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Abstract Impacting mechanical systems with suit-
able parameter settings exhibit a large amplitude
chaotic oscillation close to the grazing with the impact-
ing surface. The cause behind this uncertainty is the
square root singularity and the occurrence of danger-
ous border collision bifurcation. In the case of one-
degree-of-freedom mechanical systems, it has already
been shown that this phenomenon occurs under cer-
tain conditions. This paper proposes the same uncer-
tainty of a two-degree freedom mechanical impacting
system under specific requirements. This paper shows
that the phenomena earlier reported in the case of one-
degree-of-freedom mechanical systems (like narrow
band chaos, finger-shaped attractor, etc.) also occur
in the two-degrees-of-freedom mechanical impacting
system. We have numerically predicted that the nar-
rowband chaos ensues under specific parameter set-
tings. We have also shown that narrowband chaos can
be avoided under some parameter settings. At last, we
demonstrate the numerical predictions experimentally
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e-mail: soumyajitseth01@gmail.com

G. Kudra
e-mail: grzegorz.kudra@p.lodz.pl

G. Wasilewski
e-mail: gwasilew@p.lodz.pl

J. Awrejcewicz
e-mail: jan.awrejcewicz@p.lodz.pl

by constructing an equivalent electronic circuit of the
mechanical rig.
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1 Introduction

Various dynamical systems with impact phenomena
have been observed and studied extensively in diverse
scientific and engineering fields. These systems exhibit
a wide range of dynamic behaviors, particularly when
grazing occurswithin specific parameter regions. Some
of the notable phenomena observed in these systems
include transitions between different periodic attrac-
tors, the occurrence of chaotic orbits at grazing, and
the presence of finger-shaped chaotic attractors in the
Poincaré section at the bifurcation point.

Over the past three decades, researchers have exten-
sively investigated practical and engineering systems
that involve impacts, especially focusing on one-
degree-of-freedommechanical impacting systemsunder
various configurations. These studies have contributed
valuable insights into the dynamics of these systems
and have been documented in numerous researchworks
[2,5,11,12,19,20,23,25,27].

These systems’ rich dynamics and complex behav-
iors have practical implications and find applications
in diverse engineering and scientific disciplines. As

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-023-09119-w&domain=pdf
http://orcid.org/0000-0003-3528-2020
http://orcid.org/0000-0003-0209-4664
http://orcid.org/0000-0002-5549-2976
http://orcid.org/0000-0003-0387-921X


1714 S. Seth et al.

research in this area continues, further advancements in
understanding and controlling the behaviors of impact-
ing systems are anticipated, offering potential applica-
tions in a wide array of fields.

The bifurcation structure of impact oscillators was
investigated by Feigin [9]. Whiston [26] provided
a numerical approach to study the dynamics, such
as the steady-state analysis, phase-space diagrams,
domains of attraction, etc., of a one-degree-of-freedom
vibro-mechanical impacting system with and without
excitations. Nordmark [18] showed the characteristics
‘Square root singularity’ at the grazing conditionwhere
one of the Jacobian elements of the Poincaré map goes
to infinity, which leads to infinite local stretching in the
state space. Peterka et al. [21], Ivanov [13], andLenci et
al. [15] showed the transition to chaos, its stabilization,
and reduction of chaos at the grazing condition of a
mechanical impacting system. Blazejczyk-Okolewska
et al. have shown the co-existing attractors in impacting
systems having dry friction under the influence of sys-
tem noise [4]. Dankowicz et al. [6] have discussed the
stability analysis and the bifurcations of a periodic orbit
associated with the stick–slip oscillations. Bernardo et
al. [7,8] presented the unified framework of local anal-
ysis of grazing and sliding bifurcations. They showed
that this leads to a normal map form under some gen-
eral conditions, which contains a lower order square-
root singularity or a 3

2–singularity. Awrejcewicz et al.
[1] studied numerically the dynamics of a triple pen-
dulum having an impact and showed that under cer-
tain conditions, periodic, quasi-periodic, and chaotic
motions were detected. Ma et al. [16] have studied the
occurrence of large amplitude chaos of a soft impacting
system and showed that in the case of a discrete map,
during the bifurcation, the determinant of the Jacobian
matrix remains invariant, and the trace shows a singu-
larity at the grazing point. They have also shown how
the character of a soft impacting system’s zero time
discontinuity map changes over a range of parameters
as the system is driven from a non-impacting orbit to
an impacting orbit [17]. Ing et al. [11,12] showed the
bifurcation scenarios close to grazing experimentally
for a nearly symmetrical piecewise linear mechanical
impacting oscillator. They also have experimentally
studied the bifurcations of an impact oscillator with
a one-sided elastic constraint. Banerjee et al. [3] have
discovered a narrow band of chaos close to the grazing
condition for a simple soft impact oscillator experimen-
tally for a range of system parameters. Also, numerical

stability analysis shows that this abrupt onset of chaos
is caused by a dangerous bifurcation where two unsta-
ble period-3 orbits take part at grazings. Kundu et al.
[14] have numerically investigated the character of the
normal formmap in the neighborhood of a grazing orbit
for four possible configurations of soft impacting sys-
tems. They have shown the conditions when there is an
onset of chaos and under which this onset of chaos can
be avoided for the one degree of freedom mechanical
impacting systems. Suda andBanerjee [24] have shown
that for one degree of freedom mechanical impacting
system, one can avoid the narrow band chaos not just
for singular parameter values but for a range of param-
eter values. They have demonstrated its mechanism by
computing the interplay between stable and unstable
periodic orbits in the bifurcation diagram. George et
al. [10] showed some typical behaviors, such as finite-
time transient behavior of the orbit before settling to
a long-time behavior of an impacting mechanical sys-
tem. Witkowski et al. [27] have studied the dynam-
ics of a mechanical one-degree-of-freedom oscillator
with harmonic forcing and impacts both numerically
and experimentally. They have shown the bifurcation
diagram obtained experimentally where a transition of
chaos occurs fromaperiodic orbit under the variation of
a parameter. Seth and Banerjee [22] have proposed an
electronic switching circuit that can act as an analog of a
one-degree-of-freedom mechanical impacting system.
They have shown that the phenomena reported earlier
through numerical simulation (like narrow-band chaos,
finger-shaped attractor, etc.) also occur in the circuit.
They have experimentally obtained the evolution of the
chaotic attractor at grazing as the stiffness ratio varies,
which is very hard to perform in mechanical rigs. They
also have confirmed experimentally that the theoretical
prediction of the occurrence of narrow-band chaos can
be avoided for some discrete values of parameters.

While most of the earlier works have focused
on theoretical investigations and experimental studies
of one-degree-of-freedom mechanical impacting sys-
tems, there is a need to explore whether phenomena
like narrow-band chaos and finger-shaped attractors
can also occur in two-degree-of-freedom mechanical
impacting systems. Further research in this direction is
essential to deepen our understanding of the dynam-
ics of such systems and their potential applications in
various fields of science and engineering.

The primary objective of this paper is to pro-
pose a forced two-degree-of-freedom mechanical sys-
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Fig. 1 The schematic representation of a two-degree-of-
freedom mechanical impacting system

tem incorporating compliant impact. Through various
parameter configurations, we have demonstrated the
occurrence of chaos in the bifurcation diagram when
the amplitude of the externally applied periodic signal
is varied. Moreover, we have established that a specific
relationship between the externally applied signal’s fre-
quency and the system’s natural frequencies can pre-
vent the emergence of chaotic attractors, similar to
observations made in one-degree-of-freedom mechan-
ical impacting systems.

To further validate our findings, we have constructed
an electronic circuit that closely mimics the behav-
ior of the mechanical oscillator. Through numerical
simulations and experimental investigations, we have
confirmed that the dynamical phenomena observed in
the one-degree-of-freedommechanical system are also
present in the two-degree-of-freedom system.

This paper showcases the intriguing dynamics and
complexity that can arise in mechanical systems sub-
jected to compliant impact, providing valuable insights
into the behavior of such systems and their analogous
electronic circuits.

2 Mechanical system under investigation

2.1 System description

Figure 1 illustrates a schematic diagram of the two-
degree-of-freedommechanical systemunder investiga-
tion.The system is a forced, dampedoscillator compris-
ing two masses,m1 andm2, with a massless compliant
obstacle that m1 can impact. The compliant obstacle is
connected to m2 through a spring with spring constant
ko and a damper with damping coefficient co. m1 is
attached to a fixed support by a spring with spring con-
stant k1 and a damper with damping coefficient c1. m2

is connected to the fixed support with a damper having

a damping coefficient c2. The two masses, m1 and m2,
are connected with a spring having spring constant k12.

The system is subjected to an external periodic forc-
ing function F(t) applied tom2; as a result of this exter-
nal force, both m1 and m2 start to oscillate from their
respective equilibrium positions. At equilibrium, when
no external force is acting on m2, there is a linear dis-
tance δ between the compliant obstacle and m1.

Depending on the conditions, two situations can
arise when a force is applied to m2. First, there may be
no impact, and in this scenario, both masses, m1 and
m2, will oscillate under the influence of the force F(t).
The second possibility is the occurrence of an impact
betweenm1 and the compliant wall. In between, a con-
dition happens whenm1 touches the impacting surface
attached tom2, and the system reaches the grazing con-
dition.

In our analysis, the friction terms related to the
movements of the two masses with the hard surface
have been neglected to simplify the system.

2.2 Mathematical equations of the model

The equations of motion for the considered system,
taking into account the negligible effect of dry fric-
tion between the masses and the hard surface, can be
expressed as follows:

For (x2 − x1) < δ,

m1 ẍ1 = −c1 ẋ1 − k1x1 − k12(x1 − x2)

m2 ẍ2 = −c2 ẋ2 + k12(x1 − x2) + F(t)
(1)

and, for (x2 − x1) ≥ δ

m1 ẍ1 = − c1 ẋ1 − k1x1 − k12(x1 − x2) − c0(ẋ1 − ẋ2)

− k0(x1 − x2 − δ)

m2 ẍ2 = − c2 ẋ2 + k12(x1 − x2) + c0(ẋ1 − ẋ2)

+ k0(x1 − x2 − δ) + F(t)

(2)

where F(t) = Fo sin(Ωt) represents the external exci-
tation applied to mass m2. In these equations, m1 and
m2 denote the masses, x1 and x2 represent their dis-
placements from equilibrium positions, ẋ1 and ẋ2 are
their corresponding velocities, and ẍ1 and ẍ2 are their
respective accelerations. The parameters c1, c2, k1,
k12, c0, k0, Fo, and Ω are the damping coefficients,
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spring constants, amplitude, and angular frequency of
the external excitation, respectively. The parameter δ

represents the linear distance between the compliant
obstacle and m1 at equilibrium, and c0 and k0 are the
damping coefficient and spring constant of the compli-
ant obstacle, respectively.

2.3 Non-dimensional form of the system

To simplify the analysis and study the dynamics numer-
ically, we transform the dimensional Eqs. (1) and (2)
into non-dimensional ones. We introduce the non-
dimensional time τ = ωnt , where ωn =

√
K1
m1

is the
natural angular frequency of the mass m1 attached to
the fixed support. Next, we define the non-dimensional
forcing frequency as ω = Ω

ωn
.

The non-dimensional state variables are defined as
yi = xi

δ
for i = 1, 2. We then express the derivatives in

terms of the non-dimensional time τ as follows: ẋi =
dxi
dt = dxi

dτ
· dτ
dt = ωnδy′

i , and ẍi = d2xi
dt2

= d2xi
dτ 2

· dτ 2

dt2
=

ω2
nδy

′′
i .

After going through some mathematical calcula-
tions, we obtain the non-dimensional equations as fol-
lows:

For (y2 − y1) < 1,

y′′
1 = − 2ξ1y

′
1 − y1 − β(y1 − y2)

y′′
2 = − 2ξ2y

′
2 + β

μ
(y1 − y2) + f0 sin(ωτ)

(3)

and, for (y2 − y1) ≥ 1,

y′′
1 = − 2ξ1y

′
1 − y1 − β(y1 − y2) − 2ξ0(y

′
1 − y′

2)

− β0(y1 − y2 − 1)

y′′
2 = − 2ξ2y

′
2 + β

μ
(y1 − y2) + 2ξ0

μ
(y′

1 − y′
2)

+ β0

μ
(y1 − y2 − 1) + f0 sin(ωτ)

(4)

where, ξ1 = c1
2m1ωn

, ξ2 = c2
2m2ωn

, ξ0 = c0
2m1ωn

, β = k12
k1
,

β0 = k0
k1
,μ = m2

m1
, f0 = F0

m2ωn
2δ
, andωn =

√
k1
m1

. These
non-dimensional equations describe the dynamics of
the two-degree-of-freedom mechanical system under
study.

2.4 Expressions of the natural frequencies

Given that our analyzed system exhibits a two-
dimensional configuration, it manifests two discernible
normal modes of vibration, each corresponding to its
respective natural frequency. Utilizing Eq. (3), we are
able to calculate these natural frequencies denoted as
ω+ and ω−. During the process of examining the sys-
tem’s free vibration behavior, we assume specific con-
ditions where the damping coefficients (ξ1 and ξ2) and
the external forcing function ( f0) are all equal to zero.
As a result, the equations of motion undergo a simpli-
fication in this scenario.

ω± = ± 1√
2

[{
β
(
1 + 1

μ

)
+ 1

}

±
√{

β
(
1 + 1

μ

)
+ 1

}2 − 4β

μ

] 1
2

(5)

To obtain the natural frequencies, we need to specify
the values of the parameters β and μ.

In the context of a one-degree-of-freedom mechani-
cal impacting system, it has been noted that large ampli-
tude chaotic oscillations emerge at the bifurcation point
when the excitation frequency is a non-integer multiple
of the system’s natural frequency. However, this onset
of chaos can bemitigated by establishing a definite rela-
tionship between the external excitation frequency and
the system’s natural frequency, as reported in previous
studies [3,14].

In our research, we shall investigate the occurrence
of large amplitude chaotic oscillations at the bifurcation
point under the condition that the externally applied
signal’s frequency is not related to an integer multi-
ple of some relations with the two natural frequencies.
Similarly to previous observations, we aim to explore
whether this chaotic behavior can be suppressed when
the frequency relation approaches an integer multiple.
Here, we note down that the average value of the sys-
tem’s natural frequencies is given by:

ωavg = (ω+ + ω−)

2
(6)

3 Numerical results from non-dimensional
equations

To elucidate the distinctive dynamics of the analyzed
mechanical system (1), we have opted to express the
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mathematical equations in non-dimensional forms, as
represented by Eqs. (3) and (4). For our investiga-
tion, we have selected f0 as a variable non-dimensional
parameter while maintaining the remaining parameters
constant. By incrementally increasing f0 from lower to
higher values,wehaveobserveddiverse systemdynam-
ics, leading to various orbital patterns. Our study has
been focused on two specific conditions: (i) ω

ωavg
= 2

m ,
where m is a non-integer, and (ii) m being an integer.
The conditions are chosen in such a way as to make an
analogy with the one-degree-of-freedom system and
higher-degree-of-freedom systems.

3.1 m = 2.5106, i.e., the non-integer condition

The non-dimensional parameters are chosen as ξ1 =
0.014, ξ2 = 0.018, ξ0 = 6.6296 × 10−4, β = 1

10.4 ,
β0 = 25.02, andμ = 1

9.8 . f0 is considered to be varied.
Using those parameter values, ω+ and ω− are 1.1528
and0.8420, respectively,whichmakesωavg 0.9974. For
the simplicity of the calculation, we have approximated
the ωavg value to be unity. So, ω = 2

m .
Figure 2 illustrates distinct time-series waveforms

corresponding todifferent values of thenon-dimensional
parameter f0. In Fig. 2a, a period-1 waveform is
depicted, accompanied by its corresponding frequency
spectra. The presence of a single peak at the exter-
nally applied non-dimensional frequency, 0.1268, ver-
ifies the periodic nature of the orbit. Notably, the state-
variable (y2−y1)does not reach a value of 1 in this case,
indicating the system’s behavior before the occurrence
of border collision. During this phase, both masses
oscillate freely without experiencing an impact.

As the value of f0 increases, grazing takes place
between mass m1 and the massless wall attached to
mass m2. Figure 2b showcases the existence of a
chaotic orbit where (y2 − y1) touches the value of
1, indicating proximity to the bifurcation point. At
this juncture, the waveform becomes irregular, and the
power spectrum spans a wide range across the fre-
quency axis, though a peak remains at 0.1268 due to
the periodic forcing applied.

Further increasing f0 leads to the emergence of a
period-1 orbit, characterized by conditions far from
after the bifurcation. Figure 2c demonstrates the time-
series waveform and corresponding frequency spectra
of this period-1 orbit after the impact event.

Fig. 2 Time-series waveforms and the corresponding frequency
spectra for different values of f0. a Before impact for f0 = 0.1,
Period-1 orbit, b Close to the grazing condition for f0 = 0.17,
Chaotic orbit, c After bifurcation for f0 = 0.22, period-1 orbit.
In each subfigure, the upper trace is the time-series waveforms,
The x-axis is the non-dimensional time, and the y-axis is the non-
dimensional displacement (y2−y1) (in blue color) comparedwith
a constant value, 1 (in red color). The lower trace is the frequency
spectra, where the x-axis is the nondimensional linear frequency
and the y-axis is the Power spectrum. The initial condition is
chosen at (− 0.5,− 0.1,− 0.01, 1). (Color online)

Fig. 3 displays different phase-space trajectories cor-
responding to various values of the non-dimensional
parameter f0, corresponding to the time-series wave-
forms shown in Fig. 2. The non-dimensional parameter
values utilized are the same as those previously speci-
fied.

In Fig. 3a, a period-1 orbit is depicted for f0 = 0.1.
The orbit exhibits a single loop in the phase space,
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1718 S. Seth et al.

Fig. 3 Phase-Space trajectories for different values of f0. a
Before impact for f0 = 0.1, Period-1 orbit, b Close to the
grazing condition for f0 = 0.17, Chaotic orbit, c After bifur-
cation for f0 = 0.22, Period-1 orbit. The x-axis is the non-
dimensional velocity y′

2 and the y-axis is the non-dimensional
displacement (y2 − y1). The initial condition is chosen at
(− 0.5,− 0.1,− 0.01, 1). (Color online)

resulting in its periodic nature. This represents the sit-
uation before any impact occurs. As f0 is increased
further in the forward direction, grazing conditions
emerge. For f0 = 0.17, the orbit becomes chaotic, as
evident from the erratic behavior exhibited in the phase
space. This chaotic nature of the orbit persists over a
range of f0 values.

Figure 3c shows the phase-space diagram after the
bifurcation. In this case, the orbit displays one loop in
the phase-space, indicating a period-1 behavior.

In Fig. 4, a discrete-time phase-space attractor is pre-
sented, representing a state close to the grazing condi-

Fig. 4 Poincaré section of the chaotic attractor close to grazing
( f0 = 0.17) form = 2.5106 showing the large amplitude chaotic
oscillation at the bifurcation. The x-axis is the non-dimensional
velocity y′

2 and the y-axis are the non-dimensional displacement
(y2 − y1). (Color Online)

tion. The phase space is discretized based on the syn-
chronization of the period of the input forcing sinewave
function, which means the state variable is observed at
regular intervals of T time, where T = ω

2π .
The chaotic attractor observed at the bifurcation

point exhibits a distinctive finger-shaped structure,
reminiscent of what is commonly observed in one-
degree-of-freedom mechanical impacting systems [3].
This structure confirms that the proposed two-degrees-
of-freedom mechanical impacting system, with the
specified parameter values, demonstrates similar phe-
nomena to those observed in soft impacting one-
degree-of-freedom systems near the grazing value.

The presence of fuzzy dots in the finger-shaped
attractor is a result of the impacting wall being attached
to mass m2, causing it to move back and forth during
the grazing process. These characteristics collectively
contribute to the intricate dynamics of the system in the
vicinity of the grazing condition.

In Fig. 5a, the numerically obtained bifurcation dia-
gram of the system (1) is presented. In this diagram,
the bifurcation parameter is represented by f0, while
the remaining parameters are held constant (as indi-
cated at the beginning of this section). As f0 increases,
a border collision bifurcation occurs, wherein a period-
1 orbit undergoes a transformation into other periodic
orbits with different periodicities through chaotic oscil-
lations around the bifurcation point. This specific phe-
nomenon is observed when the parameter m takes on a
non-integer value (in our case, m = 2.5106).

Figure 5b illustrates the corresponding maximal
Lyapunov Exponent within the parameter space of
f0. The maximal Lyapunov Exponent exhibits posi-
tive values when chaos occurs in the bifurcation dia-
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Fig. 5 a Bifurcation diagram (Blue color) and b the maximal
Lyapunov Exponent (red color) plot in non-dimensional param-
eter space of the system (1) for m = 2.5106 showing the large
amplitude chaotic oscillation in the bifurcation diagram around
the bifurcation point when the bifurcation parameter f0 is varied
smoothly from 0.08 to 0.28. (Color online)

gram,while it shows negative values for periodic orbits.
Similar behavior has been previously reported in the
equivalent one-degree-of-freedom mechanical impact-
ing system [24]. This characterization of the maximal
Lyapunov Exponent serves as an important indicator of
the presence of chaos and periodicity within the system
dynamics.

3.2 m = 2.1, i.e., close to integer value

In Fig. 6a, the numerically obtained bifurcation dia-
gram is presented for the case when m = 2.1, which
is close to an integer value of m. The other parame-
ters have been kept fixed as in the previous case. When
varying the bifurcation parameter f0 in the forward
direction, i.e., from low to high values, a period-1 orbit
emerges after bifurcation from another period-1 orbit.
Notably, no chaotic orbits are observed close to the
bifurcation point, as was the case when m was a non-
integer value.

In Fig. 6a, the bifurcation point represents a sit-
uation where a period-1 attractor transforms into

Fig. 6 a Bifurcation diagram (in blue color) and b the corre-
sponding maximal Lyapunov Expoent (in red color) in the non-
dimensional parameter space of the system (1) at close to an
integer value of m. The parameter f0 of both the figures varied
smoothly from 0.4 to 1.4. (Color Online)

another period-1 attractor with distinct amplitude and
frequency. This bifurcation diagram indicates that
the occurrence of large amplitude chaos in a two-
degree-of-freedom mechanical impacting system can
be avoided when m is an integer or close to an integer
value. Similar observations have been reported in the
context of a schematic representation of a one-degree-
of-freedom mechanical impacting system [24].

Figure 6b shows the corresponding maximal Lya-
punov Exponent, which consistently displays negative
values throughout the parameter range. This confirms
the absence of a chaotic attractor in the bifurcation dia-
gram, further supporting the notion that large ampli-
tude chaos can be mitigated in the system when m is
an integer or close to an integer value.

Figure 7 depicts various time-series waveforms of
the displacement (y2 − y1) compared to a constant
value of 1, corresponding to different values of f0 when
m = 2.1. In Fig. 7a, a period-1 waveform is shown
before the bifurcation. The waveform of (y2− y1) does
not reach the constant value of 1 during this period-
1 attractor. The corresponding phase-space diagram,
Fig. 8a, shows the state of the system in the period-1

123



1720 S. Seth et al.

Fig. 7 Time-series waveforms and the corresponding frequency
spectra for different values of f0 atm = 2.1. a Before impact for
f0 = 0.6, Period-1 orbit, b After the bifurcation for f0 = 1.2,
also a periodic orbit. In the upper trace of each figure, the x-axis
is the non-dimensional velocity y′

2, and the y-axis is the non-
dimensional displacement (y2 − y1) with blue color compared
with a constant value 1 with the red color. In the case of the lower
trace, the x-axis is the nondimensional frequency, and the y-axis
is the normalized power spectra. (Color online)

orbit before the bifurcation, with no points touching the
reference level.

The bifurcation occurs when (y2 − y1) touches the
value of 1. Following the bifurcation, Fig. 7b displays
the time-series waveform of a period-2 attractor. Fig-
ure8b represents the corresponding phase-space dia-
gram of the period-2 orbit after the bifurcation. Here,
one loop in the phase space touches the reference level
(the impacting surface) while the other loop does not.

An important note to consider is that although the
time series and phase-space diagrams reveal two loops
in the periodic orbit, the bifurcation diagram shows
only one point on the Poincaré plane corresponding to
that orbit. This discrepancy arises because the consid-
ered rig is a non-autonomous dynamical system, and
we are observing points on the phase space at inter-
vals of τ , which is the non-dimensional time period of
the externally applied periodic forcing. Consequently,
despite having two loops in the orbit due to the different
frequencies, we obtain one value of the state variable at

Fig. 8 Phase-Space trajectories for different values of f0 atm =
2.1. a Before impact for f0 = 0.6, Period-1 orbit, b After the
bifurcation for f0 = 1.2, also a periodic orbit having different
amplitude. The x-axis is the non-dimensional velocity y′

2 and the
y-axis is the non-dimensional displacement (y2 − y1). (Color
online)

Fig. 9 Bifurcation diagram in non-dimensional parameter space
for m = 2.21, i.e., close to the integer condition. (Color online)

each sample with a τ -time period, resulting in a single
point in the Poincaré section.

To investigate the behavior of the system when
m = 2.21, close to an integer value, we examined
the bifurcation diagram. For a one-degree-of-freedom
mechanical impacting system, it has been reported that
there is no chaos in the bifurcation diagram for a soft
impacting system under similar conditions [24].

The numerically obtained bifurcation diagram of the
system for m = 2.21 is presented in Fig. 9. Strik-
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ingly, this diagram bears resemblance to the figure
depicted in Fig. 6. As the bifurcation parameter f0
undergoes a smooth increment, a border collision bifur-
cation occurs, whereby a period-1 orbit transitions into
another type of period-1 orbit. However, the notewor-
thy observation is that at the point of this bifurcation,
where the period-1 orbit with a frequency emerges
from a period-1 orbit having a frequency equal to the
frequency of the external forcing function frequency,
there is an absence of large amplitude chaotic oscilla-
tions. This finding unequivocally confirms that when
the value ofm approaches an integer, the occurrence of
large amplitude oscillations can be effectively circum-
vented.

The analysis of the bifurcation diagram for m =
2.21 in our two-degree-of-freedommechanical impact-
ing system confirms the absence of narrow band chaos
close to the bifurcation point, just as observed in the
equivalent one-degree-of-freedom system. This sug-
gests that the disappearance of narrow-band chaos near
the bifurcation point is consistentwhen the value ofm is
close to an integer, regardless of the system’s degree of
freedom. This observation further supports the notion
that certain parameter configurations, specificallywhen
m is close to an integer, can lead to a more predictable
and stable behavior in impacting systems.

4 Equivalent electronic circuit of the considered
mechanical system

4.1 Schematic representation

The electronic analog circuit representing the consid-
ered mechanical system (1) introduced in this paper
is depicted in Fig. 10a. We assume that the equivalent
mechanical impacting system possesses low damping
and high stiffness. In this scenario,we set the separation
between the impacting wall and the mass m1 to zero,
simplifying the circuit without significantly altering its
dynamics.

The electronic circuit system consists of two LCR
circuits with an input voltage Vin, which is a sinusoidal
wave with an amplitude Vamp and a linear frequency
f . The system incorporates an analog switch S, con-
trolled by an op-amp-based comparator.When the volt-
age across capacitor C2, denoted as VC2, falls below a
reference voltage Vref , the switch is in the ‘ON’ state,
resulting in the circuit configuration shown in Fig. 10b.

Fig. 10 a The switching circuit under consideration. b Switch
ON instant: The subsystem forVC2 < Vref , c SwitchOFF Instant:
The subsystem for VC2 ≥ Vref

Conversely, when VC2 ≥ Vref , the switch turns ‘OFF,’
connecting the series capacitor C0 and resistor R0 in
parallel across the switch with the circuit, as illustrated
in Fig. 10c.

Let i2 represent the current flowing through the
inductor L2 and resistance R2, where i2 = dq2

dt . In this
context, q2 signifies the charge stored in capacitor C2

due to the current i2. Similarly, let i1 denote the current
flowing through the inductor L1, with i1 = dq1

dt , and q1
representing the charge stored in capacitor C1 due to
the current flow i1. These variables, namely i1, i2, q1,
and q2, constitute the system’s state variables, resulting
in a four-dimensional system representation.

The system parameters encompass R1, R2, R0, L1,
L2,C1,C2,C0,Vref , the driving frequency f = Ωe

2π , and
Vamp, where Ωe denotes the angular frequency of the
input sinusoidal signal. Notably, Vamp is employed as
the bifurcation parameter while keeping the remaining
parameters at constant values.

4.2 Mathematical model

When considering all the circuit components to be
ideal, the system can be described by a set of second-
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order ordinary differential equations (ODEs) that con-
stitute a 4D piecewise smooth model, given as follows:

For (q2 − q1) < qref :

L1q̈1 = −R1q̇1 − q1
C1

− q1 − q2
C2

L2q̈2 = −R2q̇2 − q2 − q1
C2

+ Vamp sin(Ωet)
(7)

and, for (q2 − q1) ≥ qref :

L1q̈1 = − R1q̇1 − q1
C1

− q1 − q2
C2

− R0(q̇1 − q̇2)

− q1 − q2
C0

L2q̈2 = − R2q̇2 + q1 − q2
C2

+ R0(q̇1 − q̇2)

+ q1 − q2
C0

+ Vamp sin(Ωet)

(8)

Here, qref is defined as Vref · C2. It is important to
note that in this system, when the switch is in the ‘ON’
state (Fig. 10b), the system follows Eq. (7). Conversely,
when the switch is in the ‘OFF’ state (Fig. 10c), the sys-
tem follows Eq. (8). Consequently, the system can be
represented in a discrete-time realization through a 4D
piecewise smooth map with two compartments sepa-
rated by a border. The condition represents the border-
line between the two compartments where the value of
(q2−q1) reaches qref precisely at the Poincaré observa-
tion instants (maximum positive amplitude of the input
sine wave).

4.3 Non-dimensional equations of the circuit
equations

To obtain the non-dimensional equations for the ana-
log electronic circuit, we follow a similar procedure
as described in Sect. 2.3. By reformulating the dimen-
sional Eqs. (7) and (8),we arrive at the non-dimensional
equations as follows:

For (z2 − z1) < e:

z′′1 = − 2ξ1z
′
1 − z1 − β(z1 − z2)

z′′2 = − 2ξ2z
′
2 + β

μ
(z1 − z2) + v0 sin(ωτ)

(9)

and, for (z2 − z1) ≥ e:

z′′1 = − 2ξ1z
′
1 − z1 − β(z1 − z2) − 2ξ0(z

′
1 − z′2)

− β0(z1 − z2)

z′′2 = − 2ξ2z
′
2 + β

μ
(z1 − z2) + 2ξ0

μ
(z′1 − z′2)

+ β0

μ
(z1 − z2) + v0 sin(ωτ)

(10)

In these equations, the non-dimensional displace-
ment is represented as zi = qi

q0
, where q0 is the char-

acteristic displacement. The non-dimensional time is

denoted as τ = ωnt , with ωn =
√

1
L1C1

being the
natural frequency. The dimensionless parameters are
defined as follows: ξ1 = R1

2L1ωn
, ξ2 = R2

2L2ωn
, ξ0 =

R0
2L1ωn

, e = C2Vref
q0

, β = C1
C2

, β0 = C1
C0

, μ = L2
L1
, and

v0 = Vamp

L2ωn
2q0

.
Upon comparison of Eqs. (3), (4), and Eqs. (9), (10),

we observe that the pairs of equations are equivalent to
each other. The only difference between them lies in
the presence of two additional terms in Eq. (4), namely
β0e and−β0e

μ
.However, these terms are constant values

and do not significantly impact the system’s dynamics.
They merely cause a positive shift in the bifurcation
point for Eqs. (3) and (4). This subsection will cor-
respond to the conversion of a mechanical impacting
system to an equivalent analog electronic circuit.

In the next section, we will present the numerical
results of Eqs. (3) and (4).

4.4 Numerical results from the circuit equations

To set up the electronic circuit and appropriately con-
sider the parameter values in a real experimental envi-
ronment, we first plot the time-series waveforms of the
circuit numerically in Fig. 10a under suitable parame-
ter settings. The purpose of this section is to observe
whether the electronic circuit, under a specific param-
eter configuration, accurately emulates the behavior of
the mechanical impacting system (1) or not.

We present the time-series waveforms of the elec-
tronic circuit shown in Fig. 10a, obtained through
numerical simulations, ensuring that the chosen param-
eter values are well-suited for simulating the mechan-
ical impacting system. This investigation allows us to
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Fig. 11 Time-Series waveforms of the circuit from simulation.
a Period-1 orbit for Vamp = 0.3 V before reaching the refer-
ence voltage, qref , b Chaotic orbit for Vamp = 0.57 V when
(q2 − q1) touches qref , c Period-1 orbit at Vamp = 0.71 V
after the bifurcation. In each subfigure, the upper trace (blue
color) is the charge stored in capacitor C2 compared with
qref = Vref · C2 and the lower trace (green color) is the nor-
malized comparator output. The initial condition is chosen at
(− 0.5 V,− 0.1 V,− 0.01 V, 1 V, 0.001 V ). (Color online)

assess the circuit’s ability to mimic and replicate the
dynamics exhibited by the mechanical impacting sys-
tem (1).

Figure 11 presents several numerically obtained
time-series waveforms for the considered equivalent
electronic circuit under specific parameter values of
Vamp. The constant parameter values used are: L1 =
100.4 mH, L2 = 10.21 mH, R1 = 230 Ω , R2 =
29.7 Ω , C1 = 1.601 nF, C2 = 16.680 nF, R0 =

10.5 Ω , C0 = 64.0 pF, Vref = 3.0 V, and f = 10 kHz.
The amplitude of the applied sine voltage, Vamp, is var-
ied to explore different dynamical behaviors.

When the charge stored in the capacitor C2, (q2 −
q1), remains below the reference charge qref , the com-
parator output remains high, i.e., 1. This situation repre-
sents the condition before border collision, and the cir-
cuit exhibits a period-1waveform, as shown in Fig. 11a.
As Vamp is increased to a point where (q2−q1) touches
qref , at the bifurcation point, the dynamics of the state
variable becomes chaotic in nature, as demonstrated in
Fig. 11b. The comparator output becomes erratic dur-
ing this chaotic behavior.

For higher values of Vamp, (q2−q1) returns to a peri-
odic behavior, although it hits the switching condition
qref . The corresponding time-series waveform and the
comparator output are shown in Fig. 11c. Therefore, it
is evident that the system exhibits a chaotic attractor
within a small range of the parameter space, specif-
ically during the grazing condition. Before and after
the grazing conditions, the orbits remain periodic. The
same phenomena have been reported in the equivalent
electronic circuit of a one-degree-of-freedom mechan-
ical impacting system [22].

This observation highlights the circuit’s capability to
reproduce various dynamic behaviors, including peri-
odic and chaotic states, similar to what was observed in
the mechanical impacting system, validating its equiv-
alence for certain parameter settings.

We shall now observe the discrete-time representa-
tion of the chaotic attractor from the circuit close to the
bifurcation to check the attractor’s shape as obtained in
the case of the considered mechanical impacting sys-
tem as shown in Fig. 4.

Figure 12a shows the phase-space diagram of the
circuit for m non-integer condition. The amplitude of
the externally applied sine wave is Vamp = 0.57 V.
The remaining fixed parameter is shown earlier in this
section. The attractor is chaotic during the bifurcation.
Figure 12b depicts the Poincaré section of that chaotic
attractor at grazing. Here also, the discrete-time rep-
resentation of the chaotic attractor is finger-shaped.
This finger-shaped attractor was discussed earlier in
[3]. This confirms that the proposed circuit can be used
to validate the numerical prediction of the considered
mechanical system (1).

InFig. 13a, the numerically obtainedbifurcationdia-
gram of the considered electronic circuit is presented
whenm is a non-integer value. In this diagram, Vamp is
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Fig. 12 a Phase space diagram and b Poincaré section of the
chaotic attractor close to grazing for m non-integer condition.
The x-axis is the value of the current flowing through the inductor
L2, q̇2, and the y-axis is the charge of the capacitorC2, (q2−q1),
in F. (Color online)

taken as the bifurcation parameter, while the remaining
parameters are kept fixed (as stated earlier in this sec-
tion). When m is a non-integer value, the bifurcation
diagram displays a border collision bifurcation from a
periodic orbit to another periodic orbit with different
periodicities, characterized by large amplitude chaotic
oscillations around the bifurcation point. This observa-
tion aligns with the findings presented in Fig. 5 for the
mechanical impacting system.

Figure 13b shows the bifurcation diagramwhenm is
close to an integer value. In this case, no chaotic attrac-
tor is observed at the bifurcation. This corresponds to
the same phenomena observed in the equivalent cir-
cuit of a one-degree-of-freedommechanical impacting
system [22].

Overall, these results support the notion that the
electronic circuit behaves analogously to the mechan-
ical impacting system under certain parameter con-
figurations, exhibiting similar bifurcation patterns and
dynamics. The absence of chaotic attractors when m is
close to an integer value further supports the hypoth-
esis that specific parameter settings can avoid chaotic

Fig. 13 Bifurcation diagrams of the equivalent circuit when
input voltage amplitude Vamp is used as varying parameter for
(a) m is non-integer and (b) m is close to an integer value. For
(a) f = 10 kHz and for (b) f = 11.96 kHz. The x-axis is the
amplitude of the externally applied sinusoidal signal, Vamp in V
and the y-axis is the charge stored in the capacitor C2 in F

behavior, making the system more predictable and sta-
ble.

5 Experimental results

Figure 14 showcases the circuit diagram used for the
experimental setup, developed to validate the numeri-
cally predicted results with the same parameter values.
For minimizing the loading effect of the signal gener-
ator, a quad LM324 op-amp is utilized as a unity gain
buffer. The LM311P serves as a comparator to com-
pare the voltage VC2, which corresponds to the voltage
across capacitorC2, with the constant reference voltage
Vref . When VC2 < Vref , the comparator output remains
in the on state, while it switches to the off state other-
wise. To achieve the desired functionality, CD4053BE
is used as an analog switch.

In the experimental setup, the amplitude value of the
input voltage, denoted as Vamp, is chosen from a signal
generator. This setup allows for conducting real-world
experiments, enabling the validation of the theoretical
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Fig. 14 Circuit diagram of the experimental system. LM324
is an Op-Amp, LM311P is a comparator, and CD4053BE is
a CMOS single 8-channel analog multiplexer/demultiplexer
with logic-level conversion. The parameter values are: L1 =
100.4 mH (internal impedence 71.7 Ω), L2 = 10.21 mH
(internal impedence 13.6 Ω), R1 = 158.3 Ω , R2 = 16.1 Ω ,
C1 = 1.601 nF, C2 = 16.680 nF, R0 = 10.5 Ω , C0 = 64.0 pF,
f = 10 kHz, and Vref = 3.0 V. The supply voltages have been
taken as ±VCC = ±12 V. (Color Online)

predictions and the agreement of the circuit’s behavior
with the numerically obtained results.

Figure 15 presents theCRO traced time-serieswave-
forms obtained experimentally for the circuit (10). At
Vamp = 0.3 V, the waveform exhibits a period-1 orbit,
as shown in Fig. 15a. The presence of a single peak in
the frequency spectrum confirms the periodic nature of
the orbit.

As the parameter Vamp is varied, a chaotic wave-
form is generated at Vamp = 0.57V. The corresponding
frequency spectra confirm the chaotic behavior of the
orbit, as shown in Fig. 15b. This is the condition dur-
ing the border collision bifurcation, where the system
undergoes a transition from a periodic orbit to a chaotic
one.

After the bifurcation, the voltage across capacitor
C2, denoted as VC2, becomes periodic, as illustrated
in Fig. 15c. The corresponding frequency spectra are
presented alongside the waveform.

Figure 16 displays the experimentally obtained
phase-space trajectories for different values of Vamp

in the equivalent electronic circuit (10). In Fig. 16a,
a period-1 orbit is observed for Vamp = 0.3 V. The
presence of a single loop in the phase space confirms
that the orbit is periodic. This represents the condi-
tion before the bifurcation. Figure 16b illustrates the
erratic and complex nature of the orbit in the phase
space at Vamp = 0.57 V, indicative of chaotic behav-
ior. This condition occurs during the bifurcation. Fig-
ure 16c reveals the existence of a period-1 attractor after

Fig. 15 Time-Series waveforms of the circuit from experiment:
x-axis is the time and y-axis is the voltage in V. a Period-1 wave-
form for Vamp = 0.3 V (Grid division: 1.00 V), b Chaotic wave-
form for Vamp = 0.57 V (Grid division: 1.00 V), c Period-1
waveform after the bifurcation at Vamp = 0.72 V (Grid division:
2.00 V). In each subfigure, the upper trace is the voltage across
the capacitor C2. The lower trace is the Spread spectrum char-
acteristics. FFT sample rate 2.50 MSa/s, span 25.00 kHz, center
216.0 kHz, scale 20 dB. (Color online)

the bifurcation, where the phase-space trajectory forms
a single loop.

The experimental results consistently support the
theoretical findings, demonstrating thatwhen the forced
frequency is a non-integermultiple of twice the average
value of the twonatural frequencies, the systemexhibits
chaos in the bifurcation diagram around the grazing
of the equivalent circuit, mimicking the behavior of
the mechanical oscillator. The agreement between the
experimental and theoretical results reinforces the cir-
cuit’s equivalence to the mechanical impacting system
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Fig. 16 Phase-space diagrams for different attractors obtained
from experiment: x-axis is the voltage across resistance R2, i.e.,
VR2 in V and y-axis is the voltage across the capacitorC2, VC2 in
V. a Period-1 orbit for Vamp = 0.3 V, b Chaotic orbit for Vamp =
0.57 V, c Period-1 orbit after bifurcation at Vamp = 0.72 V. In
each subfigure, the grid divisions are: along the x-axis 50 mV
and along the y-axis 2.00 V. (Color online)

and its ability to reproduce similar bifurcation patterns
and dynamics.

Figure 17 presents the experimentally obtained
time-series waveformswhen the externally applied fre-
quency is close to an integer multiple of the average
of the two natural frequencies. Figure 17a shows the
period-1 waveform before the bifurcation at Vamp =
2.50 V. The presence of a single peak in the frequency
spectra confirms the periodic nature of the waveform.
At this point, the maximum amplitude of VC2 does not
cross the DC reference voltage, i.e., Vref = 3.0 V. Fig-
ure 17b depicts the waveform of VC2 after the bifurca-
tion at Vamp = 3.10 V. This waveform is also period-1

Fig. 17 Time-Series waveforms of the circuit from experiment:
x-axis is the time and y-axis is the voltage in V. (a) Period-
1 waveform for Vamp = 2.50 V (Grid division: 1.00 V), (b)
Period-1 waveform after the bifurcation at Vamp = 3.10 V (Grid
division: 1.00 V). In each subfigure, the upper trace is the voltage
across the capacitor C2. The lower trace is the Spread spectrum
characteristics. FFT sample rate 2.50 MSa/s, span 25.00 kHz,
center 216.0 kHz, scale 20 dB. (Color online)

in nature. At this stage, the voltage VC2 has crossed the
DC voltage Vref = 3.0 V.

It is worth noting that the experimentally obtained
time-series waveform after the bifurcation at Vamp =
3.10 V does not perfectly match the numerical predic-
tion. The discrepancy arises due to various unavoid-
able factors in the experimental circuit implementation,
such as the resistance of connectingwires, the tolerance
level of capacitors and inductors, ICs’ time delay of
propagation, etc. These uncertainties contribute to the
slight change in the waveform compared to the numer-
ical prediction. However, despite these differences, the
overall dynamics remain the same, demonstrating the
robustness of the circuit’s equivalence.

The experimental investigation was extended to
examine other parameter values in the bifurcation
diagram. In the entire parameter range, no chaotic
waveform was observed, and the chaotic attractor
was absent, confirming that chaotic oscillation can be
avoided when m is either an integer or close to an inte-
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ger. The experimental results effectively validate and
corroborate the numerically predicted outcomes.

In conclusion, the experimental results provide
strong support for the numerical predictions, further
validating the circuit’s equivalence to the mechani-
cal impacting system and confirming the avoidance of
chaotic behavior when m is close to an integer value.
The small discrepancies between the experimental and
numerical results highlight the real-world challenges
in circuit implementation but do not compromise the
fundamental dynamics and overall agreement between
theory and experiment.

6 Conclusions

In this study, we have presented a schematic repre-
sentation of a two-degree-of-freedom forced damped
mechanical impacting oscillator. Our findings reveal
that when the externally applied frequency deviates
from an integer multiple of the summation of the two
natural frequencies, chaos emerges in the bifurcation
diagram. The chaotic attractor at the bifurcation point
demonstrates a distinct finger-shapeddiscrete-time rep-
resentation. Analogous behavior has been observed in a
one-degree-of-freedom mechanical impacting system.
Additionally, we have demonstrated that when the forc-
ing frequency closely aligns with an integer multiple
of the summation of the two natural frequencies, chaos
can be avoided.

By non-dimensionalizing the equations governing
the system and establishing a one-to-one correspon-
dence between the mechanical and electronic equiv-
alent circuit, we have demonstrated that the consid-
ered system exhibits similar dynamic phenomena as
reported in one-degree-of-freedom mechanical impact
oscillators. Notably, this includes the occurrence of
narrowband chaos, the appearance of a finger-shaped
attractor near the grazing parameter value, and the
disappearance of chaotic oscillations within specific
parameter ranges.

To facilitate experimental investigations on impact-
ing systems, we have introduced an electronic analog
of the mechanical impacting system. The electronic
equivalent circuit provides a convenient and direct plat-
form for practical explorations. We have successfully
validated our numerical predictions through experi-
mental circuit results.

Overall, our study offers valuable insights into the
occurrence and avoidanceof narrow-band chaos in two-
degree-of-freedom mechanical impacting systems. In
future research, we plan to conduct more comprehen-
sive analytical and numerical investigations on other
types of two-degree-of-freedommechanical impacting
systems to make this claim more robust.
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