
Nonlinear Dyn (2024) 112:3399–3420
https://doi.org/10.1007/s11071-023-09213-z

ORIGINAL PAPER

Parametric reduced-order modeling for component-oriented
treatment and localized nonlinear feature inclusion

Konstantinos Vlachas · Anthony Garland ·
D. Dane Quinn · Eleni Chatzi

Received: 19 May 2023 / Accepted: 11 December 2023 / Published online: 19 January 2024
© The Author(s) 2024

Abstract We propose coupling a physics-based
reduction framework with a suited response decompo-
sition technique to derive a component-oriented reduc-
tion (COR) approach, which is suitable for assembly
systems featuring localized nonlinearities. Dependen-
cies on influencing parameters are injected into the
reduced-order model (ROM), thus ensuring robust-
ness and validity over a domain of parametric inputs,
while capturing nonlinear effects. The implemented
approach employs individual componentmodes to cap-
ture localized features while additionally relying on
reduced modes of a global nature to approximate the
system’s dynamics accurately. The global modes are
derived from a linear monolithic system, defined as a
result of a coordinate separation scheme, which per-
mits the proposed COR-ROM to naturally couple the
response between linear and nonlinear subdomains.
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The derived low-order representation utilizes a proper
orthogonal decomposition projection and is addition-
ally reinforced with the inclusion of a hyper-reduction
technique to capture the underlying high-fidelitymodel
response while providing accelerated computations.
The resulting approach is exemplified in the synthetic
case studies of a four-story shear frame with multiple
nonlinear regions driven by hysteresis and a large-scale
kingpin connection featuring plasticity.
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1 Introduction

Structural and mechanical systems often comprise
complex assemblies of multiple components, featur-
ing localized features of elevated intricacy, as present
in robotics, automotive, and civil engineering applica-
tions [1,2]. This imposes elevated requirements when
pursuing a digital twin representation of such sys-
tems [3]. The process of twinning is helpful for var-
ious tasks, particularly those relating to diagnosis and
prognosis, as defined in the Structural Health Monitor-
ing (SHM) or Prognostic Health Management (PHM)
context [4,5]. However, evaluating a complex system
within a continuous assessment context demands its
reduction to ensure affordable numerical computations.
To this end, a “divide and conquer” approach is usually
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employed, which involves breaking down the system
and addressing each component separately [6]. This
technique is generally referred to as dynamic substruc-
turing and aims at a component-oriented treatment of
the system, meaning that each component is firstly
investigated as an individual entity prior to their cou-
pling so as to ultimately re-assemble the global system
[7]. The methodological background and the historical
development of substructuringmethodologies are sum-
marized in [8]. Furthermore, a comparative evaluation
of established approaches is provided in [9,10], with
more recent techniques exploiting data-driven strate-
gies are discussed in [11–13].

An established technique to achieve high-precision
approximations when deriving a digital twin is to
imprint the model physics in the virtual represen-
tation [14]. In this regard, physics-based reduced-
order models (ROMs) refer to low-order numeri-
cal representations that additionally retain the real-
life system’s physical connotation [15]. Essentially,
ROMs rely on physics-based reduction to capture the
dynamics involved and propagate those in a reduced
subspace. This leads to accelerated estimators for
downstream tasks, such as decision-making or SHM
tasks, which maintain a connection to the underlying
physics [16]. Within this context, substructuring can
be treated as a tool for injecting component-oriented
treatment into the ROMs when addressing complex
systems of multiple sub-assemblies [17]. This has
been exemplified, for instance, in a linear setting in
[18], where a reduced-order model (ROM) for non-
classically damped systems is derived relying on the
dual Craig-Bampton(CB)-ComponentMode Synthesis
(CMS) substructuring technique.

Going one step further, the serviceability and util-
ity requirements of a digital twin in SHM applications
demand parameterized formulations to address varia-
tions in system properties or different operating envi-
ronments [19,20]. Damage effects have been addressed
in [21], where a dual CB-CMS assembly is coupled
with Taylor series expansion to address parameterized
cracks, whereas interpolation-based strategies on the
proper subspace have been proposed instead in [22–25]
to derive a linear component-based parametric ROM.

However, the vast majority of the methodologies
that are rooted in the principle of dynamic substruc-
turing rely on some form of fundamental modes when
attempting to approximate the underlying physics of
each component [26,27]. The respective set of modes

compresses the response information into a few vec-
tors, which serve as a basis for capturing and efficiently
reproducing the original model’s complex behavior
[28]. Although this simplification straightforwardly
holds in a linear setting, localized effects may domi-
nate the responsewhen a systemexhibits nonlinearities,
thus rendering the conventional treatment ineffective
[29,30]. In remedying this deficiency, modal deriva-
tives have been proposed, for example, in [31,32], to
augment substructuring representations for geometri-
cally nonlinear systems, while trial vector derivatives
have also been reported instead in [33] for structures
with nonlinear interfaces.

In that regard, Nonlinear Normal Modes (NNMs)
appear as the most referenced strategy for handling
localized component nonlinearities [34,35]. In essence,
this technique attempts an adaptation of the notion
of linear modes employed in the established CMS
techniques in a nonlinear setting [36]. Computational
approaches for NNMs extraction have been proposed
in [37–40], whereas the notion of (complex) NNMs
has already been proven effective in a variety of
applications, including resonance prediction [41], fre-
quency response approximation [42], or nonlinear fric-
tion modeling [43]. More recently, Joannin et al. [44]
coupled a NNMs-based strategy with modal synthesis
to address vibration applications in large Finite Ele-
ment (FE) models, thus providing more general appli-
cability.

However, despite recent efforts, the available frame-
works for determining the NNMs seem to remain com-
putationally intensive, problem-specific, or limited to
models with a relatively small dimension. In addition,
the respective NNMs-based approaches do not allow
for constructing a forward model that propagates the
dynamics in time, thus relying on ad-hoc, data-driven
schemes for such tasks. TheProperOrthogonalDecom-
position (POD) poses a compromising yet computa-
tionally tractable and generally applicable alternative
that can additionally be utilized to formulate a for-
ward ROM via the use of projection techniques. A
set of modes is derived by applying POD in a series
of response time histories, which has been shown to
deliver a sufficiently accurate approximation of the
actual NNMs [45]. More importantly, though, the POD
projects the dynamics in a low-order subspace that
additionally allows for direct integration. Thus, POD-
based ROMs require no additional technique to eval-
uate the model response forward in time, contrary to
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frameworks relying on the extraction of NNMs, which
typically require a data-driven temporal mapping, as
for example the LSTM neural networks suggested in
[46].

In this work, we propose a physics-based,
component-oriented ROM, termed as Component-
Oriented Reduction (COR)-ROM. Through POD-
basedprojection, the derived representation can address
parametrically-dependent, nonlinear systems and cap-
ture response information on a global system scale and
on a localized level. To achieve this, the ROM assem-
bly presented in [47] is recast into a substructural for-
mulation based on the decomposition proposed in [48]
to enable individual treatment of each component dur-
ing reduction while incorporating localized nonlinear
features. This decomposition has already been used in
[49] to derive a global, system-wide ROM approach
using modal reduction while evaluating the localized
features in full order, whereas in [50] the decomposi-
tion is utilized in a machine learning framework for
identification of interface forcing.

Moreover, couplingPODfor the system-wide reduc-
tion with a CMS-based formulation for substructuring
has already been explored in [51–53]. However, the
linear nature of the CMS modes utilized poses certain
limitations regarding capturing nonlinear effects on a
component level. In addition, such approaches address
nonlinear systems with a ROM that relies on a single
global projection basis. This implies limited applica-
bility as only a limited range of configurations can be
captured, or the number of required modes will make
the basis intractable [54].

Further, a powerful trait of the adopted COR-ROM
strategy is revealed within the reduction context. By
properly decomposing the response into a linear por-
tion resulting from the monolithic assembly of the sys-
tem and a deviatoric one, which captures the nonlin-
ear effects, the proposed scheme feeds the COR-ROM
with response information on both a global (system)
and a localized (component) level. This technique fur-
ther extends CMS-based strategies that rely solely on
the latter. The COR-ROM reduced-order basis, on the
one hand, allows for the use of system-wide reduc-
tion that captures the global modes, i.e., the modes
that represent the dynamics of a linear monolithic
assembly, in the absence of localized nonlinear effects.
On the other hand, the localized features are assem-
bled in a component-wise manner into the ROM via
POD reduction onto the nonlinear (deviatoric) por-

tion of the response. This approach allows for the
adoption of any reduced-order basis projection tech-
nique,while enabling the potential of hyper-accelerated
ROMs using second-tier approximations like hyper-
reduction. The latter allows the ROM to project and
evaluate the nonlinear terms in a reduced subspace, thus
achieving additional efficiency [55–57].

The proposed framework further tackles the neces-
sity of adaptive exploration of the input sampling
domain during the full-order evaluations of the training
phase. A sampling technique with a suitable error indi-
cator is utilized for this purpose, following relevant sug-
gestions in [58]. Similar to previous works in [59,60],
the Modal Assurance Criterion (MAC) is employed as
a comparativemeasure that indirectly relates the under-
lying dynamics of neighboring parametric samples as
captured by the projection bases.

The efficacy of the derived COR-ROM is illustrated
in a numerical benchmark of a four-story shear frame
with multiple nonlinear domains driven by hysteretic
nodal connections [61,62], and in a three-dimensional
kingpin case study featuringmaterial plasticity. The lat-
ter large-case example further demonstrates the ability
of the ROM to reduce the required computational toll
and offer accelerated model evaluations for complex
structures.

The remainder of the paper is structured as follows.
In Sect. 2, the problem statement is offered. The main
components of the proposed framework are presented
in detail in Sect. 3 and Sect. 4, where the implemented
substructuring approach and the parametric reduced-
order modeling framework details are clarified, respec-
tively. In Sect. 5, the various aspects of the ROM per-
formance are evaluated through a series of numeri-
cal experiments. Finally, Sect. 6 summarizes the main
results and discusses the potential and limitations of
the proposed framework.

2 Problem statement

The general problem setting of our work is the physics-
based, component-oriented reduction of parameterized
dynamical systems comprising assemblies of compo-
nents with localized features, which impact the overall
dynamics. Such localized effects may correspond to
the manifestation of damage and/or local deterioration
or might arise from the inherent composition of the
system, which can include joints, interfaces, or non-
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Fig. 1 Abstraction of a nonlinear instance, which is assumed
localizedwithin the regionC2, within an otherwise linear domain
C1 (illustration adjusted from [49])

linear attachments. For the sake of demonstration, and
without compromising the potential generalization of
our work, we assume a problem setting pertaining to
the presence of a localized nonlinearity, which is acti-
vated only within a region of the general system under
consideration, as illustrated in Fig. 1. The general case,
where multiple regions of nonlinearity are present, can
be tackled similarly, since the proposed approach does
not assume any physical connectivity. It, instead, solely
relies on a coordinates-based partitioning of the equa-
tions of motion, as described next. Thus, Fig. 1 is an
example illustration of one such instance. In Sect. 5, a
numerical case study featuring two nonlinear domains
is also explored for the sake of completeness.

Regarding the mathematical description, we first
assume a nonlinear dynamical system additionally con-
ditioned on a parameter vector μ = [μ1, . . . , μNp ] ∈
R

Np ,which captures all systemproperties and excitation-
relevant traits. The dynamic motion is thus described
by the following set of nonlinear governing equations:

Mü(t) + g (u(t), u̇(t),μ) = f (t,μ) (1)

where u(t) ∈ R
N represents the system’s behavior in

terms of displacements, M ∈ R
N×N represents the

mass matrix, and f (t,μ) ∈ R
n the external excitation.

Variable N expresses the order of the system, which
denotes the dimensionality of the coordinate space and
physically represents the number of Degrees Of Free-
dom (DOFs) in the system. Lastly, the restoring force
term g (u(t), u̇(t),μ) ∈ R

N models the nonlinear
effects, encoding phenomena that range from material
nonlinearity to hysteresis or interface nonlinearities.

Since we are dealing with a dynamic problem,
the respective governing equations in Eq. (1) are to

be solved incrementally by means of time discretiza-
tion and numerical integration. Thus, the equations
of motion and any equilibrium conditions are typi-
cally linearized about the current configuration prior
to proceeding with the computation of the quantities
required for the next time increment. The tangent stiff-
ness matrix naturally appears during this procedure. As
a result, the respective linearized form of the governing
equations at iteration gives:

g (δu,μ) = K̃ (δu,μ)δu + G� (δu,μ) (2)

where time dependency has been dropped, K̃ ∈ R
N×N

denotes the tangent stiffnessmatrix, δu is the incremen-
tal displacement, and the term G� (δu,μ) represents
the vector assembly of the (remaining) nonlinear terms
in the system.Without compromising the applicability,
the setup further assumes linear damping forces, so the
dependency in u̇ has been omitted for simplicity.

We now decompose our structure, which is illus-
trated in Fig. 1, into two adjacent regions, denoted by
C1 and C2, respectively. This decomposition assumes
that any nonlinearities are localized within C2, while
the behavior within C1 remains linear. In this set-
ting, region C1 is described by the internal variables
u1 ∈ R

N1 , while u2 ∈ R
N2 are the corresponding inter-

nal variables for C2. As a result, the following holds:

G� = [0 G(δu2, μ)]T ∈ R
N=(N1+N2), G ∈ R

N2

δu = [δu1 δu2]T ∈ R
N=(N1+N2)

(3)

Thus, the term G represents the nonlinearities local-
ized in the region C2, whereas the parametric traits μ

also influence the update process of the system matri-
ces, especially the reconstruction of the tangent stiff-
ness matrix. Hereafter, our description refers to the lin-
earized form of Eq. (1).

At this point, we additionally assume that within
the linear region C1, the physical coordinates can be
expressed as δu1 = [δuc δuα]T, where uα represents
the vector of thoseDOFs that are coupled to the isolated
regionC2. Likewise, withinC2 the coordinates that are
coupled to C1 can be identified as uβ , so that δu2 =
[
δuβ δun

]T. Thus, the terms in Eqs. (1) and (2) can
be rewritten as:
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M =

⎡

⎢⎢
⎣

Mcc Mcα 0 0
MT

cα Mαα Mαβ 0
0 MT

αβ Mββ Mβn

0 0 MT
βn Mnn

⎤

⎥⎥
⎦

K̃ =

⎡

⎢
⎢⎢⎢
⎣

K̃ cc K̃ cα 0 0

K̃
T
cα K̃αα K̃αβ 0

0 K̃
T
αβ K̃ββ K̃βn

0 0 K̃
T
βn K̃ nn

⎤

⎥
⎥⎥⎥
⎦

δu =

⎡

⎢⎢
⎣

δuc
δuα

δuβ

δun

⎤

⎥⎥
⎦ , G� =

⎡

⎢⎢
⎣

0
0
Gβ

Gn

⎤

⎥⎥
⎦ , δ f =

⎡

⎢⎢
⎣

δ f c
δ f α

δ f β

δ f n

⎤

⎥⎥
⎦ (4)

where δuα ∈ R
Nα , δuc ∈ R

Nc , δuβ ∈ R
Nβ , δun ∈ R

Nn

with Nc � Nn > (Nα, Nβ), and the subscripts denote
the DOFs for the corresponding block sub-matrices. In
addition, in the presence of nonlinear damping forces,
the damping matrix C ∈ R

N×N can be decomposed,
and Eq. (2) can be adjusted accordingly. As already
explained, the above scheme relies solely on a parti-
tioning strategy. Thus, in the presence of multiple non-
linear features represented by several distinct isolated
regions, the respective block matrices that correspond
to the relevant DOFs of the regions may be uncoupled
in the Mn, K̃ n matrices and additional block matrices
would be needed for the interface DOFs.

3 Component-oriented treatment

The response u2 of the isolated region C2 in Fig. 1
is dominated by the presence of localized (nonlin-
ear or damage) effects. Based on the approach pro-
posed in [49], we assume the following decomposi-
tion: δu2 = δx + δz, where x represents an ideal-
ized system to be subsequently defined, and z func-
tions as a deviatoric component, which captures the
residual response between the idealized and the actual
configuration. Based on Eq. (4), the decomposition
implies that the deviatoric response δz is driven by
the terms G representing the nonlinear forcing due to
the features in C2. In addition, as the linear region C1

only experiences global idealized features, the global
response vector of the system can now be expressed as
δu = [

δuc δuα δxβ δxn
]T + [

0 0 δzβ δzn
]T.

With these definitions in place, the term K̃δu in Eq. (2)
for example can be rewritten as:

K̃δu = K̃

⎡

⎢⎢
⎣

δuc
δuα

δxβ + δzβ
δxn + δzn

⎤

⎥⎥
⎦

= K̃δw +
⎡

⎣
0c

K̃αβδzβ
02

⎤

⎦ +
⎡

⎣
0c
0α

K̃ 2δz

⎤

⎦ (5)

where,

K̃ 2 =
[
K̃ββ K̃βn

K̃
T
βn K̃ nn

]

∈ R
N2 ,

δz = [
δzβ δzn

]T ∈ R
Nn (6)

and the sub-indices in 0c indicate the dimensionality of
the null vector, e.g., 0c ∈ R

Nc . Here, the coupling term
K̃αβδzβ acts on the coupling DOFs associated with uα ,

while the respective elastic term K̃
T
αβδuα is included

in the term K̃δw ∈ R
N .

The mixed displacement vector δw is defined as:

δw = [
δuc δuα δxβ δxn

]T = [δu1 δx]T (7)

Thus, δu1 represents the response in the exterior region
C1 exactly,while δx is the respective idealized response
in the isolated domain C2. As a result, the system as
expressed in Eqs. (1) and (2) can be reformulated using
Eq. (5) and applying the same transformation inM . The
resulting (linearized) system reads:

M ¨δw +
⎡

⎣
0c

Mαβδ z̈β
02

⎤

⎦ +
⎡

⎣
0c
0α

M2δ z̈

⎤

⎦

+ K̃δw +
⎡

⎣
0c

K̃αβδzβ
02

⎤

⎦ +
⎡

⎣
0c
0α

K̃ 2δz

⎤

⎦

+
⎡

⎣
0c
0α

G(δx + δz)

⎤

⎦ = δ f (8)

where dependencies have been dropped, and

G(δx + δz)

=
[
G(δxβ + δzβ)T G(δxn + δzn)T

]T

(9)
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Fig. 2 Schematic of the decomposition of the isolated regionC2
(illustration adjusted from [49])

and the matrix M2 is assembled similarly to K̃ 2 in
Eq. (6). Therefore, Eq. (8) implies that the dynamic
response of the system may be represented in an
exact manner in the exterior region C1, but the devia-
toric component δz is required. By further partitioning
Eq. (8) we can derive the following two separate (lin-
earized) systems of governing equations in terms of the
mixed variable δw and the deviatoric one δz:

Mδẅ + K̃δw = δ f − δQ (10)

M2δ z̈ + K̃ 2δz + G(δx + δz) = 0 (11)

with,

δQ = [
0c δQ� 02

]T ∈ R
N=(Nc+Na+N2)

δQ� ≡
(
Mαβδ z̈β + K̃αβδzβ

)
(12)

Thus, in Eq. (11), the deviatoric response δz in the iso-
lated region C2 is driven by the idealized system repre-
sented by the response vector δx through the nonlinear
effects. In parallel, region C1 is linearly coupled to the
deviatoric response δz through the force term δQ.

As a result, the mixed formulation with respect to
δw on the first set of equations in Eq. (10) is linear,
while the nonlinear behavior is retained within the iso-
lated region through Eq. (11). A schematic represen-
tation of this substructuring-inspired decomposition is
presented in Fig. 2.

The above set of Eqs. (10) and (11) also com-
prises the governing equations for the linearized ver-
sion of the full-order model (FOM) employed herein,
with the goal being to derive a ROM for accelerated
approximations. The demonstrated scheme enables a
substructuring-based treatment of the problem at hand
in a ROM level, as the low-order representation can
now harvest response information in a twofold man-
ner: both on a global system scale via Eq. (10) and
on a localized level where nonlinear features exist via
Eq. (11). This enables a component-oriented reduction

to subsequently derive a COR-ROM, which replicates
the global system behavior while accurately capturing
localized features concentrated in a region of the sys-
tem.

4 Assembly of the COR-ROM

Several alternatives exist for constructing efficient
reduced-order representations for the problem at hand,
as described in Sect. 2. In this work, we employ a
Galerkin projection-based scheme since a projection-
based approach allows for a low-order representation
of the full physical space of the model. This implies
that we simultaneously capture displacements, strains,
stresses, and accelerations and further relevant physical
or energy measures. This is beneficial with respect to
the alternate approach of deriving a ROM for specific
elements or only a few sparse nodes [27]. In addition,
this ability of the ROM to capture the full space of the
high-fidelity response potentially increases, to a cer-
tain extent, its utility for generalized response predic-
tion or parameter estimation tasks, thus featuring as a
component of a higher level SHM system [54]. Herein,
the ROM framework is described. Our methodology
assumes the availability of a high fidelity FOM, in our
case aFEmodel, functioning as the spatially discretized
full-order representation of the system in Eqs. (10) and
(11).

4.1 Projection-based model-order reduction

Projection-based ROMs rely on the assumption that the
dynamic response u lies in a subspace of size r , where r
is much smaller than the physical dimensionality of the
original problem (r � N ). Thus, the following holds:

u (t) ≈ V (μ) y (t) (13)

where V ∈ R
N×r is the projection basis that approx-

imates the aforementioned subspace and y ∈ R
r is

the respective reduced-order coordinate vector. For
instance, by substituting u into the linearized form of
Eq. (1), combining it with Eq. (2) and pre-multiplying
with V T , thus performing a Galerkin projection, the
following low-order equivalent system is derived:

V T MVδ ÿ (t) + V T K̃ Vδ y (t)

+V TG� = V T f (t) (14)
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which can be written as:

Mδ ÿ (t) + K̃δ y (t) + G� = f (t) (15)

In both Eqs. (14) and (15), the parametric dependencies
with respect toμ have been dropped for simplification.
An established approach to form the projection basis
V relies on the use of POD. This technique first eval-
uates the FOM for a training collection of representa-
tive values of the parameters and forms the snapshot
matrix:

Ŝ =
[
Û (μ1) Û (μ2) . . . Û

(
μNs

) ]
(16)

where Ŝ ∈ R
N×(Nt×Ns ) and Û

(
μi

) ∈ R
N×Nt are the

response time histories for different parameter values,
henceforth termed as snapshots. Following the same
notation, we can define Ŵ

(
μk

)
as the snapshots from

Eq. (10) and Ẑ
(
μk

)
as the snapshots from Eq. (11).

Here, Nt is the number of simulation steps, μi is the
parametric input, and Ns is the number of snapshots.
Then, the projection basis V is assembled via Singular
Value Decomposition (SVD):

Ŝ = L�ZT (17)

and truncating L:

V = [
L1 L2 . . . Lr

]
(18)

where Li are columns of matrix L, henceforth termed
as POD modes.

Although these definitions imply that a single pro-
jection basis is utilized, in our work, we evaluate the
FOM formulation as expressed in Eqs. (10) and (11).
Thus, the respective equations are projected employing
POD as in Eq. (14), and a projection basis is assem-
bled for each set of governing equations, namely Vw

with respect to Eq. (10) and V z with respect to Eq. (11).
In addition, the projection-based reduction will be uti-
lized locally for subdomains of the input parameter
space. This allows the derived COR-ROM to capture
parameter-dependent nonlinear behavior and localized
effects accurately [63]. The assemblyof theCOR-ROM
is described next.

4.2 Treatment due to parametric dependencies

In the case of nonlinear dynamics, the use of a sin-
gle projection basis, as described in Eq. (14), which
accounts for the whole parametric domain, can lead
to an intractable problem or an inefficient approach
[64]. Alternatively, local POD bases can be constructed
for certain subdomains of the time or parameter space
[47,63], capturing localized effects based on a uni-
form [65] or an adaptive error estimator [66,67]. In the
present work, we employ the MAC as an indicator for
adaptive local sampling and clustering training config-
urations into subsets that experience similar dynamics.

The MAC [68], also known as vector cosine or
cosine similarity, is defined as a scalar constant, rep-
resenting a measure of consistency between modal
vectors φr and φs in the corresponding mathematical
expression:

MAC(φr ,φs) = |φr
Tφs |2

(φr
Tφr )(φs

Tφs)
(19)

A MAC value that is close to 1 implies linear corre-
spondence or a measure of the consistency of vector-
based information originating from different sources.
Consistent with the adopted formulation, the MAC is
herein computed based on the column vectors of the
V z bases, which capture the nonlinear effects. Each
projection basis captures the local underlying dynam-
ics for each training realization through its columns
Li , termed local POD modes, as expressed in Eq. (18).
Therefore, the MAC can be utilized as a qualitative
comparative measure of the similarity between POD
modes of different parameter realizations. This pro-
vides an indirect assessment of the ability of a train-
ing realization to approximate neighboring dynamics
accurately.

Thus, the MAC metric offers a twofold function-
ality in this work: On the one hand, it is utilized as
an adaptive sampling measure that indicates if addi-
tional samples are required. It further serves as a
means for subdividing the parametric input domain into
clusters through the standard k-means algorithm [69].
The detailed algorithmic framework is summarized in
Algorithm 1. The individual elements of the MAC-
based clustering have also been validated in previous
works [60,70].
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Algorithm 1 The COR-ROM framework
Training Mode
1: Generate Ns random samples for the parameter vector

[μ1,μ2, . . . ,μNs
]

2: Assume a cluster center in the closest sample to the domain’s
center and define dthr .

3: for k=1,...,Ns do
4: Evaluate Ŵ(μk), Ẑ(μk) from Eqs. 10, 11
5: Obtain Vw,k

(
μk

)
and V z,k

(
μk

)
via POD

6: end for
7: Cluster samples using k-means and the MAC between bases

V z as the clustering measure d
8: Define a cluster center ∀μk that dk ≤ dthr .
9: Compute the minimum obtained MAC dmin .
10: if (dmin ≤ dthr ) then
11: Refine input domain by adding Ñs samples
12: in-between ∀(μi ,μ j ) that di, j ≤ dthr
13: go to 3 and repeat for k = Ns+1, ..., Ñs
14: end if
Prediction Mode
1: Deploy ROM for μq , with q /∈ (Ns ∪ Ñs)

2: Identify cluster for μq using nearest neighbors.
3: Evaluate ROM using Vw, V z of the cluster.

Essentially, based on the training process summa-
rized in Algorithm 1, the framework first generates a
few random samples to explore the parameter space
coarsely, thus allowing for further educated refinement
later on. In turn, the response of the full-order model
is evaluated based on Eqs. (10) and (11), and a pair of
reduced-order bases Vw,k, V z,k is computed for every
parametric sample k. Then, the sampling process pro-
ceeds in a greedy fashion, utilizing the MAC values
of the V z bases as a greedy choice property to refine
the number of samples in parametric domains between
samples with low MAC values.

Regarding the offline computational cost, this con-
sists of the resources needed (a) For the full-order
model evaluations after each re-sampling event, (b)
The respective POD reduction to obtain the projection
bases, and (c) The k-means clustering technique. Since
the full-order model evaluations can be performed in
parallel, the computational cost of (a) equals the time
needed to evaluate a single full-order model times the
number of re-sampling events and typically dominates
the offline portion of the method.

Finally, as explained, the initial sampling during the
first step of the algorithm is performed randomly. As
the number of parameters Np increases, more refined
approaches might be required to mitigate potential bot-
tlenecks due to the curse of dimensionality. This discus-

sion extends beyond the scope of this paper, however,
the interested reader can refer to [71–73].

4.3 Hyper-reduction

The final component of the proposed framework is
a second-tier approximation technique, termed hyper-
reduction, which critically influences efficiency as it
allows for updating and reconstructing the restoring
force term in an online manner, despite its nonlinear
nature [74]. This strategy allows evaluating the pro-
jections of the nonlinear terms only at a subset of
the total number of discrete elements, thus yielding
a substantial reduction of the involved computational
toll.

As the parametric dependencies used in this problem
are not necessarily affine, and the investigated problems
are of a nonlinear nature, we adopt an Energy Conserv-
ing Mesh Sampling and Weighting (ECSW) [75,76],
which has been tested for such applications. Based on
the original formulation, theROMmatrices are approx-
imated as follows:

K̃ =
ne∑

e=1

V T
e K̃ eV e ≈

∑

e∈Ẽ
ξeV T

e K̃ eV e

G =
ne∑

e=1

V T
e Ge ≈

∑

e∈Ẽ
ξeV T

e Ge (20)

where the total number of elements is denoted by ne,
V e contains a subset of rows of V corresponding to
the DOFs of element e and Ẽ represents a subset of

the elements, such that
∣∣∣Ẽ

∣∣∣ � ne, whereas K̃ e and

Ge are the system matrices of element e, as described
in Eq. (4). Similar approximations hold for the mass
and damping matrices M,C . The coefficient term ξe
is a weight contribution of element e in the system
matrices.

To determine the element subset Ẽ and weights ξe
we rely on an energy-based approach, as documented
in detail in [55]. In short, subset Ẽ and weights ξe are
computed so that the overall work produced over this
subset, weighed by the respective coefficients, suffi-
ciently approximates the work produced over the full
mesh for a set of training configurations. Therefore, the
following column matrix is assembled:

P i, j
e = V T

e Ge

(
μi , u

j
e

)
, bi, j =

ne∑

e=1

P i, j
e (21)
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where P i, j
e is the entry of the matrix that corresponds

to the work produced in element e over each column of
V e at time step j for the parameter vector μi , whereas
the vector bi, j follows the same notation regarding the
total work produced over the whole mesh. By comput-
ing these terms for several parametric configurations
and simulation steps or non-converged return mapping
iterations, the following is derived:

P =

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

P1,1
1 . . . P1,1

ne
...

. . .
...

P1,2
1 . . . P1,2

ne
...

. . .
...

PNs ,n̄t
1 . . . PNs ,N̄t

ne

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

b =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

b1,1

...

b1,2

...

bNs ,N̄t

⎤

⎥⎥⎥⎥⎥
⎥
⎦

(22)

where Ns is the number of training samples and N̄t is
the number of iterations considered. With these com-
putations in place, subset Ẽ and weights ξe can be
obtained based on the following optimization problem:

ξ∗ = argminξ∈� ‖ξ‖0 (23)

with,

� = ξ ∈ R
ne : ‖Pξ − b‖2 ≤ τ ‖b‖2 , ξe ≥ 0 (24)

where ‖•‖0 and ‖•‖2 represent the L0 and L2 norm,
respectively. Term τ denotes a user-defined tolerance
that controls the quality of the approximation, whereas
� represents a set of candidate solutions. Upon solu-
tion, subset Ẽ is obtained directly from the non-zero
elements of ξ∗. The former minimization problem is
typically solved via the sparse Non-Negative Least
Squares (sparse NNLS) algorithm [77].

5 Numerical examples

In this section, the performance of the proposed ROM
framework is tested. A four-story, three-dimensional
frame featuring hysteretic nonlinearities at the location
of the joints (localized regions) is investigated first as a
toy example, which serves for illustration and discus-
sion on performance. A large-scale kingpin system is
examined as the next example, where the weld region
is assumed to represent an individual component char-
acterized by plasticity [78].

5.1 Error measures and timings

The proposed framework is entirely implemented in an
in-house developed FE code in MATLAB and tested
in a workstation equipped with an Intel Xeon E3-1585
quad-core processor, running at 3.70GHz, and 32GB of
memory. For a fair comparison, numerical integration
is performedbymeans of an implicitNewmark scheme,
which uses the same integration discretization and time
step for both the ROM and FOM.Moreover, the speed-
up factor, which serves as a measure of efficiency, is
calculated as the ratio of CPU time required for the
ROM evaluation over the time needed for the FOM
simulation. The reported timings are averaged over the
respective training or testing configurations set. The
accuracy of the ROM framework is quantified on the
basis of the normalized L2 norm of the difference of
the nonlinear quantity of interest Q at selected DOFs
and time steps, relying on the following equations:

Error =
∑

i∈Ñdof

∑

j∈Ñt

(
Q j

FOM,i − Q̃ j
ROM,i

)2

Ref =
∑

i∈Ñdof

∑

j∈Ñt

(
Q j

FOM,i

)2

Qerror =
√
Error√
Ref

× 100% (25)

Performance is examined with respect to the recovery
of ground truth displacements in the isolated nonlinear
region and stresses.

To gain a deeper insight into the potential and
limitations of the proposed framework, four differ-
ent ROM configurations are examined. First, a global
ROM termed GROM is assembled, which utilizes a
single global basis for the whole system and all inputs
extracted from the training snapshots of the entire
domain. No clustering is required in this case. The sec-
ond ROM, termed Iso-ROM, relies on the substructural
formulation explained in Sect. 3 but only reduces the
linear components of the structure.

Thus, it only assembles the local Vw and projects
the governing set of equations for the linear compo-
nents (Eq.10), whereas the response in the welding
region is evaluated in the full coordinate space. In this
case, clustering is employed, as described in Sect. 4.2.
The last two parametric ROMs are derived based on
the framework described in Sect. 4, utilizing both Vw
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Table 1 Reference notation table for ROMs variations utilized
for comparison and validation purposes

Name Description

FOM The full-order model of the system

GROM A global basis based on training snapshots of
the entire domain

Iso-ROM Reduction on monolithic response in Eq. (10),
assemble of Vw , isolated region(s) in full
coordinates (Eq. (11)). A Vw basis per cluster.

COR-ROM Component-Oriented Reduction-ROM, as
presented in Sect. 4.
A Vw and a Vz basis per cluster,
component-oriented treatment.

HpGROM The GROM additionally equipped with
hyper-reduction

HpCOR-ROM COR-ROM additionally equipped with
hyper-reduction

and V z for the individual reduction of each compo-
nent. The performance is evaluated with and without
the hyper-reduction approximation of Sect. 4.3. The
configurations of these four different ROMs are sum-
marized in Table 1, along with their reference names
used throughout this study.

5.2 Four-story shear frame with multiple localized
nonlinearities

We consider a FE model of a three-dimensional four-
story frame with hysteretic links subjected to ground
motion as an initial proof of concept example. The non-
linear behavior of each link is described by a Bouc-
Wen hysteretic model [79,80]. This multi-DOFs sim-
ulator is chosen as a demonstrative example due to
its modularity in terms of defining a multi-DOF non-
linear system when adding stories and frames. This
setup is characterized by localized regions of nonlin-
earity (at the joints), which reproduce complex non-
linear effects (hysteresis and degradation), thus chal-
lenging the performance limits of our ROMs. In addi-
tion, this example has already been utilized in sim-
ilar model-order reduction studies [46,81,82], thus
enabling results comparison and reproduction. The
configuration of the frame relies on a published bench-
mark case study of a multi-degree of freedom nonlin-
ear response simulator [61,62], where virtual nodes are
introduced in each coupling to materialize nonlinear

Fig. 3 Configuration of the four-story shear frame. The dashed-
colored beams indicate the nonlinear regions

joint behavior. The model setup is described first in
short. The groundmotion parameterization is presented
next before reporting the performance of the derived
COR-ROM.

5.2.1 Model setup

A graphical illustration of the setup is presented in
Fig. 3. The hysteretic links assume no length, and the
respective virtual nodes are defined as duplicates of
the existing discretization. For more details on the
assembly and the respective assumptions, the interested
reader is referred to [61].

The case study follows the template configuration
in terms of material properties definitions. Specifi-
cally, steel HEA cross-sections have been used for
all beam elements, whereas the structure is assem-
bled using two horizontal frames, each of 7.5ms in
length and one frame of six meters along the width. In
addition, the modularity of the simulator is exploited
to assemble four stories along the height, each one
of 3.2ms, and define two distinct nonlinear isolated
regions to validate the proposed COR-ROMof Table 1.
Rayleigh proportional damping is also assumed, corre-
sponding to 2% modal damping, ascribed to the struc-
ture’s first and second global modes. The setup is illus-
trated in Fig. 3, where the shear frame is modified
compared to the original benchmark in [61], and the
hysteretic couplings are activated only on the colored
regions.

Therefore, based on the benchmark description, the
restoring force of each link in the shear frame simulator
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of Fig. 3 can be decomposed in a linear and a hysteretic
term. The respective mathematical formulation reads:

R = Rlinear + Rhysteretic

= αkdu + (1 − α)kz (26)

whereR denotes the vector of restoring forces, du rep-
resents the nodal displacements, andα, k are traits char-
acterizing the Bouc-Wen model on each link. Variable
z controls the hysteretic term of the restoring force and
obeys the following:

ż = Adu̇ − ν(t)(β|du̇|z|z|w−1 − γdu̇|z|w)

η(t)
(27)

where,

ν(t) = 1.0 + δνε(t), η(t) = 1.0 + δηε(t),

ε(t) =
∫ t

0
zdu̇dt (28)

Parameters A, β, γ , and w in Eq. (27) define the shape
and amplitude of the hysteretic curve that character-
izes the dynamic behavior of each link. Additional
strength deterioration or stiffness degradation effects
can be modeled via ν(t) and η(t) in Eq. (28), respec-
tively, whereas ε(t) stands for the absorbed hysteretic
energy.

This parameterized shear frame simulator is utilized
to verify the derived ROMs in terms of reproducing
the (rapidly) varying nonlinear behavior of the frame
based on the parametric input of the systemdescribed in
Sect. 5.2.2. To additionally model localized nonlinear
regions that can be treated as individual components
and validate the substructural formulation of the pro-
posed COR-ROM, only the links pertaining to the col-
ored regions of Fig. 3 are activated. The remaining cou-
plings are assumed to be described by a linear regime,
which is enforced by setting α = 1 in Eq. (26).

5.2.2 Excitation’s parameterization

The earlier described numerical system setup allows
us to account for parametric dependencies pertaining
to the structural properties, as defined in terms of the
characteristic traits of the nonlinear links. However,
our goal is to address generalized case studies, where
dependencies on both the defining system parameters

as well as the characteristics of the forcing input are
tackled. Thus, we here further consider a parameter-
ization of the ground motion, similar to the process
demonstrated in previous work of the authoring team
[82,83].

Specifically, the stochastic model for (synthetic)
ground motion signals proposed in [84] produces real-
istic yet synthetic acceleration signals by filtering, nor-
malizing, and time-modulating a white noise signal.
An overview of the respective process is visualized in
Fig. 4. The time-modulating filter relies on the follow-
ing non-stationary function:

q (t, d1, d2, d3) = d1t
d2−1exp (−d3t) (29)

where d = [d1, d2, d3] define the intensity, the shape,
and the duration of the motion, respectively. A direct
link exists between these parameters and the temporal
characteristics of the excitation: (a) The expected Arias
intensity IA, (b) The effective duration of the motion
D5−95 and (c) The time-mark tmid at which a 45% level
of IA has been reached. In addition, the time-varying
filter in Fig. 4 is implemented via an Impulse Response
Filter as follows:

h [t − τ ] = ω f (τ )
√
1 − ζ 2

exp�1 sin�2 (30)

where,

�1 = [−ζω f (τ ) (t − τ)
]

�2 =
[
ω f (τ )

√
1 − ζ 2 (t − τ)

]
(31)

Here, the damping ratio is denoted by ζ f , ω f is
the filter’s frequency with ω f = ωmid + ω′ (τ − tmid),
whereasω′ represents the rate of change ofω, andωmid

is the frequency at t = tmid. An algorithmic implemen-
tation is published in [85]. With this stochastic pro-
cess in place, the temporal and spectral characteristics
of the ground motion accelerograms can be treated as
input parameters in the aforementioned COR-ROM,
thus allowing for a parametric representation of a tar-
get signal or a set of them. Thereafter, the ROM can
be validated using “synthetic” ground motion signals,
equivalent to the target (or real recorded) ones with
respect to the similarity of their time-frequency char-
acteristics [83].
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White Noise

Linear 
�me-varying filter

STD normaliza�on

Unit variance process
with spectral non-stationarity

Time modula�ng
filter

High-pass filter

Simulated ground accelera�on Full non-stationary process

Fig. 4 Process workflow to produce synthetic accelerograms based on [84]

5.2.3 Model parametric dependencies

With the model setup and the stochastic framework
for parameterization of the groundmotion excitation in
place, the assumptions regarding the dependencies of
the high-fidelity FE model, which represents the FOM,
can now be defined.

As already explained, the proposed approach targets
systems comprising multiple components and attempts
to derive a surrogate able to capture the system’s
response over a domain of parameters that define its
input loading or initial state, thus dictating its dynamic
behavior. In this work, both global system parame-
ters and parametric traits of the excitation are injected
into the proposed COR-ROM, along with character-
istics that define the behavior of local components.
Using such a modular parameterized case study allows
us to illustrate the generalization potential of the pro-
posed formulation. In Table 2, the respective modeling
assumptions are summarized.

Regarding the system properties, two traits of the
nonlinear joints of the shear frame in Fig. 3 are treated
in a parametric manner to simulate a variety of quali-
ties and shapes of the corresponding hysteresis curves.
Specifically, parameters α and k in Eq. (26) are mod-
eled as dependencies in the isolated regions of Fig. 3,
whereas in the rest of the frame, the nonlinear links are
not activated by setting α = 1.0 in Eq. (26). Parameter
α functions as aweighting factor between the hysteretic
and linear term of the restoring force, whereas param-
eter k introduces weakened components as it corre-
sponds to the link’s stiffness. These assumptions imply

Table 2 Modeling assumptions for the shear frame inputs

Global structure

E = 210 GPa, k = 2.5e8, α = 1.0

1st story isolated region

[β, γ,w, A] = [3.0, 2.0, 0.5, 1.0]
k1 ∼ N (1.35e8, (8e6)2), α1 ∼ U [0.2, 0.4]
4th story isolated region

[β, γ,w, A] = [2.0, 3.0, 0.5, 1.0]
k4 ∼ N (1.20e8, (8e6)2), α4 ∼ U [0.35, 0.60]
Excitation parameters

[ω′, ζ, tmid, D5−95] = [−0.416, 0.251, 0.129, 0.408]
ωmid(Hz) ∼ LL(3.52, 0.24),

√
(IA) ∼ IG(0.26, 0.11)

Parameters α, k, β, γ,w, A refer to the hysteretic links and the
rest to the synthetic excitation

a parameter-dependentmatrix K̃ (μ, δu) for the system,
as presented in Eq. (2), as every parametric realization
μ leads to a model evaluation with different stiffness
for the nodal couplings.

Regarding the input excitation f (μ, t) in Eq. (2), a
ground motion scenario is adopted. Specifically, the
structure is excited using a ground motion signal,
whose direction is defined in the (x − y) plane rep-
resenting the ground. Specifically, the direction of the
motion is modeled through its angle φ = π/4 with
respect to the longitudinal axis of the frame. In addi-
tion, the temporal and spectral characteristics of the
input signal are also treated as parametric dependen-
cies using the already introduced stochastic modeling
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framework. The respective probability density func-
tions (pdf) for each input parameter are summarized
in Table 2, and are selected based on the suggestions in
[83], where the pdf of each parameter has been fitted
on actual ground motion samples extracted from the
PEER Ground Motion Database [86]. The parameters
that are not modeled using a pdf are considered con-
stant and equal to the most probable value according to
the distributions specified in [83].

5.2.4 Performance evaluation

The numerical experiment is designed, on the basis
of the parametric inputs of Table 2, adopting a Latin
Hypercube Sampling (LHS) strategy utilizing 250
training samples and 1000 validation configurations.
Relying on previous works validating ROM perfor-
mance on this same benchmark example, a reduction
order of rw = 4 is chosen for Vw ∈ R

996×4, whereas
rz = 16 is selected for each localized basis so that
V z ∈ R

312×16 and V z ∈ R
192×16 for the first and top

story, respectively. A total number of 22 clusters were
used for the COR-ROM. For the global GROM in
Table 2 the reduction order is set to r = 32. Due to the
number of DOFs of the benchmark, the hyper-reduced
variation of the COR-ROM is not evaluated here, as
the system is too small to demonstrate any substantial
computational savings.

The ability of the proposed COR-ROM to approx-
imate the underlying nonlinear effects on the isolated
components of the system is summarized in Table 3.
The physics-based nature of the reduction leads to a
low-order equation of motion as expressed in Eq. (15),
enabling the derived surrogate, termed COR-ROM, to
integrate the dynamics forward in time for varying
conditions and dependencies efficiently, yielding full-
field estimates of the dynamic response, including dis-
placements, accelerations, energy measures and even
stresses or strains. For instance, accelerations is one of
the primary fields being monitored in SHM case stud-
ies. Thus, the ability of the derived ROM to infer the
underlying dynamics as expressed in terms of acceler-
ations is crucial for the utility and serviceability of the
ROM as part of a SHM framework. Strain and stresses
can be inferred simultaneously but are omitted here for
the sake of demonstration.

The performance between the ROMs reported in
Table 1 is also compared in Table 3. As expected, the
GROM that utilizes a single global projection basis for

the whole system and the entire domain of inputs can-
not accurately reproduce the system’s time response.
The respective error measures indicate that the GROM
fails to capture both the localized effects of the shear
frame in the isolated regions, as reflected in Z, and
the global response of the system. This further docu-
ments the necessity for a component-oriented treatment
of such an assembly system. In this context, the derived
Iso-ROM that evaluates the deviatoric response Z in
Eq. (11) in full coordinates and reduces only Eq. (10)
outperforms all other representations and delivers high-
precision estimates. This implies that the nonlinear fea-
tures of the isolated regions play a dominant role when
trying to capture the dynamic response andmight make
the ROM’s performance deteriorate if not reproduced
sufficiently. Thus, a component-oriented treatment is
deemed necessary.

However, the Iso-ROM may eventually suffer from
efficiency limitations since the response evaluation of
the nonlinear component in full-order leads to consid-
erable computational toll and cannot guarantee (near)
real-timemodel evaluations. Even though the small size
of this proof-of-concept example is not suitable to prop-
erly demonstrate this effect, the average speed-up the
Iso-ROM achieves compared to the FOM evaluations
is 1.52 and is still lower than the one by GROM or
COR-ROM equal to 2.36 and 2.21, respectively. For
the sake of completeness, the offline cost of the method
is 912s, and the average time required for a full-order
model evaluation is 189s. Thus, reduction in the iso-
lated regions is not an option but a necessity for low-
order representations that are to be exploited in the con-
text of twinning or real-time diagnostics SHM frame-
works, where accelerated or real-time estimations are
necessary.

Although the proposed COR-ROM yields higher
approximation errors and a fewmore performance out-
liers as compared against the Iso-ROM in Fig. 5, its
overall performance in terms of capturing the time
history response of the system is sufficiently accurate
and a necessary trade-off that guarantees efficiency. In
any case, the proposed COR-ROM delivers a superior
approximation in terms of quality compared to GROM,
and its robustness is also highlighted in Fig. 5, where
the number of outliers is negligible compared to the
size of the validation set.

To further demonstrate the precision of the proposed
framework and argue why the approximations of the
COR-ROMare deemed sufficiently accurate in the con-
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Table 3 Performance for the ROMs from Table 1 for the shear frame. The average and maximum measures of Eq. (25) are presented
for the response in the isolated region, along with the error in two examples

Average error Maximum error

Zerror (%) Z̈error (%) Zerror (%) Z̈error (%)

GROM 21.5 36.6 27.3 38.1

Iso-ROM 1.8 7.4 6.5 15.3

COR-ROM 4.4 10.5 12.0 15.8

Sample Aa Sample Bb

Zerror (%) Z̈error (%) Zerror (%) Z̈error (%)

GROM 22.0 34.4 21.5 35.8

Iso-ROM 1.7 6.1 1.8 5.6

COR-ROM 5.5 11.4 6.7 13.3

ak1 = 1.35e8, α1 = 0.31, k4 = 1.12e8, α4 = 0.51, ωmid = 24,
√
IA = 0.16.

bk1 = 1.43e8, α1 = 0.23, k4 = 1.20e8, α4 = 0.37, ωmid = 32,
√
IA = 0.30

Fig. 5 Precision boxplots with respect to the acceleration
response in the nonlinear regions

Fig. 6 Response approximation for the shear frame at the max-
imum displacement DOF for Sample A

text of SHMapplications, the time history estimation of
the top story behavior of the frame is illustrated in Fig. 6
for Sample A and in Fig. 7 for ample B, as reported in
Table 3. The accuracy for these two samples is close
to the average measure reported in Table 3, so they are
adopted as characteristic instances for illustrating the
COR-ROM’s performance.

Fig. 7 Response approximation for the shear frame at the max-
imum displacement DOF for Sample B

The respective hysteretic curves of the top right hor-
izontal nodal coupling are also depicted in Fig. 8 to
demonstrate an example of the variety of different non-
linear phenomena that dominate the behavior of the
frame. The derived COR-ROMcaptures the underlying
system behavior in a robust manner, as implied by the
respective approximation for these two earthquake-like
ground motions that induce significant nonlinearity, as
evidenced by the resulting hysteretic curves.

The COR-ROM is next verified on a large-scale
example featuring material plasticity, where computa-
tional efficiency and hyper-reduction are also consid-
ered to explore the possibility of (near) real-timemodel
evaluations of complex systems.
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Fig. 8 COR-ROM
approximation of the
hysteresis curve of the shear
frame at the maximum
displacement DOF for
Sample A (left) and Sample
B (right)

Fig. 9 FEmodel for the kingpin connection.Thenonlinearweld-
ing region and excitation domain are depicted in red and orange,
respectively

5.3 Large-scale kingpin connection

The performance of the proposed COR-ROM and
the comparative alternatives, summarized in Table 1,
are cross-assessed here for the case of a large-scale
kingpin connection system, where the weld region is
characterized by plasticity. Both accuracy and effi-
ciency considerations are considered for this example.
Plasticity is only modeled for the welding component
of the system, assuming it represents a weak spot in the
system. Themodel setup is presented next, followed by
the ROM framework details and the numerical results.

5.3.1 Model setup

The model setup is summarized in Table 4, and its dis-
cretization is illustrated in Fig. 9. In terms of imple-
mentation, the green component representing the upper
steel plate of the system is discretized using 12150
elements, whereas its top surface is considered fully
bounded, as depicted in Fig. 9. In addition, the weld-
ing region consists of 11543 elements and is depicted

Table 4 Geometrical andmaterial properties for the components
of the kingpin system

Upper plate

Young modulus E = 200 GPa, Density ρ = 8100 kg/m3

Poisson Ratio ν = 0.30, Thick. = 10mm, Edge = 300mm

Welding region

Young modulus E = 198 GPa, Density ρ = 7850 kg/m3

Poisson Ratio ν = 0.30, Thick. = 2mm, Radius = 74mm

Kingpin

Young modulus E = 210 GPa, Density ρ = 7850 kg/m3

Poisson Ratio ν = 0.32, Height = 83mm

in red, whereas the kingpin component is illustrated in
cyan and has 28351 elements.

Linear elasticmaterial properties are assumed for the
plate and the kingpin, while the circular welding region
materializing their connection follows a von Mises
plasticity rule. The respective geometric and material
properties are summarized in Table 4. Rayleigh pro-
portional damping is assumed, corresponding to 2%
modal damping ascribed to the structure’s first and
second global modes. The system is excited using
nodal forces applied at the orange region depicted in
Fig. 9. Specifically, this region represents the domain
where a vehicle’s trailer (truck) is connected to the
tractor; this drives the truck forward through the king-
pin and the corresponding fifth-wheel connection. The
applied forcing in this domain represents the traction
and pulling forces or vibrations coming from the trailer
during driving or steering. A parameterized dynamic
acceleration signal is considered as an input, applied
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Table 5 Parametric dependencies of theFOMmodel of the king-
pin connection

Excitation amplitude Amp ∼ N (
100, 62

)

Excitation direction θ ∼ U (
π
6 , π

3

)

Yield stress of welding region fy ∼ N (
435, 72

)
MPa

to the discretization nodes of the highlighted orange
region in Fig. 9.

5.3.2 Dependencies and ROM setup

Similar to the shear frame case study, the derived ROM
is validated with respect to its ability to reproduce
the dynamic response under various acting paramet-
ric inputs. In this case, uncertainty is injected into the
framework in the system properties and the character-
istics of the excitation. Specifically, the imposed accel-
eration signal, which is applied at the orange region
illustrated in Fig. 9, is modeled as a stochastic multi-
sinusoidal signal. Its amplitude Amp is assumed to fol-
low a normal distribution, whereas its (x-z) in-plane
direction of motion is modeled through angle θ that
follows a uniform distribution. In turn, when multi-
plying this acceleration signal with the mass matrix, it
leads to the parametric-dependent excitation f (μ, t)
in Eq. (1). In addition, the yield stress of the weld-
ing region further follows a normal distribution. This
implies a parameter-dependentmatrix K̃ (μ, δu) as pre-
sented in Eq. (2), since the reconstruction of the tangent
stiffness matrix during every simulation step relies on
the nonlinear constitutive law. The respective assump-
tions are summarized in Table 5.

Following a strategy similar to the shear frame case
study, the training is designed using a LHS design
to sample the input parametric domain to obtain the
required training simulations.As explained in Sect. 4.2,
an adaptive sampling strategy is employed along with
clustering to search the parameter space and construct
accurate local bases efficiently. The number of clusters
is manually set to 10, whereas the size of the two bases
is selected so that the resulting displacement response
error on the global system and the localized nonlin-
ear region does not exceed a certain threshold, in the
present case 1%. In this manner, each validation para-
metric sample is assigned to a cluster through the stan-
dard k-means algorithm. The cluster’s projection bases
are used to perform the reduction based on Sect. 4.

Fig. 10 ECSW mesh for the kingpin connection highlighted in
red for one of the clusters

The same applies to the hyper-reduction approxima-
tion, as each cluster retains its own subset of elements Ẽ
andweight coefficients ξ e inEq. (20).As nonlinearity is
only featured in the welded region, the hyper-reduction
approximation is applied only to the weld elements. An
example visualization is provided in Fig. 10. Thus, the
framework ends up using 56 training snapshots and a
reduced dimension of rw = 4 forVw regarding the pro-
jection of the linear components (Eq.10) and rz = 16
for V z with respect to Eq. (12) and the nonlinear weld-
ing region. For the sake of completeness, the offline
cost of the method is 41152s, and the average time
required for a full-order model evaluation is 13221s.

5.3.3 Performance evaluation

The framework’s performance is validated on a set of
250 parametric realizations not included in the training
set. The respective accuracy in capturing the behavior
of the FOM in terms of displacements and stresses is
evaluated. The error measure of Eq. (25) is computed
for each component separately, whereas the respective
stress approximation is computed after post-processing
for the subset of elements Ẽ retained by the hyper-
reduction approximation. The subset Ẽ is visualized in
Fig. 10 for one of the clusters used.

The ability of the proposed COR-ROM to capture
the underlying full-order dynamic behavior is pre-
sented in Figs. 11 and 12.

First, the accuracy of the COR-ROM of Table 1 is
presented to validate the proposed framework, com-
pared against the respective FOM response. Based on
the overall evaluation of the ROM, the validation sam-
ple is selected for demonstration so that the frame-
work delivers its average performance. The respective
approximation is evaluated for each component sepa-
rately. Thus, Fig. 11 presents the ROM performance in
the linear region of the model, whereas Fig. 12 eval-
uates the approximation in the welding region where
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Fig. 11 Time history approximation in the kingpin at the max-
imum displacement DOF for Amp = 132, θ = π/4, and
fy = 421 MPa

Fig. 12 Time history approximation in the welding region at
the maximum displacement DOF for Amp = 132, θ = π/4, and
fy = 421 MPa

nonlinearity in the form of plasticity is present. The
framework delivers a more accurate performance for
the linear region, as illustrated in Fig. 11, where the
respective time histories are practically indistinguish-
able. In addition, it captures the dynamics of the iso-
lated nonlinear region in Fig. 12.

Although discrepancies in the performance in each
component are evident, the framework manages to
reproduce the overall underlying response with suf-
ficient accuracy, indicating its suitability for condi-
tion monitoring or similar SHM-related tasks. As a
reminder, the hyper-reduced version HpCOR-ROM
utilizes an additional second-tier approximation for the
nonlinear terms on the isolated region to achieve effi-
ciency, and the respective accuracy is expected to dete-
riorate. Thus, the derived COR-ROM prior to hyper-
reduction needs to deliver a high-precision approxima-
tion as it does in Fig. 12.

Fig. 13 Average performance comparison for the ROMs of
Table 1 for the kingpin connection

A quantification of the performance of the reduc-
tion schemes that are summarized in Table 1 is illus-
trated in Fig. 13 for comparison purposes. The aver-
age accuracy for the displacement time history Z in
the nonlinear welding region and the stresses σ in
the nonlinear component are shown, along with the
respective speed-up factor for each of the implemented
ROMs. This illustration serves as a comparison that
demonstrates the respective advantages of utilizing
the proposed COR-ROM, or its hyper-reduced variant
HpCOR-ROM, instead of adopting a global reduction
strategy or the full-order evaluation of the nonlinear
component, termed as Iso-ROM.

As already explained, theHpGROMyields the high-
est error, thus proving to be unreliable for SHM tasks,
although the achieved speed-up is considerable due to
hyper-reduction. This implies that the assembled global
basis cannot accurately capture the localized nonlin-
ear phenomena. Even if we increase the size of the
global basis and truncate usingmoremodes in Eq. (17),
efficiency will be compromised even more, thus not
allowing for online model evaluations. Since the non-
linear features are present only in a local component,
the global modes of the respective basis cannot capture
the dynamics sufficiently, indicating that an alternative
approach that adopts some form of localized treatment
is needed.

In contrast, the derived Iso-ROM of Table 1 that
reduces only the linear components of the system
and evaluates the isolated region in full coordinates
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Fig. 14 Efficiency to accuracy relation for the ROMs of Table 1
for the kingpin connection

Fig. 15 Time history HpCOR-ROM approximation in the weld-
ing region at themaximumdisplacementDOF (Amp = 132, θ =
π/4, fy = 421 MPa)

achieves a high-precision estimation. The average
accuracy in Fig. 13 is improved substantially, as, in this
case, the nonlinear terms are evaluated in an exact man-
ner. In addition, the Iso-ROM demonstrates the most
robust performance, as illustrated in Fig. 14 where the
efficiency to accuracy relation is depicted for every val-
idation sample. However, the Iso-ROM ’s major dis-
advantage is its limited ability to provide accelerated
computations, as it evaluates the nonlinear terms in
FOM coordinates. Specifically, in this example where
the nonlinear region is relatively large, the Iso-ROM
delivers a rather insignificant speed-up.

On the other hand, the proposed COR-ROM pro-
vides a sufficiently accurate approximation for SHM
purposes, and, when equipped with hyper-reduction to
form HpCOR-ROM, achieves a significant speed-up
that can potentially enable near real-time evaluations.
This is demonstrated in Fig. 14, where the HpCOR-

ROM accelerates the model evaluations by a factor of
24 while retaining an accurate approximation with less
than 3.5%error on capturing the response in the nonlin-
ear welding region. The quality of the HpCOR-ROM
estimation is also depicted in Fig. 15 for the welding
region. The same degree of freedom and parametric
input as in Fig. 12 has been chosen to demonstrate
the discrepancy introduced due to the hyper-reduction
component of the COR-ROM. The respective trade-off
that theHpCOR-ROMintroduces seems acceptable, as,
despite the minor deterioration of the ROM’s accuracy,
the yielded speed-up is substantial and key to effectuat-
ing of real-time downstream tasks (e.g., those related to
SHM). These performance measures are further sum-
marized in Table 6.

6 Conclusions

We introduce a reduced-order modeling framework,
relying on adoption of a substructuring formulation
that allows individual component treatment. Specifi-
cally, a decomposition of the response is introduced by
using a coordinate separation, which succeeds in split-
ting the system into an idealized and a deviatoric repre-
sentation. The deviatoric system evaluates the response
of isolated regions on the model where nonlinear or
damage features are present. This is naturally cou-
pled with the idealized system through the interface
forces, allowing the system to capture the monolithic
response under this additional forcing, neglecting the
presence of localized features. The respective govern-
ing equations are reformulated to reflect this decompo-
sition, and projection-based reduction driven by POD
is applied separately to each set of equations. This
allows coupling a physics-based reduction framework
with a substructuring strategy, which, in turn, derives
the proposed Component-Oriented Reduction (COR-
ROM) approach and its hyper-reduced variation termed
HpCOR-ROM.

The advantages of the proposed approach are illus-
trated on a toy case study of a four-story shear
frame with multiple nonlinear regions driven by Bouc-
Wen type hysteresis and further verified on a three-
dimensional, large-scale case study of a kingpin con-
nection, which is jointed via a welded region that
exhibits material plasticity. Without making any
problem-specific assumptions, the proposed COR-
ROM delivered a robust and efficient performance in
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Table 6 ROMs performance on capturing the time history responses W , Z in the kingpin and welding regions, respectively. The
reproduction of the stresses in the FOM is also evaluated

Average error Maximum error

Zerror (%) Werror (%) Zerror (%) Werror (%)

Iso-ROM 0.14 << 1 0.47 << 1

COR-ROM 0.87 0.22 1.47 0.71

HpCOR-ROM 2.65 0.74 3.43 1.06

Avg. σerror (%) Max. σerror (%) Weld elements Comp. time (s)

Iso-ROM 0.85 1.52 11543 2645

COR-ROM 8.12 11.21 11543 1360

HpCOR-ROM 13.39 16.13 891 557

capturing responsemeasures of the FOMbehavior, like
displacements, accelerations, and stresses under vary-
ing operational parameters.

In addition, the proposed COR-ROM outperformed
system-oriented global reduction schemes while still
providing accelerated model evaluations, thus high-
lighting the potential a component-oriented reduction
treatment can offer.

Finally, due to the component-oriented nature of the
approach, the implemented ROMs are beneficial for
intricate systems comprising multiple components that
may exhibit localized nonlinear features. The frame-
work utilizes individual component modes to capture
localized effects while additionally relying on reduc-
tion modes of a global nature to reproduce dynamic
phenomena taking place on a system scale. As a result,
in the case of extended instead of localized features,
the accuracy of the approach may not be compromised.
Still, its computational efficiency will strongly rely on
the relative size of the isolated region.

Regarding the limitations of the current work and
potential extensions, the decomposition technique as
presented requires that the nonlinearities are isolated,
with the regionknownapriori.While somewhat restric-
tive, this is nonetheless a common framework for struc-
tural systems,where hot-spot locations are often known
a priori. Nevertheless, the proposed approach can be
extended to first identify the domain(s) of nonlinear
features and, in turn, perform the proposed decompo-
sition automatically, assuming a suitable extent for the
isolated region. In addition, the derived COR-ROM is
most appropriate for systems with isolated nonlinear-
ities, as the employed decomposition technique relies

on the inherent assumption that the system comprises
non-zero tangent stiffness in all model regions. In the
presence of regionswith zero tangent stiffness, numeri-
cal remedies can be implemented to avoid singularities
or bad conditioning, e.g., artificial (non-zero) terms can
be added to the stiffness matrix K̃ and subsequently
subtracted from the isolated nonlinearities term G� in
Eq. (2). However, a robust regimewould require amore
refined approach, which is left for future work. The
same applies to mitigating the curse of dimensionality
during the training process, as additional adaptation is
needed to optimize the selection of the training sam-
ples, primarily when many parametric traits are mod-
eled.
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