successive points over a certain time

interval to show the stability. The Poincaré map of a

chaotic system is fractal.

4 Gross output power

4.1 Power FRF

Figure 8 shows the power frequency response func-

tion (FRF) under small-to-medium excitation ampli-

tude ratios c, when the dimensionless upper-mass

position is a = 0.36. The y-axis herein is the DMP

gross output power. It confirms that the DMP energy

harvester exhibits rather softening nonlinearity with

the increase in excitation amplitude ratios. Notably,

the nonlinearity may be effectively reduced when the

oscillation amplitude is mitigated by introducing a

high-damping effect [14].

4.2 Rotating-motion benefits

The nonlinear behaviors typically depend on the initial

conditions, especially for a chaotic system. Figure 9

presents the power variation by setting various initial

rotation angles and zero initial angular velocity. Only

the numerical response of time duration from 1000 to

2000 s is used to capture the steady-state gross output

power. The results show that under small excitation

amplitude ratios (0.5\ c\ 1), the output power level

almost increases with the increment of c, and the initial

rotation angle eh0 has no influence on the steady-state

output power. However, if the excitation amplitude

ratio c is sufficiently large (c[ 1), the initial condi-

tions might affect the power generation, although the

vibration is not chaotic. This result confirms that

different initial conditions result in a change in the

bifurcation analysis. Another interesting observation

is an apparent power leap near c & 1, indicating the

potential benefits of nonlinear energy harvesting,

which has not been reported in typical linear energy

harvesters.

With a zoom-in plot of c = 1.1–1.5 in Fig. 9b,

increasing the excitation amplitude ratio c does not

correspond to a monotonous power increment in

this specific range, and alternate power jumps and

drops occur in the numerical analysis. Furthermore,

considering the varying initial conditions-induced

power difference in c = 1.1, the corresponding

phase diagrams depict the vibration behavior for two

specific scenarios, namely, eh0 = - 0.45p and - 0.5p,
respectively, as shown in Fig. 9c and d. The DMP

energy harvester performs a periodic rolling motion

when eh0 = - 0.5p, while it is in an oscillation state

when eh0 = - 0.45p; the corresponding power per-

formances are marked by two red-cross points in

Fig. 9b. To some extent, the finding indicates that

rolling motion benefits power generation. As for the

scenarios at c = 1.3 and 1.5, the DMP energy harvester

becomes a chaotic system, in which the initial

conditions significantly influence the power genera-

tion. The chaotic behavior also includes unpre-

dictable rotating motions; thus, their output power

levels are above the power leap, demonstrating that the

chaotic rotating motion improves power generation. It

is noted that this observation is inconsistent with the

findings by Daqaq et al. [40], who investigated a bi-

stable beam-type piezoelectric energy harvester con-

necting to a buck circuit and observed the battery

charging efficiency under chaotic inputs was less

efficient than that under periodic inputs. The different

observation in this study is likely due to the chaotic

rotating motion of the DMP, which was not present in

the beam-type structure.

As mentioned, the DMP damping power represents

the potential harvestable power, often termed gross

output power. Only part of the gross output power

could be really harvested and stored in energy storage

elements. The net output power of the DMP energy

harvester is the product of the gross output power and

the power efficiency, where the power efficiency is

determined by the characteristics of an energy trans-

ducer and a specific energy harvesting circuit [36].

The power performance of the DMP structure

Fig. 8 Dimensionless gross output power FRF of DMP energy

harvester
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connecting to a specific energy harvesting circuit

should be quantified in future work.

5 Conditions of rotating motion

In view of the fact that rotating motions would benefit

the energy harvesting performance, the realization

conditions of rotating motions are investigated.

According to Eq. (21), the influencing factors on the

DMP dynamics are the excitation frequency ratio k,
excitation amplitude ratio c, and damping ratio n.
Figure 10 shows the parameter space plots calculated

with different damping ratios n. Considering that the

initial conditions may influence the DMP dynamic

responses, vibration responses of the DMP energy

harvester with initial rotation angles ranging in [- p,
p] with an interval of 0.05p are calculated and

averaged. The target of this figure is to identify the

conditions that would result in the rolling or chaotic

motion of a DMP energy harvester under horizontal

ground motions. Five colors are used to classify the

vibrating conditions of the DMP energy harvester:

orangey-red colors represent the parameter regions,

where the DMP energy harvester is always in a rolling

motion or chaotic state ([ 90% cases); cyan colors

represent the parameter regions, where rotating

motions can be observed in approximately 50%–

70% of cases; and gray colors indicate those regions

with less than 10%, treated as oscillations scenarios.

The rolling and chaotic motions are not separately

displayed in the figure. The analyzed case in Figs. 5

and 6 for a given excitation frequency ratio k = 1/1.06

and excitation amplitude ratio c = 0 - 3 is marked in

Fig. 10b but for an initial condition of eh0 = - 0.5p.
Figure 10a–c illustrates that the boundaries sepa-

rating the oscillation and the rotating motions show

Fig. 9 Power analysis in

different initial conditions

and excitation amplitude

ratios
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similar shapes, although the damping ratios are

different. However, the corresponding excitation

amplitude ratio c to realize rotating motion generally

increases as the damping ratio n increases. The

parameter space plots can effectively indicate the

conditions for rolling or chaotic motions that lead to

attractive power leaps. In general, the rotating motions

do not occur at low excitation amplitude ratios c; with
the increase in excitation amplitude ratio c, the

rotating motions may occur in a wider excitation

frequency ratio k. The tips of the orangey-red and cyan
areas show the lowest excitation amplitude ratio c
required by rotating motions, which typically occurs

when the excitation frequency ratio k is slightly less

than 1. For example, in the analyzed DMP energy

harvester with a damping ratio n = 3.96%, the thresh-

old for entering the rotating-motion state is approxi-

mately c = 0.8 when k = 0.78. Considering that the

DMP has a tunable frequency to realize any desirable

frequency ratio if necessary, the rotating motion can

be realized as long as the excitation amplitude ratio

c[ 0.8. Such excitation conditions are feasible in

practical scenarios. For example, ocean waves with a

period of 3 s and a height of 1.8 m approximately

correspond to c = 0.8.

Although the rotating-motion parameter space plots

of the DMP harvester are nearly the same as those of a

simple pendulum, the feasibilities of realizing rotating

motions are very different. The results in Fig. 10 imply

that the pendulum frequency should be tuned close to

or even significantly lower than the excitation fre-

quency to facilitate rotation motions. Given a low

excitation frequency (e.g., ocean wave frequencies),

frequency matching by a traditional simple pendulum

is remarkably challenging as an impractically long

pendulum length may be required. Moreover, the

power performance of the DMP and single-pendulum

energy harvesters should be significantly different,

given that the individual pendulum lengths are

different.

Fig. 10 Parameter space

plots indicating the

thresholds for rotating

motion
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6 Parametric analysis

This section presents the parametric analysis of

dimensionless upper-mass position a with frequency

ratio k and amplitude ratio c.

6.1 Upper-mass position and excitation frequency

Figure 11 shows the dimensionless gross output

power results with variations of upper-mass position

a and frequency ratio k, wherein the excitation

amplitude ratio c is fixed, and an averaging process

for different initial conditions is adopted, as done in

Fig. 10. Given a fixed a value, the corresponding

horizontal line in Fig. 10 essentially represents a gross

output power FRF, similar to Fig. 8. The following

results are observed: (1) the maximum power occurs at

the shift-left locations of excitation frequency ratio

k = 1 due to the softening nonlinearity. The result, to

some extent, confirms that the approximate frequency

matching leads to optimal output power; (2) the

effective harvesting bandwidth at c = 1.4 is much

broader than that of c = 0.2, and such a wide plateau in

the harvesting performance is believed as a result of

rotating motions; (3) higher output power is generated

at smaller a corresponding to a higher natural

frequency for both amplitude scenarios; (4) when

c = 1.4, the discrete power peaks or valleys occur

alternately around k = 1–1.5, which is believed as

results of alternating nonlinear frequency matching

and mismatching.

6.2 Upper-mass position and excitation amplitude

By selecting an excitation frequency equal to the

initial natural frequency corresponding to a = 0.41,

Fig. 12 presents the dimensionless gross output power

results with variations of upper-mass position a and

excitation amplitude ratio c. A monotonous power

increase is observed in the small c range; subse-

quently, alternate power peaks and valleys occur with

increasing c; in the case of relatively larger c, a

rotating motion-induced higher-level power zone is

observed as expected; the large power occurs at

a = 0.2–0.4, smaller than 0.41 because of the soften-

ing nonlinearity.

Fig. 11 Gross output

power with a variation of a
and k

Fig. 12 Gross output power with a variation of a and c: initial
frequency matching at a = 0.41
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7 Experimental test

7.1 Experimental setup

Shake table tests were conducted to validate the DMP

energy harvester simulations. The DMP energy har-

vester, as shown in Fig. 1, was the same as that used by

Cai and Zhu [13], who conducted the proof-of-concept

tests of a DMP oscillator in WEC but ignored its

nonlinearity characteristic. Figure 13 shows the sche-

matic of the experimental setup, wherein a 3D

displacement measurement system (model no.

XTDIC-CONST-SD23M) was used to record the

DMP rotation angle, and a data acquisition system

(model no. KYOWA EDX-100A) was used to mea-

sure the output voltage of the DMP energy harvester.

The sampling frequency of the two devices was set to

100 Hz. The 3D displacement measurement system

based on the digital-image-correlation technology

consists of two BASLER cameras with a maximum

of 160 fps and a lens focal length of 12 mm. The

theoretical precision of the displacement measurement

can be up to 0.01 pixel after calibrations. The rotation

angle was measured by setting the encoded points in

the vertical bar and the bearing support plate (see

Fig. 13). The shake table (model no. MTC-6DOF-

2000KG) generated harmonic or sweep horizontal

ground motion for the DMP structure. The shake

table has a maximum payload of 2000 kg and enables

low-frequency motions (as low as 0.1 Hz). The

suggestive maximum horizontal excursion, velocity,

and acceleration are 190 mm, 400 mm/s, and 0.5 g,

respectively. Figure 14 shows the photographs of the

experimental setup. Through free vibration tests, the

natural frequency and the inherent damping ratio of

the DMP without an electromagnetic transducer were

estimated as 1 Hz and 0.002, respectively, when a =

0.36 (i.e., l2 = 0.045 m). This DMP is referred to as a

low-damping DMP, whereas the DMP connected with

an electromagnetic transducer is called a high-damp-

ing DMP in this section. Table 1 lists the DMP

prototype parameters, where the upper-mass position

l2 = 0.035–0.125 m corresponds to a = 0.28–1, and

the bar mass is ignorable. In addition, due to the

Fig. 13 Schematic of the

experimental setup for the

DMP test
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performance limitation of the 3D measurement sys-

tem, only approximately 60 s videos could be recorded

if a 100 Hz sampling frequency was applied. Thus, to

obtain the steady state of the DMP, the 3D system was

set to begin recording the responses after 10 min of

DMP vibrations. This experimental study aims to

provide a preliminary validation of the numerical

modeling of the DMP structure. More comprehensive

experimental investigations of the DMP energy har-

vesting performance considering different load resis-

tances, excitation frequencies, and frequency tuning

are out of the scope of this paper and will be reported

in future studies.

7.2 Experimental results

7.2.1 Low-damping DMP

Figure 15a and b shows the bifurcation diagram of the

maximum rotation angle of the low-damping DMP

subjected to the horizontal ground motions with

excitation frequency ratios k = 0.9 and 1, respectively

(corresponding to 0.9 and 1 Hz). In the case of k& 0.9,

the low-damping DMP vibrated in the single-period

state under relatively small vibration amplitudes, but it

exhibited multiple-period and chaotic behavior in the

case of relatively larger vibration amplitudes. A

sudden jump of the rotation degree was observed at

the excitation amplitude ratio of approximately c &
0.08 because of the nonlinear resonance, where the

amplitude-dependent natural frequency decreased to

Fig. 14 Photograph of the experimental setup
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nearly 0.9 Hz. However, such a rotation angle jump

occurred at approximately c & 0.15 in the case of

numerical modeling. The discrepancy might be caused

by the discrepancies in the estimated inherent damping

and natural frequency between numerical and exper-

imental conditions. When the frequency ratio k & 1,

only a single-period behavior was observed in the

experiment. The result was quite consistent with the

analyzed rotating-motion conditions: the excitation-

amplitude-ratio condition undertaking rotating motion

at the shift-left region of k & 1 is smaller than that at

exactly k = 1. In general, the experimental results

agreed fairly with the numerical modeling in the two

excitation scenarios. Note that the applied horizontal

velocity reached the maximum allowable value of

400 mm/s, so higher c values could not be tested.

Considering c = 0.16, 0.28, and 0.29, Fig. 16

shows the corresponding phase diagrams of low-

damping DMP, where the red dots represent the

Poincaré map. The phase diagrams were not very

smooth due to the noise amplification effect in the

finite difference calculation of angular velocities from

rotation angles.

7.2.2 High-damping DMP

Figure 17 shows the maximum–rotation–angle bifur-

cation diagram of the high-damping DMP. In both

frequency scenarios, only single-period behavior was

observed for the high-damping DMP. Furthermore,

due to the transducer damping, the maximum rotation

angles of the high-damping DMP were relatively

smaller than the low-damping case under the same

excitation conditions. Similar to the low-damping

DMP case, the maximum excitation amplitude ratio c
was capped by the testing capability of the shake table.

In the case of k & 0.9, the shapes of the numerical

modeling agreed with that of the experimental results,

but the amplitude threshold entering the nonlinear

resonance was quite different. On the contrary, the

numerical modeling of the cases with k & 1 matched

consistently with the experimental results. Results in

Figs. 15, 16, and 17 demonstrated the effectiveness

and fair accuracy of the DMP numerical modeling.

Figure 18 shows the open-circuit voltage of the

high-damping DMP in the sweep tests with an

excitation amplitude ratio of c = 0.125 and a fre-

quency sweep rate of 1/600 Hz/s. The backward and

forward sweep tests were conducted. Such different

profiles of the two sweep results demonstrated the

nonlinear dynamics of DMP. Note that when higher

transducer damping is considered, the vibration

amplitude is reduced and the corresponding nonlinear

dynamics are weakened.

Figure 19 shows the estimated gross output power

by using the measured rotation degrees. The power

trend with increase in excitation amplitudes was

similar to the corresponding response in Fig. 17. The

DMP power performance under an excitation fre-

quency of 0.9 Hz is smaller than that of 1 Hz at small

excitation amplitudes. However, a sudden power jump

at nearly c & 0.12 was shown due to the approximate

nonlinear resonance and became superior to that of 1

Hz. The gross output power was estimated as approx-

imately 0.6 W in the case of k & 0.9 and c & 0.28.

Considering the theoretical and practical upper bounds

of the energy harvesting efficiency [41], the DMP is

potentially an excellent energy harvesting design.

Fig. 15 Bifurcation diagram of the rotation angle of low-

damping DMP
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8 Discussions

Random excitation is another common type of envi-

ronmental load. This section will briefly discuss the

performance of a randomly excited DMP energy

harvester. Without loss of generality, the random

excitation was modeled as white noise with a constant

power spectrum density (PSD) [42]. The Monte Carlo

simulation is performed to assess the DMP gross

output power. The frequency bandwidth of the exci-

tation is 0–500 Hz, the DMP dimensionless upper-

mass position is a = 0.36, and the initial condition is

set as eh0 = 0. Figure 20a shows the PSD example of

one simulation, wherein the RMS amplitude ratio is

c = 3.16. The PSD generally meets the constant PSD

assumption. Figure 20b presents the DMP gross

output power under white noise excitation with

different RMS excitation amplitude ratios c. With

the increase in excitation amplitude, the gross output

power increases. Given the same excitation amplitude,

the average power of each simulation is quite steady.

It is not surprising to observe that the gross output

power of a randomly excited DMP is considerably

lower than that in resonant conditions. Notably, the

DMP structure was initially designed as an energy-

extraction unit for WEC [13]. The DMP can tune its

Fig. 16 Phase diagram and

Poincaré map of low-

damping DMP: k & 0.9

Fig. 17 Bifurcation diagram of the rotation angle of high-

damping DMP

Fig. 18 Open-circuit voltage of high-damping DMP in the

sweep test

Fig. 19 Gross output power estimation of high-damping DMP
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frequency within the typical range (0.1–1 Hz) of

ocean waves and resonate with regular waves (like

harmonic input) to offer favorable energy harvesting

performance. The wave profiles can provide suffi-

ciently large excitations to realize rotating motions. In

contrast, the DMP power performance is expected to

be relatively lower under irregular waves associated

with random and broadband features. The wave

profiles at specific ocean regions are typically charac-

terized by a wave spectrumwith a dominant frequency

(e.g., the JONSWAP wave spectrum [43]). The DMP

frequency can be tuned to track the variable dominant

frequency of irregular waves in this scenario.

9 Conclusions

This study systematically analyzes the nonlinear

dynamics and energy harvesting performance of the

DMP, a recently emerging tunable low-frequency

device. The analytical derivation of the DMP fre-

quency characteristic is conducted. The differences

between DMP and simple pendulum are elaborated

analytically through the potential energy functions, the

realization of low natural frequency, and the control-

lable parameters influencing gross output power. The

nonlinear dynamics and output power performance of

the DMP energy harvester are analyzed numerically

and experimentally. The results suggest the benefits of

utilizing the rotating motions of the pendulum-type

energy harvester for energy harvesting; the DMP is a

good energy-extraction device for low-frequency

energy harvesting scenarios, such as ocean waves

energy harvesting. The specific results are remarked as

follows:

(1) The natural frequency characteristic of the

undamped DMP is similar to that of the

undamped simple pendulum. If the system

energy is less than the critical system energy

threshold, the DMP natural frequency decreases

with increase in system energy. If the energy

input is larger than the energy threshold, the

DMP natural frequency increases with increase

in system energy. The DMP is a zero-frequency

device at the critical energy threshold and shows

a broad bandwidth in the vicinity of the critical

energy.

(2) The DMP structure exhibits several unique

characteristics compared with a simple pendu-

lum. Lower-frequency DMP owns a lower

potential well. The DMP can realize ultra-low

frequency in limited space, even zero-frequency

theoretically. The DMP energy harvester has

more controllable parameters for the gross

output power.

(3) When the DMP energy harvester suffers from

horizontal ground motion, only the damping

ratio, frequency ratio, and excitation amplitude

ratio influence the DMP dynamics.

(4) The DMP energy harvester has complicated

nonlinear dynamics, exhibiting alternate single-

period, multiple-period, and chaotic vibration

behavior with increasing excitation amplitude

ratio. Such results are also observed in the

parametric analysis of gross output power.

(5) DMP rotating motions enhance the energy

harvesting performance, regardless of chaotic

or rolling motions. A remarkable power leap

and a broader harvesting bandwidth can be

observed in the rotating-motion state.

Fig. 20 Results of DMP

structure under random

excitation
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(6) The rotating motions first occur near the exci-

tation frequency ratio of 1 when the excitation

amplitude ratio is small. A lower damping ratio

corresponds to a lower amplitude ratio for

realizing rotating motions.

(7) The gross output power generally decreases

with increasing upper-mass positions (a lower

initial natural frequency). A wide power plateau

corresponding to a broader harvesting band-

width is observed under a relatively large

excitation amplitude ratio.

(8) The single-period, multiple-period, and chaotic

behavior of the low-damping DMP was

observed in the shake table test, which matched

fairly with the numerical modeling. In the case

of high-damping DMP, only single-period

behavior was observed due to the limited testing

capability of the used shake table and relatively

large transducer damping.

Although the analysis is conducted explicitly for

the DMP, the methodology and conclusions can be

easily extended to other pendulum-type structures.

The DMP was initially intended for WECs. The DMP

will work efficiently under regular waves or irregular

waves with dominant frequencies. The power perfor-

mance analysis of large-scale DMP-based WEC under

realistic wave profiles will be included in future work.
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