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Abstract Space robotic manipulator (SRM) should
be always performed in the given workspace for safety
concern. This requires the system states such as
rotation of each joint, attitude of base, and their
velocities to be always constrained in the given
regions. In this article, a new sliding mode control
scheme based on a fixed time disturbance observer is
proposed to realize the fixed time coordinate motion
control of SRM with full-state constraints. Firstly, the
tracking error and error velocity at the novel sliding
manifold can converge to the equilibrium within a
fixed time without violating their state constraints.
Then, the control law based on the fixed time
disturbance observer is designed to achieve the sliding
manifold within a fixed time, which simultaneously
satisfies the state constraints during the approaching
stage. Unlike the most existing state constraint control
schemes, the proposed controller does not include any
Barrier Lyapunov Function (BLF) terms of system
states, and therefore the risk of controller outputting
inappropriately high control commands is eliminated.
Moreover, the proposed control scheme is compatible
to the initial system states violating their constraints,
which thereby removes the assumption of feasible
initial states. Furthermore, the proposed sliding
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manifold solves the singularity issue by a continuously
varying power of tracking error, which thereby does
not need an additional switch mechanism of manifold
compared to the conventional fixed time controllers.
The stability of the proposed control scheme is proven
by using the Lyapunov theory, and the effectiveness is
verified by numerical simulations.

Keywords Space robotic manipulator - Fixed time
control - State constraint control

1 Introduction

Space Robotic Manipulators (SRM) play a crucial role
for various on-orbit missions such as debris removal,
object inspection, maintenance, and assembly of space
structures [1-5]. To successfully perform such space
missions, the motion of SRMs should be well
controlled so that the End-Effector (EE) and all the
joints can track their reference trajectories accurately.
Moreover, SRMs should be always performed in the
given workspace for safety concerns, which requires
the system states including the tracking error and the
error velocity of each joint to be always constrained
within their pre-defined boundaries.

Over the past decades, many efforts have been
made on controlling the motion of SRMs. The early
developed controllers of SRMs always required either
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the accurate model or the linearizable model [6-8].
For example, Authors in [8] proposed a Proportional
Derivative (PD) controller based on the accurate and
linearized model of SRM with multiple Control
Momentum Gyros (CMGs). Later, many adaptive
controllers [9-12] and robust controllers [13—15] were
designed to handle the system uncertainty, distur-
bance, and nonlinearity. Additionally, many works
showed the interest on improving the transient
performance by achieving a finite time convergence
of tracking errors, known as Finite Time Control
[16-20]. To detail a few, authors of [16] developed a
Radial Bias Function (RBF) neural network based
continuous sliding mode controller for SRMs under
actuator saturation to achieve a finite time conver-
gence of tracking errors. In [18], a novel finite-time
Dynamic Surface Control (DSC) scheme was pro-
posed for SRMs, which can not only guarantee the
tracking error to converge within a finite time but also
efficiently attenuate the actuator saturation. However,
those control schemes can only achieve the settling
time dependent on the initial system state, which
cannot guarantee a settling time pre-defined by users.
Recently, Fixed Time Control (FTC) has been
popular since the concept of fixed time stability was
introduced by Polyakov in [21]. FTC approaches can
achieve a settling time that is independent of initial
conditions and only affected by the pre-defined
coefficients of controller, which shows a significant
superiority to Finite Time Control. In [22], an Extreme
Learning Machine (ELM) based non-singular fixed
time sliding mode control scheme was proposed to
control robotic manipulator systems, wherein the
novel sliding manifold achieved a faster converging
rate of tracking errors compared to the conventional
FTC counterparts such as [23, 24]. Authors of [25]
presented an adaptive singularity-free fixed time
control scheme for the attitude regulation of rigid
spacecraft. The novel sliding manifold is singularity
free without the need to switch the manifold around
the equilibrium of tracking errors, which showed a
superiority to other FTC approaches such as [26-28].
Authors in [29] designed a class of general non-
singular terminal fixed time sliding mode control
scheme, and then applied it on a dual-arm free floating
SRM to achieve the global predefined time stability.
On top of that, it is a high priority for SRMs to
guarantee the constrained system states to have a safe
operation. For example, the tracking errors of a SRM
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servicing a target spacecraft should not exceed the
given range to avoid hitting the body of the target,
while the angular rate of the joints should not exceed
the maximum rate allowed by the actuation motors.
Many researchers have paid attention to the state
constraint control. To mention a few, authors in [30]
proposed an adaptive neural network controller for
robotic systems subject to actuator saturation and
time-varying delay, which utilized a Tan-type Barrier
Lyapunov Function (BLF) to realize the semi-globally
uniformly ultimately bounded tracking errors with the
asymmetrically constrained states. In [31], a robust
sliding mode controller for robots was designed to
realize the finite time stability with the fulfillment of
the state constraints. Liu et al. designed a neural
network controller that realized the bounded tracking
errors with the satisfaction of the asymmetric time-
varying state constraints for a class of strict-feedback
nonlinear systems [32]. Moreover, many efforts have
been made on combining the FTC and constraint state
control such as [33-36]. For example, authors of [36]
designed a fuzzy adaptive backstepping controller for
a class of uncertain non-strict-feedback systems
subject to input saturation, which not only realized
the fixed time stability but also constrain the system
states within the pre-defined time-varying boundaries.
It is also worth mentioning that Prescribed Perfor-
mance Control (PPC) can be regarded as a particular
case of state constraint control, since PPC approaches
guarantee the transient performance (settling time and
overshoot) by actively constraining the tracking error
within the pre-defined decaying functions. Due to the
merit of guaranteeing a pre-defined transient perfor-
mance, many PPC schemes have been developed for
robotic systems [37—40] and spacecrafts [41-43].
However, most of the existing state constraint
controllers including [30-34] are designed based on
Barrier Lyapunov Function (BLF). Therefore, these
controllers include some BLF terms that could result
in an inappropriately high control commands when the
system states are close to their pre-defined constraints,
which could compromise the control performance or
even make the system instable. Unfortunately,
although the BLF terms in these controllers can be
proven to be finite by using the Lyapunov theory and
considering the controller as a continuous system, the
risk cannot be neglected because of the discrete nature
of controller in practice and the potential failure of
state measurement. For example, the slow response of
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actuators could result in the system state overly
approaches to or even exceeds the constrained
boundary before the next action of actuator is applied
to stop it. Furthermore, the measured system states
used by controller could also be inappropriately close
or even exceed to the constraints due to measurement-
noises and sensor-failures. Moreover, the control
schemes based on BLF [30—43] assume the initial
system states do not violate the constraints, which
means they cannot handle all the initial conditions. In
the light of the foregoing discussion, the following 2
aspects are urgently expected to be improved.

e Compatibility to initial states violating con-
straints: if the initial states satisfy the constraints,
the tracking error should be able to converge
within a fixed time without the violation of state
constraints. If no, the controller should be still able
to make the tracking error converge within a finite
time.

¢ Norisk due to the barrier function: the controller
should not calculate the inappropriately high
control commands when the measured system
states are close to or even exceed their constrained
boundaries.

To solve the mentioned issues, a novel fixed time
full-state constraint sliding mode control scheme for
SRMs subject to system uncertainty and unknown
disturbance is proposed in this paper. Firstly, a novel
singularity free fixed time sliding mode manifold is
designed, which can guarantee the fixed time conver-
gence of tracking errors without violating state
constraints. Notably, the varying power of tracking
error of the manifold is designed to solve the
singularity problem of FTC, which is different to
many conventional works [20, 22, 26, 44-46] that
need an additional switch mechanism of sliding
manifold. Secondly, the condition of sliding manifold
is determined such that the system state will satisfy
their constraints if this condition is satisfied. Thirdly, a
fixed time disturbance observer-based sliding mode
controller is proposed to achieve sliding manifold
within a fixed time with the satisfaction of the
mentioned condition. The advantages of the proposed
control scheme are listed as follows.

e Compared to the conventional state-constraint-
control schemes [30—43], the proposed controller
does not include any BLF term of system states,

which thereby eliminates the risk of calculating
inappropriately high control commands caused by
the system states close to their constrained
boundaries.

e Unlike the conventional state-constraint-control
schemes [30—43] that are incompatible to the initial
states violating the constraints, the proposed con-
troller can still achieve a finite time stability if the
initial system states violate their constraints.

e Compared to the conventional fixed time control
scheme [20, 22, 26] and [44-46], the proposed
controller does not need an additional switch
mechanism that works when tracking errors move
into a neighbourhood of origin. Thereby, the fixed
time convergence is not compromised when
tracking errors at the neighbourhood of origin.

The rest of paper is organized as follows. The
model of SRMs and assumptions are given in Sect. 2.
In Sect. 3, the proposed control scheme is detailed,
and the proof of stability is given. The simulation
results are presented in Sect. 4. Conclusion is drawn in
Sect. 5.

2 Problem formulation and preliminaries
2.1 Dynamic model of space manipulator

A n-link rigid space robotic manipulator considered in
this paper is shown in Fig. 1. The SRM is composed of
1 4 N rigid bodies. i = 0 is the satellite or spacecraft
base with 6 Degree-of-Freedoms (DOFs) and i =
1,2,...,N represents the i rigid link. ¥; is the inertia
frame, X, is the body fixed frame of the base, X;

Fig. 1 Illustration of the space robotic manipulator (SRM)

@ Springer



1886 Z. Xie et al.
(=1,2,...,N) represents the local fixed frame of the ei(t) = 0i(t) — 0,,(t) = 0,V > 1%,
i link, and X is the local frame of the end effector. = 0x,0y,0z,1,..,N (3)

The Centre of Mass (COM) of the i link is located by
a; and b; in local frame. [; = a; + b; represent the
length of the i link.

The dynamic model of SRMs derived by using
Lagrange method is shown in (1) [11-16, 38, 39].

M(e)é+c(9,9)é+pzr (1)

0 = [05,0g]" € R+ 0p =
[0ox, 0oy, 0o:)" € R**! represents the attitudes of the
base, and g = [61, 62, ..., HN]T € RV*! refers to the
angular positions of joints of the manipulator. The
positive definite matrix M(0) € RCTV*GHN) is the
c(e, 9) €

RBHN)*G+N) ig the matrix consisting of the nonlinear
(3+N)x1

where

coupling inertia matrix of SRMs.

terms of Coriolis and Centrifugal forces. D € R

is the external disturbance.t = [tp,1z]" € RGN

5 = [14, 75,7 € R¥*! is the torque regulating the
base, g = [11, 12, . . . rN]T € RV*! is the torque driv-
ing the joints.

After some mathematic manipulations, (1) can be
written as (2) ready to design a controller [12, 47-49].

0)C (9, 9’)9

0= "(0yc— M
_|_

1

M) [1\2(0) - M(O)} i [c(o, 0)
(0,0)0 D}
(O - C(0,0)0+H 2)

where the matrix / and C is the nominal part of M and
C respectively. The vector H = 7 (0) {[C(0,0) -
6(0,9)]9+D}+ [M_l (0)71\771(0)} 7 is the lumped
uncertainty consisting of model uncertainties and
external disturbances.

2.2 Assumptions and control targets

The control target is to realize the convergence of
tracking errors without violating the constraints of
angular position and angular velocity, which is
detailed in (3), (4) and (5).
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EU(I) <;0;(t) < ,;(2),Vt >0,i = 0x,0y,0z,1,..,N
(4)

Ky (1) <0;(t) <Fp (1), ¥t >0,i = 0x,0y,0z, 1,..,N
(5)

where t* > 0 is the settling time. 0,; is the reference
signal. % ;(¢) and k; ;(t) are the constraints of angular
position. x,;(f) and %,(t) are the constraints of
angular velocity.

Assumption 1 Like the works [12-14, 16], the

lumped uncertainty H in (2) is assumed to be bounded
by a positive number H > 0 such that ||H|| <H.

Assumption 2 k;;(t) <« ;(t) holds so that there
min

exists a positive constant A;; = ‘s 0(121,,-(t)—
k(1)) >0, and K, (1) <i;(t) holds so that there
exists a positive constant
Ay = ?g% (R2,i(t) — 12,(2)) > 0.

Assumption 3 The constraints of angular velocity
k,; and ¥, ; are able to handle the changing rate of the
constraints of angular position K ; and Ky ; such that

Ky (1) <i2,(t) and K, (1) <&1(t) hold.

Assumption 4 The reference trajectory 0, ; satisfies
the state constraints (4) and (5) such that
Ky (1) <0,;(1) <Ryi(r) and K, () <0,:(t) <Roi(2)
hold.

Remark 1 Assumption 1, Assumption 2, Assump-
tion 3 and Assumption 4 are reasonable and accept-
able. In detail, Assumption 1 requiring a bounded
lumped uncertainty is acceptable in many literatures
such as [12-14, 16]. Assumption 2 guarantees the
existence of the space between the upper boundary and
lower boundary of constraints, where the system states
are controlled to track their reference signals. Assump-
tion 2 can also be found in [30]. Assumption 3 allows
the system state 6; to have the high enough magnitude
of velocity to avoid hitting the upper/lower boundaries
of constraints at any time. For example, 0; extremely
close to the lower boundary k, ; can avoid hitting the

lower boundary only if i, ; > 91- > 5’17,- holds, while 6;
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Fig.2 Block diagram of the
proposed control scheme
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extremely close to the upper boundary ¥, ; can avoid
hitting the upper boundary only if i, ; < 0; < iy . holds.
Assumption 4 guarantees the successful tracking of

reference trajectory is not contradictory to the satis-
faction of state constraints.

2.3 Useful existing lemma

Lemma 1 [50]. For a general Lyapunov function
V(x), if the following condition (6) is satisfied, the
system X = f(x) can be fixed time stable with the

convergence time T < T ¢ 1

1
T nlp=1) T n(l=py)

V() < =iV (x) = V72 () (6)

where y, > 0,7, >0, p; > 1l and 0<p, <1.

3 Control scheme design

The proposed controller consists of the non-singular
fixed time constrained state sliding mode manifold,
and the fixed-time disturbance observer based con-
strained state robust controller. The structure is
illustrated in Fig. 2.

3.1 Non-singular fixed time sliding manifold

In the light of (3), the upper/lower boundaries of
constraints of tracking error are defined in (7). The
upper/lower boundaries of tracking error velocity are
defined in (8).

Remark 2 According to (3)—(5) and (7)—(8), it is
obvious we can achieve (4)-(5) if the inequalities
&, <e;<#gp;and g, ; <é; <&, are achieved.

Remark 3 According to Assumption 2 and Assump-
tion 4, it is true that & ;(¢) > 0, & ;(¢) <0, &,(¢) >0
and ¢, ;(#) <0 hold. Working with Assumption 3, it is
clear that ¢, ; <&, and 8, < & i hold. Therefore, there
exist the following positive con-
stants:dy; = r?§3‘(|§1,i(’)|) >0, 9;;= rtnzlg(|§lﬁi(t)|)

> 0, 32’,‘ = I;Ilza())((|§'17i([)’) > 0, éZ,i = 1;1;151(‘5],(1‘”)

>0, d3;= r}‘;‘(’)‘(éli(t) — & (t)) >0, 63;= min

ey >0
(E24(1) = é1,(1)) > 0, daj=max(e1;(t) —2,(1)) >0,
é4_’i:1}12151(§1,,-(t)—§2"i(t)) >0 and 55’i:I}l§(¥
(?2,1‘(0 7|32,i(t)’> >0. és,i:‘}lzig(|§z,i(’)|7
|§2,,'(t)’) >0.

In the light of (3), (7) and (8), a novel non-singular
fixed time sliding manifold s =

[S0x, S0y» S0z 51, 82, -, sn] " is designed as (9)-(13).
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si(t)=éi(1)—Xi(1)

_ &, (1) @;(2) &2, (1)D;(1)
X0 =) oy O
©)

T s
(1) = ket iles(0) [ + k(e ()] + 05" (1)) >

e G (¢T,i7kc,i),if€i<0 )

Gl (¢Z,i7 kC,i) ) l..fei Z 0

. 1 .
S o (b1 — kl,i(_ei)ll"L b1,
2,

N P R
& — &+ Go(kp, e — §1,i) >

* 1 A
¢2,i = T (d)z,i — ki), ¢>2,i
2,i

,él‘i -Gy (kR, &1 — ei)
TE- | —t; 13
& — & + Ga(kr, &1 — €)) (—224) (13)

_ 15 lfeiZO
i = {0, if e; 1t;0 (14)

where kl,i >0, k2$i >0, ;q’i > 1, kc‘i > 0, kz > 0 and
kg > 0 are the constant coefficients defined by users.
The function G| and G» used in (11)-(13) are defined
in (15) and (16) respectively. 0.5 <23, </,,;(t) <lisa
varying parameter to solve the singularity problem of
fixed time control, which is defined in (17).

S lfx< -y
1 b 1
Gi(x,y)= C-l—ix—gcos (77:2%) —|—§y,if—y§x§y
ct+x,ifx>y
(15)
0, if y<g
G x’ — ) . 16
2(%,) {x(yc)z, ify>¢ (1e)
. 1(,* if t<to;
hailt) = %*%*172/%”5("@)'M" e (17)
By if 1210+ e

where x, y € R mean any real number. ¢ > 0 is a small

positive constant close to zero (e.g. ¢ = 1 x 10~?) that

satisfies 0 <¢ <mi{)1(\§14,-(t)|, le (#)]). 0.5<A5,<1is
1200 1 ’
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aconstant. p; > 01is a positive constant. 7y ; is the time
after the sliding manifold (9) is achieved such that
si(t>10;) =0. to; will be determined in the next
section.

Theorem 1 Considering the system (2), if system
states successfully reach the sliding manifold (9) at the
time fy; > 0, the following 2 conclusions can be drawn:

e If system state at t = f(; does not violate constraint
(4) such that S,‘(l‘ > l‘o‘,‘) =0and ¢ (l()J) <e; (l‘oﬂ')
—Li

<%i(to;) hold, then e;(r>1,;)=0 can be
achieved within a fixed time f;; shown in (18),
and the constraint (4) and (5) are satisfied as long as
t>1y;.

e If system state at t = fy; violates constraint (4)
such that s;(t>1o;) = 0 and ¢;(to;) € (—o0, ¢

—1.i
(IO,i)) U (51",'(2‘07,'), OO), then e,‘(l‘ > 1‘2,,‘) =0 can be
achieved within a finite time #, ; shown in (19), and
the constraint (5) is satisfied as long as > 19 ;.

2

(\?)”Mfakl,i(;d,i —1)

(V2) "Gk (1 — 15,

=ty +1ip;+

+ (18)
=ty +1p;

2 1
+ 2

1-45,
e _ei t K 2.0
(\/§)1+A2'i5ik2’l‘(l _ /,{;i) [2 ( 0, )]

(19)

where constant o; > 0 is independent of system state
e;(t = ty,;), constant a; > 0 is dependent of system
state ¢;(t = fo,;), which are detailed in Appendix A.

Proof The proof is given in Appendix A.

3.2 Condition of sliding manifold to satisfy state
constraint

Theorem 2 Considering the system (2), if the initial
states satisfy the constraints (4) and (5), the state
constraints (4) and (5) can be satisfied for 0 <t <t ; as
long as the condition described by (20)-(27) is
satisfied for 0 <t<ty;. Moreover, the inequations
0<p<1,0<p <1, By; > 0and B, ; <0 always hold
for all + > 0.
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B,;<s;<Bi; (20)
By = [i;(hi + &2, — X))
{Buzﬁz(hi—i_gb Xl) (21)

where h; = hoFo(t) and h; = hy;Fo(r). The time
function Fy(¢) is shown in (22). where constants
ho; >0 and hy; <0 are detailed in (23)

Tt
Fot) = (5?) rr=h (22)
0, ift >T
— 2¢;(0), if €;(0) > &;
ho = © fzf (e,()O) 2i0) It; 521,4(0)’&07"
_{ ( lfe )Sﬁz,z(
0, if ¢;(0) gt;§2,i(0)
(23)

where the variables fi; and W, are detailed in (24).

1, if|ZR[|>)Z;i‘

zri + Fozy’;
Ho,i + (1 *ﬁo,) sin (Rl*iozR)
2 (z&,)

L, if ‘ZL.,i| >z

&= i+ Fog)?
Ko, + (1 - ﬁo,f) Sin <§T)2’ 1 ‘ZL.i‘ < ‘ZLJ‘
N

) if IZRJ| < )Zl*u‘

(24)

where z;; =e; —¢ and zg; = €;; — ¢;. The con-
—1,i
stants zp; >0, z;7; >0, zz; >0 and %, >0 are

defined in (25). The constants fi,; and u  are defined

—0,i
in (27)
o _ [ [Ei(0)], if |zg;(0) =0
R =\ Jzra(0)], if |2g,(0)] > 0°Li
{|8 O, if [z,(0)[ =0
{0 (25)
|zLi(0)], if |z,,;(0)| >0
Z** :{|81i( | lflle( )| 0 *k
Ry 0, else L
_ S 1e1;(0)], if [z.4(0)] = O
o {O,Ielse (26)

min

foi= ;< (Fri(1)), Fri(0)
_ min(&(t), 8.4(t)) — Xi(1) Xi(1) = & Ui
hi(t) + &24(1) — &y,(1) 77 —&; + Ui
By, = ?li%(fZ,i(t))7f2,i(t)
_ max(éy(1), &,(1)) — Xi(7) ) &,iU;
hi(t) + &54(1) — &24(1) & +U
U = kl,i|51,i|i"' + ko oii(ei) gy Us
— k17i|§1,[|/1“ + kz;i(xi(ei)‘e,’:g_i (27)

Proof The proof is given in Appendix B.

Remark 4 The information of 4;, his €145 €1, & ; and
&, are known, and they are all time-dependent
variables without any system states. Therefore, 1,
and Ky, can be obtained by solving (27) at the

beginning prior to implement the controller.
Remark 5

non-singular such that |X,| is non-singular for all ¢; €
(—00,00) and ¢; € (—o0, 00).

: The proposed sliding manifold (9) is

Proof The proof is given in Appendix C.

3.3 Fixed time disturbance observer based robust
controller

To improve the clarity, the dynamics model (2) can be
written as (28).

éi:Pi+Hi7i:O-x70y>0Z>1>"aN (28)

where P; is the i

(1\71_11) € RBNX1 H. is the i" element of the vector

He R(3+N)X].

Prior to detail the robust controller, a Fixed Time
Disturbance Observer (FTDO) [52] is introduced in
(29)—(35) to approximate the unknown term H; in (28).

element of the vector

Z; = 9,’ — a; (29)
= —[Koﬂ‘li + Pi (30)

7; = yij- ﬂg”l(li — 7)) (kailzi — 7" + bz
- Zi| ) (31)
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Hi=v, —k,Z; (32)

where ﬁ,- is the estimate of H;. ko; >0, ls; > 0,
lo; >0, m>1 and O<m<1 are the constants.
y; = z;. The derivative y; is calculated by a discrete
tracking differentiator (TD) shown in (33)-(35).

{ Xl_’,‘(k + 1) = Xlﬁi(k) + Xzﬁi(k)AT

ok + 1) = xa,(k) + u; (k) AT (33)

Ai(k) (34)

o [ s ), i A0 > w
il )—{ —rg = i 1A < w

Xl + 2O =W k), i L) > w
Ai(k) = (k)
Xa,i(k) + EAT I ILR)| <w
(35)
where  L;(k) = xy;(k) — y;(k) + x2,(k)AT  and

Bi(k) = \/w? + 8ry|Li(k)|. w = ryAT. The positive
constants r,y and AT are the tracking rate and sampling
time respectively.

Lemma 2 [52]. The observer error ; = z; — Z; and

disturbance estimation error H i =H; — H ; converge

to zero within the fixed time t; given in (36).
2 L 2

(vV2)" Ml (m—1)  (V2)' (1 -m)

= (36)

Remark 6 The FTDO [52] has no requirement on the
disturbance to be estimated, which means it is appli-
cable to SRMs. Moreover, the effectiveness of FTDO
had been experimentally verified by authors of [52]
such that Lemma 2 holds even at the presence of
measurement noise.

The novel robust controller including no barrier
term is designed in (37, 38). More precisely, the
control torque is calculated by (37).

v = M(0)(v +v2) + 6(0, 0)0' (37)

The v, ; and v, ; are the elements of the vector v; and
v respectively, which are detailed in (38) and (39).

Vi = O, +X; — (/31,5|Si|p1 + ﬂz‘i|si|p2)sg”(si)

1o s (38)
— (B, +§“/l‘ )si — H;'Y,

@ Springer

vai = —[Ar; + |Ar|sgn(si) + vo]¥; (2) (39)

where the constants f;; > 0, f,; > 0, B3, > 0,7, > 0,
py>1 and 0<p, <1 are selected by user. H; is
calculated by (32). The time dependent functions ‘I—'j’
and ¥; are detailed in (40) and (41). The variable
terms A; and vy; are presented in (42) and (43).

1,t <1y,
t—1y;
\P: (t) = < COS <g —0’l> Jh <t < fo; + T
0,1 > to; + T2
(40)
0,t< t;
t— 1ty
le(l) = < sin (E 0’l> b <t <t +T; (41)
2 T
1, t > 11,‘ —+ T3
B, ;si— s> - Bsi — s .
Apj=—2C B0 (42)
—B;iB,; +5; —B;iB,; + 5 —s,i
| (Bsi — i) (si — By % —
Vo = ﬁ;z ( 8, E l;( z+ ;y,t) 5 +%§i(—35,£5,i
T Dy,iBy i N
+ 57)s;
(43)

where constants T, > 0, 73 > 0, f,; > 0 and y,; > 0

are selected by user. The variable term y; is defined in
(44).

5; = 1/min||(By; — ) (5 — By,)| . | (Boi — 5:) (8 — B,) | 7]

5 = | B, +B 1
Si =5\ Psi T by —
2 ’ ’ N,’

— 1
=5 (B + B+
i 2<.,+ 7+Ni>

1 /- 1 —
BB BB, )

where positive constant X; > 0 is selected to satisfy
(45).
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5:(0)
N,’ i 0)] = B
> |&(0)] = | [Bs,i(o) _ SI(O)] [s:(0) — B, ;(0)] |
(45)
where variable &; = m

Remark7 Yy;in (44)is finite foralle; € Rand ¢; € R.
Moreover, for any initial state ¢;(0) € Rand ¢;(0) € R,
there is a finite positive N; to be the solution of (45).

Proof The proof is given in Appendix D.

Remark 8 Theorem 2 indicates that Fs’i > (0 and
B;; <0 hold for all ¢; € R, and the calculation of Ew
and B,; does not involve ¢; (seeing (21)). It means
—B,;B,; +s? >0 holds for all ¢; €R and é; € R.
Moreover, y; is proven to be finite for all ¢; € R and
¢é; € R in Remark 7. Therefore, the controller defined
by (38)—(44) has no barrier function term of the
measured system states (tracking error e; and error
velocity ¢;), which thereby eliminates the risk of
calculating inappropriately high control commands
when the measured system states are close to or even
exceed the constrained boundaries.

3.4 Stability analysis

Theorem 3 For a system of SRM (2) controlled by
(37)-(44), the sliding manifold (9) will be reached
within a fixed time #; shown in (46) such that s;(¢) =
0 holds fort > #( ;. Moreover B, ; <s; < Es,i holds for all
t >0 as long as the parameters of FTDO (29)-(32) are
selected to satisfy the condition (47).

2 2
to; = +
(\/j)l+p]ﬁ1.i(P1 - 1) (\/E)szﬁz,i(l - p2)
+ Ui+ Ts
(46)
1, H?
ZE0) - —— ~
1 251() 28476 | 1.0 H?
ﬁi+T3§ 4,i *le— - 4,i70,i
2 2/34,1'701
1, H
NE>S_
Toifahi= 28475,
(47)

where positive constant t; is defined in (36). T3 is
defined in (41). Positive constant 74 is selected by user
to satisfy T4 > T3. The variable &; is defined in (45).

Proof Proof is given in Appendix E.

The next step is to analyse the transient and static
performance. To do so, we consider the following 2
situations.

Situation 1 Initial system state violates the con-
straints such that at least one of the inequations,
£1,(0)<ei(0)<&;(0) and & ;(0)<é;(0) <&,(0),
does not hold. Given Theorem 3, s;(t) = 0 holds for
t > to,;. Given Theorem 1, ¢;(r) = 0 holds for t > 1, .
Therefore, in this situation, the finite time convergence
of ¢; can be achieved.

Situation 2 Initial system state satisfies the con-
straints  such  that ¢ ;(0)<e;(0)<&;;(0) and
£,;(0) <¢€;(0) <&,(0) hold. In the light of Theorem 3,
B,;<si<Bs; holds for 1>0. Given Theorem 2,
&;<e;<#g; and &, <€ <&,; can hold for r €
(0,10,] because §S7i<si<§m holds. Therefore, state
constraints are satisfied for ¢ € (0, 1y,]. Given Theo-
rem 1, state constraints can hold for ¢ € (fy;, 00) if
they are not violated at ¢ = 7y ;. Therefore, constraints
of tracking error and error velocity are satisfied in this
situation. Then, according to Theorem 3 (indicating
si(t) = 0 holds for ¢ > ;) and Theorem 1 (indicating
ei(t) =0 holds for t>1;), it is easy to conclude
e;(t) = 0 holds for ¢ > t;; in this situation.

Based on the foregoing discussion and Remark 2,
the following conclusions can be drawn.

o Ifky;<Oi<iijori,;< 0; < ic2,; does not hold for
t =0, then ¢;(t) =0 will hold for t>1,;. tp; is
defined in (19).

o If k,;<0;<f; and k,;<0;<#y; hold for 1 = 0,
then ¢;(rf) =0 will hold for ¢>t;, while
K;;<0;<#k; and 52,i<9i<’€2,i will hold for all
t > 0. t1; is defined in (18).

Remark 9 Compared to the conventional literatures
of state constraint control schemes such as [30-36]
and [53-56], a significant merit of the proposed
controller is the compatibility to the initial state
violating the state constraints.

@ Springer



1892

Z. Xie et al.

Remark 10 The procedure and motivation of con-
troller design are concluded as follows to enhance the
explanation of research. Firstly, we design the sliding
manifold (9)-(17) to guarantee the system states at the
manifold to have the following 3 properties: fixed-
time convergence without constraint violation if initial
states satisfy constraints (see Theorem 1), finite-time
convergence if initial states violate constraints (see
Theorem 1) and Non-singularity for all system states
on the real number field (see Remark 5). Then, we
derive a condition (20)—(27) that can guarantee the
system states initially satisfying their constraints to
always satisfy their constraints even they are not at the
sliding manifold (see Theorem 2). After that, we
design the Barrier-Lyapunov-term-free control law
(37)-(47) working with a disturbance observer (28)-
(35) to make the system states reach the sliding
manifold within a fixed time with the satisfaction of
condition (20)—(27) (see Theorem 3). Finally, the
analysed transient and static performance can be
obtained.

Remark 11 The potential limitations of the proposed
controller are detailed as follows. Firstly, the con-
troller does not consider the fault and saturation of
actuator, which means the actuator must be healthy
and able to generate the enough control torques
calculated by the controller. Secondly, the controller
does not consider the measurement noise and the
potential inaccessibility to measurement devices (e.g.,
IMU and star-tracker), which means the measurement
devices must be healthy and able to provide the
accurate information of system states (e.g., the attitude
of base, the angular position/velocity of each joint).

The process of selecting parameters is given as
follows.

Step 1 Select the parameters ki, ki, A1, 435 ke,
kr, kg and ¢ for sliding manifold (10)-(16). Select the
parameter T for (22).

Step 2 Calculate Z;Key zz‘i, z}fi, zzj‘i, Ho i and Ho; in

(25)~(27). Then, calculate s;(0), B, ;(0) and By;(0) by
using (9)-(17) and (21)-(26). It is worth mentioning
72,;(0) = 1. After that, select X; in (45).

Step 3 Select parameters 3 ;, By, B3 s Bai» Vio Voi»
Py, po and T, for control law (38)-(43). After that,
Select the parameters 7’3 in (41) and T4 in (47). Then,
select the parameters r., AT, ko, b i, lo;, m, and m
for the observer (29)-(35) to satisfy (47).

@ Springer

Step 4 Calculate ty; in (46), and then select the
parameter ¢p; in (17).

Remark 12 After selecting parameters, the imple-
mentation of controller for one iteration can be listed
as follows, which reflects the computational burden.

Step 1 At the current moment /C, measure the
system states (0;, 9,-), upload the known reference
signals (0,,, 9,‘,-, é,j), upload the known state
constraints (K1 4 K1is Ko js K2is Kl,i’ R.l,,', Kz,p R'z_,,-). This
step is implemented m times, where integer m > 0 is
the total number of DOFs to be controlled (e.g., i €
M ={0x,0y,0z,1,2,..,N} and m = Card
(M)=3+N).

Step 2 Calculate tracking errors (¢; = 0; — 0,;) and
error velocities (¢; = éi — 0',1,‘), calculate constraints
of tracking errors (&1; =K1; — 0,81, = 151; — 0:3)

and that of error velocities

(82 =12 — 0.,7;,§2’,- =Ky; — 0',7,-) by using (7) and
(8). This step is implemented m times.

Step 3 Calculate sliding variables s; by using (9)-
(17), calculating the derivative of X; (Xi) by using
(C1)-(C13). This step is implemented m times.

Step 4 Calculate By, and B, ; in (20) by using (21)-

(24) and their derivatives (B, Biu-) by virtue of the
calculated X; in the previous step. This step is
implemented m times.

Step 5 Calculate the estimated lumped uncertainty

(ﬁ ;) from disturbance observer by using (29)-(35).
This step is implemented m times.

Step 6 Calculate the vector v;; and v,; in (37) by
using (38)-(44). This step is implemented m times.

Step 7 Calculate the vector of control torques t by
using (37). This step is implemented once.

Step 8 Go back to Step 1 with letting K = IC + 1 if
the moment /C is not the terminate.

4 Simulation results

Like [3-5] and [9-20], we verify the effectiveness of
the proposed controller by numerical simulation in this
section. The numerical simulation for a 2-rigid-links
SRM visualized in Fig. 3 is then carried. The detailed
dynamic equations of the used 2-rigid-links SRM can
be found in [39]. The parameters of dynamic model
are detailed in Table. 1 [39].
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Fig. 3 2-rigid-links space robotic manipulator

Table 1 Parameters of dynamics model of SRM

Rigid Body i ai(m)  bim)  mke)  Iikg -m?)
0 - 0.75 60 225

1 0.75 0.75 5 1.125

2 0.75 0.75 5 0.9375

3 05 - 5 1

Similar to [9, 10] and [38], the reference trajectories
of the joints are selected as the sine and cosine
functions, as given below:0, =0, 0, = 10"sin(1 t),
0, = —8°cos (7). Similar to [9, 14] and [39], the
disturbance is selected as the combination of triangu-
lar  functions D =0.1[dy,dy,d3)" with
di = 0.6sin(37 + %) + 0.05sin(§1 + %), dr =
0.45cos (¢ +Z) +0.07sin(5t+%) and d3 =0.7
sin(3¢+ %) — 0.052sin(%¢ + %). The system uncer-
tainty is set as 20% such that M =0.8M and
C =08C.

The parameters of the proposed controller are
selected. In detail, the parameters for sliding manifold
(10)-(16) are: kig =k =kip=1, kog=kys =
kop=1, Jio=3, hii=lia=18, Ly=/y, =
d, =038, keo =key = kep =0.01, kr = 10,
krp=10,c=1x 107°. The parameters of disturbance
observer (29)-(35) are ry=0.1, AT =0.001,
koo =lkoi=ko2=1, ko= Ilki=k,=1,
koo =k, =lkoo=1, m=2, and n=0.8. The
parameters of control law  (38)—(44) are

51.0:51,1251.2:1, 52,0252‘1:52,2:01, 53,0:
/33,1:/33,2:2’ ﬁ4,ozﬁ4.1:ﬁ4,2:0-1’ Yo="1="2=
Ix107°%  990=701=702= 1x107% p;=18,

p,=0.6, Rg=27.5, Ny =N, =24. The time constants
areT1=5,T,=T5;=2,T4,=4, Ipo=tp1=Ip2= 1. The
guessed maximum of lumped uncertainty is H=0.001.

The constraints of angular position of joints are
given asK;o = 11 + 2asin(ﬂt), K o= —11°= 2%in
(3 t) K11 = 10”s1n( ) + 15° +4”sm( ) K =10°
sin(3r) —15°—4°sin(%t), % ,=—8"cos(}t )+18”
6”sin(§t), K ,=—8° cos( )—18" 6"sin(§t). The
constraints of angular velocity of joints are
©20=2(%)cos (3t) +5.7+2.3sin(5r) (deg/s),  K,0=
—2(%)cos(%r) —5.7—2.3sin(%r) (deg/s). K1=
5cos(31) +4(%)cos (%) +17.145.7sin (%) (deg/s),
K = SCOS( ) —4( )cos( ) - 171 —57sm( )

1

(deg/s), Tap =4sin(31) + 6(%)cos(51)+ 17.1+
5.7sin(51) (deg/s),x T = 4sin(31)— 6(3)cos(31)—

17.1 — 5.7sin(3 1) (deg/s). According to (3) and
Remark 2, the constraints of angular position error
and error velocity can be calculated.

The controller from [56] is used as comparison. The
detailed controller from [56] is given as follows.

© = M(0) (—VT/TcD — D+ —KaZs — Kz5Kp.1Zi

- %KBQZQ) +C (0, é) 0

D=8+KZy=-KiZ +0,

$= _K,[M"(())T_M"é(a 0)0+ wao+s
+K,Z, — 1]

Z1=0-10,,Z,=0—,

KBJ = dl(lg 3
kh‘l,l

Kpr = diag(

1 1
- Z%,l ,ki,lz

1
Z% 2 kb 13 Z%,z)

1 1
2 2 72
Kpoi =23, kb22 22 kb22 235

W= diag(u?l, W, W3),® = @), Dy, D3]".

. 2o
=TI, Qiq’ + T W; |,i=1,2,3
khzl Zz,i

(48)
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Reference : 0,9

Proposed Controller
Controller of Ref. [56]
Constraint of Angular Position

10 -

S5

Attitude of Base 0, (deg)
=
1
1
U
Angular Position of 1% Joint 6, (deg)

0 10 20 30 40 50
Time (s)

(2)

30 -

Reference : 6,.1

Proposed Controller
Controller of Ref. [56]

= Constraint of Angular Position

10 20 30 40 50
Time (s)

(b)

Reference : 0,

Proposed Controller
Controller of Ref. [56]
Constraint of Angular Position

Angular Position of 2" Joint 8, (deg)

0 10 20 30
Time (s)
(©

40

50

Fig. 4 Comparison of angular position in case 1: a Base. b 1st Joint. ¢ 2nd Joint

where Z; ; and Z, ; are the i element of vectors Z; and
Z respectively. kb.l,l = min(}§1_0|7 ‘§lﬁ0|)’ kb,1_2 =

min (|21, & 1]), and k3 = min(|& 3
to  the of  tracking
koo, = min(|ic20 — 011, [Ky0 — 01.1]), kb2 = min
(|R21 =012 12,1 =01 2]),

min (|2, — 01 3], |y, —013]) are the constraints of

, \§1’3 |) refer
constraints erTor.

and kpo3=
error velocity. 1 is the j™ element of vector ;. Wi:
[Wi,l,Wi,z,Wi,s,WiA,Wi,s]T and O;=[D;,,D;,,D; 3,
(I),',4,(I),-,5]T for i=1,2,3. @;; is the output of the Radial
Basis Functions (RBF), which is automatically deter-
mined by using Eq. (35) and Eq. (36) in [56].

The parameters of (48) are selected as follows.
K| = diag(0.3,0.3,0.3), K, = diag(0.3,0.3,0.3),

@ Springer

ES = dlag(09,09,09), Fl,l = F]ﬁg = F173 = 01,
[y =T =3 =0.8. Wi(0) = [W,,(0), Wi2(0),
Wi3(0), Wia(0),  W;s5(0)])" =1[0,0,0,0,0" for
i=1,23. S§(0)=[-047, —0.34,0.25]T. The
selected parameters of (48) can guarantee the same
initial control torques to that of the proposed controller
at the moment ¢ = Os. Importantly, when implement-
ing the controller from [56], it is required to ensure
Kpj1 <01j<Kzj-1 holds forj = 1,2, 3, which is well-
known as “feasibility condition” in the field of state
constraint control [54].

We consider the following 3 cases in simulation. In
Case 1, the initial system states satisfy their state
constraints. In Case 2, the initial system states violate
their state constraints. In Case 3, the initial system
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Proposed Controller
— — — Controller of Ref. [56]
Constraint of Angular Velocity

Proposed Controller
— — — Controller of Ref. [56]
Constraint of Angular Velocity

Proposed Controller
— — — Controller of Ref. [56]
Constraint of Angular Velocity

Attitude Velocity of Base 6, (deg/s)
©
Angular Velocity of 1% Joint 6, (deg/s)
-
=]

0 10 20 30 40 50 0 10

Time (s)

()

=
Angular Velocity of 2 Joint 8, (deg/s)
<

Time (s)

0 10 20 30 40 50
Time (s)

30 40 50

(b) (©)

Fig. 5 Comparison of angular velocity in case 1: a Base. b 1st Joint. ¢ 2nd Joint

states satisfy their constraints, however, the actuator
are temporarily shut down for a timeslot to make the
system states inappropriately approach or even exceed
their constrained boundaries. We call Case 3 as
Extreme scenario.

Case 1 Satisfied constraints of initial system state.

In this case, the initial system states are
[60,91,02} = [80, ]00,—200} and {90,9‘1,92} =
[0,—0.02,0]rad/s.

The tracking performance of angular position is
shown in Fig. 4, while Fig. 5 presents the angular
velocities of SRM. Clearly, both the proposed con-
troller and the controller from [56] can achieve the
satisfaction of constraints of system states as long as
the initial states satisfy the constraints. Notably, the
proposed controller has an improved tracking accu-
racy and a faster response, by showing the smaller
tracking errors compared to the controller from [56] in
Fig. 6. The improvements on tracking accuracy and
settling time can be attributed to the achieved fixed
time stability of tracking error (seeing Theorem 1 and
Theorem 3), which is stronger than the Uniformly
Ultimately Boundedness (UUB) of tracking errors
achieved in [56]. More precisely, the fixed time
stability can guarantee the tracking error converges to
zero within a time predefined by users, while UUB can
only guarantee the tracking error is always within an
invariant set.

The control torques are illustrated in Fig. 7.
Clearly, even though the 2 controllers show the same
initial ~ torques at the moment t=0s

(e.2..[10(0), 11(0), 72(0))" = [—4.71Nm, —0.70Nm,
0.88Nm|" € R**!), the proposed controller calculates

the smaller magnitude of control torques during the
stage forr € (0, 2s]. Then, according to Figs. 4 and 5,
the converging rate of tracking error is not compro-
mised by the declined magnitude of control torques.
Therefore, the proposed controller can utilize the
resource of actuation more efficiently. The sliding
variables, shown in Fig. 8, are always within the
boundary (red dash line) calculated by (20), which
corresponds to the fact that the sliding variables
always within this boundary can result in the satisfac-
tion of system states during the approaching stage
(seeing Theorem 2).

To verify the fixed time convergence, we need to
provide the theoretically calculated convergence time.
The detailed process is given as the following steps,
which does not involve any information of initial
states.

Step 1 Based on the selected parameters of distur-
bance observer (koo = ko1 =kox =1, ko =k =
”'&1.’2 = 1, [kz"() = U«271, = ”'&2.’2 = 1, m = 2, n= 0‘8), we
can calculate the settling time of disturbance observer
by using (36) such that t; = t; = t, = 6.066s.

Step 2 Based on the selected parameters of control
law (B1o = P11 = Bia =1, Pop = P21 = P2, =0.1,
p; =18, p, =0.6, T3 =2) and the calculated time
on Step 1, we can calculate the time of reaching phase
(the time of each system state reaching the sliding
manifold) by using 46) such that
too = to,1 = top = 37.7308s,

Step 3 Based on the defined state constraints
(K1, Ky 5 K20, Kp Vi = 0, 1,2) and the reference sig-
nals (0p,, 0;,0,,), we can obtain the following
parameters by using (7), (8), (A15) and Remark 3.
They are:gu = 52_,,- = 0.03655rad/s,05; = 04; =
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Proposed Controller Proposed Controller
— — — Controller of Ref. [56] — — — Controller of Ref. [56]
Constraint of Attitude Error 01 § Constraint of Attitude Error
15 - s 20 0.2
S -
J 0.05 - S 15 0.1
Ea 10 E 0
S . 0 2 10
g 5\ %5 . 0.1
@ NS 0.05 s b 0.2
P See o =0.! N .
s 0 40 42 44 46 48 50 § 0 0 30 40 50
£ 2 5
R -5 l
) 2
-E £ -10
£ 10 I
g s 15
15 | | = 20 - L M
0 10 20 30 40 50 %" 0 10 20 30 40 50
Time (s) Time (s)
(a) (b)
Proposed Controller
—_ = = = Controller of Ref. [56]
3 Constraint of Attitude Error
B 25 0.1 B
¢ i
z 0 —
Z s j
K 0.1 fo
= 02
g Pk 20 30 40 50
R -5 [~ f
5
£
g 15
-]
E
S 5.
%" 5o 10 20 30 0 50
Time (s)
(©)
Fig. 6 Comparison of angular position error in case 1: a Base. b 1st Joint. ¢ 2nd Joint
0.01666rad /s, 95,=0.15419rad /5,05 ;=0.04581 definition of @; in (Al19) to calculate that
radfs, & .=0.22689rad fori=0.,;=0,;=0.07311 00 = 0.0622,; =0.1398 and 7, = 0.075.

radfs, 8;;=0,;=0.12286rad/s,05;=0.42387rad s,
05,=0.17613rad/s, & ,=0.33161rad  fori=1.
01,,=02,;=0.10966rad /5,05 ;=J,;=0.05895rad /s,
05;=0.44841rad /s,  55,=0.15159rad /s,

0.41888rad fori=2.
Step 4 Based on the parameters calculated in Step 3,

we can obtain %J and Ez_j by using (A17) and (A18)
such that ¢, o = ¢, = 0.3382rad/s, ¢, = ¢, =
0.2522rad/s and 61’2 = 6272 = 0.8341rad/s. Then,
based on the selected parameters (¢ =1 X 1077,
kep = key = kep = 0.01, kio=kig=kip=1,
kagp =kyy =kop =1, Aipo=3, iy =7212=138,
Ao =7lay =13, =038), we can use (Al5) and
(A16) to obtain the constants ®; such that
@y = 0.5824rad/s, @; = 0.8362rad/s and

@, = 1.5719rad/s. After that, we can use the

*
61,
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Step 5 Based on the calculated @y,5; and o3
in the previous step and the selected parameters
of sliding manifold (k1o =kig=kip=1,
kro=kyy =kap =1, Lig=3, Ai1=Ak2=138,
/1;0 = /1;’1 = /1;)2 =0.8, Ipo =1Ip1 =1Ip2 = 1), we
can calculate the convergence time of tracking error
for each system state by using (18) such that
t10 = 128.906s, t1,; = 83.845s and t;, = 122.775s.

Figures 9 and 10 show the tracking errors and error
velocities of system with the 4 different initial states.
The 4 different initial states satisfy their constraints,
which are detailed in Table 2. It is clear the system can
converge within a fixed time by showing the settling
time smaller than the calculated convergence time
(t1p = 128.906s, t;; = 83.845s and t, = 122.775s)
for the 4 different initial states.

Case 2 Violated constraints of initial system state.
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Fig. 7 Comparison of control torque in case 1: a Base. b 1st Joint. ¢ 2nd Joint

Proposed Controller
= = — Boundary Calculated by Eq. (20)
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Fig. 8 Sliding Variable (9) in case 1: a Base. b 1st Joint. ¢ 2nd Joint

In this case, 2 sets of the initial system states are
given. The Istsetis [0y, 01, 0] = [157,25°, —35°] and

[90,91792} =[0,0,—0.12)rad/s, which means the

initial angular position violating the constraint. The
2nd  set is [0, 01,0,] = [8°,10°,—23°] and

[0’0,91,0'2} = [-0.2,-0.5, 1.1]rad/s, which means

the initial angular velocity violating the constraints.
Figure 11 shows the comparison of angular posi-
tions with the initial angular position violating the
constraint. Figures 12 and 13 respectively presents the
angular position and angular velocity of the proposed
controller with the initial angular velocity violating the
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Fig. 9 Tracking error of angular position in
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Fig. 10 Tracking error velocity in case 1: a Base. b 1st Joint. ¢ 2nd Joint
Table 2 Different initial states to verify fixed time convergence
Base Ist Joint 2nd Joint

Initial state 1 00(0) = 8°, 05(0) = 0°/s 0,(0) = 10° 01( )= —1.14%/s 0,(0) = —20°, 6,(0) = 0°/s
Initial state 2 00(0) = 4°, 0(0) = 4.58°/s 0,(0) =37, 6,(0) = —11.4°/s 0,(0) = —15°, 6,(0) = 5.7°/s
Initial state 3 00(0) = =2, 0p(0) = 1.72°/s 01(0) = =2, 0,(0) = —8.6°/s 0,(0) = 0%, 0,(0) = 5.7°/s
Initial state 4 00(0) = —6°, 0o(0) = —2.86%/s 0,(0) = —10°, 0,(0) = —12°/s 0,(0) = 5%, 0,(0) = —5.7°/s
constraint. Clearly, the tracking error achieved by the However, the story is different to controller from

proposed controller can still converge to equilibrium
at the presence of the violations of initial angular
position and initial angular velocity, which corre-
sponds to the fact that finite time stability of tracking
error can be achieved if the initial states violate their
constraints (seeing Theorem 1 and Theorem 3).

@ Springer

[56]. In the light of Fig. 11,
controller [56] cannot converge into the constrained
boundaries if the initial angular position violating the
constraint. It is also observed in Fig. 14 that the system
under the controller [56] diverges to infinite if the
initial angular velocity violates the constraint. For

the tracking error of
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Fig. 11 Comparison of angular position in case 2 with violation of initial angular position: a Base. b 1st Joint. ¢ 2nd Joint
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Fig. 12 Angular position of proposed controller in case 2 with violation of initial angular velocity: a Base. b 1st Joint. ¢ 2nd Joint
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Fig. 13 Angular velocity of proposed controller in case 2 with violation of initial angular velocity: a Base. b 1st Joint. ¢ 2nd Joint
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Fig. 14 Performance of 1st
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Fig. 15 Comparison of angular position in case 3: a Base. b 1st Joint. ¢ 2nd Joint

clarity, only the results of 1st joint are presented in Case 3 Extreme Scenario.

Fig. 14. Therefore, the compatibility of the proposed In this case, the initial states are the same as that in
controller to initial system states violating the con- Case 1. However, we temporarily shut down the
straints is illustrated. actuator for a period. It is to simulate the scenario that
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Fig. 16 Comparison of angular velocity in case 3: a Base. b 1st Joint. ¢ 2nd Joint

the controller or actuator completely fails for some
unknown reasons to result in the system states
inappropriately approaching or even exceeding their
constrained boundaries. Therefore, the control torque
in (37) is modified as T = F(t)M(0)(v; + v,) in this
case. F(r)=1 for t<65s, F(r) =cos(2=%) for
65s<t<70s, F(r)=0 for 70s<t<80s, [F(¢)
sin(329) for 80s <7 <85s, F(r) =1 for 1 > 85s. It
means actuator or controller fails during 655 — 85s.
Figures 15 and 16 respectively present the angular
position and angular velocity with the presence of
temporary complete failure of actuation. Clearly, the
system states become inappropriately approaching or
even exceeding their constraints due to the shutting
down (1 > 65s). After that, the proposed controller can
retrieve the effectiveness after the recovery of actu-
ation (¢ > 85s) by making the system states outside the
constrained regions start to move back to the con-
strained regions after r = 85s. After a while, the

system states under the proposed controller stay at the
constrained regions and eventually track their refer-
ence signals successfully. However, the controller [56]
shows a failure on tracking the reference signals even
the actuation is recovered (¢ > 85s). Therefore, the
proposed controller is superior to the controller [56].

To evaluate the computational time, we coded the
control algorithm in C + 4 and implemented the
codes in Raspberry Pi 3B + board, which runs
Raspberry Pi OS based on the Debian Linux system.
The running times for one iteration of the control loop
with 3 trials are 310 x 1075, 290 x 10~ ®s and 394 x
10785 respectively. The running time is different due
to the Raspberry Pi OS is not a real-time operating
system. We also run the control loop for 20,000
iterations, and the running time is 824401 x 107%s,
which means the average running time per iteration is
less than 50 x 10~%s. The sampling time required for
the control algorithm is 0.001 s. Clearly, the control
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algorithm is able to run on-board the Raspberry Pi
3B + , which has been adopted for future experimen-
tal works, within the required sampling time.

5 Conclusion

In conclusion, this paper proposed a fixed time
disturbance observer-based sliding mode controller that
can achieve the fixed time convergence of tracking
error with the satisfaction of full state constraints at the
presence of system uncertainty and unknown distur-
bance. Compared to the conventional literatures of state
constraint control, the proposed controller does not
include any BLF terms of system states, which thereby
eliminates the risk of outputting overly high control
commands due to the measured system states inappro-
priately approaching or even exceeding their con-
strained boundaries. Moreover, the proposed control
scheme can still achieve a finite time stability at the
presence of the initial states violating the constraints,
which therefore is compatible to all the initial condi-
tions. Furthermore, the designed fixed time sliding
manifold solves the singularity problem of FTC by
using a continuously varying power, which removes the
need of an additional switching mechanism of sliding
manifold to avoid compromising the fixed time
convergence at the neighbourhood of origin of tracking
errors. The simulation results verify the effectiveness
and superiority of the proposed controller.
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Appendix A

The proof of Theorem 1 consists of 2 steps. The 1st
step is for the situation that system states reach the
sliding manifold (10) at the time #,; without violating
) such that si(t>1;) =0 and
§1_[(l‘0ﬁ,‘) <e; (l‘()?,') <§]’i(t()7l‘) hold. The 2nd step is for
the situation that system states violates (4) at the time
to, such that s(t>1,;) =0 and ¢ (toﬁ,') €
(—OO,§1J(Z‘0,,~)] U [51,1'(1‘0’,'), OO) hold.

In the light of (11), (14) and (15), the inequation of o;
can be derived in (A1), which indicates o; > 0 holds.
To help understanding (A1), o; is visualized in Fig. 17.

0<¢ + max (07 df[,,-) <oy <c+max(kei, d7;), if e <0
0<c +max(0, 63, ) <o < +marlhes, 3, if &0
(A1)

By inputting s; = 0 into (9), we can obtain the
tracking error velocity at the sliding manifold in (A2)
because we define fy; as the time of reaching sliding

manifold such that s; (t > l()’,') = 0 holds. For clarity,
é;(t> 1) is written as ¢; in the rest of Appendix A.

. & &
éi(t>10;) =Xi = n; " _%4‘ (1- Vli)r%
8 .
72|7; | ) lf € 2 0
L+ (A2)
_ i
N & .
ﬁv lf € <0
14224
+ o,
. | i
1 1
i :
1
1 1
1 7 1
c _—i-q{ .......... 'r .......... ‘
I,’ 1
ot - d)Il ;,l
7’ 1 1
2L 1 1
_kc,i kc,i

Fig. 17 Function of o in terms of ¢y ;. or ¢,
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Remark A1 In the light of (A1) and (10), It is clear
®; >0 holds for all ¢; € R. Then, by using the facts of
& ;<0 and 2;; > 0 (seeing Remark 3), (A2) implies
that 0 <X; <%,; will hold if ¢; <0 holds on the one
hand, and & < X; <0 will hold if ¢; > 0 holds on the
other hand. It means ¢,;<X;<&,; holds for all
e; € (—00,00). Therefore, ¢, ;(t) <é;(t) <&,(t) holds
after the sliding manifold (9) is reached, which means
the constraint (5) is satisfied for > 1y ;.

Consider the following Lyapunov function for e;.

Vai=5¢; (A3)

The derivative of (A3) can be obtained in (A4) by
using (A2).

7 §2i(Di 52_,'(1),'
Vai=nei————+ (1 —n;)ei=
A, n;e _§2’i +q)l +( n )e 82,i T (I)l.
‘ﬁz.i“ei| Qi * Dos
=Nt k ileéi Ytk ile; +CXI-“" 2
1 |§2,i| + |(I>i|( 1dfe 2illei )™
|52i| eil .
— (1 =m) = (kile]™ + ko i(fe;
( n)‘éz‘i‘+|¢)i\( 1aled 2illeil

+a)*) <0
(A4)

Based on (A4), it is clear that |e;(r >1o;)| < |e;(t0,)]
holds because of V'AA,,A <0.
Step 1 In this step, &1 (Z‘()‘i) <e; (1‘07,') <gl<i(t0,i) holds.
A variable zz; = € ; — e; is defined, its derivative can
be derived in (AS5) by using (A2) and the fact of ®; > 0.
eri(—e2; + ®;) — £, 0;

—& + ®;
—él.i§2‘[ + (él,i - §2.i)(Di

_ if e;>0 A5
"y ,if ei> (AS5)

ZRi = &1, — € =

The partial derivative of Zg; with respect to ®; can be
derived in (A6).

Oz, _ (51 i éz,,-) (—§2,i + (I)i) +& i€~ (51 i §2,;) o

0D; (=&, + @;)’
2

&5 .
_ 220 >0

(—e2,+®)*

(A6)
Based on the positiveness of (A6), (A7) can be derived
by using the fact of ®; =k |e]|™ + koi(|ei| +

L .
062'2"'))‘2" > kygled™ + koo

—él,iﬁz,i + (81— 2,) (kl.i|€i \;']’i +k2,i0€i)
—& itk lei] 7 ko 0

ZRi> ,ife,2>0

(A7)

Besides, we can easily obtain (A8) by using (A1) and
(13).

1

o > d’;,,- :g
n

1, +Ga (kg,&1i—e; 1
_ 1,i 2( R 1.17 l) §2v,-—k1_,-e;"” lfe,ZO
ELi— &+ G (kg E1i—e))

(A8)
In the light of (A7) and (AS8), we can achieve (A9).

—&1,i85,G2 (kr, &1 — €;) + (817 — &) £2,,G2 (kr, &1, — €i)
—&2, (810 — £24) + Erita, (A9)
= 7G2(kR-E].1 - ei), if ;>0

Ri >

Remark A2 In the light of (A9) and (16), it is clear
that Zg; = &, — ¢; >0 holds when ¢; >, ; — ¢ holds
(¢ defined in (16) is a small positive constant
satisfyingg < [¢;;|), which means e; cannot further
grow to be greater than g; ; — ¢ once itreaches ¢, ; — ¢.
Therefore, ¢;(r) will not exceed & ,(¢) for t > 1, if
ei(tio) <®1,(tip) is satisfied.

Similar to the previous steps (AS5)-(A9), a variable
wLi=e — & is defined, its derivative can be derived
in (A10) by using (A2) and the fact of ®; > 0.

) o 8,0 — & (82 + D))
iLi =€ —&,;= -
! &, + D
—&y 82 + (B2 — E14) D

1
= s if e;<0
&+ I e

(A10)

The partial derivative of 7, ; with respect to ®@; can be
derived in (A11)

OZri (825 — &) (B2 + ;) + &80 —

a(I)i B (527,' + (I),')z
=2
]

B (&2 + ‘Di)2

(&2, — &1 ;) D

>0

(Al1)

Based on the positiveness of (All), (A10) can be
written as (A12) by using the fact of ®; = ky ;|e;|"" +
1

kai(leil+ o) >k led ™ + koo,
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_él,iéz,i + (52,i _§.|’,‘) (k1_5|€,“)']"i +k2,i“i)
&, +k1,i|ei|il‘i + ko joi;

ZL,iZ 7l:fei<0

(A12)

Besides, we can achieve (A13) by using (A4).

o> ;

1 |: é"]_,‘*GZ(kL-,ei*QL,')

=— & — ki i(—e)™ |, if ei<0
ko EZJ_él,i+GZ(kL-,et_ﬁl.i) > ti(=ei) :| /

(A13)
In the light of (A12) and (A13), we can obtain (A14).

[_§.1,i§2,i - (52,1' - él‘i) 52,1‘] Gy (kb € — §1,i)
& (52,1‘ — é1,i) + € 82,
= —Ga(kp,ei —¢,), if €<0

Zri>

(A14)

Remark A3 In the light of (A14) and (16), it is clear
7. = € — & ;>0 holds at ¢; <g; + ¢ (¢ defined in
(16) is a small positive constant satisfying ¢ <|g; ;|),
which means ¢; cannot further decline to be smaller
than ¢ ; + ¢ once it reaches ¢, ; + ¢. Therefore, e;(t)
will not be smaller than ¢ ,(r) for >t if
€ (fi,o) > §1,i(li,0)-

According to Remark A2 and Remark A3, it is clear
that ¢, ,(¢) <e;(t) <&,(t) holds for t > #o; as long as
&, (10,1) <ei(to;) <&1,(to;). Therefore, it is also true
&1,;(t) <ei(t) <&;(t) holds for t > 19, + tp; as long as
&, (10,1) <ei(to;) <& ,(to;) holds. Then, we can find
the constant ®; > 0 referring to the maximum of (10)
for t > toi +tp-

O;(t>10; + tp;) <D = ki (e} -);"'i + ky i(ST‘,,-

(A15)

where constant & ; = rtrlfz)((‘§17i(t)|, |214(1)|) > 0. The

constant o; > 0 is the maximum of o; in (11) for
t>to; + tp;, which is derived in (A16) by using (A1),
(12) and (13).
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o (=10, + tp;) < ¢+ max(ke,, i b3) <<

- « \ALi %\ Al

Gri+kier )" oy +k1,i(81,i)”’
ko i ’ ko

-+ max |k,

=7
(A16)

where constants 517,- > 0 and $2J > 0 are the maxi-
mum of ¢, ;(t) and ¢, ,(t) for t>1t;o +tp;. They can
be derived in (A17) and (A18) by using (12)-(16) and
the factsof &,; — &;; > 0, g — &, > 0 (seeing Remark
3) and g ; <e; <& ; (seeing Remark A2 and Remark
A3).

A N §.1,i -G (kL, e — §17,')
DritZtoi+ i) = i — b1+ Ga(ke,ei — &)

- ‘él,i‘éz,i <51ﬁi55,i

521 P . ~
&, — & éS,i

= (131,5

(A17)

—&1,; — Gk, &1 — €;)
At > . A > >
P2 (t =N tD") &,i—&,;+ G (kR, &1, — 61‘)

£il(—2,) o
()< 22
) Eli — & éA,i

(A18)

where positive constants 51,,-, Ot 52,,-, 025 53,,-, 9355
O4is O s 351,- and 95 ; are defined in Remark 3.

According to (A15), Remark A2 and Remark A3, (A3)
can be further written as (A19).

; |&.]leil |2, |leil
Vai=—| i+ (1 =n) =—F——)
: ( Tadtiod TP e
(st + sl + 57 )
& &
S — min |—2-,1} S |F2vl|
|e2.| + 1®i] " |22, | + D]
v ) ds.;
(ki dled] ™ + ko led ) < — s j—’ @
) 1+ ) I+7
AR 1 e\ 2
2 (L)t (S
[ (5) +e2*(3) ]
B L i N I4+ip I+7g;
=—Gik1, 277 (Va;) 7 —Giko,277 (Vay) 7,
Vit >ty + I,

(A19)
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s
where constant 5; = =—% > (.
0s,i+®;

Remark A4 According to Lemma 1, (A3) and
(A19), we can conclude that e; (tz tlﬁi) =0 can be
achieved  within a fixed time 7; if
&, (t0,1) <ei(to;) <&1,(to;) holds. The fixed time
is shown in (A20). ¢, ; is called fixed time because it is
independent of the value of e; (to,i).

2

(\/ZE)IJr/l”Eikl,i(/ll,i —-1)

(V2) Gk (1 — 15,)

t; =ty +1p;+

+

(A20)

Step 2 In this step, e,-(toy,‘) € (—00,8 (fo.i)} U

—1i
[EL,'(IOJ), OO) holds.
We can easily find |e;(r>1;)| <|e;(t0,;)| holds for
t > 1o, because of negative (A4). Then, like (A15)—
(A18), we can find the positive constant ®; >0
referring to the maximum of (10) for t >ty ; + tp;.

DQ;(t>19; +1p;) < 5,- = kl,i[ei(to,i)y']’i + ko i[ei(to,)

(A21)

where constant %; > 0 is the maximum of o; in (20)
when |e;| < |e;(t,;)| holds. It can be derived in (A22)
by using (A4).

o (1=>10+1p,) <max(kei, ¢y ;,b3,)

= i T iy
by ithlei(to )| boitkiileito)|”
<max | k¢ j,— )

ki ki

Rl

(A22)

where constants alvi >0and 527,- > 0 are the maximum
of ¢ ; and ¢, ; when |e;| <|e;(to,)| holds. They can be
derived in (A23) and (A24) by using (12)-(16) and the
facts of &, —#£,; >0 and &;;—&, >0 (seeing Remark
3).

&~ Galkp,ei— ;)
(> 1o ) = ’ : 2.0
(]5171 (l >+ tD,l) 52-,i _ f:l,i + Gy (kL, e — §1_,’) o2t

|§.1,i|§2,i < 51,1'55,1'

o (52,1‘ _él,i) a é3,i

:d)l,i

(A23)

—é1; — Gy (kr, &1 — €;)
(t>10; +1p;) = — :
b2, (l‘ 2>+ l‘D,z) E1i— 1, + G (kR, fri— ei)

’51,i|(*§2,,i) 52,1‘55.1' _ 7
(—&2;) < — < 5 o

Ji

(A24)

where positive constants 01, 0 ;, 02, 03, 03> 03

547,3 O is 55,,~ and Js ; are defined in Remark 3.
According to (A21) and the fact of |e;(7)] < |e;(t,)
(A3) can be written in (A25).(B14)

; . s
Vai < —min| ————=
0s,; + D

Lty iy

2,
i @2\ 2 AN
k i2 2 L k i2 2 L
2 (3) e (3)

1+ 142 1+79 I+ ;

= —0ik1,277 (Vai) 7 — 0ik2, 272 (Vai) 2

s

147, I4in

< - Eikz,isz(VA,i)T, V>t +tp,
(A25)

= : s,
where constant ¢; = min | —=) > 0.
05, +®;

Remark A5 According to [51, Th. 4.2], (A3) and
(A25), we can conclude that e;(r>1,;) =0 can be
achieved within a finite time #, ;. The finite time #,; is
shown in (A26). t,; is called finite time because it is
dependent on ¢;(fo,;).

ti =ty +1p;

2 1
+ 12

N et
(\/E)lﬂz”akz,i(l —75,) il

2 1
(A26)

In the light of Remark Al, Remark A4 and Remark
AS, the proof is complete.
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Appendix B _ —& Ui
82,1‘(1‘) + —&y U

The proof of Theorem 2 consists of 2 steps. The 1st
step is to prove the inequations 0<f; <1, 0< B < 1,
B,; > 0and B, ; <0 will hold. The 2nd step is to prove
the condition descried by (20)—(27) can guarantee the
satisfaction of constraints (4) and (5) during 0 <7 <tg;
if the initial state does not violate (4) and (5).

Step 1 In the light of (10-16) and the fact that

Gi ($31:kei) =+ max(0,¢3,) (Seeing (AD) in
Appendix A), (B1) can be derived.

U :klti‘gl,ivl'l +koioi(ei)] o=, > k],,‘|§1’,~|;"-"

max{ [ (el o, kil ] 0}
=max |:g (gzyi),k17i|£1,,»|)"":|
1,i

=max(=

—&1,;—Ga (kg &1 — 1)
— &+ G (kg &1, —51,)

ll_l

klz|‘olt|l) >0

Eli—é&;

(B1)

According to (B1) and the fact of &, ;<0 (seeing
Remark 3), (B2) can be derived.

_ . £1i&y
— & U, . 20 gt
Xi(t) = —"—= <min| 0, ———>—
—&,; +U; Frityi
- _§2~i 1;1 ,7122
= min(0, & ;) (B2)

According to (B2) and (27), as well as the facts of
hi(t) >0 (seeing (23)), &; <&, (seeing Remark 3),
£,i(t) > 0 and &,,() <0 (seeing Remark 3), we can
obtain (B3) and (B4).
min(e1,i(), &24(t)) — Xi(7)

hi(1) + &2,(1) — £,(1)

&1i(r) — &1,(1)
hi(t) + &,(1) — (1)
(1)
hi(t) + &2,(1) — £,(1)

Fri(t) =

=0,if &,;<&,

>
&1, =8

>0, if

(B3)
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(1) Séz,i(l)—éz_i(t)

(B4)

In the light of (10)-(16) and the fact that

Gl(qﬁ’l"i,kc,i) >c+max(0,¢],) (Seeing (AD) in
Appendix A), (BS) can be derived.

U=kl l|i""+k2ﬂxt( €)los, . > K1 il |

L, el 03

i—Galkr,e ;i —&1, ,
— max 2( LsC],i 1,1) EZ,i;kl‘i|§11i|MJ
321—?11+G2(kL,81, §l,i)

€1 &21
—max( kil ") >0
821 §[

+ max{

|—|

oo

(B3)

According to (B5) and the fact of &,; > 0 (seeing
Remark 3), (B6) can be derived.

= gt
527'Q' €2, 8,i—E;
X,(r) =—=1 ! Zl/{ > max [ 0, ——1 zé o
&+ &+ ;"_g
’ 2078y
=max (0, ;) (B6)

According to (B6) and (27), as well as the facts of
h;(t) <0 (seeing (23)), &;; <&, (seeing Remark 3),
£,i(t) > 0 and &,,(t) <0 (seeing Remark 3), we can
obtain (B7) and (B8).
max(&,(1), &,(1)) — X;(7)

P2l =" 0 ey — i)
é,(1) — X;(1)

_ m >0, if &,(0) > gy,(1)
T ) =X N
m >0, if £1,(1) < e2,(1)
(B7)
max(éy (1), (1) — Xi(0)

Falt) = 1a(0) + 221 — E22(1)

(B8)
- &,(t) — Lz,gb'{ &,(t) — &2,(1) o

e,(1) = &2i(1) (1) — 824(1)
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Remark B1 Based on (B3), (B4), (B7) and (BS), we

can easily conclude that O<ZF;(r)<1 and

0<F,,;(t)<1 hold. Therefore, by using (27), it is

true 0<py;<1land O<pu <1 hold. Then, by further
—0,i

using (24), we can conclude that O<p; <1 and

O<pu <1 hold.

—l

Remark B2 In the light of (22) and (23), k;(z) <0
and ;(t)>0 hold. In the light of Remark Al in
Appendix A, &,;<X;<#&,; holds for all e; € R.
According to Remark Bl, 0<gi; <1 and O<Hf <1
hold. Therefore, it is clear B
H; (E, + 52,1' — X,) > ﬁiﬁi >0 and

1, (h; + &, — Xi) < p.h; <0 hold for all ¢; € R.
Step 2 After a simple mathematic manipulation, (21)
can be written as (B9).

gs,i = ﬂz(};l + 52,1’) + (1 — ,ai)X,' — Xl'
B, = H,»(ﬁi +§2,i) + (1 - H,-)Xi - X;

=
Based on (B9) and (9), it is clear that (B10) can hold as
long as (20) holds.

B‘v,i =
§s7i =
(B9)

M (ﬁi + §2‘,,') +(1- Hi)Xi <é;<(h; + &)+ (1
- ﬂi)Xi
(B10)

According to (B10), we can obtain the left of (B11) by
using the facts of &,; +h;<X; (seeing (Al) in
Appendix A) and 1 <p <1 (seeing Remark B1) on
the one hand, and we can derive the right of (B11) by
using the facts of X; <h; + g, (seeing (Al) in
Appendix A) and 1<px; <1 (seeing Remark B1) on
the other hand.

hi+§27i<éi<hij+§21i (Bll)

Remark B3 According to (22) and (23), h; = 0 and
h; = 0 hold for # >0 if the initial state ¢;(0) satisfies
constraint (5) such that &, ;(0) <¢;(0) <&,(0). There-
fore, ¢, ; <é; <&,; holds by using (B11).

Clearly, the necessary condition of tracking errors
violating constraint over (0, ;] is the existence of 2
moments 17,75 ; € (0,10, such that e;(t) = 1,(r) and
é;(t) >%;,;(¢) hold for t = ¢}, on the one hand, ¢;(t) =

&1;(t) and €;(r) <&, ;(¢) hold for t = 15 ; on the other
hand. Then, in the light of (24), it is clear ;= Hy,
holds when zz; = €;; — e¢; = 0, while K=y, holds
when z;; =e; —¢g; = 0. After that, according to
(B3), (B7), (B10) and (27), we can derive (B12) and
(B13) by using the facts of h; >0, h; <0 (seeing (22)

and (23)), &, <Xi(i)lom, (1) <O and
O<X"(e")|e,-:§. (1) <& (seeing Remark Al in Appen-
dix A).

é; (t: tT,i) <ﬁ0,i (El +§2‘i)

+(1 —ﬁo‘i)Xi(ei”g,-:z,, <Fui (Ei"'gli_xi(ei”e,:éu)

i

min(élﬁi(t),éz,i(t)) —Xi
TR hi+E— Xi(er)]
(Ei+§2,i _Xi(ei) |e;:§1,i) —|—X,’(€i)
—X;+Xi(e)]|

+Xi(ei)|

ei=¢&1;

z <€,

€i=EL,i

*
Vi=ty;

ej=¢1;’

(B12)

€ (t: t;,i) > Ky, (h" +§27i)

+ (1 _Ho,i)xi(ei)|€i:§1,i >Fai (hi+§2’i_xi(ei)
max (& ;(1),,,(1)) = X;
hi+é&,;—Xi(ei)]

ei:ﬁl.i)

FXi(ei)]e,—s,, >

€=ty
(hi +8y;—Xi(ei) |e,:§“> Xi(€i)]e,=s, =81~ X,

+X,'(€[)| Vl:l‘;i

=g, .0
Ci=E;

(B13)

According to (17), 42; = 1 holds for 0 <t <t ;. Then,
by using (9)-(10), we can obtain (B14) and (B15).

Xi(e:) _ §2,i(Di(ei) P & Ui
i\%i)le;=zy; 7§2,i + (I)i(ei)|ei:§“ _§2,i + ai
=X,V =1,
(B14)
&2,D;i(ei)],—; & iU,
Xi(ei)l,—e, == o 2 =X, V1
Th it Dile)|—y,,  B2iTU,
=1,
(B15)
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Remark B4 According to (B12)-(B15), it is clear
é:(1) <%, holds for r = f; ;» while é;(t) > é holds for

—Li

t = 1 ;, which are contradictory to the definition of #]
and 75;. Since the existence of f]; and #;; is the

necessary condition of tracking error violating con-
straint, the tracking error will not violate the constraint
for ¢t € (0, to,].

In the light of Remark B1, Remark B2, Remark B3
and Remark B4, the proof is complete.

Appendix C

The proof of Remark 5 consists of 2 steps. The 1st step
is to prove that X,- is non-singular for 0 <7 <t;. The
2nd step is to prove X; is non-singular for t > #g;. to;
is the time of reaching sliding manifold such that
Si (t > lo,i) = 0 holds, which was firstly mentioned in
17).

Taking the derivative of X; in (9), Xi can be derived
in (C1)-(C5).
X= ”i(Ll,i(bi + Lz,i) - (1 - 77i)<fl,i(bi + 1:2,i>

i

(C1)
—2. £, D2 =
where I'j,=—35 I,.=—2'_  T;,=
=1 (_§2‘i+®f)2, =2 (_§2,;+(Di)2’ 1,i
=) =
% and Th; = 2% Clearly, I',;, Ty Ty
(82,+®;)" i+ (2, +D;) > =L 22,00 i

and Tzﬂ- are non-singular due to the facts of @; >0,
&, > 0and g, ; <0 (seeing Remark 3).

op;, . 00, ; 00,

(b[ = —¢€; — i = .,‘ C2
6e,~ et 6/121‘ 2 + 60(,‘ x ( )
0D; P
aielel = [kl,i|ei| -l +k2,i}v2,i(|ei|
1
+ o) sgn(en)é; (C3)
oD; . YO oy
i = ka(led] + a2 )2 [ fed| + o ) In(les]
072,
nry In(o) 77
+ o) — n() vey
Ao ’
(C4)
0D, =11 L.
01, _ e + 5o 3

@ Springer

By using (11-16), we can obtain ¢; in (C6)-(C13).
If e > 0:

0, if ¢35, < —kei
. 3G, d; U1 (e . .
= —— =1 |55 i if —kei <y <kei
0 o, di 3 + 55 n2k(»_; 200 i PSPy
G if b3, > ke
(C6)

d);i = é (d)zj - kl,ill,ieiiuiléi) C7)

. g — ikt G2y (61— €i) — Griby,
d’z,i: - 2
(e1i—82,;+G2,)

(_§Z,i) . —&,;—0Gai .

. &
E1,i _§27i+g2,i

(C8)
_ 0, if &1y —ei<g /
Goi = {kR(§1,i —ei—¢) ifE —e > G
_ 0, if g1 —ei<g
T\ 2kr(Ei—ei—<), ifEi—e>¢
(C9)
If ¢; <0:
0, lf‘bL < — ke
e ) U R A FAN . _
“i:m dz] = [EJFESHI(”E)}/’M if —kei<¢y;<ke
(/)T.n l.fd)Tl > ke
(C10)
. 1 . —
¢ = o (1 + kiidii(—er)™ ‘¢ (C11)
2,

€ E — ik — GritE2i (6 — é1,) — Gt .

4.511' = — - 2,i
’ _ (&2, — &1; + gl,i)z
&1 — gl,i 5
&i—&;+ G >
(C12)
07 ifei _§l.i<C
gl,i = ’ 2 )
ki(ei — &, — <), else
' (C13)

, 0, if ei — ¢, <c
Gi= _ '
2kL(81,,' —e — g),else

Where constants k.; > 0 and ¢ > 0, variables qb?i and
¢;i are defined in (12) and (13).

Based on (C6)-(C13), an upper bound of ¢; can be
derived in (C14)-(C16).
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. Lo ; PR
o] < E(|¢1,i| T ol + kidoile ™ léi])  (C14)
J
6., < &1 i8] + |18 | + ‘.gl.llg:’.:.l(fl_él,i){+ |Grifai {‘ A+ &1 ‘t|g| “ n
(2, — £13) & — &

|81 B2 | g2 | Grirei (¢ z—él,i)|+|g1,i§2,i|‘8_ |
2.

| | | | (531)
él[ + gl“i kS

é3‘i | 2,t|
=A;

(C15)
‘¢2>i| < ‘51,&2,11 + ’él,igz,i| +|ng,i’§z,i (fl,i _éi) | + ’gZ,iéz,i’ ‘§27i‘
(e1i—&,)

&1, + th}

g,

Ei— & =

< Bl |61 it ]G iten,i (811—61) | +Gn i
= (84,)°

§27i’

|811|+{g21|

Uy

=Az,i

&)

(C16)

where positive constants 5 ; and J,; are mentioned in
Remark 3.

Remark C1 Based on (C9) and (C13)-(C16), it is
clear that all terms in A ; and A, ; are not singular for
all ¢; € (—o00,00) and ¢; € (—o0, 00). Moreover, the
constant A;; > 1 holds. Hence, |4;| is non-singular for
all ¢; € (—00,00) and ¢é; € (—00, 00).

Step 1 According to (17), it is clear that /, ;(f) = 1 and
J2i(t) = 0 hold for 0<7<1tg;. Then, (C17) can be
derived.

B,(1)| < (ki leil ™" + o )i

+ ko i|ai|, YO <t <19 (C17)

Remark C2 In the light of (C17) and Remark C1, it
is clear (bi(t) is non-singular for 0 <7 <1, ; because the
fact A;; > 1.

Step 2 Using the definition of fy; in (17), it is clear that
si(t) = 0 holds for 7 > t,;, which means ¢; = X; holds

for t >ty ;. Then, an upper bound of (C2) for t >ty
can be derived in (C18) by using the facts of

0< <1and0<_82' <L

s—HD

|‘15i(l)| Skl.iil,i|ei|il"iil|éi| + ki ko il (lei]
L 1 201
4 d;‘zi)Ali+/n2[71 + ;LZ,ik%li(|ei| + O{iz,,)
+hail(lesl + o) > In(les] + o) A2,
(o) || A2
TG Y et B B
+ ko i(lei] + o) o™

1
)

|, Ve > 1o (C18)

According to (17), 0.5<4;;<1 holds for > tg;.

1 Al /27!
Therefore, (|e;| + o) <o;*"  holds. Then,
e S il
22, Y . Tor Th; 3
kai(lei] + o) o a < koo M | =

ka ;0| holds. After that, (C19)) can be derived.

|®l(t)| <kiik ,|e,|“'71|e | + ki ika,i22.(|ei]
1 2M—1

F A (e + )

= Ty
Fka il (lei] 4 o5 ) > In(lei| + o) |2l
ko : . —
+ EI |0€i1n(06i)|‘/12,i| + kyild;|. <DN;
i
where the

positive constant D; =

max|(kiid1), (kiikaitai)s (A2.k3 ), (%) ,ka;]  and

variable N = |e;| 7 éi] + (Jei]+
1 271
+ (lei| + o)

the positive

1
Toi\ MitAai—1
o)

s
+ |(|el‘ + “;2.1)/&,1

L
In(lei|+ o™)[|Az] + |ouIn(ot;)

| ).»2,1'|+ |cts].

)LZ[

o
221% holds. Moreover,

Remark C3 Firstly, according to (17), is

bounded such that ’22‘,,- <

|;| is non-singular due to Remark C1. Furthermore,
1 1 2;‘2,1'71

(lei| + oc;'z"')}""'”'“*l and (|e;| + o) are not

singular because 4;; >1 and ;> 0.5. Then,

e e
loyIn(;)| and |(Je;| + o>)*/In(|e;] 4 o*')| are non-
singular because the fact of o; > 0 (seeing (Al) in
Appendix A), and the fact that lir(r)1+ ¥ In(x) = 0 holds

for any x > 0 and y > 0. Therefore, we can conclude
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D;N; in (C19) is non-singular for all ¢; € (—oc0, 00), By —5 = 1 (x /2 + 62) 1 (x—A
é; € (—00,00) and o; € (0, 00). 2 2
According to (C19) and (C1), (C20) can be derived. +1/(x = AP +¢2)

. . . =filx ) f i (x —A)
K| DN+l + (c20) _ )

l . a P Cz)
According to (C20), Remark C2, Remark C3, |X;]| is A4 s /x 1
non-singular  for all ¢ € (—o0,00) and 24 ¢2 A
é; € (—o0,00). Then, the proof is complete. =0

(D6)

Appendix D 1 1

PP gi—§5$=2<x—|—A— (x+A)2+cz>—§(x

The proof of Remark 7 consists of 2 steps. The 1st step
is to prove y; is finite. The 2nd step is to prove 8; > 0O is
finite.

Step 1 Considering the functions f (x) and f,(x) in
Xx € R shown as (D1) and (D2), we can easily obtain
(D3) and (D4).

W) =x 4 VR A= / e L
1)
—x— \/X2+C2 / \/ﬁ)d’//
(02)
A0 -h-8= [ 1+ (03
x+A 2
e d)—fw = [0 oy

where constants A > 0 and ¢ > 0.

According to Remark B2 in Appendix B, B;; > 0
and B,; <0 always hold despite of the value of e;.
Therefore, B;; and B,; can be written as (D5) after
some mathematic operations.

— 1 1 — =
Bs, 2 (B + B, z) + 2 \/(Bsyi + Bs‘i)z - 4BW’§SJ

_Lg _Y /5 > _ 45,
Bx,i - 5 (Bss’ + Bx,i) ) \/(BSJ + Bx‘i) 4BS,1§S,1'

(Ds)

By using (D2), (D5) and (44), and letting

x=B;+B,;, A= and ¢* = —4B;B;, we can
calculate B; —5; in (D6) and s; — B, ; in (D7).

@ Springer

e
=fr(x +A) = f(x)

x+A
/ _\/2+—c2
—A+/ ——d>A

x+A
/ “1)d

=0

)d

(D7)

According to (44), it is clear 5; > 0 and s; <0 hold.
Moreover, By; > 0 and B,; <0 hold for all ¢; € R

(seeing Remark B2). Then, it is easy to obtain (D8) and
(DY).

S; — Es,i > |Es,i| >0 (Dg)

EsVi -8 > |§5,i} >0 (Dg)

In the light of (D4), (D5), (D6), (D7) and (44), we
can derive (D10).

Vi< —— o ——— . (DI0)
(Byi —5:) (|By,)) (]Bs,,»\) (s; *Es,i)
where x = B;; + B,;,, A= and ¢

=i

— —4B

Sl_sz

Remark D1  |B;;| > Oand |B, ;| > Oholdforalle; €
R (seeing Remark B2). B;; —5; > 0 and 5, — B,; > 0
hold for all By; € (0,00) and B;; € (—00,0) (seeing
(D6) and (D7)). Moreover, the calculation of ES,,' and
B, ; is not involved with ¢; (seeing (21)). Therefore,

according to (D10), it is easy to conclude Y; is finite for
alle; € Rand ¢; € R.
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Step 2 According to (24), (25) and (26), it is easy to
find out7;(0) = 1 and p,(0) = 1 hold forall ¢;(0) € R.
Then, in the light of (9) and (21), we can derive (D11)

B,i(0) — 5:(0) = 15;(0) [hoiFo(0) + £2,:(0) — X;(0)]
—¢€;(0) + X;(0)
= hiFo(0) +%,(0) — ;(0)

5i(0) — B,;(0) = €:(0) — X;(0)
-1, (0) [ho,iFo(0) + £,(0)
=¢:(0) — ﬁo,iFO(O) - §2,i(0)

- Xi(0)]

(D11)

According to (22) and (23), the following conclusions
can be drawn. Firstly, /;Fo(0) = 0 holds as long as
¢:(0)<%,(0) holds. Secondly, ho;Fo(0) = 2¢;(0)
holds as long as ¢;(0)>%,(0) holds. Thirdly,
hy Fo(0) =0 holds as long as ¢;(0) > &,;(0) holds.
Fourthly, A ;Fo(0) = 2¢;(0) as long as ¢;(0) < & ;(0).
Then, by using the facts of &, ; <0 and &,; > 0 (seeing
Remark 3), (D11) can be written as (D12).

n _ & 1(0) — e,(O), lf e,(O) < ,(0)
Bul0) 70 = {;f(O) (0. 7 0 >5s0) 7

—€i(0) —&,,;(0),if ¢;(0) <&, ;(0) >0
(D12)

S,'(O) 75“_(0) — {el(o) _§2Ai(0)7 lfel(o) > §2.i(0)

It is clear that N; in (45) is finite according to (D12).
Then, by working with Remark D1, the proof is
complete.

Appendix E

Proof of Theorem 3 Considering the following
Lyapunov function.

1
Vii= Es,? (El)
Taking the derivative of (E1) and using (28), we can
obtain (E2).
Vii=siSi=si(vi;+vo+H; — ér,i - X)) (E2)

By using (37)-(44), (E3) can be derived from (E2) by
using the fact v, ;5; <O0.

Vli < - ﬂl,i’si|pl+l - [))Z.i‘si|pz+l ([331 yt) Si
+ S,'H,' — S,'I:]\ilPiJr
(E3)

In the light of Lemma 2 and (41), (E4)-(E6) are
obtained.

Ifr <t:
1 1 "

; 2 22 22

Vii< = ﬁ3,i‘i _5% Si “‘5“/;’ Si "‘2%2 (E4)

Ifﬂi<tSﬁ,‘ + T;:

: . I

Vl.,if ﬁ}zsl__))lsl+( \P )( /lsl F)
Vi
(E5)

Ifr>1+7;5:

Vi< — /31.,l'|si|pl+1 Bailsi [t (E6)

According to (E4)-(E6), we can derive (E7) by using
the fact 0 <W;" < 1.

H
=25, V1.(t) JFZ—%ZJS t;
—3
+727ﬂ:l<t§ﬂ:l+T3

i potl
ﬁZ.ZVF(I)ﬂt > ﬁi + T3
(E7)

Vi) < —2f5,;V1.i(1)

prtl

=BV (1) —

Remark E1 In the light of (E7), it is clear that V' ;(¢)
is  bounded for €[0,t;+75) such that

V() < max[Vl,i(O),%] holds for ¢ € [0, t; + T3).

Then, by working with Lemma 1, it is true V;
converges to zero within a fixed time #y; defined in
(46) such that V ;(r) = 0 holds for 1 > 1y ;.

Consider a Lyapunov function in (ES8).

1
Vay =36 (E8)

Taking the deriva-

Where variable éi = m

tive of (E8) and using (37)—(44), we can obtain (E9).
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Vai = && )
=&Mi(vii+vai+Hi — 0 — X+ Ayy)
(E9)
—B,; 52
Where Ay; = — Boilloi

—
(Bs.i *Xi) (sl 7§v.[ )2

Remark E2 It is clear A,; > 0 holds because the
facts of B;; >0 and B, ;<0 (seeing Theorem 2).
Moreover, it is true that sign(&;) = sign(s;) holds as
long as B ; <s; <B;,; holds.

According to Remark E2, by using (38)—(43), we can
derive (E10).

Vo= =Pl (Bualsil” + Bailsil™) &1 + (B3,
] + iy
+ &M [— A1 — |A1Ai|5gn(éi)]\yi7(t)/\
— &Moo i () + &M H — &M H YT
(E10)
According to (41) and Lemma 2, we can obtain (E10).
Cil\oiH; — éiAZ,iﬁilP;r
Aoi|&IH,0<1 <t
< A27i|éi|(1 - ‘{j;r)ﬁa Li<t<t;+T;3
0,t>t+Ts
< { Api|&|H,0< 1<t + T3
10>+ T3

Then, (E12) can be obtained by using (39), (E11),
(E12) and the fact #5; > 1; + T3 (seeing (46)).

(E11)

Vaulr) < —EiMavo; + Mi|EH, 0< 1<t + T
o
T Ao b+ Ty <t <tg;

-2

2
. V0. o H
< { —Ehgvo; + L EA? + 0<t<ti+T;

o =il Fg.ia
=& v, ti + Ty <t <to;
2 B 2 —
0.i —ByiBy; +57)si H
—Cilavoi + Licny, % +55,0<<G+T;
= 2 (Bsi—si) (si = By;)” 20,

—&iMa v, i + T3 <t <to;
(E12)
In the light of (D12) in the appendix D, it is clear
B;;(0)<s;(0)<B;,;(0) holds. According to (45),
V2:(0) = %512 (0) < 1N? holds. Then, we assume there
is a moment 7 l* no later than t; + 75, which indicates
the moment of V,; first-time reaching %le such that

@ Springer

Voi(t) =1& (1) =1N? holds for t =7 <t; + Ts.
Therefore, it is clear V,; < %NZZ and B, ;<s; <§57,~
hold for 0 <#< T, which is equal to (E13).
_ |si <,
(Bsi — si)(si = By;) =, VO<t<T; (E13)
E&i < <§”

By solving (E13), we can derive the boundary of s; for
0<r<T:.

5, <5 <5,V0<t<T; (E14)

where s; and s; are defined in (44).

Theorem 2 indicates B,; <0 and By; > 0 forall >0,
which means —4§S’,ﬁs,i > () always holds. Remark D1
illustrates 5;<B;; and s; > B, hold for all >0 as
long as N; > 0. Then, by using (44), it is easy to find
out B ; <s; <0 and 0 <5; <Bj, hold as long as &; > 0.
After that, by using (E14) and the foregoing discus-
sion, we can easily derive (E15).

1 X
0< 3. _si)3(si _Em)s <y,V0<t<T; (E15)

where y; is defined in (44).
According to (E12), (E15), (42) and Remark E2, we
can derive (E16) and its integral (E17).

2
VY ‘»f'Azﬁ‘_ —
A 21 lyi(_Bs.,iBs,i + Sz‘z)si

Vz,i(l) < = E&Moivo, +
-2
H
+—,V0<t<T;

27’5,1’ 7
o & (Bsi — si) (si — By;)
2 —By B, + s
7
+ % )

i

Cil\ai

NO<:<T;

772

H
= —P4;Vo,(t) +

—, VO<t<T;
2"/(2),1'

(E16)

Hz
Vo) e Pl |V (0) — -
' 2:34,1'“/%,1'
-2

+—— VO<t<T; (E17)
2ﬁ4,i“/%,,’

Where the positive constant € = 0.2718.
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According to the definition of 7 l-*, which illustrates
Vau(t) = %Nf holds for r = T, we can derive (E18)
by using (E17).
" "
- |t 2
2134,1'“/0,1' 25471'3’0,1'

1 .
ENf < e PTi v, ;(0) (E18)

Remark E3 (45) implies % N? > V;(0) holds. Then,

—2
if %le > zﬁH = holds, there will be no real solution
470,

T €[0,00) to satisfy (E18). It means V,;(t) =
Vzﬁ,-(Tf) = %le will not happen for0 <r<t; + Ts.
Hence, V,;(t) will not reach %N? for0<¢t<t; + T;s.

Remark E4 (45) implies % le > V,,;(0) holds. Then,

=2
if N2 < ﬁHyZ holds, we can derive a real solution 7'; €
4,i70,i

[0,00) to satisfy (E18), which is detailed in (E19).
According to (47), 7} satisfying (E19) can guarantee
t; + T5 <7 holds. Therefore, V,;(z) will not reach
%le for0<r<t; +T;.

1 £2 H
T > ! 1 2450 - 2475,
i —mhn|—
i = —
2i INZ2 __H
270 2/34.;"/3),-
—2

H
1 V2i(0) — ST

= ﬁ_ In 5 —
2, 1IN __H
27 2ﬁ4.i”}"g‘i

(E19)

Given Remark E3 and Remark E4, V,;(r) will not
reach % N,-z for 0 <t <t; + T5. Therefore, we can obtain
(E20) by using (E16).

ﬁz
—BaiVai(t) + 55,05t <t + T5
T 270,
O, ﬂ,‘ + T3 <t§l‘0’,‘

Vau(t) <

(E20)

Remark E5  According to (E20), V,,(¢) is bounded
—

for t € [0,19,] such that Vo,(z) Smax[V;i(O),—zﬁ?Tz]
10,0

holds for ¢t € [0,t; + T3] and V(1) <Vo,(t =1 +

T3) < max[V2,(0), 57] holds for 1 € (£ + T, 10,].

Remark E6 According to Remark E5, V,;(t) is
bounded for 7 € [0,7y,;], which means B, <s; <By;
holds for € [0,0,]. According to Remark ElI,
V1.i(f) = 0 holds for 7> 1y;, which means s;(f) =0
holds for ¢ € [tg;,o0). Since B,;<0 and B;; >0
always hold (seeing Theorem 2), it is obviously true
B, <s;i <Bj,; holds for € [tg;,00).

In the light of Remark E1 and Remark E6, the proof
is complete.
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