
Nonlinear Dyn (2024) 112:1641–1659
https://doi.org/10.1007/s11071-023-09106-1

ORIGINAL PAPER

Nonlinear normal modes of highly flexible beam structures
modelled under the SE(3) Lie group framework

Amir K. Bagheri · Valentin Sonneville ·
Ludovic Renson

Received: 28 July 2023 / Accepted: 12 November 2023 / Published online: 19 December 2023
© The Author(s) 2023

Abstract This work presents a shooting algorithm to
compute the periodic responses of geometrically non-
linear structures modelled under the special Euclidean
(SE) Lie group formulation. The formulation is com-
bined with a pseudo-arclength continuation method,
while special adaptations are made to ensure compati-
bility with the SE framework. Nonlinear normal modes
(NNMs) of various two-dimensional structures includ-
ing a doubly clamped beam, a shallow arch, and a
cantilever beam are computed. Results are compared
with a reference displacement-based FE model with
von Kármán strains. Significant difference is observed
in the dynamic response of the two models in test cases
involving large degrees of beam displacements and
rotation.Differences in the contribution of higher-order
modes substantially affect the frequency-energy depen-
dence and the nonlinear modal interactions observed
between the models. It is shown that the SE model,
owing to its exact representation of the beam kine-
matics, is better suited at adequately capturing com-
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1 Introduction

New designs of mechanical structures are increasingly
lighter and more flexible and exhibit geometric nonlin-
earities due to the presence of large displacements and
rotations. A popular formulation for modelling geo-
metrically nonlinear beams is the von Kármán finite
element (FE) model, which assumes Euler–Bernoulli
bending and approximates the Green–Lagrange strain
measures by including only quadratic terms pertaining
to the rotations. The von Kármán model is used exten-
sively in the literature in modelling beams, plates and
shells [1–7]. Many model reduction methods also con-
sider the vonKármán formulation as the full-order basis
for model reduction [2,3,8–10]. Despite the extensive
use of this formulation, the model is predicated on
approximate kinematics, which makes it unsuited for
studying complex and highly nonlinear systems with
large displacements. Examples include numerical sim-
ulations with vibration amplitudes greatly exceeding
the beam or plate thickness (up to 5–10 times), or cases
including rotary inertia or shear effects [1]. Reduced-
order models that are based on this formulation there-
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fore will suffer from the same inaccuracies of the full-
order model and will not be able to adequately describe
complex nonlinear dynamic phenomena of highly flex-
ible physical structures.

More accurate displacement-based FE methods can
be developed using geometrically exact beam theories
in order tomodel large deformations and nonlinearities.
Geometrically exact beammodels were initially devel-
oped by Simo [11] and later by Cardona and Geradin
[12], Ibrahimbegović [13], and Betsch and Steinmann
[14]. The geometric exactness of these methods comes
from keeping the strain measures consistent with the
equilibriumequations of a deformed configurationwith
finite rotations. However, parametrisation of the rota-
tions is not trivial in these formulations and can lead to
discretisations, which do not preserve the property of
invariance of strains under rigid body motion [15]. To
overcome this, additional local interpolations of rota-
tions are required in the finite elementmodel [16]. This,
however, adds to the complexity of the discretised equa-
tions with increased nonlinearity in the equations of
motion and makes the formulations numerically less
convenient.

Amongst beam formulations that aim to address the
difficulty of parametrising the rotations is the intrin-
sic beam theory developed by Hodges [17], in which
the displacement and rotation terms are not included
in the equations. Although the parametrisation of rota-
tions therefore is no longer required, the application of
boundary conditions as displacement constraints can-
not be imposed explicitly that introduces further chal-
lenges to the method [18]. Other beam formulations
based on the quaternion parametrisation of rotations
[19], or based on velocities and angular velocities [20],
have also been developed. Although thesemethods aim
to avoid the difficulties of using spatial rotations as
unknowns, they miss the opportunity to capitalise on
the more appropriate description of the beam kinemat-
ics afforded by the special Euclidean group.

Beam formulations based on the special Euclidean
Lie group SE(3) exploited here circumvent all these
problems by coupling the rotations and positions and
by adopting a local frame approach [21]. The invari-
ance of the strains under rigid body motion comes nat-
urally from this formulation, as the local frame for-
mulation allows the relative description of the nodal
motions and velocities. Additionally, the local frame
derivatives are at most quadratically nonlinear, which
reduces the overall complexity of the numerical model.

The global parametrisation of frames is avoided by the
time-integrationmethod, which yields an efficient inte-
gration scheme that is guaranteed to be singularity-free
[22]. Moreover, shear locking is avoided thanks to a
nonlinear interpolation formula based on the exponen-
tialmap that couples the rotation and position fields and
governs the nonlinear configuration space. The geo-
metrically exact formulation leads to the recovery of
the exact displacements with no approximations in the
curvature of the solution for pure bending [21].

The presence of nonlinearities can have significant
effects on the dynamics of a system. The dependence
of vibration frequency on the oscillation amplitude is a
characteristic example of such effects. Other phenom-
ena such as energy exchange between modes, internal
resonances, harmonic distortion, and quasi-periodic or
chaotic oscillations can also be present [23,24]. NNMs
provide a framework for investigating these phenom-
ena and are therefore an invaluable tool in the study of
nonlinear systems. In this study, NNMs are exploited
as a mean to compare the nonlinear dynamics resulting
from a von Kármán beam model and the SE(3) model.
Each of the beam formulations has been independently
validated on various numerical test cases [25–28]. The
aim of the present work is not to replicate those val-
idation works, but instead to investigate the changes
that occur in the dynamics due to the use of a geo-
metrically exact Lie group model. The choice of tak-
ing the von Kármán formulation, as opposed to other
more accurate formulations, is based on the popularity
of the von Kármán model when dealing with discre-
tised flexible structures using the finite element method
[8] and reduction of nonlinear models [2,29,30]. This
model has also been the subject of comparison work in
other research efforts focusing on computing nonlin-
ear modes of geometrically exact beams [31,32]. The
shortcoming of the von Kármán beam model in giving
a correct and accurate description of large deforma-
tions is indicated against the results from the Lie group
model.

The NNMs considered here are defined as not-
necessarily synchronous periodic oscillations of the
conservative systemas proposed in [33,34]. TheNNMs
of a 2D doubly clamped beam, a shallow arch, and a
cantilever beam formulated on the SE framework are
computed numerically using a combination of shoot-
ing and pseudo-arclength continuation directly applied
to the full-order finite element model of the structures.
However, owing to the nonlinearity of theLie group, the
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usual periodicity condition used in the shooting algo-
rithm has been changed to one based on the group’s
logarithm map in order to calculate the difference in
the beam states over a period of oscillation. A further
adaptation is introduced to the continuation algorithm,
where prediction increments are made with respect to
the previously converged solution and are thus smaller
in magnitude. As the group’s exponential map is used
to map the increments to the group, this adaptation
makes the mapping less nonlinear and therefore speeds
up the continuation process. Alternative approaches for
obtaining NNMs, including analytical approximations
[35–38], are not considered in this work (see [39,40]
for a review).

This paper is structured as follows: Section2 gives
a brief account of the FE beam model and the under-
lying Lie group theory, Sect. 3 explains the shooting
and pseudo-arclength methods used, which is finally
followed by results presented in Sect. 4 and the conclu-
sions in Sect. 5.

2 Lie group beam model

A brief overview of the finite element beam equations
derived under the SE(3) framework is presented in this
section, which is accompanied by a short review of
some background theory given in Appendix A.

2.1 Beam kinematics

We consider a straight beam of length L with the value
s ∈ [0, L] defined as the longitudinal coordinate along
its reference line, as depicted in Fig. 1. The position of
any point p on the reference beam at time t = 0 can be
written in the inertial frame as [21]

x0p(s, u, v) = x0(s) + O0(s) y(u, v), (1)

where x(s) is the position vector along the neutral
axis, O0(s) = [is it iu] is a constant rotation matrix
accounting for the beam’s reference orientation relative
to the inertial frame, and y(u, v) = [0 u v]T contains
the coordinates of the point along the cross section axes.
We assume the cross sections do not deform, and there-
fore, the point coordinates along the cross section axes
remain unchanged.

Deformation of the beam will impose a transla-
tion and rotation of the cross sections relative to the

Fig. 1 Description of beam kinematics [21]

fixed inertial frame. The position of the point p in the
deformed configuration at time t , written in the inertial
frame, will therefore be written as:

xp(s, u, v) = x(s) + R(s)O0 y(u, v), (2)

where R(s) is the rotation vector accounting for the
rotation of the cross section, which brings the vector
O0 y(u, v) from the local frame onto the global inertial
frame.

The coordinate transformation between the frames
can be represented by a homogenous transformation
matrix H(s) pertaining to a rigid body motion, given
by

H(s) =
[
R(s) x(s)
01×3 1

]
, (3)

from which the position of point p can be found by
matrix multiplication as

Hp(s, u, v) = H(s)

[
I3×3 O0 y(u, v, )

01×3 1

]

=
[
R(s) xp(s, u, v)

01×3 1

]
. (4)

The matrix H(s) belongs to the 3-dimensional set
termed the Special Euclidean Lie group SE(3). (The
3 rotation and 3 position elements give this group 6
degrees of freedom in total.) By the composition rule
of the group, the product of two suchmatrices results in
another matrix of the group. The rotation matrix R(s)
belongs to the Special Orthogonal Lie group SO(3). All
geometrically exact beam formulations include rota-
tion terms and therefore follow aR3 ×SO(3) approach
in their formulations. Beam kinematics formulated
in the SE(3) framework, however, treat the positions
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and rotations simultaneously as a homogenous frame
matrix (3) [21]. A local frame approach can then be
adopted by attaching a frame to each material point of
the beam.

2.2 Derivatives

The deformation gradient and time derivative of the
material frame on the neutral axis are elements of
the Lie algebra se(3), which is defined as the tangent
space at the group identity. The deformation gradient
is denoted as f̃(s) ∈ se(3) and is defined as

dH(s)

ds
= H′(s) = H(s )̃f(s), (5)

where thematrix f̃(s) can also bewrittenwithout the (̃•)

operator in vector form as f(s) (see appendix Eq. (A.8)
for an explanation of the tilde operator). The deforma-
tion gradient f(s) can be split into those of the reference
f0 and current ε configurations, and classical notations
of position γ and rotation κ deformations can be intro-
duced as:

f(s) =
[
fU (s)
fΩ(s)

]
= f0(s) + ε(s), with

ε(s) =
[
γ (s)
κ(s)

]
.

(6)

As per the local frame representation of derivatives,
these quantities are invariant under rigid body transfor-
mations, thus maintaining the objectivity of the strain
measures under the beam formulation. From the rep-
resentation of the derivatives on SE(3) (see appendix
Eq. (A.15)), the deformations in Eq. (6) can be written
as:

γ (s) = RT (s)x′(s) − f0U (s),

κ(s) = RT (s)R′(s) − f0Ω(s).
(7)

The deformation at any point p on the cross section can
then be evaluated as:
∂Hp(s, u, v)

∂s
= Hp(s, u, v)̃fp(s, u, v), (8)

where the deformation can again be split into the
reference and current configuration as fp(s, u, v) =
f0p(s, u, v) + ε p(s, u, v). We then have

fp(s, u, v) =
[
fpU (s, u, v)

fΩ(s)

]
,

ε p(s, u, v) =
[
γ p(s, u, v)

κ(s)

]
.

(9)

Due to the assumption of the cross sections remain-
ing undeformed, the rotation components of the strains
are the same as those of the neutral axis. The posi-
tion components can be evaluated as fpU (s, u, v) =
fU (s) − Õ0 ỹ(u, v)fΩ(s).

The time derivative of the material frames on the
neutral axis can be written using a Lie algebra element
as:

Ḣ(s) = H(s )̃v(s), (10)

where the velocities ṽ(s) ∈ se(3) are also expressed
in the local frame, and writing them in vector form

we have v(s) = [
vTU (s) vTΩ(s)

]T
. The velocities at any

point p on the beam cross section can be evaluated as:

Ḣp(s, u, v) = Hp(s, u, v)̃vp(s, u, v), (11)

where

ṽp(s, u, v) =
[̃
vpU (s, u, v)

vΩ(s)

]
, (12)

and similar to the strains we have vpU (s, u, v) =
vU (s) − Õ0 ỹ(u, v)vΩ(s).

2.3 Dynamic equilibrium equations

The components of the Green Lagrange strain ten-
sor and the second Piola–Kirchhoff stress tensor can
be evaluated using the deformation gradients and
beam stiffness parameters. Assuming linear elastic
behaviour, the strain energy can be computed as:

Wint = 1

2

L∫
0

εT (s)Kε(s) ds, (13)

where K is the diagonal stiffness matrix as

K =
[
KU 03×3

03×3 KΩ

]
,

KU = O0

⎡
⎣E A 0 0

0 GAt 0
0 0 GAu

⎤
⎦OT

0 ,

KΩ = O0

⎡
⎣GJ 0 0

0 E It 0
0 0 E Iu

⎤
⎦OT

0 .

(14)

The kinetic energy can also be written using the veloc-
ities as

K = 1

2

∫ L

0
vT (s)Mv(s) ds, (15)
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where the mass matrix is calculated as

M =
[ m

L I3×3 −O0JIOT
0

−O0JTI O
T
0 O0JOT

0

]
, (16)

where m is the element mass and JI and J are the first
and second moments of inertia of the cross sections
computed in the local frame. The energy equations only
exhibit quadratic nonlinearity in strains and velocities.
This is a convenient feature of the Lie group formula-
tion,which leads to simple equations as the nonlinearity
is embedded in the structure of the configuration space.

To obtain the dynamic equilibrium equations, the
variations of the energies are computed and used in
Hamilton’s principle given by∫ τ1

τ0

δ(K) − δ(Wint ) dτ = 0. (17)

The variations of the strain and kinetic energy are given
by:

δ(Wint ) =
∫ L

0
δ(ε)TKε ds,

δ(K) =
∫ L

0
δ(v)TMv ds.

(18)

Due to the Lie group structure and the non-commutati-
vity of the derivatives on the group (see appendix
Eq. (A.7)), the variations of the deformations andveloc-
ities are related to the state variables which are SE(3)
elements by the following equations

δ(ε) = δ(f) = d

ds
(δh) + f̂δh,

δ(v) = d

dτ
(δh) + v̂δh,

(19)

where δ̃h = H−1δH is the Lie algebra element for vir-
tual motions. The ˆ(•) is a linear operator, which maps a
vector inRk to a k×kmatrix (see appendix Eq. (A.11)).
Inserting the variations (19) into (18) and integrating
by parts yields

δ(Wint) =
[
δhTKε

]L
0

−
∫ L

0
δhT

(
K

d

ds
(ε) − f̂

T
Kε

)
ds,

τ1∫
τ0

δ(K) dτ =
⎡
⎣

L∫
0

δhTMv ds

⎤
⎦

τ1

τ0

−
τ1∫

τ0

L∫
0

δhT (Mv̇ − v̂TMv) ds dτ.

(20)

Combining the expressions in equations (20) inside the
Hamilton Eq. (17) gives the weak form of the dynamic
equilibrium equations as:
[
δhTKε

]L
0

−
∫ L

0
δhT (Mv̇ − v̂TMv

+K
d

ds
(ε) − f̂

T
Kε) ds = 0, (21)

from which the strong form of the dynamic equation
is given by the following second-order nonlinear PDE
for the unknowns ε and v

Mv̇ − v̂TMv + K
d

ds
(ε) − f̂

T
Kε = 0. (22)

It is noted that this equation is intrinsic, as it was
obtained without introducing any frame parametrisa-
tion and is solved for velocities v and deformations
ε only. A further compatibility equation between the
second spatial and time derivatives due to the Lie
group structure should also be solved (see appendix
Eq. (A.7)), given by

d

ds
(v) − ε̇ = v̂ε ⇐⇒ d

ds
(v) − ε̇ = −ε̂v. (23)

Equations (22) and (23) do not depend on the position
or the orientation of the beam and are solved together
along with the boundary conditions

δhT (L)K(L)ε(L) − δhT (0)K(0)ε(0) = 0. (24)

The position and orientation of the beam are recovered
afterwards by solving the kinematic equations Eq. (5)
and (10).

2.4 Finite element discretisation

A finite element discretisation is introduced in order to
solve the dynamic equilibrium Eq. (22). The discreti-
sation along the neutral axis of the beam is achieved by
means of an interpolation formula based on the SE(3)
exponential map as follows. LetHA andHB denote the
material frames on two end nodes A and B of a single
element of the FE mesh with length l. We calculate the
frame at any point x along the element by the following
interpolation

H(x) = HA expSE(3)

( x
l
d
)

, (25)

where x ∈ [0, l], and d = [
dTU dTΩ

]T
is the relative

configuration vector given by

d = logSE(3)(H
−1
A HB). (26)
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By the above definition, d is a Lie algebra element
∈ se(3) and thus belongs to a linear space. The expo-
nential map acts as a local parametrisation which maps
the linear space to the nonlinear space of the nodal
frames (see appendix Eq. (A.17)). This interpolation
satisfies the frame invariance requirement, as for any
rigid body motion defined by applying the same group
composition to HA and HB , d remains unchanged.
Furthermore, the nonlinear coupling between the posi-
tions and rotations, which is retained in the discreti-
sation, enables a geometrically exact representation of
the beam curvature in pure bending with just a single
element [21].

By the discretisation, a finite set of local nodal
frames qk(t) ∈ SE(3) and their velocities vk(t) ∈ R

6

are obtained, which together are termed the configu-
ration of the beam. A spatial derivative of this config-
uration interpolation gives the discretised strains and
velocities from which the discretised dynamic equilib-
rium equations can be formulated.

2.5 Time integration

The discretised dynamic equilibrium equations are
solved using a Lie group version of the generalised-α
scheme, which preserves the Lie group structure of the
problem [41]. Given the configuration state of the beam
with the frame q and the velocity v, the acceleration v̇,
and the inertial and internal forces respectively, by gine
and gint , the time integration relies on the discretised
equations involving the exponential map as

qn+1 = qn exp(̃xn+1),

gine(vn+1, v̇n+1) + gint (qn+1) = 0,
(27)

and the time-integration formulae

xn+1 = hvn + (0.5 − β)h2an + βh2an+1,

vn+1 = vn + (1 − γ )han + γ han+1,

(1 − αm)an+1 + αman = (1 − α f )v̇n+1 + α f v̇n,

(28)

where the usual numerical parameters of the generali-
sed-α scheme are used. These equations are solved
for the unknown nodal frames using a Newton itera-
tive procedure, which requires the linearisation of the
equations. This is done under the Lie group frame-
work, which means the algorithm involves operations
on tangent vectors in the Lie algebra and derivatives
of the exponential map. Further details about the time-
integration scheme can be found in [41].

3 Computation of periodic solutions

3.1 Pseudo-arclength continuation with shooting

Families of periodic solutions along an NNM branch
are found using pseudo-arclength continuation. In this
work, we adopt the algorithm proposed originally by
Keller [42], with some modifications on the correction
procedure as introduced by Peeters et al. [34]. Let

φ(X(0), T ), φ : R2N × R → R
2N , (29)

denote the result of the time integration of the equation
ofmotion, over a time interval of length T , starting from
the initial condition vector X(0). A periodic solution
is one that satisfies the periodicity condition given by

ψ(X(0), T ) = φ(X(0), T ) − X(0) = 0. (30)

This periodic solution is found using a shooting
method, which is an iterative scheme for finding the
roots of a smooth boundary value problem using a
sequence of initial value problems [43]. Finding the
roots of the boundary value problem reduces to finding
the set of initial values, for which the boundary condi-
tions are satisfied under time integration of the system
dynamic equations.

The periodicity condition does not have a unique
solution. Indeed, as the system is autonomous, any
point on the periodic orbit can be used as an initial con-
dition. An additional equation termed the phase condi-
tion must be added to restrict the number of solutions
to the shooting problem. Various choices for the phase
condition exist, such as the Poincaré [44] or integral
phase conditions [45]. In this work, the initial veloc-
ities across all system degrees of freedom are set to
zero as in [34]. The resulting phase condition equation
is therefore given by:

g(X(0)) = BX(0) = 0, (31)

where B is a N × 2N sparse Boolean matrix with ones
corresponding to the velocities.

Starting froma converged periodic solution
(
X


j (0),

T 

j

)
, a prediction for the next point on the NNMbranch

is made along the tangent vector at the current solu-

tion, P j =
[
uTj λ j

]T
, which is found from solving the

overdetermined linear system⎡
⎢⎣

∂ψ
∂X


j (0)
∂ψ
∂T 


j

B 0
PT

j−1

⎤
⎥⎦

[
u j

λ j

]
=

[
0
1

]
, (32)
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where the subscript j indicates the continuation index.
P j−1 is the tangent at the previous continuation step;
for the first continuation point where no previous tan-
gent vector is available, this is replaced by [02N 1].
It is noted that B is the derivative of the phase condi-
tion (31)with respect to X(0). The tangent vector found
from solving (32) is then normalised to unit length. The
prediction can therefore be written as:[
X0

j+1(0)
T 0
j+1

]
=

[
X


j (0)
T 

j

]
+ z j

[
u j

λ j

]
, (33)

where the superscript 0 indicates that this is the first
prediction point, and z j is the continuation step size.
The prediction point is generally not a periodic solution
of the system. Corrections are therefore required to the
prediction,which are found iteratively using aNewton–
Raphson scheme. The corrections are forced to remain
orthogonal to the tangent vector, thereby ensuring the
adherence of the solution to turns in the NNM branch
[34]. The corrections are foundby solving the following
linear system⎡
⎢⎣

∂ψ

∂Xk
j+1(0)

∂ψ

∂T k
j+1

B 0
uTj λ j

⎤
⎥⎦

[
ΔXk

j+1(0)
ΔT k

j+1

]

= −
⎡
⎣ψ(Xk

j+1(0), T
k
j+1)

h(Xk
j+1(0))
0

⎤
⎦ . (34)

where the superscript is now k and indicates the cor-
rection iteration index. The periodic solution is updated
iteratively after the corrections are found by

Xk+1
j+1(0) = Xk

j+1(0) + ΔXk
j+1(0),

T k+1
j+1 = T k

j+1 + ΔT k
j+1.

(35)

This continues until desired convergence is met and a
new periodic solution is found along the continuation

branch as
(
X


j+1(0), T 

j+1

)
.

As seen in theNewton–Raphson scheme, derivatives
of the periodicity equation are required with respect to
the initial conditions at each iteration step. This can be
evaluated using the Monodromy matrix

Mφ = ∂φ(X(0), T )

∂X(0)
, (36)

which gives the variation in the solution of the system
after time T with respect to the initial conditions [40].
This quantity is computed simultaneouslywith the time

integration of the equation of motion of the mechani-
cal system, as a differentiation of the time-integration
method itself [46]. The underlying Lie group frame-
work leads to the usage of the exponential and its
derivative in the sensitivity equations.

As mentioned, a converged starting solution needs
to exist to begin the continuation process. In the cal-
culation of NNMs of mechanical systems, this usually
comes from the solution to the shooting problem, start-
ing with an initial guess corresponding to a particu-
lar linear normal mode of the system [40]. The modal
amplitude is scaled to ensure a linear-like response at
very low energy. The corrections to this starting point
are made to be orthogonal to the linear mode to ensure
the iterative process does not converge to the trivial
zero solution.

It is noted that in Eq. (32), following the methodol-
ogy proposed by Keller [42], the tangent is found by
making it parallel to the normalised tangent from the
previous continuation step. The last row of Eq. (32) can
be written using the vector dot product and by taking
θ j to be the angle between tangent vectors P j−1 and
P j as

‖P j−1‖‖P j‖ cos(θ j ) = 1. (37)

Noting that ‖P j−1‖ = 1 as it has already been nor-
malised, Eq. (37) implies the angle between consecu-
tive tangent vectors cannot exceed π

2 since the cosine
must remain positive. This removes the necessity for
computing the continuation step sign for following the
NNM branch.

3.2 Adaptation to Lie group formulation

Some modifications are required to the pseudo-arclen-
gth method for calculating the NNMs of a system
whose dynamic equations are obtained under the Lie
group formulation outlined in Sect. 2.

First, the periodicity equation (30) is modified to
account for the beam position belonging to the non-
linear space of the SE(3) group. X(0) is given by its
constituent parts of initial state increments and veloci-
ties for the discretised beam as

X2N×1(0) =
[
q̄TN×1(0) vTN×1(0)

]T
, (38)

where q̄(0) indicates the increment required to map the
reference beam configuration H0(s), to the deformed
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1648 A. K. Bagheri et al.

shape of the beam initial condition, given by the frame
q(0) as

q(0) = H0(s) expSE(3)(q̄(0)). (39)

The periodicity equation (30) is also modified and
expressed as the following zero function:

ψ(X(0), T ) =
[
logSE(3)(q

−1(0)q(T ))

v(T ) − v(0)

]
= 0, (40)

where q and v are the vector of frame positions and
velocities along the discretised beam. Due to the Lie
group framework, the logarithmmap is required to find
the difference between the initial and final states in
Eq. (40). This is not the case with the velocities that
can be readily subtracted.

The second remark is concernedwith the corrections
made in the continuation process. As shown in Eq. (38),
the vector X(0) includes the nodal increments map-
ping the reference beam configuration to the desired
deformed configuration, and the nodal velocities. The
increments belong to the linear space of the Lie algebra
of the SE(3) group. As such, corrections can be added
linearly to the increments during the continuation pro-
cess, which is why the orthogonality condition used in
Eq. (34) is valid. In contrast, Keller [42] proposes a
different condition, which ensures the next continua-
tion solution lies on the hyperplane orthogonal to the
tangent vector, and at a distance away from the previ-
ous converged solution equal to the continuation step.
This condition, which is effectively equivalent to the
orthogonality condition in Eq. (34), can be written as:

uTj (X
k
j+1(0) − X j (0)) + λ j (T

k
j+1 − Tj ) = z j . (41)

Keller’s method therefore requires the calculation of
the difference between initial condition vectors X(0).
However, owing to the nonlinear embedding of the Lie
group manifold, Eq. (41) cannot be used in its cur-
rent form. The elements of X(0) corresponding to the
increments (see Eq. (38)) cannot be subtracted under a
Euclidean vector operation. Instead, Eq. (41) will need
to be adapted to include the exponential map to find the
frame positions from the increments and the logarithm
map to find the relative difference between the frames.
This would therefore lead to a more complicated cor-
rection algorithm and is therefore not employed in this
work.

The final remark concerns the adaptation of the con-
tinuation implementation to take full advantage of the
Lie group framework. After a converged periodic solu-
tion is found at step j , the deformed beamconfiguration

q j (0) containing the beam initial position and orienta-
tion is stored. The initial condition vector X j+1(0) for
the next continuation step then stores the increment
with respect to q j (0), instead of the increment with
respect to the undeformed beam configuration. Denot-
ing this increment by q̄ j (0), q j+1(0) can then be found
using the exponential map as

q j+1(0) = q j (0) expSE(3)(q̄ j (0)). (42)

The initial referencebeamconfiguration remains uncha-
nged, and the absolute deformed state in q j+1(0) is still
measured with respect to the reference configuration,
maintaining the geometric nonlinearity of the system
that arises from large deformations. However, as the
state of a converged continuation solution is used as
the basis of the increment vector for the next prediction
point, the increment vector will therefore be smaller in
magnitude. As the increment is used in the exponential
map to find the new beam state in Eq. (42), the smaller
magnitude of this vector results in reduced nonlinearity
from the exponential map, which dramatically reduces
the number of iterations required in the continuation
correction process.

4 Comparison of SE & von Kármán beams on 2D
cases

Three 2D test cases were chosen to compare NNMs
found using the SE FE model and those from the von
Kármán model. These are a straight clamped–clamped
beam, a shallow arch, and a cantilever beam. In all
cases, the beam is discretised with 30 elements, and
its geometric and material properties are [47]: E =
210GPa, ρ = 7850 kg/m3, L = 1m, A = 10−4 m2.
As the cases are 2D, the Lie group formulation is made
under the SE(2) framework.

4.1 Straight clamped–clamped beam: NNM1

The frequency-energy plot (FEP) for the first NNM
of the clamped–clamped beam is shown in Fig. 2a,
where the effects of nonlinearity can be observed in the
increase of frequencywith energy. The figure shows the
occurrence of a thin loop, termed an internal resonance
tongue, comprising of periodic solutions that indicate a
5:1 interaction between NNM1 and NNM3. The SE(2)
and the von Kármán model agree well on this example,
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Fig. 2 First NNM of clamped–clamped beam. a Frequency–
energy plot. b Max normalised amplitude at x/L = 0.5. Com-
parison between vonKármán (black solid line) andSE(2) (orange
dashed line). (Color figure online)

as the beam is not experiencing large deformations, and
therefore, the von Kármán model can adequately pre-
dict the system dynamics. Figure2b shows the maxi-
mum absolute in-plane displacement of the beam mid-
point normalised with respect to the beam thickness,
over the range of frequencies observed in the FEP. The
maximum is taken as the largest displacement during
the full period of the shooting solution. The backbone
and tongue are observed, and again good agreement is
noted between the models which continues through to
larger-amplitude displacements.

4.2 Straight clamped–clamped beam: NNM2

The frequency–energy plot corresponding to the sec-
ond NNM is seen in Fig. 3a. Two resonance tongues

appear on the solution curve, the first starting at approx-
imately 160 Hz and corresponding to a 3:1 interaction
with NNM4, and the second starting at approximately
207 Hz and corresponding to a 5:1 interaction with
NNM6. Additional smaller secondary branches can be
seen on the higher tongue, namely at approx. 221Hz for
the von Kármán model and at approx. 233 Hz for the
SE(2) model. These correspond to higher-order har-
monic interactions with NNM13 at a 17:1 ratio for
bothmodels. The backbones ofNNM13 are included in
Fig. 3a in grey for bothmodels,where the frequency has
been divided by the harmonic ratio of 17. It is seen that
the backbones cross the curve near the regions where
the secondary tongues are located. The linear natural
frequencies for mode 13 for the von Kármán and the
SE(2) model are 3672 Hz and 3928 Hz, respectively.
This difference in the frequencies of the higher modes
leads to the separation of the backbone curves and thus
to the difference in the frequency at which the 17:1
interactions on the FEP occur. The differences in the
higher modes could therefore have a significant effect
on the location and shape of the interaction tongues.
The difference between theNNMs can also be observed
in the amplitude plots in Fig. 3b, which shows themaxi-
mum absolute in-plane displacement at the x/L = 0.3
point along the beam, normalised with respect to the
beam thickness.

The time evolution of the vertical displacement at
the x/L = 0.3 point for the periodic solution (a) indi-
cated in Fig. 3a can be seen in Fig. 4a. The 5:1 fre-
quency ratio can clearly be seen, and a difference is
observed between the solutions from the two models.
This is also highlighted in Fig. 4bwhich shows the solu-
tions in phase space. The difference in the solutions is
due to a π/2 phase shift in the 5th harmonic of the
responses from the two models. It is noted that a direct
comparison of solutions from points selected on the
frequency-energy plot is extremely challenging, as the
graph is a 2D projection of a high-dimensional state
space. Selected points are here chosen based on their
qualitative similarity (for instance, turning points on
the FEP), bearing in mind that solutions may not be
strictly identical.

4.3 Shallow arch: NNM1

A shallow arch is created by curving the doubly
clamped beam such that the mid-point is displaced ver-
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Fig. 3 Second NNM of clamped–clamped beam. a Frequency–
energy plot.bMaxnormalised amplitude at x/L = 0.3. Compar-
ison between von Kármán (black solid line) and SE(2) (orange
dashed line). Dotted grey lines indicate NNM13 for both models
with frequency divided by 17. Time history of displacement of
point (a) green diamond depicted in Fig. 4. (Color figure online)

tically by 10mm, thus creating a curvature of radius
R = 12.5m. The material properties of the beam are
unchanged. The effects of curvature are manifested as
the existence of both vertical and lateral displacements
in the linear mode shapes of the model [47].

The FEP of the first NNM is shown in Fig. 5a. A
softening–hardening behaviour is observed, which is
characteristic of structures with initial curved geome-
tries, and an internal resonance tongue is seen within
the softening region. The tongue indicates a 4:1 reso-
nance between NNM1 and NNM3. This is in contrast
to the 5:1 resonance seen between these modes for the
first NNM of the straight beam, which is due to the
asymmetry of initial curvature promoting the occur-
rence of even interaction ratios [47]. The normalised
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Fig. 4 Point a Green diamond in Fig. 3a, normalised vertical
amplitude at x/L = 0.3 versus (a) time and (b) in phase space.
Comparison between von Kármán (black solid line) and SE(2)
(orange dashed line). A 5:1 interaction between modes 2 and 6
is observed, and a π/2 phase difference exists between the 5th
harmonics of the two solutions. (Color figure online)

absolute maximum vertical displacement of the beam
mid-point is depicted in Fig. 5b. Despite displacement
amplitudes larger than twice the beam thickness, the
von Kármán model is able to make a correct predic-
tion of the periodic solutions, due to the limited axial
displacement of the doubly clamped configuration and
the subsequent smaller coupling between the axial and
transverse modes.

The time history of the vertical displacement of the
arch mid-point from the periodic solution at point (a)
from Fig. 5a is presented in Fig. 6, which shows the
4:1 frequency ratio between the harmonics. Similar to
the clamped–clamped beam, a π/2 phase shift exists
between the 4th harmonic of the responses, causing a
difference in the time history of the two models.
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Fig. 5 First NNM of shallow arch. a Frequency–energy plot. b
Maxnormalised amplitude at x/L=0.5.Comparisonbetweenvon
Kármán (black solid line) and SE(2) (orange dashed line). Time
history of displacement of point (a) green diamond depicted in
Fig. 6. (Color figure online)

4.4 Shallow arch: NNM2

The FEP for the second NNM is presented in Fig. 7.
Increasingly complex dynamics can be seen, with mul-
tiple interactions between variousmodes of the system.
Themain tongue spans a large frequency range between
160 and 180 Hz and corresponds to a 3:1 interaction
between NNM2 and NNM4. Higher-order interactions
are seen as secondary tongues which branch away from
the main curve. The secondary tongue between 168–
170 Hz (terminating at point (a) on the FEP) is cap-
tured by both solvers and indicates the presence of
NNM7 at an 8:1 ratio with NNM2, along with static
contributions from NNMs 1 and 3. Similar static con-
tributions from additional modes were also reported by
Sombroek et al. [47] for the arch. Figure8 shows the

0 0.002 0.004 0.006 0.008 0.01 0.012
Time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

N
or
m
al
is
ed

A
m
pl
it
ud

e

Fig. 6 Point a Green diamond in Fig. 5a, normalised vertical
amplitude at x/L = 0.5. Comparison between von Kármán
(black solid line) and SE(2) (orange dashed line). A 4:1 inter-
action between modes 1 and 3 is observed, and a π/2 phase dif-
ference exists between the 4th harmonics of the two solutions.
(Color figure online)

time history of the periodic solution at point (a) depict-
ing the normalised vertical displacement at the beam
point x/L = 0.36. It is seen that for this point the
models predict the same periodic solution correspond-
ing to the same point on the FEP. The von Kármán
and SE(2) solutions start to differ at higher-frequency
ranges above this point. A smaller secondary tongue
which emanates at approx. 172 Hz on the SE(2) curve
indicates higher-order dynamic interaction through the
24th harmonicwhich is not captured by the vonKármán
model. An additional interaction occurring at approx.
180 Hz on the main tongue is with NNM9 through the
12th harmonic and is found only by the von Kármán
model. As seen previously with the doubly clamped
beam, the differences in the higher modes between the
models can lead to high-order interactions appearing at
different frequencies, which is why these interactions
are not captured by both models at the same locations
on the FEP.

The periodic solution at point (b) in Fig. 7 is pre-
sented in Fig. 9, which shows the time series of the
vertical displacement at the x/L = 0.36 point and its
frequency spectrum, respectively. The 3:1 interaction
between NNM2 and NNM4 is observed, where some
static contribution is also present from NNM 1. There
is good agreement between the time histories for both
models, which is to be expected as higher-order dynam-
ics are not manifested on the periodic solution at point
(b).
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Fig. 7 FEP of second NNM of shallow arch, comparison
between vonKármán (black solid line) and SE(2) (orange dashed
line). Time history of displacement of points a Green diamond
and bBlue diamonddepicted inFigs. 8 and 9, respectively. (Color
figure online)
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Fig. 8 Point a Green diamond in Fig. 7, normalised vertical
amplitude at x/L = 0.36. NNM7 present at 8:1 with NNM2.
Comparison between von Kármán (black solid line) and SE(2)
(orange dashed line). (Color figure online)

4.5 Straight cantilever beam: NNM1

As a final test case, the straight beam was made free
on one end to create a straight cantilever beam. The
material properties of the beam remain unchanged.

The FEP of the first NNM is shown in Fig. 10. It
is seen that the responses from the beam models are
characteristically different,with theSE(2)model show-
ing hardening behaviour in contrast to the softening
behaviour from the von Kármán model. The hardening
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Fig. 9 Point b Blue diamond in Fig. 7, normalised vertical
amplitude at x/L = 0.36. a time history and b frequency con-
tent. Comparison between von Kármán (black solid line) and
SE(2) (orange dashed line). (Color figure online)

effect for the SE(2) model is in agreement with results
obtained using an intrinsic beam model by Palacios
[48] and a geometrically exact model by Debeurre et
al. [31]. This supports the conclusion that the soften-
ing behaviour observed from the von Kármán model is
incorrect. This softening behaviour is not observed if
the von Kármán model is solved with full integration,
as the effect of full integration is seen in an overall stiff-
ening of the structure. This serves as strong motivation
for not using the vonKármánmodel formodelling large
deformations, as full integration can lead to shear lock-
ing [49], and reduced integration, as observed here, can
lead to incorrect results.

The SE(2) model is able to trace the backbone of
NNM1 up to larger energy levels, compared to the
lower levels found by the vonKármánmodel. The high-
est energy point on the backbone is indicated by a green
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marker on the FEP for both models. The deformed
shape of the beam corresponding to this point is given
in Fig. 11. It is clearly seen that the SE(2) model is able
to capture periodic responses with significantly larger
displacements and rotations compared to the von Kár-
mán model. Despite significant efforts, the continua-
tion algorithm was not able to trace the von Kármán
curve beyond the point already found in Fig. 10. At
higher energies, solutions on the SE(2) backbone start
showing contributions from NNM8, which is the first
axial mode of the beam, due to the large deformations
leading to axial motion. The frequency content of the
solutions also shows vibrations at the third harmonic of
the fundamental frequency of NNM1. As the contribu-
tion of NNM8 grows along the backbone, higher-order
interaction tongues begin to appear. These correspond
to mixed interactions with higher axial modes such as
14, 19, and 22, primarily at the 15th, 17th, and 19th har-
monic. These interactions are at energy levels beyond
the reach of the von Kármán model. The presence of
the axial modes in the response points to a further moti-
vation for using the SE(2) model to ensure the axial
deformations and their effect on the periodic solution
is captured correctly.

It was further found that the von Kármán model
required a smaller time step by an order of magnitude
in the shooting time integration for tracing the NNM
curve compared to the SE(2) model, resulting in slower
convergence of the continuation process. Though not
systematically quantified here, it was observed that the
SE(2) model can accurately produce the correct NNM
solutions with fewer FE elements—an observation that
is supported by other observations already made in the
literature [21]. This indicates a further usable possibil-
ity for reducing the overall computational time. The
cantilever therefore presents a case where there are
starker differences between the NNMs obtained by the
SE(2) and von Kármán models. A strong argument can
therefore be made for using the SE(2) model over the
von Kármán for modelling beams with large rotations
and deformations such as the cantilever.

4.6 Straight cantilever beam: NNM2

The FEP of the second NNM is shown in Fig. 12. Here,
the backbones are in agreement, while various inter-
action tongues are observed on the SE(2) curve. A
prominent tongue appears at around 51 Hz, which cor-
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Fig. 10 FEP of first NNM of straight cantilever. Comparison
between vonKármán (black solid line) and SE(2) (orange dashed
line). Point Green diamond indicates highest energy point cap-
tured on the backbone for each model. (Color figure online)

responds to a 41:1 interaction with NNM11. Smaller
tongues corresponding to high-order harmonics also
appear further along the backbone. The deformed beam
shape at the lowest frequency point on the backbone
(approx. 44.8 Hz) for both models is shown in Fig. 13.
There is good agreement between the models, and the
von Kármán beam shape does not show significant
deviation from that of the reference SE(2) model. The
presence of axial deformation is clearly seen in the
beam shapes owing to contributions from axial modes
in the response: mainly NNM 8, along with NNMs
14, 19, 22, and 24. The normalised vertical and axial
displacements of the beam tip are depicted in Fig. 14.
The presence of the third harmonic is seen in the verti-
cal tip displacement, which manifests as double the
frequency in the axial displacement. NNM3 begins
to contribute to the response by means of excitation
through the third harmonic of NNM2. The deformed
beam shape in Fig. 13 also reveals the presence of the
beam’s third mode shape, more prominently on the
SE(2) beam where it is relatively stronger. Though
the vertical tip displacements are in relatively close
agreement between the two models, there is greater
difference in the displacement in the axial direction.
The importance of using a more accurate beam model
is therefore highlighted once more, as the significant
contribution from higher-order axial modes needs to
be modelled correctly for the full dynamics to be cap-
tured.
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Fig. 11 Deformed beam shape at points indicated by Green dia-
mond in Fig. 10. Comparison between von Kármán (top black
line) and SE(2) (bottom orange line). (Color figure online)

5 Conclusion

The constant drive to improve performance margins
of structures is leading to lighter designs, which are
increasingly flexible and exhibit geometric nonlinear-
ity. The modelling of geometrically nonlinear struc-
tures currently relies on approaches that have approxi-
mate kinematic assumptions, require approximations
when implemented, or are difficult to generalise to
more complex (3D) examples. In this paper, all these
issues were tackled by using models based on a two-
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Fig. 12 FEP of second NNM of straight cantilever. Comparison
between vonKármán (black solid line) and SE(2) (orange dashed
line). (Color figure online)

dimensional SE(2) Lie group formulation. A doubly
clamped straight beam, a shallow arch, and a cantilever
beamweremodelled using this formulation. To analyse
the nonlinear dynamics of these structures, their non-
linear normalmodeswere computed using the shooting
and pseudo-arclength continuation methods. However,
the use of the underlying Lie group model required
modifications to both methods to account for the non-
Euclidean nature of the state space.

Comparison with the results obtained using the pop-
ular von Karman model highlighted several important
observations:

• The approximate kinematics of the von Karman
model can lead to erroneous qualitative predictions
(see Sect. 4.5). As anticipated, the geometrically
exact nature of the SE(2) model captures the cor-
rect frequency–energy dependence of the NNMs.
For large vibrations of the cantilever beam, the
responses along the backbone of the NNM exhibit
a relatively strong higher-harmonic content and
the contribution of several high-frequency linear
modes with significant axial components, which is
not captured by the von Kármán model.

• Differences in the kinematic assumptions between
the two models lead to differences in the natu-
ral frequencies of the higher modes and can also
affect their overall frequency–energy dependence.
As such, mode interactions were seen to differ in
location and shape between the twomodels. In prin-
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Fig. 13 Deformed beam shape for lowest frequency point on the
backbone in Fig. 12 (approx. 44.8 Hz). Comparison between von
Kármán (top black line) and SE(2) (bottom orange line). (Color
figure online)

ciple, this could also affect the order of the interac-
tions observed between the two models.

• Finding periodic solutions is computationally less
expensive with the SE(2) model, which gener-
ally requires fewer time steps during shooting.
The number of finite elements in the SE(2) model
can also be reduced compared to the von Karman
model, while preserving the accuracy of the results.

Differences between the von Karman and Lie group
formulations are expected to be even more important
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Fig. 14 Normalised a vertical and b axial amplitude versus time
at beam tip for lowest frequency point on the backbone in Fig. 12
(approx. 44.8Hz). Comparison between vonKármán (black solid
line) and SE(2) (orange dashed line). (Color figure online)

when considering 3D structures with larger rotations
and displacements. Owing to the correct underlying
kinematics of the Lie group model, and thanks to its
local frame formulation, problems such as shear lock-
ing and rigid body strain are completely avoided. The
higher efficiency of the Lie group model also results
in needing fewer finite elements, which has a signifi-
cant computational advantage in modelling 3D struc-
tures. The Lie group model considered, and the new
shooting and continuationmethods developed here, are
thus expected to significantly benefit themodelling and
analysis of vibrations of complex and highly flexible
structures, such as those being increasingly developed
by industry.
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A Lie groups

A group is defined as a set of elements which is closed
under a composition rule, whereby its application on
two elements of the set results in another element
belonging to the set. Considering matrix groups, that is
groups whose elements are all matrices, the composi-
tion rule can be defined as the matrix product, defined
as q1 ◦ q2 = q1q2 = q3 ∈ G for q1, q2 ∈ G. This
composition rule has additional properties, such as the
existence of an identity element e and of an inverse
operation. This creates a group of square, invertible
matrices. Amatrix Lie group is then defined as amatrix
group for which the composition and its inverse are
smooth, thereby creating a differentiable manifold on
which differential geometry can be applied.

The tangent space of any q ∈ G is a vector space and
is written as TqG, such that an infinitesimal variation
of the group element belongs to TqG. In the context of
Lie groups, it can be shown that the tangent space at q
is related to the tangent space at the identity element e
through a linear mapping.

The tangent space at the identity is called the Lie
algebra g and is isomorphic toRk through the invertible
linear map (̃•) : Rk → g, x → x̃. This mapping can
be used to write the derivative of q(a) parametrised by
a variable a ∈ R as
dq

da
= da(q) = qã, (A.1)

where ã is an element of the Lie algebra. The group
structure preserves commutativity of derivatives, such
that for two parameters a, b ∈ R we have

da(db(q)) = db(da(q)). (A.2)

Applying the chain rule to the derivatives and using
Eq. (A.1) yields

db(ã) − da(b̃) = [ã, b̃], (A.3)

where the right-hand side is the Lie bracket operator
and is defined as

[ã, b̃] = ãb̃ − b̃ã. (A.4)

Similar to Eq. (A.1), an arbitrary infinitesimal vari-
ation of q can also be written as:

δq = q δ̃q, (A.5)

where δ̃q indicates an infinitesimal element belonging
to the Lie algebra. Considering Eqs. (A.1) and (A.5),
we can rewrite Eq. (A.3) as

δ(ã) − da(δ̃q) = [ã, δ̃q]. (A.6)

The above can be rearranged andwritten in vector form
through the isomorphism of the (̃•) operator with R

k

as

δ(a) = da(δq) + ûδq, (A.7)

where ˆ(•) is a linear operator which maps a vector in
R
k to a k × k matrix.
For the special Euclidean group SE(3), the Lie alge-

bra se(3) is the space of 4 × 4 matrices h̃ as

h̃ =
[
h̃Ω hU
01×3 0

]
∈ se(3), (A.8)

where h̃Ω is a member of the Lie algebra of the special
orthogonal group SO(3), and hU ∈ R

3. h̃Ω is given by

h̃Ω =
⎡
⎣ 0 −h3 h2

h3 0 −h1
−h2 h1 0

⎤
⎦ ∈ so(3), (A.9)

which is isomorphic to R
3. From this isomorphism, h̃

can be written in vector form as

h =
[
hU
hΩ

]
∈ R

6. (A.10)
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Finally, the ˆ(•) operator is defined as

ĥ =
[
h̃Ω h̃U
03×3 h̃Ω

]
. (A.11)

For H ∈ SE(3), we have

H =
[

R x
01×3 1

]
. (A.12)

Eq. (A.5) can then be written as

δH = Hδ̃h, (A.13)

which using Eq. (A.8) can be written as[
δR δx
01×3 0

]
=

[
R x

01×3 1

] [
δh̃Ω δhU
01×3 0

]
, (A.14)

which gives rise to the following representation of
derivatives

δh̃Ω = RT δR,

δhU = RT δx.
(A.15)

Eq. (A.1) can be solved as a differential equation with
the solution as

q(a) = q0 exp(ãa). (A.16)

The exponential map therefore introduces a local
parametrisation of the Lie group around any q0 ∈ G,
and maps an element of the Lie algebra onto the group.
This implies that any q ∈ G can bewritten as a function
of x̃ ∈ g using the exponential map such that

q = q0 exp(x̃). (A.17)

The derivative of q with respect to a parameter a ∈ R

then becomes

da(q) = q0 D exp(x̃) · da(x̃), (A.18)

where D exp(x̃) · da(x̃) is the directional derivative of
the exponential map in the direction da(x̃). Comparing
this to Eq. (A.1) gives

ã = (exp(x̃))−1 D exp(x̃) · da(x̃). (A.19)

This can then be written in vector form in terms of a
tangent operator as a linear relationship fromR

k toRk ,
yielding

a = T(x)da(x). (A.20)

Similarly, in case of taking variations as Eq. (A.5) we
have

δq = T(x)δx. (A.21)
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13. Ibrahimbegović, A.: On finite element implementation
of geometrically nonlinear reissner’s beam theory: three-
dimensional curvedbeamelements.Comput.MethodsAppl.
Mech. Eng. 122, 11–26 (1995). https://doi.org/10.1016/
0045-7825(95)00724-F

14. Betsch, P., Steinmann, P.: Frame-indifferent beam finite ele-
ments based upon the geometrically exact beam theory. Int.

123

https://doi.org/10.1002/num.21974
https://doi.org/10.1016/j.jsv.2018.01.049
https://doi.org/10.1007/s11071-022-07714-x
https://doi.org/10.1007/s11071-022-07714-x
https://doi.org/10.1016/j.jmps.2018.06.004
https://doi.org/10.1016/j.jsv.2008.04.014
https://doi.org/10.1007/s00707-013-0931-1
https://doi.org/10.1007/s00707-013-0931-1
https://doi.org/10.46298/jtcam.6828
https://doi.org/10.1007/s11071-019-05021-6
https://doi.org/10.1007/s11071-019-05021-6
https://doi.org/10.1007/s11044-015-9476-5
https://doi.org/10.1007/s11044-015-9476-5
https://doi.org/10.1007/s11071-021-06693-9
https://doi.org/10.1016/0045-7825(85)90050-7
https://doi.org/10.1016/0045-7825(85)90050-7
https://doi.org/10.1002/nme.1620261105
https://doi.org/10.1002/nme.1620261105
https://doi.org/10.1016/0045-7825(95)00724-F
https://doi.org/10.1016/0045-7825(95)00724-F


1658 A. K. Bagheri et al.

J. Numer. Methods Eng. 54, 1775–1788 (2002). https://doi.
org/10.1002/nme.487
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