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Abstract Several investigators have taken advan-
tage of electromagnetic shunt-tuned mass dampers to
achieve concurrent vibrationmitigation and energyhar-
vesting. For nonlinear structures such as the Duffing
oscillator, it has been shown that the novel nonlin-
ear electromagnetic resonant shunt-tunedmass damper
inerter (NERS-TMDI) canmitigate vibration andextract
energy for a wider range of frequencies and forcing
amplitudeswhen compared to competing technologies.
However, nonlinear systems such as the NERS-TMDI
are known to exhibit complex stability behavior, which
can strongly influence their performance in simultane-
ous vibration control and energy harvesting. To address
this problem, this paper conducts a global stability anal-
ysis of the novel NERS-TMDI using three approaches:
the multi-parametric recursive continuationWe empha-
size that these assumemethod, Floquet theory, andLya-
punov exponents. A comprehensive parametric anal-
ysis is also performed to evaluate the impact of key
design parameters on the global stability of the sys-
tem. The outcome indicates the existence of com-
plex nonlinear behavior, such as detached resonance
curves, and the transition of periodic stable solutions
to chaotic solutions. Additionally, a parametric study
demonstrates that the nonlinear stiffness has a minimal
impact on the linear stability of the system but can sig-
nificantly impact the nonlinear stability performance,
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while the transducer coefficient has an impact on the
linear and nonlinear stabilityNERS-TMDI. Finally, the
global sensitivity analysis is performed relative to sys-
tem parameters to quantify the impact of uncertainty
in system parameters on the dynamics. Overall, our
findings show that simultaneous vibration control and
energy harvesting come with a considerable instabil-
ity trade-off that limits the range of operation of the
NERS-TMDI.

Keywords Nonlinear oscillator · Energy harvesting ·
Vibration control · Isolas · Floquet theory · Lyapunov
exponents · Tuned system

1 Introduction

The structural integrity ofmany engineering structures,
such as bridges, buildings, and power lines, has been
a central area of study for several decades. However,
one phenomenon that plagues the structural integrity
of these infrastructures is unwanted high-amplitude
vibration [1–4]. Researchers have employed linear and
nonlinear models of these structures to understand the
dynamics and, accordingly, design efficient solutions to
mitigate the vibration-induced damages to these struc-
tures. A linear model of a structure tends to be favored
over a nonlinear model as the former has a lower com-
plexity level [5,6]. However, to capture the essential
dynamics of a system that can exhibit large amplitude
oscillations, a nonlinear model is preferred [7,8].
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The development of improved models of civil struc-
tures has helped in the design of an efficient vibra-
tion control system. For a linear system, a tuned mass
damper (TMD), initially introduced by Fram et al. [9],
has been widely used to mitigate and sometimes elim-
inate undesired vibrations. Also, significant improve-
ments have been made to the original design of TMD
via passive [10–13], semi-active [14–16] and active
[17–19] means. However, TMDs are only effective
in a narrow range of operating frequencies. To alle-
viate this limitation, multiple approaches have been
used. One of the efficient solutions to overcome this
limitation is to incorporate inerters [20,21], a mass
amplification device with negligible physical weight,
in TMDs’ design [22–27]. The inclusion of inerter in
TMD’s design increases the effective operating fre-
quency range without increasing the overall weight
of the absorber and hence improves the performance.
Another solution is the development of a nonlinear
vibration absorber, which is designed to enhance the
performance of TMD by extending the concept of
Den’s Hartog equal peak method for nonlinear oscil-
lations [28,29]. The nonlinear tuned mass dampers
(NTMDs) have proven to perform better than linear
TMDs to mitigate vibrations in primary nonlinear sys-
tems [30–32].

Although TMDs and NTMDs are proven to be effi-
cient solutions for controlling undesirable vibrations
in a primary system, they do not take advantage of
the energy generated by ambient vibrations. Indeed,
most of the vibration energy in TMDs and NTMDs is
dissipated through heat. However, many systems have
essential energy requirements that can bemet by energy
harvesting techniques. One device that has the potential
to perform both vibration control and energy harvest-
ing is the shunt damper (SD), initially introduced by
Forward et al. [33]. They demonstrated the use of pas-
sive circuit shunting for the narrow-band reduction of
resonant mechanical response.

Further, Hagood and von Flotow [34] theoretically
and experimentally proved that a piezoelectric shunt
with an RL circuit would act as a TMD. The use of
SD incorporating piezoelectric material and the elec-
tromagnetic transducer is well established in the litera-
ture [35–38]. The benefit of having an electromagnetic
device for SDs is that it enables energy harvesting for
given circuit parameters. Tuned SD, for both vibration
control and energy harvesting, further led to the devel-
opment of electromagnetic resonant shunt-tuned mass

dampers (ERS-TMD) [39] and, more recently, elec-
tromagnetic resonant shunt-tuned mass damper with
inerters (ERS-TMDI) [40,41] to further take advan-
tage of the inerter devices. The latest development in
an ERS-TMDI is the improved design of the conven-
tional ERS-TMDI by Joubaneh and Barry [42] for lin-
ear oscillators,whichoptimized simultaneous vibration
control and energy harvesting. On a similar line, Paul
and Barry [43] presented an optimal configuration for
a nonlinear ERS-TMDI (NERS-TMDI) to enhance the
performance in terms of vibration control and energy
harvesting for a given value of excitation amplitude.
The optimal configuration of theNERS-TMDIwas also
compared to conventional solutions such as the ERS-
TMDI and NTMD, and the results demonstrated that
the NERS-TMDI was superior to the other designs.

Given the significant advantages, our novel NERS-
TMDI provides for simultaneous vibration control and
energy harvesting in a nonlinear system, and it is cru-
cial to investigate the impact of its parameters on the
primary structure under various operating conditions.
To address this, the present study introduces a pioneer-
ing analysis of both the linear and nonlinear stabil-
ity of the optimized NERS-TMDI. By employing lin-
ear and nonlinear stability methods, including geomet-
ric (the Floquet multiplier, phase-portraits, Lyapunov
exponent) and statistical (0–1 chaos test, global sensi-
tivity analysis), our research offers design guidelines
that ensure the safe operation of NERS-TMDI within
predetermined frequency ranges and amplitudes, sup-
plementing the findings presented in [43]. The remain-
der of this paper is organized as follows. In Sect. 2, the
mathematical model for the optimal configuration [43]
of the NERS-TMDI is presented briefly, along with the
linear and nonlinear formulation required for the sta-
bility analysis. The multi-parametric recursive method
is also detailed in Sect. 2 as a tool to track bifurca-
tion points on increased parameter space. In Sect. 4,
the aforementioned recursive method is used to detect
isolated solutions (ISs). In Sect. 5, the linear stabil-
ity of the steady-state periodic solutions is presented.
In Sect. 6, the linear stability of the periodic solution
is extended to a nonlinear stability analysis via Lya-
punov exponents (LEs) [44–47] and Poincaré maps to
help characterize the type of instability the system is
subject on the force and natural frequency parameter
space. In Sect. 7, a well-established global sensitiv-
ity framework is used to assess the uncertainty of the
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NERS-TMDI key parameters. Final remarks on this
study and the next steps are provided in Sect. 8.

2 Mathematical modeling

Figure 1 shows the schematic of the NERS-TMDI con-
figuration [43] attached to a nonlinear primary system,
in our case, a Duffing oscillator. In the schematic, the
mass of the primary system is represented by ms , the
viscous damping coefficient by cs , and the linear and
the nonlinear stiffness of the Duffing oscillator is rep-
resented as ks and ksn , respectively. It should be noted
that the nonlinear stiffness ksn exhibits cubic nonlin-
earity. Furthermore, the tuned mass of NERS-TMDI,
mt , connects to the Duffing oscillator via spring with
linear and nonlinear stiffness as kt and ktn , respectively,
and the damper with the damping coefficient of ct . For
improved vibration control performance, ktn exhibits
cubic nonlinearity similar to ksn [28,29].

In the current design of NERS-TMDI, NERS-
TMDI is equipped with an electromagnetic resonant
shunt component that behaves like a damping struc-
ture and provides additional vibration control. Hence,
ct becomes redundant in the system, and we can put
ct = 0 for the analysis of our system. Also, it has been
well established that the better performance of vibra-
tion absorber yields when it exhibits the same char-
acteristics as the primary structure [28,29]. Therefore,
we assume that in the NERS-TMDI nonlinear stiffness,
ksn is also cubic in nature. The electrical circuit resis-
tance, inductance, and capacitance are represented as
R̄, L̄ , and C̄ , respectively, in Fig. 1. k f and kv indicate
the transducer’s force constant and voltage constant,
respectively. Note that the analysis assumes no energy
loss through the conductor; hence, k f = kv . Therefore,
the governing equations of motion for the coupled sys-
tem can be written as

ms ẍs + cs ẋs + ks xs + ksnx
3
s

+kt (xs − xt ) + ktn(xs − xt )
3 = Fw, (1a)

(mt + b)ẍt + kt (xt − xs)

+ktn(xt − xs)
3 + k f q̇ = 0, (1b)

L̄q̈ + R̄q̇

+ 1

C̄
q − kv ẋt = 0. (1c)

In the above equations of motion, Fw represents an
external excitation acting on the primary system. In

Fig. 1 The schematic of the Duffing oscillator attached to the
optimal configuration of NERS-TMDI

real-life scenarios, Fw can take complex forms such as
random excitation, impulse, and stochastic excitation.
However, for the sake of simplicity in our analysis,
we assume sinusoidal form for Fw, and accordingly,
assume Fw = F sin(ω t) with the excitation amplitude
of F and excitation frequency of ω̃. Furthermore, to
reduce the number of effective parameters in the subse-
quent analysis, we introduce the following nondimen-
sional scales and parameters in the system

x0 = F0
ks

, ξs = xs
x0

, ξt = xt
x0

, τ = ωpt, ωp =
√

ks
ms

,

μ = mt + b

ms
, ζ = cs√

ksms
, α = ksn F2

0

k3s
,

β = kt
ks

, γ = ktn F2
0

k3s
, λ = k f

F0
, σ = R̄

L̄ωp
,

κ = 1

L̄C̄ω2
p

, ρ = kvF0
ks L̄ωp

,

ω̃ = ω

ωp
, F̄ = F

F0
, (2)

where F0 represents a constant force that causes a static
displacement x0 in the linear spring of the primary sys-
tem. Using aforementioned nondimensional scales and
parameters, Eq. (1a) is nondimensionalized to get

ξ̈s + ζ ξ̇s + ξs

+αξ3s − β(ξt − ξs) − γ (ξt − ξs)
3 = F̄ sin(ω̃τ ),(3a)

ξ̈t + β

μ
(ξt − ξs)

+γ

μ
(ξt − ξs)

3 + λ

μ
q̇ = 0, (3b)
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q̈ + σ q̇

+κq − ρξ̇t = 0. (3c)

In the above nondimensional governing equations
of motion, ()̇ represents the derivate with respect to
nondimensional time τ . Next, to get the steady-state
periodic solutions of Eq. (3), we use the method of har-
monic balance (HBM) and, accordingly, assume that
solutions for the motion of the primary mass (ξs), the
absorber mass (ξt ), and the charge q of the RLC circuit
are periodic and synchronous with the external exci-
tation. With these assumptions, ξs , ξt and q are given
by

ξs = As0 + As cos(ω̃τ ) + Bs sin(ω̃τ ) + As3 cos(3 ω̃τ )

+Bs3 sin(3 ω̃τ ), (4a)
ξt = At0 + At cos(ω̃τ ) + Bt sin(ω̃τ ) + At3 cos(3 ω̃τ )

+Bt3 sin(3 ω̃τ ), (4b)
q = Ai0 + Ai cos(ω̃τ ) + Bi sin(ω̃τ ) + Ai3 cos(3 ω̃τ )

+Bi3 sin(3 ω̃τ ). (4c)

We emphasize that these assumed solutions include
constant terms for DC and asymmetric motions. Fur-
thermore, higher harmonics of cosine and sine terms
are considered to improve the accuracy of the solutions
for the current nonlinear system. On substituting these
assumed forms of the solutions in Eq. (3) and collect-
ing the coefficients for different harmonics and con-
stant terms, we get fifteen nonlinear algebraic simulta-

neous equations. Since these equations are lengthy and
involved, we do not report these for brevity. It should
be noted that due to the highly nonlinear characteristics
of these algebraic equations, it is difficult to solve them
analytically. Therefore, we employ the fixed-arc-length
continuation method to solve the nonlinear simultane-
ous equations to get the solutions for different values
of excitation amplitude and frequency.

To capture the global dynamics of the system, the
multi-parametric recursive continuation method intro-
duced by Grenat et al., [48] is employed in the cur-
rent analysis. For the sake of brevity, the mathematical
methodology is not presented here. Please refer to [48]
for more details about the method.

Having obtained the steady-state periodic solutions
of the system numerically through the continuation
scheme, next, we perform the linear stability analy-
sis of the system to explore the local or linear stability
of these steady states in the parametric space of exci-
tation amplitude and frequency. To perform linear sta-
bility analysis, we first rewrite Eq. (3) in the following
state-space form:

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

x2
F̄ sin(ω̃τ ) − ζ x2 − x1 − β(x1 − x3) − αx31 − γ (x1 − x3)3

x4
β
μ

(x1 − x3) − λ
μ
x6 + γ

μ
(x1 − x3)3

x6
ρx4 − κx5 − σ x6

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(5)

with⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

ξs
ξ̇s
ξt
ξ̇t
q
q̇

⎤
⎥⎥⎥⎥⎥⎥⎦

. (6)

This state-space formulation facilitates the derivation
of the following Jacobian matrix,

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
−β − 3α2

s1 − 3γ (xs1 − xs3)2 − 1 −ζ β + 3γ (xs1 − xs3)2 0 0 0
0 0 0 1 0 0

β
μ

+ (3γ (xs1 − xs3)2)/μ 0 − β
μ

− (3γ (xs1 − xs3)2)/μ 0 0 − λ
μ

0 0 0 0 0 1
0 0 0 ρ −κ −σ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where xs1, xs3, and xs5 are the steady-state periodic
solutions of the coupled system obtained from the
HBM.

The Floquet multipliers are then extracted from the
eigenvalues of the Jacobian evaluated at the steady-
state periodic solution and then are used to determine
the linear stability of the steady-state periodic solution
of the coupled system. If the dominant Floquet multi-
plier for a given steady state lies with the unit circle in
theRe–Im space, then the steady-state periodic solution
is considered to be stable, otherwise unstable.
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Note that the Floquet multipliers are only help-
ful in determining the linear or local stability of the
steady-state periodic solutions. However, to explore the
dynamics of the nonlinear system (in our case, Duffing
oscillator) attached to the NERS-TMDI beyond peri-
odic motions, it is necessary to extend our analysis by
performing nonlinear stability analysis and determine
the Lyapunov Exponents (LE) of the coupled nonlin-
ear system. We evolve Eq. 3 coupled with the tangent
space equations for each degree of freedom of the sys-
tem. (In the current analysis, we have six degrees of
freedom.) For instance, one degree-of-freedom tangent
space equation can be written as:

⎡
⎢⎢⎢⎢⎢⎢⎣

˙δx1˙δx2˙δx3˙δx4˙δx5˙δx6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

δx1
δx3 (β + 3 γ (x1 − x3)2) − δx2 ζ − δx1 (β + 3 α x21 + 3 γ (x1 − x3)2 + 1)

δx4
δx1 (β/μ + (3 γ (x1 − x3)2)/μ) − δx3 (β/μ + (3 γ (x1 − x3)2)/μ) − (δx6 λ)/μ

δx6
δx4 ρ − δx5 κ − δx6 σ

⎤
⎥⎥⎥⎥⎥⎥⎦

. (8)

Therefore, eventually, we solve 42 equations simul-
taneously to obtain the evolution of theLE. To dealwith
the exponential growth of the exponents, we use the
Gram–Schmidt procedure (QR decomposition). Then,
we average the instantaneous LE to get the average
LE for each degree of freedom and select the largest
LE to observe the system behavior. The 0–1 test for
chaos introduced by Gottwald et al. [49] is also con-
sidered for the nonlinear stability analysis. It is more
computationally efficient than the LE method since it
requires a total of 4 equations to determine the behavior
of the system. However, before proceeding further, we
present the validation of the steady-state periodic solu-
tions obtained through the harmonic balance method.
This is presented next.

3 Validation of analytical solution

As mentioned earlier, the HBM is used to validate
the analytical results, i.e., Eq. (4) by comparing them
against the numerical simulations of Eq. (3) for the
parameter values listed in Table 1. We will use these
parameter values for the remainder of the analysis
unless otherwise stated. The Duffing oscillator with
parameters ζ = 0.01 and α = 1 is connected to the
NERS-TMDI. The numerical results were generated
using ‘ode45’ in MATLAB with high values of abso-

lute tolerance and relative tolerances (1e−8). Figure2
shows the comparison of frequency response curves of
the NERS-TMDI obtained using analytical and numer-
ical approaches.Weobserve a good agreement between
both approacheswith amaximumerror of 0.2%.Hence,
the analytical solutions will be used in the subsequent
analysis unless otherwise stated.

4 Detection of isolas and NERS-TMDI safe
operation

Having established the accuracy of the analytical solu-
tion through the HBM, we now proceed to analyze
the complex stability behavior of the NERS-TMDI

attached to the primary system. In our previous paper
[43], we observed a significant jump in the ampli-
tude/response of the primary system as we increased
the excitation amplitude after a threshold value. In some
cases, this jump in amplitude/response of the system
can be attributed to the merge of isolated solutions,
which exist on a detached resonant curve, also known
as Isola (IS), with the primary response curve. It should
be noted that such a complex phenomenon has already
been observed by Habib et al. [29] for a Duffing oscil-
lator attached to an NLTVA. To show the existence
of Isolas for the proposed NERS-TMDI, we plot the
frequency response curve for two different values of
excitation amplitude, in particular for F̃ = 0.023 and
F̃ = 0.06 which are shown in Fig. 3a and b, respec-
tively. From Fig. 3a, we can observe the birth of Isola
in the system at F̃ = 0.023, which grows toward the
primary frequency response curve as F̃ increases to
F̃ = 0.06.

It should be noted that the existence of an Isola in a
system causes high-amplitude vibration, further detri-
mental to the performance of the vibration absorber to
control vibration. Therefore, it is necessary to track the
points corresponding to the birth and merging of Isola
to the primary response curve and, accordingly, define
the safe and unsafe operating regions. This step can be
achieved by using a numerical continuation technique,
where the system’s limit point (LP) branch for selected
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Table 1 Parameters of the NERS-TMDI

μopt1 βopt1 γopt1 λopt1 σopt1 ρopt1 κopt1

0.04 0.0423 0.00074 0.0596 0.3790 0.0618 1.0161

parameters can be projected on the parametric space of
F̃−ξs . Figure3c shows a 3-D view of the LP branch as
well as the evolution of the frequency response of the
primary system for F̃=0.023, 0.06, and 0.1. The birth
of the Isola is represented by a diamondmarker, while a
square marker represents the merging with the primary
response curve.

Furthermore, the LP branch in F̃ − ξs can be
classified into different regions depending on the
birth and merging of the Isola with the primary fre-
quency response curve. The three regionswith different
dynamical behaviors, initially defined by Detroux et al.
[50], are characterized as follows: (1) ‘Safe’ when the
frequency response curve has no Isola in the system, (2)
‘Unsafe’ when the frequency response curve exhibits
an Isola, and (3) ‘Unacceptable’ when the Isola has
merged with the primary response curve and becomes
a part of it. Since there are no Isolas for any value of
the excitation amplitude F̃ , there is no sudden jump to
a higher amplitude stable solution for any frequency
value in the ‘Safe’ region. However, for the ‘Unsafe’
region, Isola exists for a given frequency range. There-
fore, the system can settle down to high-amplitude sta-
ble solutions or low-amplitude stable solutions depend-
ing on the initial conditions for the operation. Eventu-
ally, in the ‘Unacceptable’ region, the Isolamergeswith
the primary frequency response curve, and irrespective
of initial conditions, high-amplitude solutions exist in
the system as frequency changes. Using this classifi-
cation, we observe from Fig. 3d that in our system,
the ‘Safe’ region exists for forcing amplitudes before
the birth of Isolas where F̃ < 0.023. After this value,
the system exhibits Isola; hence, it operates within the
unsafe region until the merging point at F̃ = 0.0849.
Beyond this merging point, the operation of the system
becomes unacceptable.

To identify these regions of operation, it is essen-
tial to locate the points corresponding to the birth and
merging of the Isola to the primary resonance curve.
From Fig. 3c, we can easily observe that in the 2-D
Projection of the LP branch in F − ξs space, the points
of the birth and merging of the Isola

Fig. 2 Comparison of the frequency response curves obtained
using the analytical and numerical approach with F̃ = 0.05,
α = 1 and ζ = 0.01. The other parameters for simulations are
listed in Table 1

correspond to �F = 0. Therefore, in the 2-D Pro-
jection of the LP branch, if we can identify the points
where�F becomes 0, thenwewill be able to locate the
birth and merging of an Isola and, hence, can precisely
establish the different regions of operation. To perform
this task, we use themulti-parametric recursivemethod
as detailed by Grenat et al. [48] and track the birth and
the merging of an Isola for a specific parameter varia-
tion. We emphasize that as the current system contains
many parameters, varying one parameter to track the
birth and merging will provide only one optimization
solution and, hence, cannot be treated as a unique opti-
mum solution. Furthermore, since the current system
is a 3-DOF system, this analysis has to be conducted
more carefully as it is more complex than the NLTVA
mentioned in [50].

In the next step, we select the parameters for the
parametric analysis. It should be noted here that the
parameters chosen for the investigation should not
detune the NERS-TMDI with the primary system. This
limitation eliminates μ, β, σ, κ , and ρ as changing any
of these parameters will either detune the absorber or
RLC circuit, which further interferes with vibration
control and energy harvesting. Therefore, we choose
γ and λ for this parametric analysis.

We start with the parameter γ , which relates to
the absorber’s nonlinear stiffness. Figure4a shows the
locus of points corresponding to the birth and merg-
ing of Isola for different values of γ in 2-D space
of F̃ − γ , while Fig. 4b extends the analysis in 3-D
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Fig. 3 Frequency response curves of the primary system for a
F̃=0.023 and b F̃=0.06. c The continuation of the LP branch
and primary frequency response curves with stable solutions

(Brown), unstable solutions (light blue), and LP (dark blue). d
shows the classification regions per [48] for the proposed system

space of F̃ − γ − ξs . From Fig. 4a, we can easily
observe that as the value of γ increases, F̃ correspond-
ing to the merging of Isola also increases. This further
implies the delay in the occurrence of the ‘Unaccept-
able’ regionwith higher values of γ (nonlinear stiffness
of the absorber). Furthermore, we observe that for the
initial increase in γ , there is no significant impact on
the birth points of Isola. However, for relatively higher
values of γ , F̃ corresponding to the birth of Isola also
increases. From these observations, we can conclude
that higher values of γ can lead to a wider ‘Safe’ and
‘Unsafe’ region.

Similar to γ , we extend our analysis to λ, which
relates to the force constant between the physical sys-
tem and the circuit. Figure5a shows the locus of points
corresponding to the birth and merging of Isola in 2-D
space of F̃ − λ, while Fig. 5b shows the locus in 3-D
space of F̃ − λ − ξs . From Fig. 5a, we can observe
that the initial increase in λ causes an increase in the
value of F̃ corresponding to the merging of Isola, and
hence, an increase in the ‘Unsafe’ region. However,
after λ = 0.5, any increase in λ does not significantly
impact F̃ for the merging point. At the same instant, an
increase in λ leads to a slow and approximately linear
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Fig. 4 a Variation of the birth and merging point of Isola with γ in 2-D space of F̃ − γ , and t should be n 3-D view of the variation of
the birth and merging point of Isola

Fig. 5 a Variation of the birth and merging point of Isola with λ in 2-D space of F̃ − γ , and b 3-D view of the variation of the birth
and merging point of Isola

increase in the F̃ corresponding to the birth of Isola.
These observations further imply that an initial increase
in λ can lead to a wider ‘Unsafe’ region; however, rel-
atively high values of λ can increase the ‘Safe’ region
with a decrement in the ‘Unsafe region.’

Furthermore, due to the existence of three peaks in
the primary resonance curve and the complex behavior
of the system, there can be more than one LP branch
in the system. For instance, Fig. 6a shows the existence
of three LP branches for γ = 0.0013 in 2-D space.
The third LP branch in Fig. 6a corresponds to the birth

and merging points as observed in Fig. 4a for γ =
0.0013. We further emphasize that the only second LP
branch exhibits the birth and merging of an Isola in the
remaining two branches. For the sake of completeness,
we track Isola’s birth andmerging points corresponding
to the second LP branch with γ as shown in Fig. 6b.
From Fig. 6b, we can observe that at low values of
γ , the birth and merging points are well separated in
the space, hence, providing a clear definition of the
‘Safe’ and ‘Unsafe’ region. However, as the value of
γ increases, these two points become close, and the
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Fig. 6 a Existence of three LP branches corresponding to the
primary system response for γ=0.0013, b variation of the birth
and merging point of Isola for second LP with γ , and c a zoomed

view of the variation of the birth and merging of the ISs in F̃ −γ

plane

width of the ‘Unsafe’ region decreases. Eventually, at
γ ≈ 0.2, the birth andmerging points coincide, leading
to the disappearance of the ‘Unsafe’ region.

Furthermore, these results indicate that varyingγ for
given system parameters does not provide an optimum
condition at which the birth of Isola can be delayed
and enable an acceptable range of forcing for which
the system can be considered to operate safely. To get
the improved results, a complete set of parametersmust
first be optimized as in Joubaneh et al., [42] using, for
example, an H2 optimization scheme while addition-
ally considering the nonlinear parameters in the pri-

mary system and in the NERS-TMDI. However, H2
Optimization is out of the scope of this paper and is left
for future work. Overall, although the NERS-TMDI
provides improved vibration control and energy har-
vesting compared to the NLTVA [51], it is more diffi-
cult to tune the system and eliminate Isola.

5 Linear stability analysis of the NERS-TMDI

The multi-parametric recursive analysis helped us to
establish Isola’s existence in our system, further devel-
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Fig. 7 Projection of limit points tracking: Linear stability of the
primary system in the ω̃ − F̃ parameter space

oping essential safety concerns for the current NERS-
TMDI operation. However, this analysis does not pro-
vide any information about the local or global stability
of the periodic solutions in the frequency response of
our system. Therefore, we first investigate the linear
stability of our approach in this section. To do so, we
take advantage of Floquet theory [52] to analyze the
stability of the periodic analytical solutions obtained
during the HBM.

It should be noted here that the continuation process
presented in Sect. 4 depends on Floquet multipliers to
determine the occurrence of Limit Point Cycles and is
identical to the method employed by Xie et al. [53].
At the LP branch boundary, the Floquet multipliers are
equal to, smaller, or greater than 1. Therefore, by pro-
jecting the LP branch initially obtained in Fig. 3 into
the ω̃ − F̃ parameter space, we obtain two distinct sta-
bility regions as shown in Fig. 7. The area within the
LP branch is unstable, denoted by ‘U,’ while the area
outside the LP branch is stable, denoted by ‘S.’ In the
next step, we perform the parametric analysis of the
linear stability of the steady-state periodic solutions.

We first start with the variation of linear stability
curves for varying values of nondimensional parame-
ter γ on the stability of our system, which is shown
in Fig. 8. From Fig. 8, we can easily observe that any
change, increase or decrease, in the value of γ from its
optimal value (reported in Table 1) does not change the
stability region significantly. We emphasize that these
observations contrast the impact of γ on an NLTVA,
as observed by Grenat et al., [48], where increasing the

Fig. 8 Projection of limit points tracking: Comparison of the
stability regions for varying γ

Fig. 9 Projection of limit points tracking: Comparison of the
stability regions for varying λ

nonlinear parameter significantly reduces the instabil-
ity region while decreasing as the opposite impact.

Finally, the effect of λ on the system’s stability is
also analyzed and is shown in Fig. 9. From Fig. 9, we
can easily observe that for values of λ lower than the
optimal value, the onset of the unstable region happens
at the lower value of excitation amplitude for a given
value of the frequency. However, as λ increases beyond
λopt , the unstable region shrinks in size and, in turn,
increases the stable region. These results indicate that
higher values of λ can help reduce the instability in the
primary system response.
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Fig. 10 Nonlinear stability of the primary system attached to
the NERS-TMDI for parameter values listed in Table 1

6 Lyapunov exponents, time response, and
Poincaré Map

The linear stability analysis presented in Sect. 5 only
provides information about the local stability of the
steady-state periodic solutions. However, the time evo-
lution of a perturbation to these steady-state periodic
solutions (quasi-periodic, chaotic, or periodic motion
with amplitude other than steady-state) truly depends
on the nonlinearity present in the system.

To demonstrate the significance of this analysis, we
present the nonlinear stability curves for the parame-
ter values listed in Table 1 in Fig. 10. From Fig. 10,
we can easily observe that the nonlinear stable region
is significantly different from the linear stable region
presented in Sect. 5. This is because nonlinear sta-
bility analysis can differentiate the chaotic and quasi-
periodic solutions from periodic solutions, unlike lin-
ear stability analysis, which only dictates whether a
given steady-state periodic solution is stable or not.
We further observe from Fig. 10 that two major non-
linear unstable regions exist in the parametric space of
F̃ − ω for given system parameters. One lies between
ω̃=1−1.5 at lower forcing values 0.1< F̃ <0.3, while
the other unstable region exists between ω̃=1.5−1.75
for higher forcing amplitude F̃ >0.5. We emphasize
that as the stable periodic solutions cross the nonlin-
ear stability boundary, they become unstable and settle
down to quasi-periodic motions, whereas within the
unstable region, only chaotic solutions exist. To verify
our findings, we next present our system’s time evo-

lution and corresponding Poincaré maps for different
operating conditions corresponding to stable and unsta-
ble regions shown in Fig. 11. Figure11 depicts the time
responses and corresponding Poincaré maps for differ-
ent values of F̃ with ω̃ = 1.25. We selected ω̃ = 1.25
for the analysis; considering this value, we observe
a significant variation in the system’s stability. From
Fig. 11, we can easily observe that as F̃ increases at
ω̃ = 1.25, the stable periodic solution loses its stability
through the quasi-periodic solution and settles down to
the chaotic motion as observed in Fig. 10.
This observation further verifies our nonlinear stabil-
ity analysis. Further, we observe that the response of
the primary system doubles as the system transitions
from the stable periodic solution to the quasi-periodic
or chaotic solution. Since high amplitude solutions are
not desirable in the system, our nonlinear stability anal-
ysis helps us to identify the safe region of operation.

Another approach to determining the nonlinear sta-
bility of a nonlinear system is the 0–1 test for chaos pre-
sentedbyGottwald et al., [49]. In this test,wedetermine
a variation of parameter K, which relates to the asymp-
totic growth rate of the system. For K = 0, the sys-
tem exhibits nonchaotic behavior, while a value closer
to K = 1 highlights a system with chaotic behavior.
To compare the above nonlinear dynamics through LE
with the 0–1 chaos test, we plot the variation of K
with varying values of forcing F̃ and ω̃=1.25 shown in
Fig. 12. We can observe that the variation of parame-
ter K is consistent with our analysis through the Lya-
punov exponent and Poincaré sections (Figs. 10 and
11). Therefore, the Lyapunov exponent is used in the
remainder of the study. However, in future work, the
0–1 test for chaoswill be used to explore forcing ampli-
tude beyond F̃=1 given that this formulation is more
computationally efficient than deriving the largest LE.

Similar to the linear stability analysis, we also per-
form a parametric analysis for the nonlinear stability
region. The effects of γ and λ on the nonlinear sta-
bility region are shown in Figs. 13 and 14, respec-
tively. From Fig. 13, we can observe that an increase
in γ from its optimum value causes an increase in the
instability region. In contrast, a decrease from its opti-
mum value decreases the instability region. This fur-
ther implies that the lower value of nonlinear stiffness
of NERS-TMDI can benefit the system from the aspect
of stability. In the case of λ, increasing the parameter
value from its optimumvalue results in decreased insta-
bility regions, as can be seen from Fig. 14. However,
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Fig. 11 Time response and Poincaré maps of the Duffing oscillator for ω̃=1.25 and varying forcing amplitudes
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Fig. 12 01 Test for chaos for the NERS-TMDI for ω̃ ( [49])

Fig. 13 Nonlinear stability of the primary system attached to
the NERS-TMDI for varying γ

as λ decreases from its optimum value, the instability
region corresponding to lower values of F̃ grows, but
the instability region corresponding to higher forcing
amplitude decreases and essentially disappears. There-
fore, to increase the nonlinear stable region, it is favor-
able to decrease γ and increase λ for the given set of
parameters in this analysis.

7 Global sensitivity analysis

It should be noted that the earlier linear and nonlinear
stability analyses were performed for the fixed set of
parameters. However, these parameters may vary dur-
ing real-world operations; hence, we perform a global
sensitivity analysis to assess the impact of parame-

Fig. 14 Nonlinear stability of the primary system attached to
the NERS-TMDI for varying λ

ter uncertainties on system dynamics. Our approach
employs a variance decompositionmethod,wherein the
system’s response is expressed as the sum of individ-
ual and combined contributions from each input vari-
able. For this, we use Sobol indices, as established by
Sobol [54], to quantify each parameter’s contribution
to the model’s total [55–58]. It is worth noting that
global sensitivity analyses can be conducted using var-
iousmetrics, such as bifurcation diagrams or frequency
responses. In this study, we focus exclusively on the
frequency response of the system. For this, we fix the
forcing, and analysis is performed relative to γ , λ, σ ,
κ , and ρ. We compute the area under the curve for each
sample to evaluate the corresponding Sobol indices.
Lower areas indicate better vibration control in the pri-
mary system, implying that parameters sensitive to this
metric are likely to cause significant changes in system
dynamics. Figure15 presents the uncertainty plot and
Sobol indices distribution for the combined system at
F̃ = 0.07. Our findings reveal that the uncertainty dis-
tribution for λ, κ , and ρ exceeds 20%, indicating higher
sensitivity. In contrast, the systemshows lower sensitiv-
ity to σ and γ . Moreover, even slight variations in these
sensitive parameters can lead to significant changes in
system response. Thus, reducing uncertainties in λ, κ ,
and ρ is crucial for ensuring the safe operation of the
NERS-TMDI system under forces near F̃=0.07.
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Fig. 15 Uncertainty plot and Sobol total (ST) indices for variation in the area under the FRF for varying system parameters

8 Conclusions and final remarks

In this work, we analyzed the linear and nonlin-
ear dynamics of the novel NERS-TMDI attached to
the classical Duffing oscillator. The linear analysis
included the detection of Isolas in the system’s fre-
quency response using the multi-parametric recursive
method. Through a detailed analysis of theLPbranch of
the system, extracted from the level 1 continuation, we
observed the existenceof Isolas in theDuffingoscillator
attached to NERS-TMDI. Furthermore, the parametric
study showed that varying γ (nonlinear stiffness of the
absorber) or λ (transducer force constant) at the Level
2 continuation is insufficient to improve the global sta-
bility of the system by removing Isola for the given
system parameters. The system will, therefore, operate
in an ‘unsafe’ manner as the possibility of higher Isola
solutions cannot be avoided for the selected parameters.

The linear stability of the system through Floquet
multipliers was also conducted in the parametric space
of excitation amplitude and frequency for different val-
ues of γ and λ. These results showed that γ , i.e.,
the nonlinear stiffness of the absorber, had a minimal
impact on the linear instability region of the system.
However, high values of λ could increase the stable
region and, hence, are desirable.

The nonlinear parametric stability analysis of the
systemwas also conducted through theLyapunov expo-

nent for different values of γ and λ. The results showed
that lower values of γ and higher values of λ could help
reduce the system’s nonlinear instability region. Time
response plots and Poincaré maps were used as veri-
fication tools to show the existence of quasi-periodic
and moderate chaotic behavior.

Overall, the results of this study showed that
although theNERS-TMDIprovides simultaneousvibra-
tion control and energy harvesting, it is subject to com-
plex global stability behavior that renders it unsafe for
a wider range of forcing amplitude and frequency. The
stability analysis also showed that the system could
exhibit quasi-periodic and moderate chaotic behavior.
The parametric study showed that lower values of non-
linear stiffness of the absorber and higher values of
transducer force constant could help improve the sys-
tem’s stability. Furthermore, the global sensitivity anal-
ysis presented showed that the system is more sensitive
toward the transducer force constant, the capacitance,
and the voltage constant for the given value of forc-
ing. Future work will focus on expanding the global
sensitivity analysis to various forcing values and addi-
tional system responses like bifurcation diagrams. This
aims to identify critical behaviors influenced by param-
eter uncertainties. We also intend to conduct a global
optimization of NERS-TMDI parameters to improve
system safety and performance, particularly near criti-
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cal merging points. Experimental validation to confirm
these theoretical findings is also planned.
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