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Abstract The nonlinear viscoelasticity of magneto-

active elastomers (MAEs) under large amplitude

oscillatory shear (LAOS) loading has been extensively

characterized. A reliable and effective methodology,

however, is lacking for such characterizations under

large amplitude oscillatory axial (LAOA) loading.

This is partly due to complexities associated with

experimental compression mode characterizations of

MAEs and in-part due to their asymmetric stress–

strain behavior leading to different elastic moduli

during extension and compression. This study pro-

poses a set of new nonlinear measures to characterize

nonlinear and asymmetric behavior of MAEs subject

to LAOA loading. These include differential large/

zero strain moduli and large/zero strain-rate viscosity,

which could also facilitate physical interpretations of

the inter- and intra-cycle nonlinearities observed in

asymmetric and hysteretic stress–strain responses.

The compression mode stress–strain behavior of

MAEs was experimentally characterized under differ-

ent magnitudes of axial strain (0.025 to 0.20), strain

rate (frequency up to 30 Hz) and magnetic flux density

(0 to 750mT). The measured stress–strain responses

were decomposed into elastic, viscous and viscoelastic

stress components using Chebyshev polynomials and

Fourier series. The stress decomposition based on

Chebyshev polynomials permitted determination of

equivalent nonlinear elastic and viscous stress com-

ponents, upon which the proposed measures were

obtained. An equivalent set of Fourier coefficients was

also obtained for estimating equivalent elastic/viscous

stress, thereby facilitating faster calculation of the

proposed material measures. The proposed methodol-

ogy is considered to serve as an effective tool for

deriving constitutive models for describing nonlinear

and asymmetric characteristics of MAEs.

Keywords Magneto-active materials � Nonlinear

viscoelasticity � Asymmetric stress–strain behavior �
Large amplitude oscillatory axial (LAOA) loading �
Differential large/zero strain modulus � Differential

large/zero strain-rate viscosity

1 Introduction

The noise and isolation performance of conventional

passive elastomers including natural and silicone

rubbers, widely used in the automotive and civil

engineering sectors, is generally limited to a narrow

band frequency range. Adaptive elastomers, particu-

larly the magneto-active elastomers (MAEs) with

tuneable properties, are considered promising alterna-

tives not only for noise and vibration control but also
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for many other engineering applications such as soft

robotics and programmable actuations [1, 2]. More

specifically, MAEs exhibit rapid, continuous and

reversible response to an external magnetic field,

which makes them well-suited for adaptive noise/

vibration isolations, large-scale shape transformations

[3] and controllable actuations [4]. MAEs comprise

two primary components: (i) magnetically soft (i.e.,

carbonyl iron particles), hard (i.e., neodymium iron

boron-NdFeB [5]) or combination of soft and hard

particles [6]; and (ii) non-magnetic medium (i.e.,

silicone rubbers). Compared to their counterpart in

liquid state, namely magneto-rheological (MR) fluids

(MRFs), which exhibit field-dependent yield stress [7]

and apparent viscosity [8] (field-dependent damping),

MAEs exhibit field-dependent modulus [9], which

makes them ideal materials for development of

adaptive devices (i.e., tuneable vibration isolators).

Understanding the characteristics of MAEs, including

identification of their field- and load-dependent mod-

uli, is a fundamental requirement. This characteriza-

tion is important for realizing optimal designs of

MAE-based adaptive intelligent devices and develop-

ing effective models and controller syntheses.

MAEs can operate in shear [10] as well as

extension/compression mode [11–13]. Shear mode

characterization of MAEs in linear and nonlinear

regimes (i.e., large amplitude oscillatory shear

(LAOS) loadings) have been extensively investigated

(e.g., [10, 14, 15]), while relatively fewer studies have

explored their compression/extension mode proper-

ties, although the MAEs exhibit substantially higher

MR effect in the compression/extension mode

[16–19]. This is likely due to ease of experimental

characterizations in the shear mode, where the mag-

netic field is applied in a direction normal to the

mechanical loading. Magneto-mechanical properties

of MAEs in the shear mode are thus well understood

under various design and operational factors. These

include: properties of the matrix material; size, type,

concentration, and spatial distribution of ferromag-

netic particles [20]; and broad ranges of mechanical

and magnetic loading conditions [14, 15]. Axial mode

(i.e., compression/extension) characterization of an

MAE imposes considerable challenges since it

involves applications of mechanical and magnetic

loading in the same direction. The experimental

characterizations thus require decoupling of magnetic

force from viscoelastic force of the MAE [21, 22]. The

lack of a reliable and accurate decoupling methodol-

ogy together with an electromagnetic module that

permits unidirectional magnetic and mechanical load-

ings are likely the primary reasons for relatively fewer

efforts on axial mode characterizations of MAEs. The

decoupling also demands for accounting of the actual

sample form [23], related to demagnetizing factor

[24], and shape of magnetizable particles [25].

In the shear mode, MAEs generally exhibit symmetric

stress–strain characteristics even under LAOS loading,

which has facilitated identifications of field-dependent

moduli. First harmonic storage and loss moduli (G0
1 and

G00
1), derived from Fourier transform of the stress

response, are effectively being used to characterize

viscoelastic properties in the linear regime. The first

harmonic moduli have also been used to estimate

dynamic response characteristics of viscoelastic mate-

rials in the nonlinear regime (i.e., LAOS) [26, 27].

This approach, however, cannot accurately describe

the effects of nonlinearities attributed to strain

softening, strain stiffening [28], rate-dependent hys-

teresis, etc. Owing to existence of only odd harmonics

in shear mode due to symmetric stress–strain response,

Cho et al. [29] proposed a stress-decomposition (SD)

technique, also referred to as geometrical interpreta-

tion, to decompose the stress response into elastic and

viscous components using either a search technique or

polynomial regression functions. The method permit-

ted more accurate characterizations of nonlinear

viscoelasticity under LAOS by analyzing relative

contributions of the elastic and viscous stress compo-

nents to the total nonlinear stress response. While the

proposed methodology permitted geometrical inter-

pretations of viscoelastic materials subject to LAOS,

the identified storage and loss moduli were not unique

and showed dependence on the order of the polyno-

mial function. Ewoldt et al. [30, 31] developed a

complete framework to uniquely quantify viscoelastic

material moduli under LAOS on the basis of Cheby-

shev polynomial functions, which permitted unique

physical interpretations of local nonlinearities (e.g.,

intra-cycle strain stiffening). The study proposed the

use of minimum and maximum strain moduli to

describe nonlinear viscoelastic responses of the mate-

rial subject to LAOS. Owing to orthogonality of the

Chebyshev polynomials, unlike the polynomial-based

SD reported in [28], the resulting material constants

were truncated-independent, and thus unique.
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Unlike the shear mode, the viscoelastic materials

exhibit asymmetric stress–strain behavior in the axial

mode (i.e., compression/extension), especially under

large amplitude oscillatory axial (LAOA) loading,

which yields the presence of even- as well as odd-

harmonics in the stress response. The magneto-active

materials exhibit even greater asymmetry in the stress

response due to additional asymmetric variations in

the applied magnetic field [21, 32]. MAEs show

inherent nonlinear tension–compression asymmetry

even at relatively small macroscopic strain (2–5%)

due to different particle–particle interactions and

particle chain microstructure during compression and

extension [33, 34]. The local measures of moduli

during compression and extension may thus differ.

Only limited investigations of response behaviors of

viscoelastic materials subject to LAOA loading,

however, could be found [35–39]. Moreover, these

conventional methods do not quantify nonlinear stress

responses during the compression and extension

cycles. For instance, Kim et al. [35] investigated the

asymmetric response of a highly shear-thinning vis-

coelastic material subjected to LAOA using the SD

method together with non-orthogonal polynomial

fitting. It was deduced that the asymmetry in the

response was originated from elastic contribution to

the normal stress [38]. Yu et al. [40] developed a

general SD methodology for evaluating materials’

responses to LAOS, which incorporated both odd as

well as even-harmonics, although using non-orthogo-

nal polynomials. Ewoldt [30] provided some interpre-

tations relevant to contributions of even harmonics

using the minimum and maximum strain moduli, as a

final touch in the framework developed for stress

response analyses for LAOS. The large nonlinearities

observed in the response near extremities of the

compression and extension cycles (e.g., up-turn or

down-turn [34]), however, could not be accurately

quantified. Besides, the method presented in [30]

realized two different values for the minimum strain

moduli, thereby not providing a unique interpretation.

To the best of our knowledge, identifications of

viscoelastic material moduli of MAEs subject to

LAOA loading have not yet been attempted. This

study proposes alternate measures to characterize

nonlinear response characteristics of MAEs subject to

LAOA loading. These include: (i) the differential large

strain modulus and differential large strain-rate vis-

cosity and (ii) the differential zero strain modulus and

differential zero strain-rate viscosity. For this purpose,

several MAE samples were fabricated, and a series of

experiments were performed to characterize their

magneto-mechanical behavior under a range of LAOA

loading. The stress response was subsequently esti-

mated using Fourier series and Chebyshev polynomi-

als, thereby decomposing into elastic, viscous, and

viscoelastic stress components. The SD based on

Chebyshev polynomials permitted calculation of

equivalent nonlinear elastic and viscous stresses,

thereby determining the large/zero strain elastic

moduli, together with the large/zero strain-rate vis-

cosity. Unlike the slope of loading/unloading paths of

the total stress, the proposed measures, are deliber-

ately chosen as the slope of the equivalent nonlinear

elastic, and viscous stress components, such that not

only they possess unique values but also both can

converge to the linear strain-independent elastic

modulus/dynamic viscosity under relatively small

strains. It should be highlighted that the presented

method to obtain differential moduli from the slope of

equivalent elastic/viscous stress has also rarely been

investigated in LAOS (i.e., Yao et al. [41]) and few

studies have quantified nonlinearity in LAOS by

deriving differential moduli from the total stress

[42, 43]. In the present work, an equivalent set of

Fourier coefficients was also obtained for estimating

the equivalent elastic/viscous stress, which facilitates

the calculation process of the suggested material

measures. The proposed measures can also interpret

inter-cycle (e.g., strain amplitude softening/stiffening)

and intra-cycle (e.g., strain stiffening) nonlinearities of

MAEs under LAOA loadings.

2 Experiment

2.1 Material and methods

Several batches of unaligned and aligned MAEs were

fabricated in the laboratory by mixing magnetically

soft carbonyl iron particles with Eco-flex 0020

silicone rubber (Smooth-ON Inc., USA) using the

process described in [32]. The particles were magnet-

ically soft (type SQ) with approximately spherical

shape with diameter ranging from 2 to 5 lm (BASF

Co., Germany). The MAE samples were fabricated

with 30% volume fraction of iron particles. The

unaligned MAE batches were cured in the ambient
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laboratory condition for 24 h, while the aligned MAE

batches were cured under external magnetic field of

about 1200mT. The 8-mm-thick cylindrical MAE

samples with mean diameter of 18 mm were subse-

quently cut from the two batches for experimental

characterizations.

A test rig was designed to perform experimental

characterizations of aligned as well as unaligned

MAEs under large amplitude oscillatory axial

(LAOA) loadings. The designed test setup permitted

simultaneous applications of magnetic and mechani-

cal loadings along the axial direction. The magnetic

loading was provided via an electromagnet designed

with UI-shaped core, as described in [21]. An electro-

hydraulic vibration exciter integrated into a Material

Testing System was used to apply oscillatory mechan-

ical loading (displacement-controlled mode) with

selected strain magnitudes and frequencies. Figure 1

shows the schematic of the electromagnet unit, where

I-core is attached to a fixed beam via a loadcell. Lower

part of the electromagnet comprising the U-core was

attached to the vibration exciter. Two cylindrical

MAE samples were glued to stay between the upper (I-

core) and lower (U-core) parts of the electromagnet

during experiments, as shown in Fig. 1. The MAE

samples in all the experiments were first subjected to

static mechanical deformation to achieve large static

pre-strain of 0.21. Dynamic loading was subsequently

applied considering different strain amplitudes ðe0Þ,
ranging from 0.025 to 0.20, at different frequencies (f )

ranging from 1 to 30 Hz.

More precisely, MAE samples are initially sub-

jected to static pre-load to achieve a pre-strain of 0.21.

Harmonic motion, e tð Þ ¼ e0sin xtð Þ, was subsequently

applied with strain amplitude, e0, ranging from 0.025

to 0.20. It is noted that the reference point is the static

pre-strain configuration in which strain amplitude is

zero (e0 ¼ 0). Even though the terms ‘‘compression’’

and ‘‘extension’’ generally refer to when stress

response is positive (r tð Þ[ 0) and negative

(r tð Þ\0), respectively, in this work, the authors use

‘‘compression’’ and ‘‘extension’’ cycles, correspond-

ingly, for loading (e tð Þ[ 0) and unloading or rebound

(e tð Þ\0). Specifically, the authors use (i) ‘‘rebound’’

and (ii) ‘‘extension’’ for unloading (e tð Þ\0), the

second option being consistently used to make (i) the

text more tangible to read and (ii) the proposed

measures and interpretations be more physically

applicable for other levels of pre-strains (i.e., zero

pre-strain). Besides, in fact MAE samples, glued

between the two poles of the electromagnet, have

partially experienced extension particularly under

large strain amplitudes and magnetic flux densities,

even though the maximum strain amplitude (0.2) is

lower than the applied pre-strain of 0.21. This is

evident from negative stresses observed in hysteresis

stress–strain curves (i.e., please see Figs. 2b and c, and

14 in Appendix A. Supplementary Data). This is

mainly due to limited recovery during rebound/

unloading of the MAE specimens considering the

range of deformation and deformation-rate (1–30 Hz).

It is worth mentioning that the experiments fol-

lowed ISO International Standards (ISO 4664–1) for

rubbers’ dynamic properties [44]. A small-sized test

apparatus was accordingly used, employing the non-

resonant forced vibration method with an electro-

hydraulic actuator in displacement control mode. The

frequency range chosen was 1 Hz (per the standard) to

30 Hz to capture steady-state stress–strain behavior of

MAEs. While time-dependent and stress relaxation

properties of MAEs can influence their stress–strain

behavior, the primary focus of the present work is on

steady-state characteristics of MAEs. However, the

force level being measured by the loadcell was

monitored using LABVIEW software after the pre-

strain was applied. Dynamic loading was initiated

once a steady-state force value was reached. The

experiment design also included different levels of

magnetic loading with flux density varying from zero

loadcell

MAE sample

Oscillatory axial loading

Fig. 1 Experimental characterizations of MAE samples under

large amplitude oscillatory axial (LAOA) loading
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to 750 mT. The dynamic force, along with the strain

(displacement) signal, was acquired in a data acqui-

sition system for each measurement condition. It is

noted that the magnetic force generated between two

magnetic poles of electromagnet by turning on the

magnetic field did not induce any mechanical defor-

mation on the samples, and thus the applied pre-strain

of 0.21 remained constant. However, the magnetic

force generated between two poles of the electromag-

net is detected by the loadcell which should be

subsequently compensated. A comprehensive strategy

was established in [21] to compensate for the magnetic

force and thus obtain the field-dependent viscoelastic

MAE force from the total force measured by the

loadcell. The experimental procedures have been

described in detail in [21, 32].

3 Experimental results

Figure 2 illustrates stress–strain characteristics of the

aligned MAE samples subjected to different ampli-

tudes of dynamic axial loading, as an example, at a

frequency of 1 Hz. The left and right columns of

Fig. 2 illustrate the responses measured under mini-

mum (0 mT) and maximum (750 mT) magnetic flux

Fig. 2 Stress–strain

characteristics of aligned

MAEs subject to different

amplitudes of axial strain at

a frequency of 1 Hz: a
e0=0.025, b e0=0.10, and c
e0=0.20. (Magnetic flux

density = 0 mT, left

column; and = 750 mT,

right column)
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density, respectively. Figure 2a illustrates the stress–

strain response under strain amplitude of 0.025, which

is taken as the small/medium amplitude oscillatory

axial regime. In this regime, the stress–strain charac-

teristics exhibit nearly symmetric variations and can

be considered to describe nearly linear viscoelasticity

behavior of MAEs. The linear response can be

quantified using a single modulus (e.g., elastic mod-

ulus (E0)), which can be evaluated considering the

minimum (�e0Þ or maximum strain (þe0Þ during the

extension and compression cycles, respectively

(E0
� ¼ E0

þ). It can be further inferred that even though

large level of pre-strain of 0.21 can contribute to

asymmetry and nonlinearity of the aligned MAEs in

LAOA regime, but its influence is less significant at

lower level of strain amplitude even at maximum flux

density of 750 mT, as shown in Fig. 2a. This is more

pronounced for unaligned MAE samples, as shown in

Fig. A1 in Appendix A. Supplementary Data. Increas-

ing the strain amplitude beyond 0.025, however,

causes the responses to be highly nonlinear as well

as asymmetric, as shown in Fig. 2b and c for strain

amplitudes of 0.10 and 0.20, respectively. These strain

levels are considered to correspond to the LAOA

regime. The local measures of moduli during exten-

sion (e tð Þ\0) and compression (e tð Þ[ 0) thus differ

considerably (E0
� 6¼ E0

þ). The nonlinearity and asym-

metry are attributable to several factors including but

not limited to pre-strain, strain amplitude, magnetic

flux density and anisotropy. Increasing the strain

amplitude changes the spacing between iron particles,

with an increase during extension cycle and a decrease

during compression, contribute to both the nonlinear-

ity and asymmetry observed in the stress response.

Also, as Fig. 2 shows the magnetic flux density has

contributed to nonlinearity and asymmetry in the

stress response of the MAE to LAOA, when compar-

ing the right column and left column of Fig. 2,

corresponding to maximum and minimum applied

magnetic flux density. This is in part due to the

nonlinearity of the magnetization of particles, depend-

ing on particle distance, shape, and their spatial

distribution, when increasing the magnetic field

intensity [45, 46]. Besides, results were indicative of

strong influence of anisotropy to nonlinearity and

asymmetry when comparing Figs. 2 and Fig. A1 in

Appendix A. Supplementary Data, respectively, for

aligned and unaligned MAE samples. This is primarily

directed to the microstructure of aligned MAEs

characterized by particle chains [33, 47]. For instance,

comparison of Fig. 2b and A1 shows how anisotropy

effect has significantly changed the curvature of

stress–strain response into asymmetric shape. Apart

from the asymmetry, the measured data exhibit

considerable hysteresis suggesting highly nonlinear

and asymmetric viscous effect, which is strongly

dependent on the magnetic flux density, and also strain

rate (frequency). Moreover, the measured data show

nonzero mean stress corresponding to zero strain,

which is due to pre-strain applied to the MAE samples.

4 New nonlinear measure

This section proposes a set of new nonlinear measures

to characterize nonlinear and asymmetric behavior of

MAEs subject to LAOA loading. These include

differential large/zero strain moduli and large/zero

strain-rate viscosity, which could also facilitate phys-

ical interpretations of the inter- and intra-cycle

nonlinearities observed in asymmetric and hysteretic

stress–strain responses.

4.1 Background

Considering harmonic loading, the input strain can be

expressed as

e tð Þ ¼ e0sinðxtÞ ð1Þ

where e0 is strain amplitude, x ¼ 2pf is angular

frequency and t is time. The stress response of MAEs,

r tð Þ; under a large amplitude harmonic strain com-

prises higher harmonics and can thus be approximated

via Fourier series or Chebyshev polynomials. A

Fourier transform (FT) analysis can be effectively

used to describe contributions of higher-order har-

monics to the nonlinear stress response, such that:

r tð Þ ¼ r0 þ e0

Xm

n¼1

E0
n x; e0; Bð Þsin nxtð Þ þ E00

n x; e0; Bð Þcos nxtð Þ
" #

ð2Þ

where E0
n x; e0; Bð Þ and E00

nðx; e0;BÞ denote n th-

harmonic elastic and loss moduli, respectively, as

functions of x, e0, and magnetic flux density (B). r0

represents the nonzero mean stress, which may be

attributed to static preload, and m denotes the
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maximum order considered in the Fourier representa-

tion. The static component, r0, is excluded in the

following formulas for calculating the proposed

nonlinear measures. It is because removing r0 doesn’t

impact the slope of measured stress–strain curves, and

thus the elastic and loss moduli. We assumed that the

effect of stress relaxation and the transient response of

MAEs on r0 is negligible. Notably, the mean stress of

MAEs generally remained constant despite variations

in strain amplitude, magnetic flux density, and loading

frequency. Among these factors, loading frequency

had a slightly greater impact on the fluctuation of the

mean stress compared to magnetic flux density and

strain amplitude. The analysis of the relaxation time’s

effect on mean stress variation is deferred to future

work.

The stress response to large amplitude oscillatory

strain in shear (LAOS) comprises only the odd

harmonics. Therefore, the total stress response, r tð Þ,
presented in Eq. (2), for MAEs subject to LAOS

loading can be referred to as rLAOS tð Þ, and be

described as the addition of elastic stress ðrFe tð ÞÞ
and viscous stress ðrFv tð ÞÞ components

(rLAOS tð Þ ¼ rFe tð Þ þ rFv tð Þ). The nonlinear and

asymmetric stress response to LAOA strain, however,

consists of odd as well as even harmonics. Under the

LAOA strain, the total stress response, r tð Þ, presented

in Eq. (2), can be considered as a summation of

elastic, viscous, and viscoelastic stress components

such that rLAOA tð Þ ¼ rFe tð Þ þ rFv tð Þ þ rFveðtÞ. rFe,
rFv, and rFve denote Fourier elastic, viscous, and

viscoelastic stresses, respectively, given by:

rFe tð Þ ¼ e0

Xm

n¼1;3;5...

E0
nodd

ðx; e0;BÞsin nxtð Þ
" #

ð3Þ

rFv tð Þ ¼ e0

Xm

n¼1;3;5;...

E00
nodd

ðx; e0;BÞcos nxtð Þ
" #

ð4Þ

rFve tð Þ ¼ e0

Xm

n¼2;4;6;...

E0
neven

ðx; e0;BÞsin nxtð Þ
"

þE00
neven

ðx; e0;BÞcos nxtð Þ
# ð5Þ

It is worth emphasizing that the component rFve tð Þ
is zero in the shear mode considering that only odd

harmonics exist in the shear stress response and the

shear stress–strain Lissajous curves exhibit rotational

symmetry about the origin [48, 49]. Under axial

loading, rFve tð Þ, contributes to elastic as well as

viscous nonlinearities and may be described as

generalized viscoelastic moduli, E0
neven

and E00
neven

[30, 40]. Despite the fact that in conventional rheol-

ogy, the LAOS stress response, rLAOS tð Þ, consisting of

odd harmonics, has been referred to as viscoelastic

stress response, in the present work the Fourier

‘‘viscoelastic’’ response, rFveðtÞ, which is non-trivially

separable, only belongs to the stress response to

LAOA loading, rLAOA tð Þ.
It is worth mentioning that commercial rheometers

and dynamic mechanical analyzers provide materials’

characterizations on the basis of first harmonic elastic

and loss moduli, E0
1 and E00

1, which do not represent the

asymmetries in responses to LAOA loading and the

nonlinearities (e.g., inter-cycle strain softening and

intra-cycle strain stiffening features). The first har-

monic moduli possess appropriate physical interpre-

tations only when the material response is linear and

described by an elliptical stress–strain curve, as shown

in Fig. 3.

The first harmonic moduli, such as complex, elastic

and loss moduli, can be obtained as [44]:

E�
1 ¼ Dr

De
¼ rmax � rmin

emax � emin

¼ E0
1 þ iE00

1 ð6Þ

Fig. 3 Lissajous curve describing the linear and symmetric

stress–strain response curve and first harmonic moduli of

viscoelastic materials subject to small amplitude harmonic

loading in shear or in compression/extension
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E0
1 ¼

rje¼emax
� rje¼emin

emax � emin

¼
rje¼emax

emax

¼ remax

emax

ð7Þ

E00
1 ¼ rje¼0

emax

¼ re0

emax

ð8Þ

where rmax, remax
, and re0

are maximum stress, stress

corresponding to maximum strain (emax), and stress at

zero strain, respectively. rmin refers to minimum stress

and remin
denotes stress corresponding to minimum

strain, as shown in Fig. 3. In the figure, slope of the

major axis (red-dotted line) represents the complex

modulus (E�
1), while that of line joining (emin; remin

) and

ðemax; remax
) points defines the elastic modulus E0

1. The

ratio of loss modulus to the elastic modulus, respec-

tively, defined in Eqs. (7) and (8), yields the loss angle

(tanðdÞ ¼ E00
1

E0
1
). The shear moduli in the linear regime

can also be defined in a similar manner.

The moduli associated with higher-order harmonics

(Eq. (2)) do not provide a unique interpretation of

nonlinearities since they change sign depending on

whether the reference input relates to sine or cosine

[50]. The essential sources of nonlinearities thus

cannot be described by the Fourier approximation.

To address this issue, Ewoldt et al. [31] developed a

framework for quantifying nonlinear viscoelasticity

under LAOS loading on the basis of stress decompo-

sition (SD) method using Chebyshev polynomial

functions of first kind. Using these basis functions,

the elastic and viscous contributions to the measured

stress response can be given by:

r0 xð Þ ¼ c0

Xm

n¼odd

en x; c0ð ÞTnðxÞ
" #

ð9Þ

r00 yð Þ ¼ xc0

Xm

n¼odd

vn x; c0ð ÞTnðyÞ
" #

ð10Þ

where r0 xð Þ and r00 yð Þ represent the elastic and viscous

stress components. TnðxÞ and TnðyÞ are the nth-order

Chebyshev polynomials of first kind, and x ¼ ðc tð Þ
c0
Þ,

and y ¼ ð _c tð Þ
xc0

Þ describe instantaneous shear strain and

strain-rate, respectively. The variables x and y are

selected to yield appropriate domains of orthogonality

within [- 1, ? 1], and c0 is amplitude of harmonic

shear strain c tð Þ ¼ c0sinðxtÞ. en and vn denote the

deformation-domain Chebyshev coefficients, which

are independent of the arbitrary trigonometric

reference in time [50], as opposed to the time-domain

Fourier coefficients.

Ewoldt et al. [31] proposed two nonlinear mea-

sures, namely, minimum and maximum strain moduli,

G0
M , and G0

L, respectively, for quantifying material

response under LAOS, as:

G0
M ¼ dr

dc

����
c¼0

¼ e1 � 3e3 þ 5e5 þ . . . ð11Þ

G0
L ¼

r
c

����
c¼c0

¼ e1 þ e3 þ e5 þ . . . ð12Þ

This permitted a direct relationship between the

Fourier series and Chebyshev polynomial coefficients,

given by [31]:

en ¼ G0
n �1ð Þ

n�1
2 ; n ¼ 1; 3; 5; . . . ð13Þ

vn ¼
G00

n

x
; n ¼ 1; 3; 5; . . . ð14Þ

Ewoldt et al. [31] thus observed only signs of the

third harmonic Chebyshev coefficients for interpreting

the nature of intra-cycle elastic and viscous nonlin-

earities, as:

e3

[ 0 Strain�stiffening

¼ 0 Linear viscoelastic

\0 Strain�softening

8
<

: m3

[ 0 Shear�thickening

¼ 0 Linear viscoelastic

\0 Shear�thinning

8
<

:

Although shear responses are typically symmetric

with respect to the direction of loading, the responses

to axial loading are generally asymmetric suggesting

different behavior of elastomeric materials during

extension and compression. This asymmetry with

respect to strain direction will result in existence of

even harmonics in the Fourier spectrum. Ewoldt [30]

reformulated the Fourier series including both even

and odd harmonics to represent stress response to a

generalized harmonic strain (e.g., c tð Þ ¼ c0sinðxtÞ),
applicable to other deformation modes, such as

extension/compression, as:

r tð Þ ¼ c0

Xm

n¼0

G0
nsin nxtð Þ þ G00

ncos nxtð Þ
" #

ð15Þ

Owing to the asymmetry associated with even

harmonics, the local measures of moduli differ on

either side of the deformation cycle. Considering the

general stress response in Eq. (15), the minimum and

maximum strain moduli, G0
M , and G0

L, described in
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Eqs. (11) and (12), also differ during compression and

extension, which are expressed as [30]:

G0
M� ¼ dr

dc

����
c¼0; _c¼�c0x

¼
X

n:odd

nG0
n �

X

n:even

nG0
n

¼ G0
1 � 2G0

2 þ 3G0
3 � 4G0

4 þ . . . ð16Þ

G0
L�

¼ r
c

����
c¼�c0

¼
X

n:odd

G0
n �1ð Þ

n�1
2 �

X

n:even

G00
n �1ð Þ n

2

¼ �G00
0 þ G0

1 � G00
2 � G0

3 � G00
4 þ . . .

ð17Þ

In the above formulations, signs ‘ ? ’ and ‘-’

correspond to compression and extension direction,

respectively. The large and minimum rate dynamic

viscosities, g0L� and g0M�, can also be derived in a

similar manner, as [30]:

g0M� ¼ dr
d _c

����
_c¼0;c¼�c0

¼ 1

x

X

n:odd

nG00
n �1ð Þ

n�1
2 � 1

x

X

n:even

nG0
n �1ð Þ

n
2

¼ 1

x
ðG00

1 � 2G0
2 � 3G00

3 � 4G0
4 þ . . . ð18Þ

g0L� ¼ r
_c

����
_c¼�c0x

¼ 1

x

X

n:odd

G00
n �

1

x

X

n:even

G00
n

¼ 1

x
ð�G00

0 þ G00
1 � G00

2 þ G00
3 � G00

4 þ . . .Þ ð19Þ

In the shear mode, a direct relationship between the

Chebyshev polynomial and Fourier coefficients is

established, as seen in Eqs. (13) and (14). Such an

explicit relationship, however, cannot be established

in the presence of even harmonics in the stress

response, as observed under axial deformations. This

will be explained in detail in the following sec-

tion. Nonetheless, a new deformation-domain orthog-

onal framework, other than Chebyshev polynomials, is

yet to be worked out, in which a direct and explicit

relationship with Fourier coefficients may be possible,

when even harmonics cannot be neglected. Moreover,

the large strain elastic moduli and large-rate dynamic

viscosity, obtained from Eqs. (17) and (19), respec-

tively, cannot accurately describe large nonlinearities

(e.g., intra-cycle strain stiffening and strain-softening

moduli) observed near extremities of the deformation

cycle, as seen in Fig. 2b and c. Interestingly, these

nonlinearities and asymmetries near extremities can-

not be estimated even using differential large strain

moduli ðG0
diff L�

¼ dr
dc

���
c¼�c0

Þ, defined as the instanta-

neous slopes of the total stress response at the end of

compression and extension cycle. It is due to the

hysteretic response of MAEs, in which loading and

unloading paths exhibit two different instantaneous

slopes at each input strain (see Fig. 2). Similarly, the

proposed minimum strain modulus G0
M� and mini-

mum rate dynamic viscosity g0M�, obtained from

Eqs. (16) and (18), cannot accurately describe the

unique inter-cycle nonlinearities (e.g., strain stiffening

and shear-rate thickening) at zero level of the defor-

mation cycle, when materials are subjected to LAOA.

4.2 An alternate measure—differential large

strain modulus (E0
DLSM�)

In this study, a new nonlinear measure, namely

differential large strain modulus (E0
DLSM�), is pro-

posed to quantify nonlinear and asymmetric responses

of MAEs in the LAOA regime. Firstly, a Chebyshev

approximation of the material response to LAOA is

formulated as:

rT x; yð Þ ¼ r0 þ e0

Xm

n¼1

enTnðxÞ
" #

þ xe0

Xm

n¼1

vnTnðyÞ
" #

ð20Þ

where rT tð Þ is stress response of the material subject to

LAOA, and x ¼ eðtÞ
e0

and y ¼ _eðtÞ
xe0

describe the normal-

ized strain and strain-rate, respectively, in the appro-

priate domains of orthogonality [- 1, ? 1] for the

Chebyshev polynomials. For a harmonic strain,

e tð Þ ¼ e0sinðxtÞ, x and y simply reduce to sinðxtÞ
and cosðxtÞ, respectively. In Eq. (20), r0 represents

the mean stress associated with static pre-load (n=0).

This static component is excluded in the subsequent

formulations, since it does not affect the slope of the

measured stress–strain curves, and thereby the elastic

and loss moduli. The Chebyshev elastic, viscous, and

viscoelastic stress components, denoted as rTe
xð Þ,

rTv
yð Þ, rTve

x; yð Þ, respectively, are subsequently

defined as:
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rTe xð Þ ¼ e0

X

nodd

enodd
ðx; e0;BÞTnodd

ðxÞ ð21Þ

rTv yð Þ ¼ e0x
X

nodd

vnodd
ðx; e0;BÞTnodd

ðyÞ ð22Þ

rTve x; yð Þ ¼ e0

X

neven

eneven
ðx; e0;BÞTneven

xð Þ

þ e0x
X

neven

vneven
ðx; e0;BÞTneven

ðyÞ ð23Þ

Depending on whether the nature of nonlinearity of

viscoelastic materials is elastic or viscous, here based

on the Chebyshev stress decomposition of material

response presented in Eqs. (21) to (23), we define two

series of material measures namely differential zero

and differential large strain modulus (E0
DZSM0;E

0
DLSM�)

as well as differential zero and differential large strain-

rate viscosity ðg0DZSRV0; g
0
DLSRV�Þ. These materials

measures, (E0
DZSM0; E

0
DLSM�) and ðg0DZSRV0

; g0
DLSRV�

Þ
can provide unique physical interpretations and non-

linear quantifications for viscoelastic materials pre-

dominantly behave more like elastic solids and

viscous liquids, respectively. The methodology does

not decompose the viscoelastic stress into elastic and

viscous parts, but rather simply superimpose the whole

Chebyshev viscoelastic stress response to either elastic

or viscous stress component. This assumption was

established based on the fact that the Chebyshev

viscoelastic component of the total stress response can

be considered as equivalent elastic/viscous portion of

the Fourier viscoelastic component in stress–strain/

stress- strain-rate Lissajous curves. This is graphically

shown in Fig. 4 and will be explained in subsequent

sections. The material response under LAOA may be

considered nonlinearly elastic dominated (e.g., in case

of MAEs) or viscous dominated (e.g., in case of

MRFs). An example will be given in subsequent

sections to demonstrate how the implausible (i.e.,

negative) values of material moduli may be used to

verify the assumption of pre-dominate elastic or

viscous behavior. This requires calculation of the

proposed material measures at extremities of com-

pression and extension cycles, including differential

large strain moduli (E0
DLSM�) and differential large

strain-rate viscosity (g0DLSRV�) such that:

E0
DLSM� [ 0 & g0DLSM�\0

E0
DLSM�\0 & g0DLSM� [ 0

�
Elastic dominated

Viscous dominated

Therefore, for an elastic-dominated response, an

equivalent nonlinear elastic Chebyshev stress,

rTeqe
x; yð Þ, is subsequently formulated as:

rTeqe
x; yð Þ ¼ rTe xð Þ þ rTve x; yð Þ ð24Þ

In this case, the elastic nonlinearities and asymme-

tries are entirely attributable to the viscoelastic

Chebyshev coefficients. As an example, consider the

expansion of rTeqe
x; yð Þ using Chebyshev polynomials

of the first kind for n= 2, and n= 4, as:

Fig. 4 Comparison of viscoelastic response of aligned MAEs

obtained from Fourier and Chebyshev approximations

(e0 ¼ 0:20, B=750 mT, and f=1 Hz) in terms of a stress vs.

strain and b stress vs. strain-rate Lissajous curves
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rTeqe x; yð Þ
��
n¼2

¼ e0 e1T1 xð Þ½ � þ e0 e2T2 xð Þ þ xv2T2 yð Þ½ �
ð25Þ

rTeqe
x; yð Þ

��
n¼4

¼ e0 e1T1 xð Þ þ e3T3 xð Þ½ � þ e0½e2T2 xð Þ
þ e4T4 xð Þ þ xðv2T2 yð Þ þ v4T4 yð ÞÞ�

ð26Þ

Here, as a local measure of nonlinearity, a differ-

ential large strain modulus, E0
DLSM�, is defined as:

E0
DLSM ¼

drTeqe

de

����
e¼e0

¼
drTeqe

e0dx

����
x¼1

ð27Þ

Since the even harmonics exhibit asymmetry, the

proposed local measures in Eq. (27) can yield differ-

ent modulus during extension and compression, and

may be expressed as:

E0
DLSM�

¼
drTeqe

de

����
e¼�e0

¼
drTeqe

e0dx

����
x¼�1

ð28Þ

For instance, the proposed local measures, E0
DLSM�,

during compression (þ) and extension (�) for n=2 and

4, can be computed considering the Chebyshev

polynomials of the first kind as:

E0
DLSM�

¼
drTeqe

e0dx

����
x¼�1;n¼2

¼ e1½ � � 4½e2 � xv2� ð29Þ

E0
DLSM�

¼
drTeqe

e0dx

����
x¼�1;n¼4

¼ e1 þ 9e3½ � � 4½ðe2 þ 4e4Þ � xðv2 � 4v4Þ�
ð30Þ

It should be noted that unlike the slope of the

loading/unloading paths of total stress, E0
DLSM� is

deliberately chosen as the slope of the equivalent

nonlinear elastic stress corresponding to maximum

and minimum strains observed during compression

and extension cycles, respectively, such that both

converge to linear strain-independent elastic modulus

(E0
1ðxÞ) under relatively small strain inputs. Likewise,

this choice provides a unique value of instantaneous

slope (local differential measure) for each level of

applied strain, thereby realizing unique interpretation

of intra-cycle nonlinearities, such as strain stiffening

effect in compression and extension segments of the

stress response.

A differential zero strain modulus (E0
DZSM0

) is

further defined to quantify inter-cycle nonlinearities

(e.g., strain amplitude stiffening/softening) of the

material, as:

E0
DZSM0

¼
drTeqe

e0dx

����
x¼0;n¼2

¼ e1 ð31Þ

E0
DZSM0

¼
drTeqe

e0dx

����
x¼0;n¼4

¼ e1 � 3e3 ð32Þ

Relative magnitudes of E0
DZSM0

and E0
DLSM� permit

unique interpretations of intra-cycle nonlinearities, as

discussed in the following sections.

It is also worth emphasizing that increasing the

order of the Chebyshev polynomial beyond four (n[
4) didn’t notably enhance the stress prediction.

Conversely, reducing the order below four (n\ 4)

quite significantly compromised stress approximation

accuracy. Consequently, in this work the nonlinear

measures were determined based on the fourth-order

Chebyshev polynomial (n=4). To substantiate our

choice, we include Fig. A2 in Appendix A. Supple-

mentary Data. This figure compares the second-,

fourth-, sixth-, and eighth-order Chebyshev stress

approximations, as an example for the measured

stress–strain characteristics of an aligned MAE sub-

jected to LAOA loading, both qualitatively and

quantitatively (i.e., R2 or the coefficient of

determination).

4.3 Equivalent set of Fourier coefficients

for the proposed measures

In the previous section, it is shown that Chebyshev

polynomials approximation of the stress response of

MAEs subject to LAOA permits determination of

equivalent nonlinear elastic stress and thus quantify

nonlinear characteristics in terms of the local moduli.

In this section, we seek a set of equivalent Fourier

coefficients for the same nonlinear analysis. This can

yield two important advantages. Firstly, Fourier series

analysis has been mostly provided in the software of

dynamic mechanical characterization devices (e.g.,

dynamic mechanical analyzers). Secondly, given the

same nth partial sum, the rate of convergence in

Fourier series is much faster than that of the Cheby-

shev polynomial, when approximating a non-polyno-

mial function (e.g., highly nonlinear stress response)

[51]. The Fourier representations of the viscoelastic

materials response to a LAOA loading, rF tð Þ, is thus
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used to obtain the proposed differential moduli,

E0
DZSM0

and E0
DLSM�; as:

rF tð Þ ¼ e0

Xm

n¼1

E0
nðx; e0;BÞsin nxtð Þ þ E00

nðx; e0;BÞcos nxtð Þ
" #

ð33Þ

Here, the Fourier elastic, viscous, and viscoelastic

stress components, rFe tð Þ, rFv tð Þ, rFve tð Þ, respec-

tively, are defined as:

rFe tð Þ ¼ e0

Xm

n¼odd

E0
nðx; e0;BÞ sin nxð Þ

" #
ð34Þ

rFv tð Þ ¼ e0

Xm

n¼odd

E00
nðx; e0;BÞcos nxð Þ

" #
ð35Þ

rFve tð Þ ¼ e0

Xm

n¼even

En
0ðx; e0;BÞsin nxtð Þ

"

þE00
nðx; e0;BÞcos nxtð Þ

# ð36Þ

In case of a predominately elastic behavior, an

equivalent nonlinear elastic Fourier stress, rFeqe
, is

obtained from:

rFeqe
tð Þ ¼ rFe tð Þ þ rFve tð Þ ð37Þ

Equation (37), as an example, may be simplified

considering n= 2 and n= 4, as:

rFeqe
t; x; yð Þ

��
n¼2

¼ e0 E0
1sinðxtÞ� þ e0½E0

2sinð2xtÞ
�

þE00
2cosð2xtÞ

�

ð38Þ

rFeqe
x; yð Þ

��
n¼4

¼ e0½E0
1sinðxtÞ þ E0

3sinð3xtÞ�
þ e0½E0

2sin 2xtð Þ þ E00
2cos 2xtð Þ

þ E0
4sinð4xtÞ þ E00

4cosð4xtÞ�
ð39Þ

The differential zero strain modulus (E0
DZSM0

) can

be directly and explicitly obtained from the equivalent

nonlinear elastic Fourier stress, rFeqe
, as:

E0
DZSM0

¼
drFeqe

e0dx

����
x¼0;n¼2

¼ E0
1 þ 2E0

2 ð40Þ

E0
DZSM0

¼
drFeqe

e0dx

����
x¼0;n¼4

¼ E0
1 þ 3E0

3 þ 2E0
2 þ 4E0

4

ð41Þ

The E0
DLSM�

moduli can also be subsequently

obtained as:

E0
DLSM�

¼
drFeqe

de

����
e��e0;n¼2&4

¼
drFeqe

e0dx

����
x��1;n¼2&4

ð42Þ

It should be noted that the proposed local measures,

E0
DLSM�, in Eqs. (29) and (30) are derived from the

Chebyshev polynomials of first kind considering

x ¼ �1. Unlike the Chebyshev polynomials represen-

tation, the E0
DLSM� in case of Fourier representation

must be obtained at x 6¼ �1 in order to eliminate

potential singularities. This is due to the presence of

even sine terms (e.g.,

sinð2xtÞ ¼ 2sin xtð Þcos xtð Þ ¼ 2xy), given the facts

that x ¼ c tð Þ
c0

� �
¼ sin xtð Þ, and y ¼ ð _c tð Þ

xc0
Þ ¼ cos xtð Þ,

and y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p
. The Chebyshev polynomial approx-

imations with even terms, on the other hand, contain

even powers (e.g., y2; y4, ….). A direct explicit

relationship between Chebyshev polynomials and

Fourier series coefficients has been lacking primarily

due to even sine terms. The E0
DLSM�, obtained from

Eq. (42), is thus highly sensitive to the value x near the

extremities (x � �1Þ. A suitable value for x may

permit derivation of an explicit, although not a

general, relationship between the Fourier coefficients

and Chebyshev polynomials, by equating Eqs. (28)

and (42). A relation between the Chebyshev and

Fourier coefficients is presented in Table B.1 in

Appendix B. Supplementary Data, considering

x ¼ �0:99, as an example.

It should be noted that finding a direct and explicit

relationship between the Fourier coefficients and

Chebyshev polynomials for the entire domain of

orthogonality (½�1; 1�) is impossible, when even

harmonic cannot be neglected. Since a Chebyshev

polynomial expansion is merely a Fourier cosine

series in disguise [52], following a change of variable

(z ¼ cosh) under the mapping of (Tn coshð Þ ¼ cosnh).

In other words, the coefficients of f zð Þ as a Chebyshev

series are identical to the Fourier cosine coefficients,

f coshð Þ. This may also be observed from Eq. (14). In

order to obtain the nonlinear equivalent Chebyshev
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stress, rTeqe
, presented in Eq. (26), from the Fourier

series, the even sine terms can be ignored. Since the

even cosine terms of the Fourier expansion of the

stress response are exactly the same as the Chebyshev

viscoelastic stress component. This is also shown

graphically in Figs. 4(a) and 4(b), through comparison

of the Chebyshev viscoelastic stress component with

Fourier viscoelastic stress, and its components in the

stress–strain and stress- strain-rate Lissajous plots. It

can be observed that the Chebyshev viscoelastic

component of the stress response can be considered

as equivalent elastic/viscous portion of the Fourier

viscoelastic component in stress–strain and stress-

strain-rate Lissajous curves. Considering n ¼ 4, as an

example, an implicit but unique relationship, can thus

be derived between the Fourier coefficients and

Chebyshev polynomials, by equating the Fourier and

Chebyshev viscoelastic components, and using the

transformation of (Tn coshð Þ ¼ cosnh). This relation-

ship is shown in Table 1 considering n = 4. Although

the coefficients within this relationship are not

explicitly related, the resulting equity is of great

importance due to the two advantages mentioned in

the beginning of Sect. 4.3. The equivalent elastic/

viscous Chebyshev stress (rTeqe
=rTeqv

) can, hence, be

obtained by excluding the sine terms in the equivalent

elastic/viscous Fourier stress ðrFeqe
=rFeqv

Þ, it can be

referred to as (rF0
eqe
=rF0

eqv
). Subsequently, the exact set

of nonlinear measures, E0
DLSM�, and E0

DZSM0
, respec-

tively, presented in Eqs. (30) and (32), can be more

quickly obtained from the corresponding Fourier

coefficients by taking derivative of rF0
eqe

.
rF0

eqv
with

respect to the imposed strain. Considering n=2 and 4,

these moduli are obtained as:

E0
DLSM�

¼
drF0

eqe

e0dx

����
x¼�1;n¼2

¼ E0
1 � 4E00

2 ð43Þ

E0
DLSM�

¼
drF0

eqe

e0dx

����
x¼0;n¼4

¼ E0
1 � 9E0

3 � 4E00
2 � 16E00

4

ð44Þ

E0
DZSM0

¼
drF0

eqe

e0dx

����
x¼0;n¼4

¼ E0
1 þ 3E0

3 ð45Þ

where rF0
eqe

is exactly equivalent to the equivalent

nonlinear elastic Chebyshev stress, rTeqe
, presented in

Eq. (26).

Figure 4 further highlights the important fact that

unlike the Chebyshev viscoelastic stress, the Fourier

viscoelastic stress cannot be superimposed to Fourier

elastic/viscous stress to yield equivalent elastic/vis-

cous stress. It is because the Fourier viscoelastic stress

provides two values for each instant of input strain,

thereby impeding uniquely quantifying material non-

linearity under LAOA loading.

Apart from E0
DLSM�

, a differential large strain-rate

viscosity (gDLSRV 0
�
) can also be defined for materials

showing predominately elastic behavior. Assuming

that the viscous component, described in Eq. (22), is

nearly symmetric, and thereby negligible contribution

due to even harmonics in the viscoelastic stress

component. The g0DLSRV�
measures obtained from

the Chebyshev and Fourier viscous stress can be

expressed as:

g0DLSRV�
¼ drTv

d _e

����
_e¼�e0x

¼ drTv
e0xdy

����
y¼�1

ð46Þ

g0DLSRV�
¼ drFv

d _e

����
_e¼�e0x

¼ drFv

e0xdy

����
y¼�1

ð47Þ

Considering n ¼ 4 in the Chebyshev and Fourier

viscous stress approximations, as an example, the

g0DLSRV�
are obtained as:

Table 1 Relationships between coefficients of Fourier series and Chebyshev polynomials for viscoelastic materials assuming elastic/

viscous dominated behavior under LAOA loading (n =4)

Chebyshev e1 e2 e3 e4 v1 v2 v3 v4

E0
1 xv2 � E00

2 �E30 E00
4 � xv4 E00

1=x ðe2 þ E00
2Þ=x E00

3=x ðE00
4 � e4Þ=x

Fourier E10 E20 E30 E40 E00
1 E00

2 E00
3 E00

4

e1 � -e3 � xv1 xv2 � e2 xv3 xv4 þ e4
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g0DLSRV�
¼ drTv

e0xdy

����
y¼�1;n¼4

¼ v1 þ 9v3 ð48Þ

g0DLSRV�
¼ drFv

e0xdy

����
y¼�1;n¼4

¼ 1

x
ðE00

1 þ 9E00
3Þ ð49Þ

The inter/intra-cycle viscous nonlinearities (e.g.,

shear thinning) in viscoelastic materials showing

elastic-dominated behavior can be quantified consid-

ering the differential zero strain-rate viscosity

ðg0DZSRV0
). This measure is also defined from the

Chebyshev and Fourier viscous stress responses, as:

g0DZSRV0
¼ drTv

d _e

����
_e¼0

¼ drTv

e0xdy

����
y¼0

ð50Þ

g0DZSRV0
¼ drFv

d _e

����
_e¼0

¼ drFv

e0xdy

����
y¼0

ð51Þ

Considering n ¼ 4, as an example, g0DLSRV0
derived

from rTv
and rFv

are given by:

g0DZSRV0
¼ drTv

e0xdy

����
y¼0;n¼4

¼ v1 � 3v3 ð52Þ

g0DZSRV0
¼ drFv

e0xdy

����
y¼0;n¼4

¼ 1

x
ðE00

1 � 3E00
3Þ ð53Þ

The proposed differential moduli measures, pre-

sented in Sects. 4.2 to 4.3, can also be obtained for

materials showing viscous-dominated behavior in a

similar manner, as presented in Appendix B. Supple-

mentary Data. In the small strain limits (i.e.,

e2&e3 	 e1), the proposed nonlinear measures for

elastic nonlinearities (E0
DLSM�

) converge to the linear

elastic modulus ðE0
DLSM�

¼ E0
1 ¼ e1Þ, as can be seen

from Eqs. (29)-(30) and Eqs. (38)-(42). The g0DLSRV�

can also be related to the constant loss modulus in the

linear regime, i.e., g0DLSRV�
¼ v1 ¼ E00

1

x .

The relative magnitudes of E0
DLSM�

and g0DLSRV�

obtained for compression and extension can also

facilitate qualitative interpretations of the nature of

elastic and viscous intra-cycle nonlinearities for each

loading path, thereby observing which loading mech-

anism offers more stiffening/dampening behavior.

These are referred to as strain asymmetric stiffen-

ing/dampening, which are briefly described in Fig. 5a.

For example, if we observe that g0DLSRVþ
[ g0DLSRV�

for

an MAE subjected to a LAOA loading, the MAE

shows strain asymmetric dampening effect. It simply

indicates that the MAE sample has unevenly dissi-

pated energy as strain increases. Specifically, it has

dissipated more energy during the compression cycle

than during the extension cycle, resulting in non-

symmetric energy dissipation. It is expected that the

shape of stress–strain curve response to be asymmetric

with respect to origin.

Likewise, the proposed measures, E0
DZSM0

, and

g0DZSRV0
, together with E0

DLSM�
and g0DLSRV�

can also

facilitate interpretations of other intra-cycle nonlin-

earities, such as compression/extension stiffen-

ing/softening, and compression-/extension-rate

thickening/thinning, as shown in Fig. 5b. For instance,

if for a viscoelastic material subject to a LAOA

loading, E0
DLSMþ

[E0
DLSM0

then the material shows

intra-cycle stiffening effect when it deforms during

compression path (see point A1 in Fig. 5b). Point A2

refers to a case that the material shows linear

viscoelasticity as g0DLSRVþ
¼ g0DZSRV0

. Point A3 is

located under the line corresponds to the linear

viscoelasticity regime, thereby referring to a case that

material shows extension-rate thinning behavior

(g0DLSRV�
\g0DZSRV0

), simply meaning that as the rate

of oscillation in extension path increases the viscosity

of the material declines.

4.4 Dimensionless index of asymmetry

The proposed nonlinear elastic and viscous measures

can also be effectively used to define dimensionless

indices for analyzing cyclic asymmetry under LAOA

loading and facilitating better interpretations and

understanding of intra-cycle stiffening and dampening

during compression and extension. These dimension-

less indices can also permit identifications of inter-

cycle nonlinearities under different mechanical and

magnetic field stimuli, which are briefly described

below.

4.4.1 Intra-cycle nonlinearities

The intra-cycle asymmetry in the response can be

expressed by the asymmetry ratios in terms of elastic

(ARe
þ=�) and viscous (ARv

þ=�) characteristics, as:
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ARe
þ=� ¼

E0
DLSMþ

E0
DLSM�

ð54Þ

ARv
þ=� ¼

g0DLSRVþ

g0DLSRV�

ð55Þ

A unity value of AR refers to linear and symmetric

viscoelastic response. ARe
þ=� [ 1 and ARv

þ=� [ 1

represent higher stiffening and dampening, respec-

tively, in compression than in extension. Similarly, an

opposite behavior is observed for ARe
þ=�\1 and

ARv
þ=�\ 1.

4.4.2 Inter-cycle nonlinearities

The response behavior of a magneto-active material is

strongly dependent on the magnitude and rate of

applied mechanical load (e0, xÞ, apart from the

magnetic flux density (B). The inter-cycle nonlinear-

ities, such as strain amplitude softening, strain ampli-

tude stiffening, strain-rate stiffening and magnetic

Fig. 5 Domains of inter/intra-cycle elastic and viscous nonlinearities from the proposed set of new nonlinear measures: a only large

strain moduli, and b zero and large strain/strain rate moduli
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field-stiffening have been observed for MAEs in many

studies (e.g., [32, 53, 54]). The proposed nonlinear

measures can provide essential guidance concerning

these inter-cycle nonlinearities. For instance, the inter-

cycle strain softening can be inferred as a decrease in

stiffness with increase in strain amplitude. Therefore,

the proposed nonlinear measures at zero strain and

zero strain rate, E0
DZSM0

and g0DZSRV0
, can be used to

interpret the effects of magneto-mechanical loading

conditions on MAE’s behavior between two cycles of

LAOA loading. Likewise, inter-cycle strain stiffening

can be inferred as the increase in local slope at

compression or extension extremities with increase in

strain amplitude. The inter-cycle elastic and viscous

asymmetry ratios, ARe
0 and ARv

0, corresponding to two

different loading conditions (e0;x;B) can be evaluated

as:

ARe
0 ¼

E0
DZSM0

��
e02

;x2;B2

E0
DZSM0

��
e01

;x1;B1

ð56Þ

ARv
0 ¼

g0DZSRV0

��
e02

;x2;B2

g0DZSRV0

��
e01

;x1;B1

ð57Þ

Thus, by considering two different values of strain

amplitude (e02
[ e01

), strain-rate (x2 [x1), and mag-

netic flux density (B2 [B1) inputs, different interpre-

tations for inter-cycle nonlinearities can be deduced as

shown in Fig. 6a.

The nonlinear measures described in Eqs. (16) thru

(18) provide non-unique values for material responses

to a LAOA input corresponding to zero strain/strain-

rate [30]. The above-stated interpretations of inter-

cycle nonlinearities can be uniquely realized via the

material measures proposed in the present work,

defined in Eqs. (31) and (32), and (52) and (53). Apart

from inter-cycle symmetric nonlinearities shown in

Fig. 6a, the inter-cycle asymmetric nonlinearities can

also be interpreted by comparing the asymmetry ratio

obtained for two sets of magneto-mechanical loading

conditions, as shown in Fig. 6b. For instance, when

strain amplitude increases from e01
to e02

, then

Fig. 6 Relative values of proposed dimensionless indices of asymmetry corresponding to zero and large strains illustrating the domains

of inter-cycle nonlinearities: a symmetric and b asymmetric
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ARe
þ=�

���
e02

=e01

may become greater than 1, suggesting

strain asymmetry, i.e., increasing asymmetry in mate-

rial response with increasing strain amplitude. Simi-

larly, an opposite behavior is identified strain

symmetry (asymmetry weakening effect) for

ARe
þ=�

���
e02

=e01

\1. The proposed set of nonlinear

measures presented in this section have been deter-

mined for both the unaligned and aligned MAE

samples under different ranges of magneto-mechani-

cal loading conditions and summarized in Table C.1

through C.6, in Appendix C. Supplementary Data. The

coefficients of the Fourier series and Chebyshev

polynomials were identified through minimization of

square of error between the experimental total stress

and those predicted by the Fourier series and Cheby-

shev polynomials. The error minimization was

performed using the nonlinear gradient-based opti-

mization algorithm, namely Sequential Quadratic

Programming, in MATLAB. The Fourier series con-

verged faster than the Chebyshev polynomial in

approximating the total stress response, particularly

at higher strain amplitudes.

4.5 Schematic representation of the proposed

material measures.

This section presents a schematic representation of the

proposed material measures, offering a visual insight

into the key concepts described in previous subsec-

tions. Within this representation, the effectiveness of

the proposed framework for quantifying nonlinear and

asymmetric characteristics of MAEs subject to LAOA

is also assessed by comparing the differential large/

zero strain moduli (E0
DLSM�

=E0
DZSM0

) and differential

Table 2 Comparisons of the proposed differential large/zero strain moduli (E0
DLSM�

, and E0
DZSM0

) with (G0
L�

, and G0
M�

) obtained for

the unaligned MAEs subject to LAOA loading (e0=0.1 and 0.2, f=1 Hz, and B=750 mT)

E0
DLSM�

(kPa) e0=0.1 e0=0.2

Extension E0
DLSM�

ARe
þ=� Compression E0

DLSMþ
Extension E0

DLSM�
ARe

þ=� Compression E0
DLSMþ

1231 2.8 3460 123 40 4891

E0
DZSM0(kPa) 496 52

G0
L�

(kPa) [30] e0=0.1 e0=0.2

Extension G0
L�

ARe
þ=� Compression G0

Lþ
Extension G0

L�
ARe

þ=� Compression G0
Lþ

942 1.35 1268 561 2 1163

G0
M�

(kPa) [30] Extension G0
M�

ARe
þ=� Compression G0

Mþ
Extension G0

M�
ARe

þ=� Compression G0
Mþ

295 2.4 698 - 205 - 1.5 310

Table 3 Comparisons of the proposed differential large/zero strain-rate viscosity (g0DLSRV�
, and g0DZSRV 0) with (g0L�, and g0Mþ)

obtained for the unaligned MAEs subject to LAOA loading (e0=0.1 and 0.2, f=1 Hz, and B=750 mT)

g0DLSRV�(kPa.s) e0=0.1 e0=0.2

Extension g0DLSRV� ARv
þ=� Compression g0DLSRVþ Extension g0DLSRV� ARe

þ=� Compression g0DLSRVþ

29.49 1 29.49 � 0 1 � 0

g0DZSRV 0(kPa.s) 145.93 140.04

g0L� (kPa.s) [30] e0=0.1 e0=0.2

Extension g0L� ARv
þ=� Compression g0Lþ Extension g0L� ARv

þ=� Compression g0Lþ
121.37 0.77 92.87 93.84 0.62 58.37

g0M�
(kPa.s) [30] Extension g0M�

ARv
þ=� Compression g0Mþ

Extension g0M�
ARv

þ=� Compression g0Mþ

91.40 2.19 200.45 40.49 5.92 239.57
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large/zero strain-rate viscosity (g0DLSRV�
=g0DZSRV0

) with

the reported measures in [30]. These include the large/

minimum strain moduli (G0
L�
=G0

M�
), and large/mini-

mum rate dynamic viscosity (g0L�=g
0
M�

). The compar-

isons are presented in Table 2 and 3, as well as Figs. 7

and 8, considering f = 1 Hz and B = 750 mT, as an

example. The results are presented for an unaligned

MAE sample subject to two strain amplitudes (e0=0.1

and 0.2). Figures 7 and 8 also show the first harmonic

moduli.

The comparisons suggest that the measures G0
L�

underestimate local nonlinearities near the maximum

and minimum strains when compared with the

proposed nonlinear measures. Moreover, the proposed

asymmetry ratio indices permit quantitative and

qualitative identification of nonlinearities, as seen in

Table 2 and Lissajous curves presented in Figs. 7 and

Fig. 7 Comparisons of

proposed differential large/

zero strain (E0
DLSM�

and

E0
DZSM0) and large/zero

strain-rate (g0DLSRV�
and

g0DZSRV0
) moduli determined

for the unaligned MAE

samples with the nonlinear

measures (G0
M�

;G0
L�
; g0M�

;

and g0L� ) reported in [30],

obtained from stress–strain

a and stress–strain-rate b
responses (e0=0.1, f=1 Hz,

and B=750 mT)
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8. For instance, E0
DLSMþ

increases from 3460 to

4891 kPa when the strain amplitude increases from

0.1 to 0.2. This local inter-cycle strain amplitude

stiffening has also been observed for aligned MAEs as

shown in Fig. 2, when the strain amplitude increases

from 0.025 to 0.2. This behavior, however, is not

accurately predicted by the reported G0
Lþ

measure,

which decreases from 1268 to 1163 kPa, as the strain

amplitude is increased from 0.1 to 0.2. Moreover, the

reported measures G0
M�

cannot uniquely characterize

the inter-cycle strain amplitude softening phe-

nomenon. As seen in Table 2, G0
M�

converges to a

physically implausible negative value for the mini-

mum strain modulus of MAEs under the strain

amplitude of 0.2. The proposed nonlinear measure

E0
DZSM0

, on the other hand, predicts the zero-strain

modulus of 52 kPa under the same strain input.

Similarly, the reported measures g0M�
yield two

Fig. 8 Comparisons of

proposed differential large/

zero strain (E0
DLSM�

and

E0
DZSM0) and large/zero

strain-rate (g0DLSRV�
and

g0DZSRV0
) moduli determined

for the unaligned MAE

samples with the nonlinear

measures (G0
M�

;G0
L�
; g0M�

;

and g0L� ) reported in [30],

obtained from stress–strain

a and stress–strain-rate b
responses (e0=0.2, f=1 Hz,

and B=750 mT)
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different values for the minimum rate dynamic

viscosity, as seen in Table 3. The proposed nonlinear

measure corresponding to zero strain-rate, g0DZSRV0
, on

the other hand, provides a single value, thereby

suggesting a unique interpretation of viscous nonlin-

earity (e.g., shear-rate thinning).

The quantitative comparisons can be also graphi-

cally seen in Figs. 7 and 8. These figures present the

Lissajous stress- strain and stress–strain-rate

responses, as examples, for the unaligned MAE

samples subject to LAOA loading. The first harmonic

moduli E0
1 and g01 are also shown in Figs. 7 and 8 for

comparisons. It can be seen that an increase in strain

amplitude from 0.1 to 0.2 yields a local intra-cycle

nonlinearity during extension and compression,

namely, down-turn strain softening and up-turn strain

stiffening. Both the material measures, E0
DLSM� and

G0
L�

, predict quite similar values for the down-turn

strain softening during extension. The general elastic

measure ðG0
Lþ
Þ, reported by Ewoldt [30], however

underestimates the up-turn strain stiffening value

during compression, as seen in red circled region in

Fig. 8a.

Both the nonlinear elastic measures (E0
DLSM�, G0

L�
),

however, reduce to linear first harmonic modulus (E0
1)

in the linear regime, where the response is linear and

symmetric. The results in Tables 2 and 3, and Figs. 7

and 8 suggest that the reported nonlinear measures,

G0
M�

and g0M�
[30], cannot predict unique values for the

modulus and viscosity for the zero loading condition.

Moreover, under the higher strain amplitude of 0.2, the

measure G0
M�

predict physically implausible negative

value for minimum strain modulus. In contrast, the

proposed nonlinear measures at the zero-loading

condition (E0
DZSM0 and g0DZSRV0

) possess unique values

for zero strain modulus and zero-strain rate dynamic

viscosity. The proposed measures thus permit unique

interpretations of inter/intra-cycle nonlinearities. It is

also worth mentioning that unlike the slope of loading/

unloading paths of the total stress, the proposed

measures, E0
DLSM�, and g0DLSRV�

, were deliberately

chosen as slopes of the equivalent nonlinear elastic

stress, and viscous stress, respectively, near peak

strain in compression and extension. The convergence

of both the measures to the linear strain-independent

elastic modulus (E0
1ðxÞ and dynamic viscosity (g01ðxÞ)

at small strains, was further ensured.

Table 4 presents coefficients of the stress response

of MAE samples approximated by the Fourier series

and the Chebyshev Polynomials. The results are

presented for the unaligned MAE samples subject to

two different strain amplitudes (e0=0.1 and e0=0.2) at a

frequency of 1 Hz and 750 mT magnetic flux density,

as an example. The results show that the first-order

elastic modulus ðE0
1) estimated from Fourier series is

identical to the first-order Chebyshev elastic modulus

(e1), for both the strain amplitudes considered. The

magnitudes of the third coefficients (E0
3 and e3) are

identical, while the signs are opposite. This has also

been observed in nonlinear responses of viscoelastic

materials under LAOS loading [31]. Analysis of

Table 3 further implies that the zero strain moduli

(E0
DZSM0

) and zero strain-rate viscosity (g0DZSRV0
) can be

also obtained by taking the average of the minimum

strain moduli (G0
M�

) and the minimum rate dynamic

viscosity ðg0M�
Þ. This can be noted from Eqs. 16 and

18, as well as Eqs. 45 & 53. Furthermore, this is

schematically shown in Fig. 4, given the fact that the

Chebyshev viscoelastic stress can be simply consid-

ered as mean of the Fourier viscoelastic stress at any

instance of input strain. In Sect. 4.3, a set of equivalent

Fourier coefficients was established and is summa-

rized in Table 1 to realize the same nonlinear analysis

Table 4 Coefficients of

Fourier series and

Chebyshev polynomials

approximations of the stress

response for the unaligned

MAE samples under LAOA

loading (e0=0.1 and 0.2,

f=1 Hz, and B=750mT)

Strain

amplitude

Coefficients of Fourier series ðkPaÞ

E0
1 E00

1 E0
2 E00

2 E0
3 E00

3 E0
4 E00

4

0.1 953 734 136 -126 -152 -61 -17.6 37

0.2 660 579 221 -206 -202 -100 -46 95

Coefficients of Chebyshev polynomials ðkPaÞ
e1 v1 e2 v2 e3 v3 e4 v4

0.1 953 117 22.4 -16.5 152 -9.7 1.6 5.6

0.2 660 92 7.8 -31.5 202.4 -16 1.8 14.7
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provided above in a faster manner, irrespective of

loading conditions. As an example, for the strain

amplitude of 0.1, E00
2 equals to (xv2 � e2) considering

the determined coefficients presented in Table 4. This

equality is expected given the proposed relationship

between coefficients of Fourier series and Chebyshev

polynomials (see Table 1).

5 Results and discussion

The measured data are used to derive Fourier and

Chebyshev polynomial approximations of elastic-

dominated stress responses of MAE samples subject

to LAOA excitations. The stress response approxima-

tions using the Fourier series and Chebyshev polyno-

mials are presented together with the elastic, viscous

and viscoelastic components as function of the strain

and strain rate. The approximated stress responses are

subsequently used to determine the proposed mea-

sures, E0
DLSM� and g0DLSRV� . The maximum number of

harmonics is limited to four (n=4) for the analyses,

while the measured stress response has been adjusted

for pre-stress due to the pre-strain in order to eliminate

the effect of mean stress (n = 0). As an example,

Figs. 9 and 10 present stress responses of the aligned

MAE sample subject to LAOA loading considering

two levels of strain amplitude, 0.05 and 0.20,

Fig. 9 Stress- strain (left column) and stress–strain-rate (right column) response curves of aligned MAEs obtained from measured data

and Fourier a, b and Chebyshev c, d approximations (e0 ¼ 0:05, B=750 mT, and f=1 Hz)
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respectively. The left and right columns in these

figures illustrate stress–strain and stress–strain rate

responses, respectively. The results in Figs. 9 and 10

are presented for the loading frequency of 1 Hz, and

magnetic flux density of 750mT, as an example.

Although, the asymmetry in stress responses about

zero stress is evident under both levels of strain inputs,

the asymmetry becomes far more pronounced as the

strain amplitude increases from 0.05 to 0.20. The

asymmetric properties of MAEs under LAOA loading

are in part due to different microstructural evolution

and deformation mechanism in compression and

extension [25, 31]. The area bounded by the stress–

strain curve during compression (e tð Þ[ 0) tends to be

considerably greater than that in extension (e tð Þ\0),

particularly under higher strain amplitude. This

implies that material dissipates more energy during

compression than in extension, as seen in Fig. 9.

From the results, it is evident that the elastic and

viscous stress components are odd functions of input

strain and strain-rate, respectively, while the vis-

coelastic stress component is an even function of strain

and strain-rate, as expected, according to Eqs. (23) and

(36). It is also seen that the elastic stress approximated

by the Fourier series and Chebyshev polynomials is

not able to predict the asymmetric strain–stress

characteristics of MAEs. The estimated responses

thus yield identical tangential/differential large strain

Fig. 10 Stress- strain (left column) and stress–strain-rate (right column) response curves of aligned MAEs obtained from measured

data and Fourier a, b and Chebyshev c, d approximations (e0 ¼ 0:20, B=750 mT, and f=1 Hz)
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moduli at the end of compression and extension

strokes (E0
� ¼ E0

þ), as seen in Figs. 9c and 10c.

Moreover, the area enclosed by the Chebyshev

viscoelastic stress component is nearly negligible

and substantially smaller than that observed for the

Fourier viscoelastic stress, as seen in Fig. 9c and a.

The observed two-fold loop in Fourier viscoelastic

response is attributable to the presence of even sine

terms as seen in Fig. 4. These terms, however, do not

exist in the Chebyshev viscoelastic stress response.

The closed loop integral of viscoelastic Chebyshev

polynomials comprising only even powers of x and y,

presented in Eq. (23), thus becomes zero, suggesting

negligible energy dissipation. This is also evident in

Figs. 9c and 10c.

The results in Fig. 10c show that the Chebyshev

viscoelastic stress is close to mean Fourier viscoelastic

stress. The Chebyshev viscoelastic stress may thus be

considered to represent equivalent elastic stress for the

Fourier viscoelastic stress. In a similar manner,

Fig. 10d shows that the Chebyshev viscoelastic stress

may be considered as an equivalent viscous stress for

the Fourier viscoelastic stress. To properly quantify

the nonlinearities and asymmetric characteristics of

MAEs under LAOA loadings and to further justify the

assumption of elastic-dominated behavior of MAEs,

we present both equivalent nonlinear elastic and

viscous stresses, namely, rTeqe
, and rTeqv

in Figs. 11–

12. The rTeqe
can be obtained by superimposing the

Chebyshev viscoelastic stress response ðrTveÞ to the

Fig. 11 Comparison of

equivalent nonlinear elastic

and viscous Chebyshev

stresses of aligned MAE

samples with respect to a
strain and b strain-rate

(e0 ¼ 0:05, B=750 mT, and

f=1 Hz)
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Chebyshev elastic stress responses, rTe
, while the rTeqv

can be derived by superimposing the rTve to the

Chebyshev viscous stress response, rTv ( Detailed

formulation is presented in Appendix B. Supplemen-

tary Data).

Figures 11 and 12 compare the equivalent nonlin-

ear elastic and viscous stresses (rTeqe
, and rTeqv

),

respectively, for strain amplitude of 0.05 and 0.20.

Figures 11a and 12a show that the rTeqe
more distinc-

tively represents the asymmetry in terms of elastic

moduli during compression and extension

(E0
DLSMþ [E0

DLSM�). This is particularly more evident

in Fig. 12a under the higher strain amplitude, where

the measure, E0
DLSMþ, can accurately predict the strain

stiffening at extremity of the compression cycle. This

asymmetry, however, is considerably small in the

dynamic viscosity measures (g0DLSRVþ ffi g0DLSRV�
), as

seen in Figs. 11b and 12b. It is evident that the

assumption of a predominately viscous behavior for

MAEs, results in underestimation and implausible

negative values for dynamic viscosities (g0DLSRV�) at

the minimum and maximum strain-rates, as it is seen

in Fig. 12b. This confirms that the nonlinear and

asymmetric behavior of MAEs primarily feature the

elastic-dominated characteristics, which can be quan-

tified via the proposed differential large strain moduli

(E0
DLSM�), presented in Eq. (28). This further suggests

that viscoelastic stress response of MAEs predicted by

Fig. 12 Comparison of

equivalent nonlinear elastic

and viscous Chebyshev

stresses of aligned MAE

samples with respect to a
strain and b strain-rate

(e0 ¼ 0:2, B=750 mT, and

f=1 Hz)
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Fig. 13 Variations in proposed differential large strain modu-

lus (E0
DLSM�) obtained for the aligned MAE samples with

respect to normalized strain (left column) and the asymmetry

ratio (right column) as functions of strain amplitude, frequency,

and magnetic flux density: a f=1 Hz, B=750 mT, b e0=0.1,

B=0 mT, and c f=1 Hz, e0=0.1
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the Chebyshev polynomial is more elastic-dominated,

and supports the assumptions considered in deriving

the proposed nonlinear measure (E0
DLSM) in Eqs. (25)

through (28). Such behavior has also been reported for

magneto-rheological elastomeric foams in the

dynamic regime, where the viscous behavior was less

pronounced as the applied strain increased [55]. It

should also be noted that the reasonably good

estimates of dynamic viscosity of MAEs, however,

can be obtained only from the Chebyshev viscous

stress rTv (Figs. 11 and 12).

It should be also noted that as opposed to the

Chebyshev viscoelastic stress, Fourier viscoelastic

stress cannot be simply superimposed to Fourier

elastic/viscous stress to yield equivalent elastic/vis-

cous stress. It is because the Fourier viscoelastic stress

provides two values for each instant of input strain due

to presence of even Sine terms as presented in Fig. 4,

thereby impeding uniquely quantifying material non-

linearity under LAOA loading.

Figure 13 illustrates the variations in the proposed

local measure E0
DLSM and asymmetry ratio (ARe

þ=�)

obtained from measured characteristics of the MAE

samples subject to LAOA loading considering wide

ranges of magneto-mechanical conditions. Results in

Fig. 13a show relatively higher E0
DLSM� moduli under

the lower strain amplitudes (e:g:; e0=0.025) when

compared to those under the higher strain amplitudes

(i.e., e0=0.2). This is due to inter-cycle strain-softening

of the MAEs. This phenomenon, referred to as Payne

effect, has been widely reported in elastomeric

materials when elastic/storage modulus decreases

with increasing the amplitude of deformation (e.g.,

[56]). It is also evident that the inter-cycle asymmetry

ratio (ARe
þ=�

���
e02

=e01

) increases with increasing the

strain amplitude. Results also show local inter-cycle

strain amplitude stiffening during compression. For

instance, as can be seen from Fig. 13a, E0
DLSMþ

increases from 5144 to 5732 kPa, when strain ampli-

tude increases from 0.05 to 0.1. This local inter-cycle

strain amplitude stiffening during compression may be

consistent with the hypothesis that individual long

molecular chains in polymeric materials may be

stiffened during compression [28]. A further increase

in strain amplitude from 0.1 to 0.2 causes the local

inter-cycle strain amplitude softening effect at the end

of compression cycle to exceed the inter-cycle strain

amplitude stiffening effect. This leads to reduction in

the local storage moduli at the end of the compression

cycle, from 5732 to 4601 kPa. Although the results are

presented for the excitation frequency of 1 Hz, similar

trends were also observed for other loading frequen-

cies. Moreover, same trends were also evident for

different levels of magnetic flux density. However, for

the unaligned MAE samples the inter-cycle strain

amplitude stiffening were consistently observed in

both ranges of strain amplitude increments (0.05 to

0.1) and (0.1 to 0.2), as noted in Table B.1, Appendix

B. Supplementary Data. This is partly attributable to

lower sensitivity of unaligned MAEs to strain ampli-

tude softening as compared to aligned MAEs [32].

Figure 13b demonstrates the variations in E0
DLSM

with normalized strain in the 1 Hz to 30 Hz frequency

range. Results generally show a reduction in the

asymmetry ratio (ARe
þ=�) when the loading frequency

increased from 1 to 30 Hz. For instance, the E0
DLSMþ

for the loading frequency of 1 Hz and 30 Hz equals to

4002 kPa and 4136 kPa, respectively, and E0
DLSM�

equals to 390 kPa and 655 kPa, accordingly, corre-

sponding to ARe
þ=� of 10.26 and 6.31, respectively.

The ARe
þ=� generally decreases with increasing

frequency due to the inter-cycle strain-rate stiffening

behavior of MAEs. However, apart from a slight

increase in (ARe
þ=�) when frequency increased from

20 to 30 Hz, experimental data for other loading

conditions generally showed decreasing trends in

(ARe
þ=�) as frequency increased.

Considering the ARe
þ=� values at 1 Hz and 30 Hz

together with the domains of nonlinearity described in

Sect. 4.4.2, this inter-cycle nonlinearity can be

descriptively referred to as elastic strain-rate symmet-

ric behavior with increasing frequency

(ARe
þ=�

���
x2=x1

¼ 6:31
10:26

\1). Results in Fig. 13a and b

show that the E0
DLSM is considerably more sensitive to

strain amplitude than the loading frequency. Similar

tendencies were also observed under other excitation

conditions, including the magnetic flux density and

strain amplitude.

Figure 13c illustrates the variations in E0
DLSM as a

function of normalized strain for magnetic flux density

ranging from 0 to 750 mT. It can be observed that the

asymmetry ratio, ARe
þ=�; decreases as the magnetic

flux density increases from 0 to 750 mT, while the
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E0
DLSM increases with magnetic flux density. For

instance, the E0
DLSMþ increases from 4002 and

5732 kPa as flux density increases from 0 to

750 mT, while the correspond increase in E0
DLSM� is

from 390 to 1506 kPa. These correspond to ARe
þ=� of

10.26 and 3.82 for the magnetic flux density of 0 mT

and 750 mT, respectively. According to Sect. 4.4.2,

this inter-cycle nonlinearity can be referred to as an

elastic field-symmetric behavior with increasing mag-

netic flux density (ARe
þ=�

���
B2=B1

¼ 3:82
10:26

\1). This

phenomenon is mainly due to the fact that the effect

of strain on asymmetry-stiffening of MAEs during

compression and extension is more significant when

the material is quite soft under zero-field. Owing to the

magnetic field stiffening effect of MAEs, the material

becomes highly stiff, which leads to lesser asymmetry

in compression than in extension. The E0
DLSM , how-

ever, is more sensitive to strain amplitude as compared

with magnetic flux density, as seen from Fig. 13a and

c. Similar trends were also observed for other loading

frequencies and strain amplitudes.

It should be noted that the proposed nonlinear

measures were determined under other loading con-

ditions for both unaligned and aligned MAEs and

presented in Appendix C. Supplementary Data. For

instance, Table C.1 and C.2 summarize the nonlinear

measures at the extremities of the compression and

extension cycles (E0
DLSM�Þ, respectively, for unaligned

and aligned MAE samples. Tables C.3 and C.4 present

the materials moduli at zero strain (E0
DZSM0), respec-

tively, for unaligned and aligned MAE samples.

Analysis of Tables C.1 and C.2 further shows that

the nonlinear measures at extension extremities

ðE0
DLSM�

Þ become negative at only very large strain

amplitude of 0.20. This is expected due to following

facts: (i) the contribution of nonlinearities of vis-

coelastic Chebyshev stress is significant, apart from

elastic and viscous nonlinearities and (ii) the nonlinear

measures at the extremities of the compression and

extension cycles (E0
DLSM�Þ are derived upon assump-

tion that the MAE samples possess highly elastic

behavior, and thus their corresponding Chebyshev

viscoelastic stress is fully contributed to Chebyshev

elastic stress to obtain the equivalent nonlinear

Chebyshev stress as presented in Eq. (24). In other

words, by assigning the total Chebyshev viscoelastic

stress component to elastic component, the nonlinear

elastic behavior is slightly overestimated, and some

part of the Chebyshev viscoelastic stress must have

contributed to viscous nonlinearity. For instance,

according to Fig. 12a, it is possible that the negative

slope of Chebyshev viscoelastic stress at large ampli-

tude in extension become large and exceeds the

positive slope of the elastic stress at end of extension

cycle, thereby leading to slightly negative value of

E0
DLSM�

.

Furthermore, analysis of nonlinear measures for

MAEs at zero strain show that the values of E0
DZSM0 are

positive. Nonetheless, only for aligned MAE samples

under higher level of magnetic flux densities

(B� 600mT), the values of E0
DZSM0 become slightly

negative as presented in Table C.4 in Appendix C.

Supplementary Data. It is partly attributed to the

magnetic field-stiffening of the MAEs that limits

recovery or unloading of the specimen during exper-

iment. It can also be seen in Fig. 8a that the slope of

unloading path in stress–strain curve around zero

strain slightly changes and becomes negative.

6 Conclusions

MAEs subject to large amplitude oscillatory loading in

the axial direction (LAOA) exhibit highly nonlinear

and asymmetric stress–strain characteristics. Proposed

differential large strain modulus (E0
DLSM�) and differ-

ential large strain-rate viscosity (g0DLSRV�) measures

provided accurate estimations of material’s moduli in

compression and extension, and thereby the asym-

metric stress–strain responses of MAEs to LAOA

loadings. The proposed nonlinear measures at zero

strain and zero strain-rate, E0
DZSM0

, and g0DZSRV0
, also

provided unique values of slopes, while the conven-

tional minimum strain measures (G0
M�

; g0M�
) lead to

two different values. The proposed measures thus

permitted unique interpretations of inter-cycle non-

linearities of MAEs subject to LAOA loadings. The

stress responses approximated using Fourier series and

Chebyshev polynomials permitted decompositions

into elastic, viscous, and viscoelastic stress compo-

nents. Results showed that Chebyshev viscoelastic

component can be considered as the equivalent elastic

stress of Fourier viscoelastic component. The equiv-

alent elastic and viscous stresses may thus be

estimated by superimposing the Chebyshev
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viscoelastic and elastic or viscous components,

depending on whether the material’s response is

elastic- or viscous-dominated. Results suggested

elastic-dominated responses of MAEs under LAOA

loading. The proposed nonlinear elastic measures, i.e.,

E0
DLSM� and E0

DZSM0, could thus be derived from

derivative of the equivalent nonlinear elastic Cheby-

shev stress with respect to the imposed strain. An

equivalent set of Fourier coefficients, obtained in the

study, could yield the equivalent nonlinear elastic/

viscous stress, enabling faster calculations of the

nonlinear measures. It is shown that the proposed local

measures together with the asymmetry ratios provide

unique interpretations of inter-cycle (e.g., strain

amplitude softening and strain amplitude stiffening)

and intra-cycle (e.g., strain stiffening) nonlinearities of

MAEs under LAOA loadings. The asymmetry ratios

in view of elastic modulus (ARe
þ=�) increased consid-

erably with increasing strain amplitude but decreased

with increase in loading frequency and magnetic flux

density. The proposed measures together with the

quantification methodology could provide enhanced

understanding of nonlinear and asymmetric response

characteristics of MAEs subject to LAOA loadings.

The proposed measures could also facilitate relative

analyses of response behaviors of MAEs in the LAOA

regime with greater sensitivity near extremities of

compression and extension strokes.
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Fig. A1 Stress–strain

characteristics of unaligned

MAEs subject to different

amplitudes of axial strain at

a frequency of 1 Hz: a
e0=0.025, b e0=0.10, and c
e0=0.20. (Magnetic flux

density = 0 mT, left

column; and = 750 mT,

right column)
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Appendix B

In case of a viscous-dominated situation, an equivalent

nonlinear viscous Chebyshev stress could be obtained

from:

rTeqv xð Þ ¼ rTv yð Þ þ rTve x; yð Þ ðB:1Þ

In this case, the viscoelastic Chebyshev coefficients

are completely contributed to the viscous nonlinear-

ities and asymmetries. Thus, the g0DLSRV� can be

determined, as:

g0DLSRV�
¼

drTeqv

d _e

����
_e¼�e0x

ðB:2Þ

The g0DLSRV� may be expanded for in compression

( ?) and extension (-) considering n= 2, and n= 4, as:

g0DLSRV�
¼

drTeqv

d _e

����
_e¼�e0x

¼
drTeqv

e0xdy

����
y¼�1;n¼2

¼ ½v1� � 4½ðv2Þ �
1

x
ðe2Þ� ðB:3Þ

g0DLSRV�
¼

drTeqv

d _e

����
_e¼�e0x

¼
drTeqv

e0xdy

����
y¼�1;n¼4

¼ ½v1 þ 9v3� � 4½ðv2 þ 4v4Þ �
1

x
ðe2 � 4e4Þ�

ðB:4Þ

Similarly, the differential zero strain-rate viscosity

ðg0DZSRV0
) can be obtained as:

Fig. A2 First-, second-,

third-, and fourth-order

Chebyshev stress

approximations of the

measured stress–strain

characteristics of aligned

MAEs subjected to axial

strain at a frequency of

1 Hz, strain amplitude of

e0=0.20, and magnetic flux

density of 750 mT

Table B.1 Relationship between coefficients of Fourier series and Chebyshev polynomials for viscoelastic materials exhibiting

viscous- and elastic-dominated behavior under LAOA loading (n =4)

Coefficients Viscoelastic materials exhibiting viscous-dominated response

Chebyshev v1 v2 v3 v4 e1 e2� e3 e4

Fourier E00
1=x 0:99E00

2=x 0:97E00
3=x 0:95E00

4=x E0
1 �3:40E0

2 �E0
3 1:5E0

4

Viscoelastic materials exhibiting elastic-dominated response

Chebyshev v1 v2 v3 v4 e1 e2� e3 e4

Fourier E00
1=x 0:99E00

2=x E00
3=x 0:95E00

4=x E0
1 �3:40E0

2 �0:97E0
3 1:5E0

4
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g0DZSRV0
¼

drTeqv

d _e

����
_e¼0;n¼2

¼
drTeqv

e0xdy

����
y¼0;n¼2

¼ v1

ðB:5Þ

g0DZSRV0
¼

drTeqv

d _e

����
_e¼0;n¼4

¼
drTeqv

e0xdy

����
y¼0;n¼4

¼ v1 � 3v3

ðB:6Þ

An equivalent nonlinear viscous Fourier stress can

also be defined for the case of viscous-dominated

situation as:

rFeqv
x; yð Þ ¼ rFv yð Þ þ rFve x; yð Þ ðB:7Þ

The g0DLSRV� can determined in a similar manner as:

g0DLSRV�
¼

drFeqv

d _e

����
_e¼�e0x

¼
drFeqv

e0xdy

����
y¼�1

ðB:8Þ

Similarly, g0DLSRV� can also be expanded for

compression ( ?) and extension (-) considering

n= 2, and n= 4, as:

g0DLSRV�
¼

drFeqv

d _e

����
_e¼�0:99e0x

¼
drFeqv

e0xdy

����
y¼�0:99;n¼2

¼ 1

x
E00

1 � 3:96E00
2

	 

� 13:61E0

2Þ
� �

ðB:9Þ

g0DLSRV�
¼

drFeqv

d _e

����
_e¼�0:99e0x

¼
drFeqv

e0xdy

����
y¼�0:99;n¼4

¼ 1

x
E00

1 þ 8:76E00
3

� �
þ 1

x
½�13:61E0

2

� 23:93E0
4 � 3:96E00

2 � 15:21E00
4 �

ðB:10Þ

The differential zero strain-rate viscosity ðg0DZSRV0
)

can also be obtained in a similar manner, as:

g0DZSRV0
¼

drFeqv

d _e

����
_e¼0;n¼2

¼ 1

x
½E00

1 þ 2E0
2� ðB:11Þ

g0DZSRV0
¼

drFeqv

d _e

����
_e¼0;n¼4

¼ 1

x
½E00

1 � 3E00
3 þ 2E0

2 � 4E0
4� ðB:12Þ

Apart from g0DLSRV� , differential large strain mod-

uli (E0
DLSM�) can be defined for the Chebyshev and

Fourier elastic stress components for materials show-

ing viscous-dominated behavior, as:

E0
DLSM� ¼ drTe

de

����
e¼�e0

ðB:13Þ

E0
DLSM� ¼ drFe

de

����
e¼�e0

ðB:14Þ

Considering n ¼ 4, as an example, E0
DLSM� can be

obtained as:

E0
DLSM� ¼ drTe

de

����
e¼�e0;n¼4

¼ e1 þ 9e3 ðB:15Þ

E0
DLSM� ¼ drFe

de

����
e¼�e0;n¼4

¼ E0
1 � 9E0

3 ðB:16Þ

In order to quantify inter/intra-cycle nonlinearities

(e.g., strain stiffening and strain softening) in vis-

coelastic materials showing viscous-dominated

behavior, the differential zero strain modulus

ðE0
DZSM0

Þ) can also be defined for their Chebyshev

and Fourier elastic stress responses as:

E0
DZSM0 ¼ drTe

de

����
e¼0

ðB:17Þ

E0
DZSM0 ¼ drFe

de

����
e¼0

ðB:18Þ

Considering n ¼ 4, as an example, E0
DZSM0 can be

obtained from rTe
and rFe

, given by:

E0
DZSM0 ¼ drTe

de

����
e¼0;n¼4

¼ e1 � 3e3 ðB:19Þ

E0
DZSM0 ¼ drFe

de

����
e¼0;n¼4

¼ E0
1 þ 3E0

3 ðB:20Þ

Unlike Eq. (B.2), where g0DLSRV�
is determined from

taking derivative of the equivalent nonlinear viscous

stress obtained via Chebyshev polynomials for

y ¼ �1, the g0DLSRV�
in Eqs. (B.9) and (B.10) must

be obtained for when y 6¼ �1 (e.g., y ¼ �0:99) to

eliminate singularities. It should be noted that the

value of g0DLSRV�
, expressed in Eqs. (B.9) and (B.10),

near extremities of the loading cycle becomes highly

dependent on how close the y is to 1. As an example,

we compare Eqs. (B.3) and (B.4) with Eqs. (B.9) and

(B.10), respectively, considering y ¼ �0:99, as well

as Eqs. (B.15) and (B.16) with Eqs. (B.19) and (B.20),

correspondingly. Subsequently, the relationships
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between the coefficients of the Fourier series and

Chebyshev polynomials can be obtained for viscoelas-

tic materials showing viscous-dominated behavior

under LAOA regime. These are shown in Table B.1,

considering n=4. A suitable value for y, however,

needs to be determined in order to derive an explicit

relationship between the Fourier coefficients and

Chebyshev polynomials.

A similar relation between the Fourier series and

Chebyshev polynomials can be also obtained for

materials showing elastic dominated behavior by

comparing Eqs. (29) and (30) with Eq. (42). These

are shown in Table B.1 for n =4, as an example.

As already explained in Sect. 4.3, even though an

explicit relationship between the coefficients of Four-

ier and Chebyshev approximations over the entire

domain of orthogonality, [-1,1], cannot be derived,

equivalent elastic/viscous Chebyshev stress can be

obtained from equivalent elastic/viscous Fourier stress

by excluding the sine terms. This permits faster

calculation of the proposed set of moduli. The

g0DLSRV� , presented in Eq. (B.4), can thus also be

obtained for in compression ( ?) and extension (-)

considering n= 2, and 4, as:

g0DLSRV�
¼

drF0
eqv

e0dx

����
x¼�1;n¼2

¼ E00
1 þ 4E00

2 ðB:21Þ

g0DLSRV� ¼
drF0

eqv

e0dx

�����
x¼0;n¼4

¼ E00
1 þ 4E00

2 þ 9E00
3 þ 16E00

4

ðB:22Þ

g0DZSRV0
¼

drF0
eqv

e0dx

����
x¼0;n¼4

¼ E00
1 � 3E00

3 ðB:23Þ

Appendix C

See Table C.1, C.2, C.3, C.4, C.5 and C.6.

Table C.1 Differential large strain moduli, E0
DLSM�ðkPaÞ,

obtained at the extremities of the compression ( ?) and

extension (-) cycles for unaligned MAE samples subject to

different strain amplitudes (superimposed on pre-strain of

0.21), loading frequency, and magnetic flux density

e0=0.025 e0=0.05 e0=0.1 e0=0.2

B (mT) Frequency E0
DLSM�

E0
DLSMþ

E0
DLSM�

E0
DLSMþ

E0
DLSM�

E0
DLSMþ

E0
DLSM�

E0
DLSMþ

0 1 Hz 532 1126 333 1005 360 1320 - 376 2657

10 Hz 537 1303 536 1379 258 1386 - 381 2679

20 Hz 2350 3318 580 2162 629 2155 - - *

30 Hz - 228 1705 464 1663 492 3201 - -

1 Hz 740 1775 806 1605 426 1783 - 551 3202

150 10 Hz 1584 1891 1430 1983 577 1997 - 561 3421

20 Hz 2215 4161 1763 3883 232 2800 - -

30 Hz 512 2374 950 2247 793 3494 - -

1 Hz 1566 952 1302 1981 839 2283 - 714 4087

300 10 H z 1798 3861 1666 3357 850 2998 - 812 4562

20 Hz 1088 2184 2195 4628 946 3359 - -

30 Hz 1746 1949 1865 2980 848 3997 - -

1 Hz 2659 3967 1583 2854 853 3164 - 549 5234

450 10 Hz 3821 4568 2207 4526 1511 3730 - 318 5081

20 Hz 1720 3337 1458 4684 797 4037 - -

30 Hz 3418 3632 2434 3826 1243 4435 - -

1 Hz 2323 3436 1967 3498 1067 3450 - 158 5285

600 10 Hz 4793 6049 2278 5242 1466 4269 41 5389

20 Hz 1659 4318 3179 6009 1605 4480 - -

30 Hz 2914 5384 2575 4556 1699 4359 - -

1 Hz 1639 6887 2191 3312 1231 3460 123 4891
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Table C.2 Differential large strain moduli, E0
DLSM�ðkPaÞ,

obtained at the extremities of the compression ( ?) and

extension (-) cycles for aligned MAE samples subject to

different strain amplitudes (superimposed on pre-strain of

0.21), loading frequency, and magnetic flux density

e0=0.025 e0=0.05 e0=0.1 e0=0.2

B (mT) Frequency E0
DLSM�

E0
DLSMþ

E0
DLSM�

E0
DLSMþ

E0
DLSM�

E0
DLSMþ

E0
DLSM�

E0
DLSMþ

0 1 Hz 835 2185 693 2365 390 4002 - 25 3443

10 Hz 1305 2934 834 2748 585 4122 - -*

20 Hz 2951 3012 1650 2723 998 3380 – -

30 Hz 320 1643 619 2388 655 4136 - -

1 Hz 1552 2187 955 3069 686 4164 - 79 3716

150 10 Hz 1772 4463 1704 3151 1059 4306 – –

20 Hz 3585 5393 2419 3981 1311 3925 – –

30 Hz 1330 3180 1375 3194 943 5008 – –

300 1 Hz 1990 3056 1502 3473 1076 4789 80 4204

10 Hz 3340 5401 1922 4925 1414 5389 – –

20 Hz 2825 3945 2950 5003 1849 5028 – –

30 Hz 3341 6057 1566 4089 1149 5447 – –

450 1 Hz 2390 5112 1953 4003 1266 5698 390 4764

10 Hz 3048 8229 2894 4999 1995 5485 – –

20 Hz 5511 8576 2287 4557 1603 5005 – –

30 Hz 2614 6849 2027 3827 1634 5125 – –

600 1 Hz 2904 4986 2114 5111 1637 5436 531 5018

10 Hz 4934 7958 2301 6734 1908 6334 – –

20 Hz 3487 8652 4293 5979 1693 6126 – –

30 Hz 2867 7468 2934 4892 2205 4844 – –

750 1 Hz 3207 5897 2064 5144 1506 5732 731 4601

10 Hz 4608 7969 3000 6682 2071 6325 – –

20 Hz 4415 7886 3128 6319 2573 5936 – –

30 Hz 3848 7488 2554 5324 2313 5048 – –

*Performing measurement simultaneously at large amplitudes and high frequencies was not possible. No error detected.

Table C.1 continued

e0=0.025 e0=0.05 e0=0.1 e0=0.2

B (mT) Frequency E0
DLSM�

E0
DLSMþ

E0
DLSM�

E0
DLSMþ

E0
DLSM�

E0
DLSMþ

E0
DLSM�

E0
DLSMþ

750 10 Hz 4278 6940 2750 5150 1402 4477 280 5564

20 Hz 5644 8429 2176 6603 1218 4669 - -

30 Hz 2436 4871 2935 4541 1330 5212 - -

*Performing measurement simultaneously at large amplitudes and high frequencies was not possible
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Table C.3 Differential zero strain moduli, E0
DZSM0ðkPaÞ,

obtained for unaligned MAE samples subject to different strain

amplitudes (superimposed on pre-strain of 0.21), loading fre-

quencies, and magnetic flux densities

B (mT) Frequency e0=0.025 e0=0.05 e0=0.1 e0=0.2

E0
DZSM0 E0

DZSM0 E0
DZSM0 E0

DZSM0

0 1 Hz 560 511 383 223

10 Hz 682 543 372 189

20 Hz 830 831 522 –*

30 Hz 1010 666 283 –

1 Hz 784 583 416 249

150 10 Hz 1316 827 506 277

20 Hz 1146 711 639 –

30 Hz 1596 996 372 –

1 Hz 1350 879 489 265

300 10 Hz 1759 1133 627 293

20 Hz 2142 929 681 –

30 Hz 2277 1175 513 –

1 Hz 1367 1015 528 140

450 10 Hz 2114 1230 666 249

20 Hz 2847 1572 784 –

30 Hz 2506 1348 443 –

1 Hz 1961 1026 528 54

600 10 Hz 2257 1358 709 187

20 Hz 3015 1254 711 –

30 Hz 2725 1473 601 –

1 Hz 1605 1077 496 52

750 10 Hz 2327 1354 631 98

20 Hz 2324 1610 730 –

30 Hz 2973 1512 524 –

*Performing measurement simultaneously at large amplitudes

and high frequencies was not possible

Table C.4 Differential zero strain moduli, E0
DZSM0

ðkPaÞ,
obtained for aligned MAE samples subject to different strain

amplitudes (superimposed on pre-strain of 0.21), loading fre-

quencies, and magnetic flux densities

B (mT) Frequency e0=0.025 e0=0.05 e0=0.1 e0=0.2

E0
DZSM0 E0

DZSM0 E0
DZSM0 E0

DZSM0

0 1 Hz 859 655 422 134

10 Hz 1022 741 423 -*

20 Hz 666 566 456 -

30 Hz 1312 760 318 -

1 Hz 1054 755 439 146

150 10 Hz 1405 948 540 -

20 Hz 974 721 536 -

30 Hz 1739 981 330 -

1 Hz 1333 938 476 100

300 10 Hz 1802 1084 577 -

20 Hz 2175 910 526 -

30 Hz 1924 1203 380 -

1 Hz 1504 1061 449 31

450 10 Hz 1949 1296 628 -

20 Hz 1705 1479 784 -

30 Hz 2560 1484 409 -

1 Hz 1795 1032 457 -40

600 10 Hz 2201 1299 618 -

20 Hz 2219 1120 625 -

30 Hz 2795 1475 493 -

1 Hz 1719 1085 426 -66

750 10 Hz 2350 1237 493 -

20 Hz 2807 1409 407 -

30 Hz 2874 1497 466 -

*Performing measurement simultaneously at large amplitudes

and high frequencies was not possible
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Table C.5 Differential zero strain-rate viscosity,

g0DZSRV 0ðkPa:sÞ, and large strain-rate viscosity,

g0DLSRV� kPa:sð Þ obtained at the extremities of the compression

( ?) and extension (-) cycles for unaligned MAE samples

subject to different strain amplitudes (superimposed on pre-

strain of 0.21), loading frequency, and magnetic flux density

B (mT) e0 = 0.025 e0 = 0.05 e0= 0.1 e0= 0.2

Frequency g0DZSRV 0 g0DLSRV� g0DZSRV 0 g0DLSRV� g0DZSRV 0 g0DLSRV� g0DZSRV 0 g0DLSRV�

0 1 Hz 26.61 23.63 28.44 5.35 27.30 3.35 37.48 - 35.91

10 Hz 4.82 0.52 3.22 3.32 2.98 1.93 3.50 - 1.80

20 Hz - 0.41 16.19 0.41 8.94 0.89 4.43 – –

30 Hz 1.94 0.94 1.91 0.02 2.14 - 0.88 – –

1 Hz 39.33 66.61 51.03 27.46 51.90 7.99 57.87 - 42.42

150 10 Hz 5.75 8.00 6.24 4.84 6.02 0.45 3.90 0.97

20 Hz 5.08 - 4.07 2.37 6.06 2.36 2.35 - –

30 Hz 2.59 1.08 2.99 0.30 2.77 - 1.56 – –

1 Hz 74.24 135.50 83.40 80.50 83.99 27.20 85.94 - 50.34

300 10 Hz 16.56 3.91 10.56 8.57 8.95 3.45 6.40 0.84

20 Hz 5.74 - 0.88 7.33 - 4.71 2.80 3.91 – –

30 Hz 5.08 0.46 5.03 - 0.86 4.50 - 2.24 – –

1 Hz 138.24 174.41 118.96 136.97 104.62 41.70 105.41 - 37.29

450 10 Hz 17.77 19.89 16.01 9.47 12.05 5.16 9.62 - 0.32

20 Hz 7.29 8.75 5.02 9.47 6.64 - 2.42 – –

30 Hz 6.85 2.66 5.96 - 0.79 5.15 - 3.74 – –

1 Hz 189.11 145.47 153.81 51.41 128.11 13.09 120.29 - 81.23

600 10 Hz 20.36 27.10 18.43 9.43 14.05 5.92 12.98 - 2.13

20 Hz 8.44 6.73 9.89 - 3.37 5.54 4.12 – –

30 Hz 10.75 - 2.44 7.76 - 1.97 6.19 - 2.53 – –

1 Hz 194.07 231.59 173.01 110.70 145.93 29.49 140.04 - 51.74

750 10 Hz 24.88 27.64 17.10 15.85 15.14 4.00 13.35 2.08

20 Hz 13.29 6.65 10.87 0.45 5.28 6.22 – –

30 Hz 11.46 - 3.92 8.75 - 1.71 6.87 - 2.89 – –

*Performing measurement simultaneously at large amplitudes and high frequencies was not possible

123

A new method to characterize the nonlinear magneto-viscoelasticity 3353



References

1. Samal, S., Škodová, M., Abate, L., Blanco, I.: Magneto-

rheological elastomer composites a review. Appl. Sci. 10,

4899 (2020). https://doi.org/10.3390/app10144899

2. Nadzharyan, T.A., Shamonin, M., Kramarenko, E.Y.:

Theoretical modeling of magnetoactive elastomers on dif-

ferent scales: a State-of-the-art review. Polymers 14, 4096

(2022). https://doi.org/10.3390/polym14194096

3. Stolbov, O., Raikher, Y.: Large-scale shape transformations

of a sphere made of a magnetoactive elastomer. Polymers

12, 2933 (2020). https://doi.org/10.3390/polym12122933

4. Filipcsei, G., Csetneki, I., Szilágyi, A., Zrı́nyi, M.: Magnetic
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