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Abstract Space robotic manipulator (SRM) should

be always performed in the given workspace for safety

concern. This requires the system states such as

rotation of each joint, attitude of base, and their

velocities to be always constrained in the given

regions. In this article, a new sliding mode control

scheme based on a fixed time disturbance observer is

proposed to realize the fixed time coordinate motion

control of SRM with full-state constraints. Firstly, the

tracking error and error velocity at the novel sliding

manifold can converge to the equilibrium within a

fixed time without violating their state constraints.

Then, the control law based on the fixed time

disturbance observer is designed to achieve the sliding

manifold within a fixed time, which simultaneously

satisfies the state constraints during the approaching

stage. Unlike the most existing state constraint control

schemes, the proposed controller does not include any

Barrier Lyapunov Function (BLF) terms of system

states, and therefore the risk of controller outputting

inappropriately high control commands is eliminated.

Moreover, the proposed control scheme is compatible

to the initial system states violating their constraints,

which thereby removes the assumption of feasible

initial states. Furthermore, the proposed sliding

manifold solves the singularity issue by a continuously

varying power of tracking error, which thereby does

not need an additional switch mechanism of manifold

compared to the conventional fixed time controllers.

The stability of the proposed control scheme is proven

by using the Lyapunov theory, and the effectiveness is

verified by numerical simulations.

Keywords Space robotic manipulator � Fixed time

control � State constraint control

1 Introduction

Space Robotic Manipulators (SRM) play a crucial role

for various on-orbit missions such as debris removal,

object inspection, maintenance, and assembly of space

structures [1–5]. To successfully perform such space

missions, the motion of SRMs should be well

controlled so that the End-Effector (EE) and all the

joints can track their reference trajectories accurately.

Moreover, SRMs should be always performed in the

given workspace for safety concerns, which requires

the system states including the tracking error and the

error velocity of each joint to be always constrained

within their pre-defined boundaries.

Over the past decades, many efforts have been

made on controlling the motion of SRMs. The early

developed controllers of SRMs always required either
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the accurate model or the linearizable model [6–8].

For example, Authors in [8] proposed a Proportional

Derivative (PD) controller based on the accurate and

linearized model of SRM with multiple Control

Momentum Gyros (CMGs). Later, many adaptive

controllers [9–12] and robust controllers [13–15] were

designed to handle the system uncertainty, distur-

bance, and nonlinearity. Additionally, many works

showed the interest on improving the transient

performance by achieving a finite time convergence

of tracking errors, known as Finite Time Control

[16–20]. To detail a few, authors of [16] developed a

Radial Bias Function (RBF) neural network based

continuous sliding mode controller for SRMs under

actuator saturation to achieve a finite time conver-

gence of tracking errors. In [18], a novel finite-time

Dynamic Surface Control (DSC) scheme was pro-

posed for SRMs, which can not only guarantee the

tracking error to converge within a finite time but also

efficiently attenuate the actuator saturation. However,

those control schemes can only achieve the settling

time dependent on the initial system state, which

cannot guarantee a settling time pre-defined by users.

Recently, Fixed Time Control (FTC) has been

popular since the concept of fixed time stability was

introduced by Polyakov in [21]. FTC approaches can

achieve a settling time that is independent of initial

conditions and only affected by the pre-defined

coefficients of controller, which shows a significant

superiority to Finite Time Control. In [22], an Extreme

Learning Machine (ELM) based non-singular fixed

time sliding mode control scheme was proposed to

control robotic manipulator systems, wherein the

novel sliding manifold achieved a faster converging

rate of tracking errors compared to the conventional

FTC counterparts such as [23, 24]. Authors of [25]

presented an adaptive singularity-free fixed time

control scheme for the attitude regulation of rigid

spacecraft. The novel sliding manifold is singularity

free without the need to switch the manifold around

the equilibrium of tracking errors, which showed a

superiority to other FTC approaches such as [26–28].

Authors in [29] designed a class of general non-

singular terminal fixed time sliding mode control

scheme, and then applied it on a dual-arm free floating

SRM to achieve the global predefined time stability.

On top of that, it is a high priority for SRMs to

guarantee the constrained system states to have a safe

operation. For example, the tracking errors of a SRM

servicing a target spacecraft should not exceed the

given range to avoid hitting the body of the target,

while the angular rate of the joints should not exceed

the maximum rate allowed by the actuation motors.

Many researchers have paid attention to the state

constraint control. To mention a few, authors in [30]

proposed an adaptive neural network controller for

robotic systems subject to actuator saturation and

time-varying delay, which utilized a Tan-type Barrier

Lyapunov Function (BLF) to realize the semi-globally

uniformly ultimately bounded tracking errors with the

asymmetrically constrained states. In [31], a robust

sliding mode controller for robots was designed to

realize the finite time stability with the fulfillment of

the state constraints. Liu et al. designed a neural

network controller that realized the bounded tracking

errors with the satisfaction of the asymmetric time-

varying state constraints for a class of strict-feedback

nonlinear systems [32]. Moreover, many efforts have

been made on combining the FTC and constraint state

control such as [33–36]. For example, authors of [36]

designed a fuzzy adaptive backstepping controller for

a class of uncertain non-strict-feedback systems

subject to input saturation, which not only realized

the fixed time stability but also constrain the system

states within the pre-defined time-varying boundaries.

It is also worth mentioning that Prescribed Perfor-

mance Control (PPC) can be regarded as a particular

case of state constraint control, since PPC approaches

guarantee the transient performance (settling time and

overshoot) by actively constraining the tracking error

within the pre-defined decaying functions. Due to the

merit of guaranteeing a pre-defined transient perfor-

mance, many PPC schemes have been developed for

robotic systems [37–40] and spacecrafts [41–43].

However, most of the existing state constraint

controllers including [30–34] are designed based on

Barrier Lyapunov Function (BLF). Therefore, these

controllers include some BLF terms that could result

in an inappropriately high control commands when the

system states are close to their pre-defined constraints,

which could compromise the control performance or

even make the system instable. Unfortunately,

although the BLF terms in these controllers can be

proven to be finite by using the Lyapunov theory and

considering the controller as a continuous system, the

risk cannot be neglected because of the discrete nature

of controller in practice and the potential failure of

state measurement. For example, the slow response of
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actuators could result in the system state overly

approaches to or even exceeds the constrained

boundary before the next action of actuator is applied

to stop it. Furthermore, the measured system states

used by controller could also be inappropriately close

or even exceed to the constraints due to measurement-

noises and sensor-failures. Moreover, the control

schemes based on BLF [30–43] assume the initial

system states do not violate the constraints, which

means they cannot handle all the initial conditions. In

the light of the foregoing discussion, the following 2

aspects are urgently expected to be improved.

• Compatibility to initial states violating con-

straints: if the initial states satisfy the constraints,

the tracking error should be able to converge

within a fixed time without the violation of state

constraints. If no, the controller should be still able

to make the tracking error converge within a finite

time.

• No risk due to the barrier function: the controller

should not calculate the inappropriately high

control commands when the measured system

states are close to or even exceed their constrained

boundaries.

To solve the mentioned issues, a novel fixed time

full-state constraint sliding mode control scheme for

SRMs subject to system uncertainty and unknown

disturbance is proposed in this paper. Firstly, a novel

singularity free fixed time sliding mode manifold is

designed, which can guarantee the fixed time conver-

gence of tracking errors without violating state

constraints. Notably, the varying power of tracking

error of the manifold is designed to solve the

singularity problem of FTC, which is different to

many conventional works [20, 22, 26, 44–46] that

need an additional switch mechanism of sliding

manifold. Secondly, the condition of sliding manifold

is determined such that the system state will satisfy

their constraints if this condition is satisfied. Thirdly, a

fixed time disturbance observer-based sliding mode

controller is proposed to achieve sliding manifold

within a fixed time with the satisfaction of the

mentioned condition. The advantages of the proposed

control scheme are listed as follows.

• Compared to the conventional state-constraint-

control schemes [30–43], the proposed controller

does not include any BLF term of system states,

which thereby eliminates the risk of calculating

inappropriately high control commands caused by

the system states close to their constrained

boundaries.

• Unlike the conventional state-constraint-control

schemes [30–43] that are incompatible to the initial

states violating the constraints, the proposed con-

troller can still achieve a finite time stability if the

initial system states violate their constraints.

• Compared to the conventional fixed time control

scheme [20, 22, 26] and [44–46], the proposed

controller does not need an additional switch

mechanism that works when tracking errors move

into a neighbourhood of origin. Thereby, the fixed

time convergence is not compromised when

tracking errors at the neighbourhood of origin.

The rest of paper is organized as follows. The

model of SRMs and assumptions are given in Sect. 2.

In Sect. 3, the proposed control scheme is detailed,

and the proof of stability is given. The simulation

results are presented in Sect. 4. Conclusion is drawn in

Sect. 5.

2 Problem formulation and preliminaries

2.1 Dynamic model of space manipulator

A n-link rigid space robotic manipulator considered in

this paper is shown in Fig. 1. The SRM is composed of

1þ N rigid bodies. i ¼ 0 is the satellite or spacecraft

base with 6 Degree-of-Freedoms (DOFs) and i ¼
1; 2; . . .;N represents the ith rigid link. RI is the inertia

frame, R0 is the body fixed frame of the base, Ri

Fig. 1 Illustration of the space robotic manipulator (SRM)
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(¼ 1; 2; . . .;N) represents the local fixed frame of the

ith link, and RE is the local frame of the end effector.

The Centre of Mass (COM) of the ith link is located by

ai and bi in local frame. li ¼ ai þ bi represent the

length of the ith link.

The dynamic model of SRMs derived by using

Lagrange method is shown in (1) [11–16, 38, 39].

M hð Þ€hþ C h; _h
� �

_hþ D ¼ s ð1Þ

where h ¼ ½hB; hR�T 2 Rð3þNÞ�1. hB ¼
½h0x; h0y; h0z�T 2 R3�1 represents the attitudes of the

base, and hR ¼ ½h1; h2; . . .; hN �T 2 RN�1 refers to the

angular positions of joints of the manipulator. The

positive definite matrix M hð Þ 2 Rð3þNÞ�ð3þNÞ is the

coupling inertia matrix of SRMs. C h; _h
� �

2
Rð3þNÞ�ð3þNÞ is the matrix consisting of the nonlinear

terms of Coriolis and Centrifugal forces.D 2 Rð3þNÞ�1

is the external disturbance.s ¼ ½sB; sR�T 2 Rð3þNÞ�1.

sB ¼ ½sx; sy; sz�T 2 R3�1 is the torque regulating the

base, sR ¼ ½s1; s2; . . .; sN �T 2 RN�1 is the torque driv-

ing the joints.

After some mathematic manipulations, (1) can be

written as (2) ready to design a controller [12, 47–49].

€h ¼ bM�1
hð Þs� bM�1

hð Þ bC h; _h
� �

_h

þ bM�1
hð Þf bM hð Þ �M hð Þ
h i

€h� ½C h; _h
� �

� bC h; _h
� �

� _h� Dg

¼ bM�1
hð Þ½s� bC h; _h

� �
_h� þ H ð2Þ

where the matrix bM and bC is the nominal part ofM and

C respectively. The vectorH ¼� bM�1
hð Þ f½C h; _h

� �
�

bC h; _h
� �

� _hþDgþ M�1 hð Þ� bM�1
hð Þ

h i
s is the lumped

uncertainty consisting of model uncertainties and

external disturbances.

2.2 Assumptions and control targets

The control target is to realize the convergence of

tracking errors without violating the constraints of

angular position and angular velocity, which is

detailed in (3), (4) and (5).

ei tð Þ ¼ hi tð Þ � hr;i tð Þ ¼ 0; 8t� t�; i
¼ 0x; 0y; 0z; 1; ::;N ð3Þ

j1;i tð Þ\; hi tð Þ\�j1;i tð Þ; 8t� 0; i ¼ 0x; 0y; 0z; 1; ::;N

ð4Þ

j2;i tð Þ\ _hi tð Þ\�j2;i tð Þ; 8t� 0; i ¼ 0x; 0y; 0z; 1; ::;N

ð5Þ

where t� [ 0 is the settling time. hr;i is the reference

signal. j1;i tð Þ and j1;i tð Þ are the constraints of angular
position. j2;i tð Þ and j2;i tð Þ are the constraints of

angular velocity.

Assumption 1 Like the works [12–14, 16], the

lumped uncertainty H in (2) is assumed to be bounded

by a positive number H[ 0 such that Hj jj j\H.

Assumption 2 j1;i tð Þ\�j1;i tð Þ holds so that there

exists a positive constant D1;i ¼
min

t[ 0
ð�j1;i tð Þ�

j1;i tð ÞÞ[ 0, and j2;i tð Þ\�j2;i tð Þ holds so that there

exists a positive constant

D2;i ¼ min
t[ 0

ð�j2;i tð Þ � j2;i tð ÞÞ[ 0.

Assumption 3 The constraints of angular velocity

j2;i and j2;i are able to handle the changing rate of the
constraints of angular position j1;i and j1;i such that

_j1;i tð Þ\�j2;i tð Þ and j2;i tð Þ\ _�j1;i tð Þ hold.

Assumption 4 The reference trajectory hr;i satisfies
the state constraints (4) and (5) such that

j1;i tð Þ\hr;i tð Þ\�j1;i tð Þ and j2;i tð Þ\ _hr;i tð Þ\�j2;i tð Þ
hold.

Remark 1 Assumption 1, Assumption 2, Assump-

tion 3 and Assumption 4 are reasonable and accept-

able. In detail, Assumption 1 requiring a bounded

lumped uncertainty is acceptable in many literatures

such as [12–14, 16]. Assumption 2 guarantees the

existence of the space between the upper boundary and

lower boundary of constraints, where the system states

are controlled to track their reference signals. Assump-

tion 2 can also be found in [30]. Assumption 3 allows

the system state hi to have the high enough magnitude

of velocity to avoid hitting the upper/lower boundaries

of constraints at any time. For example, hi extremely

close to the lower boundary j1;i can avoid hitting the

lower boundary only if �j2;i [ _hi � _j1;i holds, while hi
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extremely close to the upper boundary j1;i can avoid

hitting the upper boundary only if j2;i\ _hi � _�j1;i holds.
Assumption 4 guarantees the successful tracking of

reference trajectory is not contradictory to the satis-

faction of state constraints.

2.3 Useful existing lemma

Lemma 1 [50]. For a general Lyapunov function

VðxÞ, if the following condition (6) is satisfied, the

system _x ¼ f ðxÞ can be fixed time stable with the

convergence time T\Tmax ¼ 1
c1ðq1�1Þ þ 1

c2ð1�q2Þ
:

_VðxÞ� � c1V
q1ðxÞ � c2V

q2ðxÞ ð6Þ

where c1 [ 0, c2 [ 0, q1 [ 1 and 0\q2\1:

3 Control scheme design

The proposed controller consists of the non-singular

fixed time constrained state sliding mode manifold,

and the fixed-time disturbance observer based con-

strained state robust controller. The structure is

illustrated in Fig. 2.

3.1 Non-singular fixed time sliding manifold

In the light of (3), the upper/lower boundaries of

constraints of tracking error are defined in (7). The

upper/lower boundaries of tracking error velocity are

defined in (8).

�e1;i tð Þ ¼ �j1;iðtÞ � hr;iðtÞ; e1;i tð Þ ¼ j1;i tð Þ � hr;iðtÞ
ð7Þ

�e2;i tð Þ ¼ �j2;iðtÞ � _hr;iðtÞ; e2;i tð Þ ¼ j2;i tð Þ � _hr;iðtÞ
ð8Þ

Remark 2 According to (3)–(5) and (7)–(8), it is

obvious we can achieve (4)-(5) if the inequalities

e1;i\ei\�e1;i and e2;i\ _ei\�e2;i are achieved.

Remark 3 According to Assumption 2 and Assump-

tion 4, it is true that �e1;i tð Þ[ 0, e1;i tð Þ\0, e2;i tð Þ[ 0

and e2;i tð Þ\0 hold. Working with Assumption 3, it is

clear that _e1;i\�e2;i and e2;i\ _�e1;i hold. Therefore, there
exist the following positive con-

stants:�d1;i ¼ max
t� 0

ð _e1;i tð Þ
�� ��Þ[ 0, d1;i ¼ min

t� 0
ð _e1;i tð Þ
�� ��Þ

[ 0, d2;i ¼ max
t� 0

_e1;i tð Þ
�� ��� �

[ 0, d2;i ¼ min
t� 0

ð _e1;i tð Þ
�� ��Þ

[ 0, d3;i ¼ max
t� 0

ðe2;iðtÞ � _e
1;i
ðtÞÞ[ 0, d3;i ¼ min

t� 0

�e2;i tð Þ � _e1;i tð Þ
� �

[ 0, �d4;i¼max
t�0

_�e1;i tð Þ�e2;i tð Þ
� �

[0,

d4;i¼min
t�0

_�e1;i tð Þ�e2;i tð Þ
� �

[0 and d5;i¼max
t�0

e
2;i

tð Þ
����

����; e2;i tð Þ
�� ��

� �
[0. d5;i¼min

t�0
e2;i tð Þ
�� ��;�

�e2;i tð Þ
�� ��Þ[0.

In the light of (3), (7) and (8), a novel non-singular

fixed time sliding manifold s ¼
½s0x; s0y; s0z; s1; s2; ::; sN �T is designed as (9)-(13).

Fig. 2 Block diagram of the

proposed control scheme
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si tð Þ¼ _ei tð Þ�XiðtÞ

XiðtÞ¼gi tð Þ
e2;i tð ÞUi tð Þ

�e2;i tð ÞþUi tð Þ
þð1�giðtÞÞ

�e2;iðtÞUiðtÞ
�e2;iðtÞþUiðtÞ

8<
:

ð9Þ

UiðtÞ ¼ k1;ijeiðtÞjk1;i þ k2;iðjeiðtÞj þ a
1

k2;i tð Þ
i ðtÞÞk2;iðtÞ

ð10Þ

ai ¼
G1 /�

1;i; kc;i

� �
; ifei\0

G1 /�
2;i; kc;i

� �
; ifei � 0

8><
>:

ð11Þ

/�
1;i ¼

1

k2;i
½/1;i � k1;ið�eiÞk1;i �;/1;i

¼
_e1;i � G2 kL; ei � e1;i

� �

�e2;i � _e1i þ G2 kL; ei � e1;i
� � �e2;i ð12Þ

/�
2;i ¼

1

k2;i
ð/2;i � k1;ie

k1;i
i Þ;/2;i

¼
� _�e1;i � G2 kR; �e1;i � ei

� �
_�e1;i � e2;i þ G2 kR; �e1;i � ei

� � ð�e2;iÞ ð13Þ

gi ¼
1; if ei � 0

0; if ei lt; 0

	
ð14Þ

where k1;i [ 0, k2;i [ 0, k1;i [ 1, kc;i [ 0, kL [ 0 and

kR [ 0 are the constant coefficients defined by users.

The function G1 and G2 used in (11)-(13) are defined

in (15) and (16) respectively. 0:5\k�2;i\k2;i tð Þ� 1 is a

varying parameter to solve the singularity problem of

fixed time control, which is defined in (17).

G1 x;yð Þ¼
1; if x\�y

1þ1

2
x�b

p
cos p

x

2y

� �
þ1

2
y; if �y�x�y

1þx; if x[y

8><
>:

ð15Þ

G2 x; yð Þ ¼ 0; if y\1
xðy� 1Þ2; if y� 1

	
ð16Þ

k2;i tð Þ ¼

1; if t� t0;i
1

2
þ
k�2;i
2

þ
1� k�2;i

2
cos p

t � t0i
tDi

� �
; if t0;i \t \t0;i þ tD;i

k�2;i; if t� t0;i þ tD;i

8>><
>>:

ð17Þ

where x, y 2 Rmean any real number. 1[ 0 is a small

positive constant close to zero (e.g. 1 ¼ 1� 10�9) that

satisfies 0\1\min
t� 0

ðje1;iðtÞj; je
1;i
ðtÞjÞ. 0:5\k�2;i\1 is

a constant. tD;i [ 0 is a positive constant. t0;i is the time

after the sliding manifold (9) is achieved such that

si t� t0;i
� �

¼ 0. t0;i will be determined in the next

section.

Theorem 1 Considering the system (2), if system

states successfully reach the sliding manifold (9) at the

time t0;i � 0, the following 2 conclusions can be drawn:

• If system state at t ¼ t0i does not violate constraint

(4) such that siðt� t0;iÞ ¼ 0 and e
1;i

t0;i
� �

\ei t0;i
� �

\e1;iðt0;iÞ hold, then eiðt� t1;iÞ ¼ 0 can be

achieved within a fixed time t1;i shown in (18),

and the constraint (4) and (5) are satisfied as long as

t� t0;i.

• If system state at t ¼ t0;i violates constraint (4)

such that siðt� t0;iÞ ¼ 0 and ei t0;i
� �

2 ð�1; e
1;i

ðt0;iÞÞ [ ðe1;iðt0;iÞ;1Þ, then eiðt� t2;iÞ ¼ 0 can be

achieved within a finite time t2;i shown in (19), and

the constraint (5) is satisfied as long as t� t0;i.

t1;i ¼ t0;i þ tD;i þ
2

ð
ffiffiffi
2

p
Þ1þk1irik1;iðk1;i � 1Þ

þ 2

ð
ffiffiffi
2

p
Þ1þk�2;irik2;ið1� k�2;iÞ

ð18Þ

t2;i ¼ t0;i þ tD;i

þ 2

ð
ffiffiffi
2

p
Þ1þk�2;irik2;ið1� k�2;iÞ

½1
2
e2i ðt0;iÞ�

1�k�2;i

ð19Þ

where constant ri [ 0 is independent of system state

eiðt ¼ t0;iÞ, constant ri [ 0 is dependent of system

state eiðt ¼ t0;iÞ, which are detailed in Appendix A.

Proof The proof is given in Appendix A.

3.2 Condition of sliding manifold to satisfy state

constraint

Theorem 2 Considering the system (2), if the initial

states satisfy the constraints (4) and (5), the state

constraints (4) and (5) can be satisfied for 0� t� t0;i as

long as the condition described by (20)–(27) is

satisfied for 0� t� t0;i. Moreover, the inequations

0\li � 1, 0\l
i
� 1, Bs;i [ 0 and Bs;i\0 always hold

for all t[ 0.
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Bs;i\si\Bs;i ð20Þ

�Bs;i ¼ �li �hi þ �e2;i � Xi

� �
Bs;i ¼ l

i
ðhi þ e2;i � XiÞ

	
ð21Þ

where hi ¼ h0;iF0 tð Þ and hi ¼ h0;iF0 tð Þ. The time

function F0 tð Þ is shown in (22). where constants

h0;i � 0 and h0;i � 0 are detailed in (23)

F0 tð Þ ¼ cos
p
2

t

T1

� �
; if t� T1

0; if t[ T1

8<
: ð22Þ

�h0;i ¼
2 _eið0Þ; if _eið0Þ� �e2;ið0Þ

0; if _ei 0ð Þ lt; �e2;ið0Þ

	
; h0;i

¼ 2 _eið0Þ; if _eið0Þ� e2;ið0Þ
0; if _ei 0ð Þ gt; e2;ið0Þ

	

ð23Þ

where the variables li and l
i
are detailed in (24).

li ¼
1; if zR;i

�� ��� z�R;i

���
���

l0;i þ 1� l0;i
� �

sin
p
2

ðzR;i þ F0z
��
R;iÞ

2

ðz�R;iÞ
2

 !
; if zR;i

�� ��\ z�R;i

���
���

8>>><
>>>:

l
i
¼

1; if zL;i �j jz�L;i
���

���

l
0;i

þ 1� l
0;i

� �
sin

p
2

ðzL;i þ F0z
��
L;iÞ

2

ðz�L;iÞ
2

 !
; if zL;i

�� ��\ z�L;i

���
���

8>>><
>>>:

ð24Þ

where zL;i ¼ ei � e
1;i

and zR;i ¼ e1;i � ei. The con-

stants z�R;i [ 0, z�L;i [ 0, z��R;i [ 0 and z��L;i [ 0 are

defined in (25). The constants l0;i and l
0;i

are defined

in (27).

z�R;i ¼
je1;i 0ð Þj; if jzR;i 0ð Þj ¼ 0

jzR;i 0ð Þj; if jzR;i 0ð Þj[ 0

	
z�L;i

¼
je

1;i
0ð Þj; if jzL;i 0ð Þj ¼ 0

jzL;i 0ð Þj; if jzL;i 0ð Þj[ 0

(
ð25Þ

z��R;i ¼
j�e1;i 0ð Þj; if jzR;i 0ð Þj ¼ 0

0; else

	
z��L;i

¼ je1;i 0ð Þj; if jzL;i 0ð Þj ¼ 0

0; else

	
ð26Þ

�l0;i ¼
min

t[ 0
F1;iðtÞ
� �

;F1;i tð Þ

¼ minð _�e1;i tð Þ; �e2;i tð ÞÞ � �XiðtÞ
�hi tð Þ þ �e2;i tð Þ � e2;i tð Þ

; �Xi tð Þ ¼
e2;iU i

�e2;i þ U i

:

l
0;i

¼ min
t[ 0

F 2;iðtÞ
� �

;F 2;i tð Þ

¼
maxð _e1;i tð Þ; e2;iðtÞÞ � XiðtÞ
hiðtÞ þ e2;iðtÞ � �e2;iðtÞ

;Xi tð Þ ¼
�e2;iU i

�e2;i þ U i

U i ¼ k1;ij�e1;ijk1;i þ k2;iai eið Þjei¼�e1;i ;U i

¼ k1;ije1;ij
k1;i þ k2;iai eið Þjei¼e1;i

ð27Þ

Proof The proof is given in Appendix B.

Remark 4 The information of hi, hi, e1;i, e1;i, e2;i and
e2;i are known, and they are all time-dependent

variables without any system states. Therefore, l0;i
and l

0;i
can be obtained by solving (27) at the

beginning prior to implement the controller.

Remark 5 : The proposed sliding manifold (9) is

non-singular such that j _Xij is non-singular for all ei 2
ð�1;1Þ and _ei 2 ð�1;1Þ.

Proof The proof is given in Appendix C.

3.3 Fixed time disturbance observer based robust

controller

To improve the clarity, the dynamics model (2) can be

written as (28).

€hi ¼ Pi þ Hi; i ¼ 0x; 0y; 0z; 1; ::;N ð28Þ

where Pi is the ith element of the vector

ð bM�1
sÞ 2 Rð3þNÞ�1. Hi is the i

th element of the vector

H 2 Rð3þNÞ�1.

Prior to detail the robust controller, a Fixed Time

Disturbance Observer (FTDO) [52] is introduced in

(29)–(35) to approximate the unknown termHi in (28).

zi ¼ _hi � ai ð29Þ

_ai ¼ �k0;izi þ Pi ð30Þ

_bz i ¼ _yi þ sgnðzi � bziÞðk1;ijzi � bzijm þ k2;ijzi
� bzijnÞ ð31Þ
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bHi ¼ _yi � k0;ibzi ð32Þ

where bHi is the estimate of Hi. k0;i [ 0, k1;i [ 0,

k2;i [ 0, m[ 1 and 0\n\1 are the constants.

yi ¼ zi. The derivative _yi is calculated by a discrete

tracking differentiator (TD) shown in (33)-(35).

x1;i k þ 1ð Þ ¼ x1;i kð Þ þ x2;i kð ÞDT
x2;i k þ 1ð Þ ¼ x2;i kð Þ þ uiðkÞDT

	
ð33Þ

ui kð Þ ¼
�rtdsgn Ai kð Þð Þ; if jAi kð Þj[w

�rtd
Ai kð Þ
w

; if jAi kð Þj �w

(
ð34Þ

Ai kð Þ ¼
X2;i kð Þ þ Bi kð Þ �W

2
sgn Li kð Þð Þ; if Li kð Þj j [w

X2;i kð Þ þ LiðkÞ
DT

; if jLi kð Þj �w

8><
>:

ð35Þ

where Li kð Þ ¼ x1;iðkÞ � yiðkÞ þ x2;iðkÞDT and

Bi kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ 8rtdjLi kð Þj

p
. w ¼ rtdDT . The positive

constants rtd andDT are the tracking rate and sampling

time respectively.

Lemma 2 [52]. The observer error ei ¼ zi � bzi and
disturbance estimation error eHi ¼ Hi � bHi converge

to zero within the fixed time ti given in (36).

ti¼
2

ð
ffiffiffi
2

p
Þ1þm

k1;iðm�1Þ
þ 2

ð
ffiffiffi
2

p
Þ1þn

k2;ið1�nÞ
ð36Þ

Remark 6 The FTDO [52] has no requirement on the

disturbance to be estimated, which means it is appli-

cable to SRMs. Moreover, the effectiveness of FTDO

had been experimentally verified by authors of [52]

such that Lemma 2 holds even at the presence of

measurement noise.

The novel robust controller including no barrier

term is designed in (37, 38). More precisely, the

control torque is calculated by (37).

s ¼ bM hð Þ v1 þ v2ð Þ þ bC h; _h
� �

_h ð37Þ

The v1;i and v2;i are the elements of the vector v1 and

v2 respectively, which are detailed in (38) and (39).

v1;i ¼ €hri þ _Xi � ðb1;i sij
q1 þ b2;i

�� ��sijq2ÞsgnðsiÞ
� ðb3;i þ

1

2
c2i Þsi � bHiW

þ
i

ð38Þ

v2;i ¼ �½K1;i þ K1;i

�� ��sgn sið Þ þ v0;i�W�
i ðtÞ ð39Þ

where the constants b1;i [ 0, b2;i [ 0, b3;i [ 0, ci [ 0,

q1 [ 1 and 0\q2\1 are selected by user. bHi is

calculated by (32). The time dependent functions Wþ
i

and W�
i are detailed in (40) and (41). The variable

terms Ki and v0;i are presented in (42) and (43).

W�
i tð Þ ¼

1; t� t0;i

cos
p
2

t � t0;i
T2

� �
; t0;i \t� t0;i þ T2

0; t [ t0;i þ T2

8><
>:

ð40Þ

Wþ
i tð Þ ¼

0; t� ti

sin
p
2

t � t0;i
T3

� �
; ti \t� ti þ T3

1; t [ ti þ T3

8><
>:

ð41Þ

K1;i ¼
Bs;isi � s2i

�Bs;iBs;i þ s2i

_Bs;i þ
Bs;isi � s2i

�Bs;iBs;i þ s2i
_B
s;i

ð42Þ

v0;i ¼
b4;i
2

Bs;i � si
� �

si � Bs;i

� �

�Bs;iBs;i þ s2i

�����

�����si þ
c20;i
2

yið�Bs;iBs;i

þ s2i Þsi
ð43Þ

where constants T2 [ 0, T3 [ 0, b4;i [ 0 and c0;i [ 0

are selected by user. The variable term yi is defined in

(44).

yi ¼ 1=min½j Bs;i � si
� �

si � Bs;i

� �
j�3; j Bs;i � si

� �
si � Bs;i

� �
j�3�

si ¼
1

2
Bs;i þ Bs;i �

1

@i

� �

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBs;i þ Bs;i �

1

@i
Þ2 � 4Bs;iBs;i

r
:

si ¼
1

2
Bs;i þ Bs;i þ

1

@i

� �

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBs;i þ Bs;i þ

1

@i
Þ2 � 4Bs;iBs;i

r
ð44Þ

where positive constant @i [ 0 is selected to satisfy

(45).
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@i [ ni 0ð Þj j ¼ j sið0Þ
Bs;i 0ð Þ � si 0ð Þ
� �

½si 0ð Þ � Bs;i 0ð Þ�
j

ð45Þ

where variable ni ¼ si
ðBs;i�siÞðsi�Bs;iÞ

:

Remark 7 yi in (44) is finite for all ei 2 R and _ei 2 R.

Moreover, for any initial state eið0Þ 2 R and _eið0Þ 2 R,

there is a finite positive @i to be the solution of (45).

Proof The proof is given in Appendix D.

Remark 8 Theorem 2 indicates that Bs;i [ 0 and

Bs;i\0 hold for all ei 2 R, and the calculation of Bs;i

and Bs;i does not involve _ei (seeing (21)). It means

�Bs;iBs;i þ s2i [ 0 holds for all ei 2 R and _ei 2 R.

Moreover, yi is proven to be finite for all ei 2 R and

_ei 2 R in Remark 7. Therefore, the controller defined

by (38)–(44) has no barrier function term of the

measured system states (tracking error ei and error

velocity _ei), which thereby eliminates the risk of

calculating inappropriately high control commands

when the measured system states are close to or even

exceed the constrained boundaries.

3.4 Stability analysis

Theorem 3 For a system of SRM (2) controlled by

(37)–(44), the sliding manifold (9) will be reached

within a fixed time t0;i shown in (46) such that si tð Þ ¼
0 holds for t� t0;i. Moreover Bs;i\si\Bs;i holds for all

t� 0 as long as the parameters of FTDO (29)-(32) are

selected to satisfy the condition (47).

t0;i ¼
2

ð
ffiffiffi
2

p
Þ1þq1b1;iðq1 � 1Þ

þ 2

ð
ffiffiffi
2

p
Þ1þq2b2;ið1� q2Þ

þ ti þ T3

ð46Þ

tiþT3�

1

b4;i
ln

1

2
n2i ð0Þ�

�H2

2b4;ic
2
0;i

1

2
@2
i �

�H2

2b4;ic
2
0;i

0
BBB@

1
CCCA;if

1

2
@2
i lt;

�H2

2b4;ic
2
0;i

T4; if
1

2
@2
i �

�H2

2b4;ic
2
0;i

8>>>>>>>><
>>>>>>>>:

ð47Þ

where positive constant ti is defined in (36). T3 is

defined in (41). Positive constant T4 is selected by user

to satisfy T4 [ T3. The variable ni is defined in (45).

Proof Proof is given in Appendix E.

The next step is to analyse the transient and static

performance. To do so, we consider the following 2

situations.

Situation 1 Initial system state violates the con-

straints such that at least one of the inequations,

e1;ið0Þ\eið0Þ\�e1;ið0Þ and e2;ið0Þ\ _eið0Þ\�e2;ið0Þ,
does not hold. Given Theorem 3, si tð Þ ¼ 0 holds for

t� t0;i. Given Theorem 1, eiðtÞ ¼ 0 holds for t� t2;i.

Therefore, in this situation, the finite time convergence

of ei can be achieved.

Situation 2 Initial system state satisfies the con-

straints such that e1;ið0Þ\eið0Þ\�e1;ið0Þ and

e2;ið0Þ\ _eið0Þ\�e2;ið0Þ hold. In the light of Theorem 3,

Bs;i\si\Bs;i holds for t� 0. Given Theorem 2,

e1;i\ei\�e1;i and e2;i\ _ei\�e2;i can hold for t 2
ð0; t0;i� because Bs;i\si\Bs;i holds. Therefore, state

constraints are satisfied for t 2 ð0; t0;i�. Given Theo-

rem 1, state constraints can hold for t 2 ðt0;i;1Þ if

they are not violated at t ¼ t0;i. Therefore, constraints

of tracking error and error velocity are satisfied in this

situation. Then, according to Theorem 3 (indicating

si tð Þ ¼ 0 holds for t� t0;i) and Theorem 1 (indicating

eiðtÞ ¼ 0 holds for t� t1;i), it is easy to conclude

eiðtÞ ¼ 0 holds for t� t1;i in this situation.

Based on the foregoing discussion and Remark 2,

the following conclusions can be drawn.

• If j1;i\hi\�j1;i or j2;i\ _hi\�j2;i does not hold for

t ¼ 0, then eiðtÞ ¼ 0 will hold for t� t2;i. t2;i is

defined in (19).

• If j1;i\hi\�j1;i and j2;i\ _hi\�j2;i hold for t ¼ 0,

then eiðtÞ ¼ 0 will hold for t� t1;i, while

j1;i\hi\�j1;i and j2;i\ _hi\�j2;i will hold for all

t[ 0. t1;i is defined in (18).

Remark 9 Compared to the conventional literatures

of state constraint control schemes such as [30–36]

and [53–56], a significant merit of the proposed

controller is the compatibility to the initial state

violating the state constraints.

123

Fixed time control of free-flying space robotic manipulator with full state constraints 1891



Remark 10 The procedure and motivation of con-

troller design are concluded as follows to enhance the

explanation of research. Firstly, we design the sliding

manifold (9)-(17) to guarantee the system states at the

manifold to have the following 3 properties: fixed-

time convergence without constraint violation if initial

states satisfy constraints (see Theorem 1), finite-time

convergence if initial states violate constraints (see

Theorem 1) and Non-singularity for all system states

on the real number field (see Remark 5). Then, we

derive a condition (20)–(27) that can guarantee the

system states initially satisfying their constraints to

always satisfy their constraints even they are not at the

sliding manifold (see Theorem 2). After that, we

design the Barrier-Lyapunov-term-free control law

(37)-(47) working with a disturbance observer (28)-

(35) to make the system states reach the sliding

manifold within a fixed time with the satisfaction of

condition (20)–(27) (see Theorem 3). Finally, the

analysed transient and static performance can be

obtained.

Remark 11 The potential limitations of the proposed

controller are detailed as follows. Firstly, the con-

troller does not consider the fault and saturation of

actuator, which means the actuator must be healthy

and able to generate the enough control torques

calculated by the controller. Secondly, the controller

does not consider the measurement noise and the

potential inaccessibility to measurement devices (e.g.,

IMU and star-tracker), which means the measurement

devices must be healthy and able to provide the

accurate information of system states (e.g., the attitude

of base, the angular position/velocity of each joint).

The process of selecting parameters is given as

follows.

Step 1 Select the parameters k1;i, k2;i, k1;i, k
�
2;i, kc;i,

kL, kR and 1 for sliding manifold (10)-(16). Select the

parameter T1 for (22).

Step 2 Calculate z�R;i, z
�
L;i, z

��
R;i, z

��
L;i, l0;i and l

0;i
in

(25)–(27). Then, calculate sið0Þ, Bs;ið0Þ and Bs;i 0ð Þ by
using (9)-(17) and (21)–(26). It is worth mentioning

k2;i 0ð Þ ¼ 1. After that, select @i in (45).

Step 3 Select parameters b1;i, b2;i, b3;i, b4;i, ci, c0;i,
q1, q2 and T2 for control law (38)-(43). After that,

Select the parameters T3 in (41) and T4 in (47). Then,

select the parameters rtd, DT , k0;i, k1;i, k2;i, m, and n

for the observer (29)-(35) to satisfy (47).

Step 4 Calculate t0;i in (46), and then select the

parameter tD;i in (17).

Remark 12 After selecting parameters, the imple-

mentation of controller for one iteration can be listed

as follows, which reflects the computational burden.

Step 1 At the current moment K, measure the

system states (hi, _hi), upload the known reference

signals (hr;i, _hr;i, €hr;i), upload the known state

constraints (j1;i, j1;i, j2;i, j2;i, _j1;i, _j1;i, _j2;i, _j2;i). This
step is implemented m times, where integer m[ 0 is

the total number of DOFs to be controlled (e.g., i 2
M ¼ f0x; 0y; 0z; 1; 2; ::;Ng and m ¼ Card

(MÞ ¼ 3þ N).

Step 2 Calculate tracking errors (ei ¼ hi � hr;i) and

error velocities ( _ei ¼ _hi � _hr;i), calculate constraints

of tracking errors (e1;i ¼ j1;i � hr;i,e1;i ¼ j1;i � hr;i)
and that of error velocities

(e2;i ¼ j2;i � _hr;i,e2;i ¼ j2;i � _hr;i) by using (7) and

(8). This step is implemented m times.

Step 3 Calculate sliding variables si by using (9)-

(17), calculating the derivative of Xi ( _Xi) by using

(C1)-(C13). This step is implemented m times.

Step 4 Calculate Bs;i and Bs;i in (20) by using (21)-

(24) and their derivatives ( _Bs;i, _Bs;i) by virtue of the

calculated _Xi in the previous step. This step is

implemented m times.

Step 5 Calculate the estimated lumped uncertainty

( bHi) from disturbance observer by using (29)-(35).

This step is implemented m times.

Step 6 Calculate the vector v1;i and v2;i in (37) by

using (38)-(44). This step is implemented m times.

Step 7 Calculate the vector of control torques s by
using (37). This step is implemented once.

Step 8 Go back to Step 1 with letting K ¼ Kþ 1 if

the moment K is not the terminate.

4 Simulation results

Like [3–5] and [9–20], we verify the effectiveness of

the proposed controller by numerical simulation in this

section. The numerical simulation for a 2-rigid-links

SRM visualized in Fig. 3 is then carried. The detailed

dynamic equations of the used 2-rigid-links SRM can

be found in [39]. The parameters of dynamic model

are detailed in Table. 1 [39].

123

1892 Z. Xie et al.



Similar to [9, 10] and [38], the reference trajectories

of the joints are selected as the sine and cosine

functions, as given below:h0;r ¼ 0, h1;r ¼ 10osin 1
2
t

� �
,

h2;r ¼ �8ocos 1
2
t

� �
. Similar to [9, 14] and [39], the

disturbance is selected as the combination of triangu-

lar functions D ¼ 0:1½d1; d2; d3�T with

d1 ¼ 0:6sin p
3
t þ p

4

� �
þ 0:05sinðp

3
t þ p

4
Þ, d2 ¼

0:45cos p
3
t þ p

4

� �
þ 0:07sinð p

10
t þ p

4
Þ and d3 ¼ 0:7

sin p
3
t þ p

4

� �
� 0:052sinð p

10
t þ p

4
Þ. The system uncer-

tainty is set as 20% such that bM ¼ 0:8M and

bC ¼ 0:8C.

The parameters of the proposed controller are

selected. In detail, the parameters for sliding manifold

(10)-(16) are: k1;0 ¼ k1;1 ¼ k1;2 ¼ 1, k2;0 ¼ k2;1 ¼
k2;2 ¼ 1, k1;0 ¼ 3, k1;1 ¼ k1;2 ¼ 1:8, k�2;0 ¼ k�2;1 ¼
k�2;2 ¼ 0:8, kc;0 ¼ kc;1 ¼ kc;2 ¼ 0:01, kL ¼ 10,

kR ¼ 10, 1 ¼ 1� 10�9. The parameters of disturbance

observer (29)–(35) are rtd ¼ 0:1, DT ¼ 0:001,

k0;0 ¼ k0;1 ¼ k0;2 ¼ 1, k1;0 ¼ k1;1 ¼ k1;2 ¼ 1,

k2;0 ¼ k2;1, = k2;2 ¼ 1, m ¼ 2, and n ¼ 0:8. The

parameters of control law (38)–(44) are

b1;0¼b1;1¼b1;2¼1, b2;0¼b2;1¼b2;2¼0:1, b3;0¼
b3;1¼b3;2¼2, b4;0¼b4;1¼b4;2¼0:1, c0¼c1¼c2¼
1�10�6, c0;0¼c0;1¼c0;2¼ 1�10�4, q1¼1:8,

q2¼0:6, @0¼27:5, @1¼@2¼24. The time constants

are T1¼5, T2¼T3¼2, T4¼4, tD;0¼ tD;1¼tD;2¼1. The

guessedmaximum of lumped uncertainty isH¼0:001.

The constraints of angular position of joints are

given asj1;0 ¼ 11o þ 2osin p
3
t

� �
, j1;0 ¼ �11o� 2osin

p
3
t

� �
,j1;1 ¼ 10osin 1

2
t

� �
þ 15o þ 4osin p

3
t

� �
, j1;1 ¼ 10o

sin 1
2
t

� �
�15o�4osin p

3
t

� �
, j1;2¼�8ocos 1

2
t

� �
þ18oþ

6osin p
3
t

� �
, j1;2¼�8o cos 1

2
t

� �
�18o�6osin p

3
t

� �
. The

constraints of angular velocity of joints are

j2;0¼2ðp
3
Þcos p

3
t

� �
þ5:7þ2:3sin p

3
t

� �
ðdeg=sÞ, j2;0¼

�2 p
3

� �
cos p

3
t

� �
�5:7�2:3sin p

3
t

� �
ðdeg=sÞ, j2;1¼

5cos 1
2
t

� �
þ4ðp

3
Þcos p

3
t

� �
þ17:1þ5:7sin p

3
t

� �
ðdeg=sÞ,

j
2;1

¼ 5cos 1
2
t

� �
� 4 p

3

� �
cos p

3
t

� �
� 17:1 � 5:7sin p

3
t

� �

ðdeg=sÞ, j2;2 ¼ 4sin 1
2
t

� �
þ 6ðp

3
Þcos p

3
t

� �
þ 17:1 þ

5:7sin p
3
t

� �
ðdeg=sÞ,j

2;2
¼ 4sin 1

2
t

� �
� 6ðp

3
Þcos p

3
t

� �
�

17:1 � 5:7sin p
3
t

� �
ðdeg=sÞ. According to (3) and

Remark 2, the constraints of angular position error

and error velocity can be calculated.

The controller from [56] is used as comparison. The

detailed controller from [56] is given as follows.

s ¼ bM hð Þ � bWT
U� bD þ _1 � K2Z2 � K�1

B;2KB;1Z1

�

� 1

2
KB;2Z2Þ þ bC h; _h

� �
_h

bD ¼ S þ KsZ2; 1 ¼ �K1Z1 þ _hr

_S ¼ �Ks
bM�1

hð Þs� bM�1 bC h; _h
� �

_hþ bWT
Uþ S

h

þKsZ2 � _1�

Z1 ¼ h� hr; Z2 ¼ _h� 1

KB;1 ¼ diag
1

k2b;1;1 � Z2
1;1

;
1

k2b;1;2 � Z2
1;2

;
1

k2b;1;3 � Z2
1;3

 !

KB;2 ¼ diag
1

k2b;2;1 � Z2
2;1

;
1

k2b;2;2 � Z2
2;2

;
1

k2b;2;3 � Z2
2;3

 !

bW ¼ diag bW 1; bW 2; bW 3

� �
;U ¼ ½U1;U2;U3�T :

_̂Wi ¼ �C1;i
Z2;i

�k2b;2;i � Z2
2;i

Ui þ C2;iŴi

 !
; i ¼ 1; 2; 3

ð48Þ

Fig. 3 2-rigid-links space robotic manipulator

Table 1 Parameters of dynamics model of SRM

Rigid Body i ai(m) bi(m) mi(kg) Ii(kg �m2)

0 – 0.75 60 22.5

1 0.75 0.75 5 1.125

2 0.75 0.75 5 0.9375

3 0.5 – 5 1
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where Z1;i and Z2;i are the i
th element of vectors Z1 and

Z2 respectively. kb;1;1 ¼ minð �e1;0
�� ��; je1;0jÞ, kb;1;2 ¼

minð �e1;1
�� ��; je1;1jÞ, and kb;1;3 ¼ minð �e1;3

�� ��; je1;3jÞ refer

to the constraints of tracking error.

kb;2;1 ¼ minð �j2;0 � o1;1
�� ��; jj2;0 � o1;1jÞ, kb;2;2 ¼ min

ð �j2;1�o1;2
�� ��;jj2;1�o1;2jÞ, and kb;2;3¼
minð �j2;2�o1;3

�� ��; jj2;2�o1;3jÞ are the constraints of

error velocity. 1;j is the jth element of vector 1. bWi¼
½ bWi;1; bWi;2; bWi;3; bWi;4; bWi;5�T and Ui¼½Ui;1;Ui;2;Ui;3;

Ui;4;Ui;5�T for i¼1;2;3. Ui;j is the output of the Radial

Basis Functions (RBF), which is automatically deter-

mined by using Eq. (35) and Eq. (36) in [56].

The parameters of (48) are selected as follows.

K1 ¼ diagð0:3; 0:3; 0:3Þ, K2 ¼ diagð0:3; 0:3; 0:3Þ,

Ks ¼ diagð0:9; 0:9; 0:9Þ, C1;1 ¼ C1;2 ¼ C1;3 ¼ 0:1,

C2;1 ¼ C2;2 ¼ C2;3 ¼ 0:8. bWið0Þ ¼ ½ bWi;1ð0Þ; bWi;2ð0Þ;
bWi;3ð0Þ; bWi;4ð0Þ; bWi;5ð0Þ�T ¼ ½0; 0; 0; 0; 0�T for

i ¼ 1; 2; 3. S 0ð Þ ¼ ½�0:47; �0:34; 0:25�T . The

selected parameters of (48) can guarantee the same

initial control torques to that of the proposed controller

at the moment t ¼ 0s. Importantly, when implement-

ing the controller from [56], it is required to ensure

j2;j�1\o1;j\�j2;j�1 holds for j ¼ 1; 2; 3, which is well-

known as ‘‘feasibility condition’’ in the field of state

constraint control [54].

We consider the following 3 cases in simulation. In

Case 1, the initial system states satisfy their state

constraints. In Case 2, the initial system states violate

their state constraints. In Case 3, the initial system

Fig. 4 Comparison of angular position in case 1: a Base. b 1st Joint. c 2nd Joint
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states satisfy their constraints, however, the actuator

are temporarily shut down for a timeslot to make the

system states inappropriately approach or even exceed

their constrained boundaries. We call Case 3 as

Extreme scenario.

Case 1 Satisfied constraints of initial system state.

In this case, the initial system states are

h0; h1; h2½ � ¼ ½8o; 10o;�20o� and _h0; _h1; _h2
h i

¼
0;�0:02; 0½ �rad=s.
The tracking performance of angular position is

shown in Fig. 4, while Fig. 5 presents the angular

velocities of SRM. Clearly, both the proposed con-

troller and the controller from [56] can achieve the

satisfaction of constraints of system states as long as

the initial states satisfy the constraints. Notably, the

proposed controller has an improved tracking accu-

racy and a faster response, by showing the smaller

tracking errors compared to the controller from [56] in

Fig. 6. The improvements on tracking accuracy and

settling time can be attributed to the achieved fixed

time stability of tracking error (seeing Theorem 1 and

Theorem 3), which is stronger than the Uniformly

Ultimately Boundedness (UUB) of tracking errors

achieved in [56]. More precisely, the fixed time

stability can guarantee the tracking error converges to

zero within a time predefined by users, while UUB can

only guarantee the tracking error is always within an

invariant set.

The control torques are illustrated in Fig. 7.

Clearly, even though the 2 controllers show the same

initial torques at the moment t ¼ 0s

(e.g.,½s0ð0Þ; s1ð0Þ; s2ð0Þ�T ¼ ½�4:71Nm; �0:70Nm;

0:88Nm�T 2 R3�1), the proposed controller calculates

the smaller magnitude of control torques during the

stage fort 2 ð0; 2s�. Then, according to Figs. 4 and 5,
the converging rate of tracking error is not compro-

mised by the declined magnitude of control torques.

Therefore, the proposed controller can utilize the

resource of actuation more efficiently. The sliding

variables, shown in Fig. 8, are always within the

boundary (red dash line) calculated by (20), which

corresponds to the fact that the sliding variables

always within this boundary can result in the satisfac-

tion of system states during the approaching stage

(seeing Theorem 2).

To verify the fixed time convergence, we need to

provide the theoretically calculated convergence time.

The detailed process is given as the following steps,

which does not involve any information of initial

states.

Step 1 Based on the selected parameters of distur-

bance observer (k0;0 ¼ k0;1 ¼ k0;2 ¼ 1, k1;0 ¼ k1;1 ¼
k1;2 ¼ 1, k2;0 ¼ k2;1, = k2;2 ¼ 1,m ¼ 2, n ¼ 0:8), we

can calculate the settling time of disturbance observer

by using (36) such that t0 ¼ t1 ¼ t2 ¼ 6:066s:

Step 2 Based on the selected parameters of control

law (b1;0 ¼ b1;1 ¼ b1;2 ¼ 1, b2;0 ¼ b2;1 ¼ b2;2 ¼ 0:1,

q1 ¼ 1:8, q2 ¼ 0:6, T3 ¼ 2) and the calculated time

on Step 1, we can calculate the time of reaching phase

(the time of each system state reaching the sliding

manifold) by using (46) such that

t0;0 ¼ t0;1 ¼ t0;2 ¼ 37:7308s,

Step 3 Based on the defined state constraints

(�j1;i; j1;i; �j2;i; j2;i,8i ¼ 0; 1; 2) and the reference sig-

nals (h0;r, h1;rh2;r), we can obtain the following

parameters by using (7), (8), (A15) and Remark 3.

They are:d1;i ¼ d2;i ¼ 0:03655rad=s,d3;i ¼ d4;i ¼

Fig. 5 Comparison of angular velocity in case 1: a Base. b 1st Joint. c 2nd Joint
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0:01666rad=s, d5;i¼0:15419rad=s,d5;i¼0:04581

rad=s, e�1;i¼0:22689rad fori¼0.d1;i¼d2;i¼0:07311

rad=s, d3;i¼d4;i¼0:12286rad=s,d5;i¼0:42387rad=s,

d5;i¼0:17613rad=s, e�1;i¼0:33161rad fori¼1.

d1;i¼d2;i¼0:10966rad=s,d3;i¼d4;i¼0:05895rad=s,

d5;i¼0:44841rad=s, d5;i¼0:15159rad=s, e�1;i¼
0:41888rad fori¼2.

Step 4 Based on the parameters calculated in Step 3,

we can obtain /1;i and /2;i by using (A17) and (A18)

such that /1;0 ¼ /2;0 ¼ 0:3382rad=s, /1;1 ¼ /2;1 ¼
0:2522rad=s and /1;2 ¼ /2;2 ¼ 0:8341rad=s. Then,

based on the selected parameters (1 ¼ 1� 10�9,

kc;0 ¼ kc;1 ¼ kc;2 ¼ 0:01, k1;0 ¼ k1;1 ¼ k1;2 ¼ 1,

k2;0 ¼ k2;1 ¼ k2;2 ¼ 1, k1;0 ¼ 3, k1;1 ¼ k1;2 ¼ 1:8,

k�2;0 ¼ k�2;1 ¼ k�2;2 ¼ 0:8), we can use (A15) and

(A16) to obtain the constants Ui such that

U0 ¼ 0:5824rad=s, U1 ¼ 0:8362rad=s and

U2 ¼ 1:5719rad=s. After that, we can use the

definition of ri in (A19) to calculate that

r0 ¼ 0:0622, r1 ¼ 0:1398 and r2 ¼ 0:075.

Step 5 Based on the calculated r0; r1 and r3
in the previous step and the selected parameters

of sliding manifold (k1;0 ¼ k1;1 ¼ k1;2 ¼ 1,

k2;0 ¼ k2;1 ¼ k2;2 ¼ 1, k1;0 ¼ 3, k1;1 ¼ k1;2 ¼ 1:8,

k�2;0 ¼ k�2;1 ¼ k�2;2 ¼ 0:8, tD;0 ¼ tD;1 ¼ tD;2 ¼ 1), we

can calculate the convergence time of tracking error

for each system state by using (18) such that

t1;0 ¼ 128:906s, t1;1 ¼ 83:845s and t1;2 ¼ 122:775s.

Figures 9 and 10 show the tracking errors and error

velocities of system with the 4 different initial states.

The 4 different initial states satisfy their constraints,

which are detailed in Table 2. It is clear the system can

converge within a fixed time by showing the settling

time smaller than the calculated convergence time

(t1;0 ¼ 128:906s, t1;1 ¼ 83:845s and t1;2 ¼ 122:775s)

for the 4 different initial states.

Case 2 Violated constraints of initial system state.

Fig. 6 Comparison of angular position error in case 1: a Base. b 1st Joint. c 2nd Joint
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In this case, 2 sets of the initial system states are

given. The 1st set is h0; h1; h2½ � ¼ ½15o; 25o;�35o� and
_h0; _h1; _h2
h i

¼ 0; 0;�0:12½ �rad=s, which means the

initial angular position violating the constraint. The

2nd set is h0; h1; h2½ � ¼ ½8o; 10o;�23o� and

_h0; _h1; _h2
h i

¼ �0:2;�0:5; 1:1½ �rad=s, which means

the initial angular velocity violating the constraints.

Figure 11 shows the comparison of angular posi-

tions with the initial angular position violating the

constraint. Figures 12 and 13 respectively presents the

angular position and angular velocity of the proposed

controller with the initial angular velocity violating the

Fig. 7 Comparison of control torque in case 1: a Base. b 1st Joint. c 2nd Joint

Fig. 8 Sliding Variable (9) in case 1: a Base. b 1st Joint. c 2nd Joint
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constraint. Clearly, the tracking error achieved by the

proposed controller can still converge to equilibrium

at the presence of the violations of initial angular

position and initial angular velocity, which corre-

sponds to the fact that finite time stability of tracking

error can be achieved if the initial states violate their

constraints (seeing Theorem 1 and Theorem 3).

However, the story is different to controller from

[56]. In the light of Fig. 11, the tracking error of

controller [56] cannot converge into the constrained

boundaries if the initial angular position violating the

constraint. It is also observed in Fig. 14 that the system

under the controller [56] diverges to infinite if the

initial angular velocity violates the constraint. For

Fig. 9 Tracking error of angular position in case 1: a Base. b 1st Joint. c 2nd Joint

Fig. 10 Tracking error velocity in case 1: a Base. b 1st Joint. c 2nd Joint

Table 2 Different initial states to verify fixed time convergence

Base 1st Joint 2nd Joint

Initial state 1 h0 0ð Þ ¼ 8o, _h0 0ð Þ ¼ 0o=s h1 0ð Þ ¼ 10o, _h1 0ð Þ ¼ �1:14o=s h2 0ð Þ ¼ �20o, _h2 0ð Þ ¼ 0o=s

Initial state 2 h0 0ð Þ ¼ 4o, _h0 0ð Þ ¼ 4:58o=s h1 0ð Þ ¼ 3o, _h1 0ð Þ ¼ �11:4o=s h2 0ð Þ ¼ �15o, _h2 0ð Þ ¼ 5:7o=s

Initial state 3 h0 0ð Þ ¼ �2o, _h0 0ð Þ ¼ 1:72o=s h1 0ð Þ ¼ �2o, _h1 0ð Þ ¼ �8:6o=s h2 0ð Þ ¼ 0o, _h2 0ð Þ ¼ 5:7o=s

Initial state 4 h0 0ð Þ ¼ �6o, _h0 0ð Þ ¼ �2:86o=s h1 0ð Þ ¼ �10o, _h1 0ð Þ ¼ �12o=s h2 0ð Þ ¼ 5o, _h2 0ð Þ ¼ �5:7o=s

123

1898 Z. Xie et al.



Fig. 11 Comparison of angular position in case 2 with violation of initial angular position: a Base. b 1st Joint. c 2nd Joint

Fig. 12 Angular position of proposed controller in case 2 with violation of initial angular velocity: a Base. b 1st Joint. c 2nd Joint

Fig. 13 Angular velocity of proposed controller in case 2 with violation of initial angular velocity: a Base. b 1st Joint. c 2nd Joint
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clarity, only the results of 1st joint are presented in

Fig. 14. Therefore, the compatibility of the proposed

controller to initial system states violating the con-

straints is illustrated.

Case 3 Extreme Scenario.

In this case, the initial states are the same as that in

Case 1. However, we temporarily shut down the

actuator for a period. It is to simulate the scenario that

Fig. 15 Comparison of angular position in case 3: a Base. b 1st Joint. c 2nd Joint

Fig. 14 Performance of 1st

joint under the controller

from [56] in case 2 with

violation of initial angular

velocity: aAngular position.
b Angular velocity
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the controller or actuator completely fails for some

unknown reasons to result in the system states

inappropriately approaching or even exceeding their

constrained boundaries. Therefore, the control torque

in (37) is modified as s ¼ FðtÞ bMðhÞðv1 þ v2Þ in this

case. F tð Þ ¼ 1 for t� 65s, F tð Þ ¼ cosðp
2
t�65
5
Þ for

65s\t� 70s, F tð Þ ¼ 0 for 70s\t� 80s, F tð Þ ¼
sinðp

2
t�80
5
Þ for 80s\t� 85s, F tð Þ ¼ 1 for t[ 85s. It

means actuator or controller fails during 65s� 85s.

Figures 15 and 16 respectively present the angular

position and angular velocity with the presence of

temporary complete failure of actuation. Clearly, the

system states become inappropriately approaching or

even exceeding their constraints due to the shutting

down (t[ 65s). After that, the proposed controller can

retrieve the effectiveness after the recovery of actu-

ation (t[ 85s) by making the system states outside the

constrained regions start to move back to the con-

strained regions after t ¼ 85s. After a while, the

system states under the proposed controller stay at the

constrained regions and eventually track their refer-

ence signals successfully. However, the controller [56]

shows a failure on tracking the reference signals even

the actuation is recovered (t[ 85s). Therefore, the

proposed controller is superior to the controller [56].

To evaluate the computational time, we coded the

control algorithm in C ? ? and implemented the

codes in Raspberry Pi 3B ? board, which runs

Raspberry Pi OS based on the Debian Linux system.

The running times for one iteration of the control loop

with 3 trials are 310� 10�6s, 290� 10�6s and 394�
10�6s respectively. The running time is different due

to the Raspberry Pi OS is not a real-time operating

system. We also run the control loop for 20,000

iterations, and the running time is 824401� 10�6s,

which means the average running time per iteration is

less than 50� 10�6s. The sampling time required for

the control algorithm is 0.001 s. Clearly, the control

Fig. 16 Comparison of angular velocity in case 3: a Base. b 1st Joint. c 2nd Joint
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algorithm is able to run on-board the Raspberry Pi

3B ? , which has been adopted for future experimen-

tal works, within the required sampling time.

5 Conclusion

In conclusion, this paper proposed a fixed time

disturbance observer-based sliding mode controller that

can achieve the fixed time convergence of tracking

error with the satisfaction of full state constraints at the

presence of system uncertainty and unknown distur-

bance. Compared to the conventional literatures of state

constraint control, the proposed controller does not

include any BLF terms of system states, which thereby

eliminates the risk of outputting overly high control

commands due to the measured system states inappro-

priately approaching or even exceeding their con-

strained boundaries. Moreover, the proposed control

scheme can still achieve a finite time stability at the

presence of the initial states violating the constraints,

which therefore is compatible to all the initial condi-

tions. Furthermore, the designed fixed time sliding

manifold solves the singularity problem of FTC by

using a continuously varying power, which removes the

need of an additional switching mechanism of sliding

manifold to avoid compromising the fixed time

convergence at the neighbourhood of origin of tracking

errors. The simulation results verify the effectiveness

and superiority of the proposed controller.
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Appendix A

The proof of Theorem 1 consists of 2 steps. The 1st

step is for the situation that system states reach the

sliding manifold (10) at the time t0;i without violating

(4) such that siðt� t0;iÞ ¼ 0 and

e1;i t0;i
� �

\ei t0;i
� �

\�e1;iðt0;iÞ hold. The 2nd step is for

the situation that system states violates (4) at the time

t0;i such that siðt� t0;iÞ ¼ 0 and ei t0;i
� �

2
�1; e1;i t0;i

� �� �
[ ½�e1;iðt0;iÞ;1Þ hold.

In the light of (11), (14) and (15), the inequation of ai
can be derived in (A1), which indicates ai [ 0 holds.

To help understanding (A1), ai is visualized in Fig. 17.

0\1þmax 0;/�
1;i

� �
� ai � 1þ maxðkc;i;/�

1;iÞ; if ei\0

0\1þmax 0;/�
2;i

� �
� ai � 1þ maxðkc;i;/�

2;iÞ; if ei � 0

8<
:

ðA1Þ

By inputting si ¼ 0 into (9), we can obtain the

tracking error velocity at the sliding manifold in (A2)

because we define t0;i as the time of reaching sliding

manifold such that si t� t0;i
� �

¼ 0 holds. For clarity,

_eiðt� t0;iÞ is written as _ei in the rest of Appendix A.

_ei t� t0;i
� �

¼Xi ¼ gi
e2;i

1� e2;i
Ui

þ 1� gið Þ �e2;i
1þ �e2;i

Ui

¼

e2;i

1þ
je2;ij
Ui

; if ei � 0

�e2;i

1þ j�e2;ij
Ui

; if ei\0

8>>>>>><
>>>>>>:

ðA2Þ

Fig. 17 Function of ai in terms of /1,i*
or /2,i*
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Remark A1 In the light of (A1) and (10), It is clear
Ui � 0 holds for all ei 2 R. Then, by using the facts of
e2;i\0 and e2;i [ 0 (seeing Remark 3), (A2) implies

that 0\Xi\e2;i will hold if ei\0 holds on the one

hand, and e2;i\Xi � 0 will hold if ei � 0 holds on the

other hand. It means e2;i\Xi\�e2;i holds for all

ei 2 ð�1;1Þ. Therefore, e2;i tð Þ\ _ei tð Þ\�e2;iðtÞ holds
after the sliding manifold (9) is reached, which means
the constraint (5) is satisfied for t� t0;i.
Consider the following Lyapunov function for ei.

VA;i ¼
1

2
e2i ðA3Þ

The derivative of (A3) can be obtained in (A4) by
using (A2).

_VA;i ¼ giei
e2;iUi

�e2;i þ Ui
þ ð1� giÞei

�e2;iUi

�e2;i þ Ui

¼ �gi
e2;i
�� �� eij j
e2;i
�� ��þ Uij j

ðk1;ijeijk1;i þ k2;iðjeij þ a
1

k2;i

i Þk2;iÞ

� ð1� giÞ
�e2;i
�� �� eij j
�e2;i
�� ��þ Uij j

ðk1;ijeijk1;i þ k2;iðjeij

þ a
1

k2;i

i Þk2;iÞ� 0

ðA4Þ

Based on (A4), it is clear that jeiðt� t0;iÞj � jeiðt0;iÞj
holds because of _VA;i � 0.

Step 1 In this step, e1;i t0;i
� �

\ei t0;i
� �

\�e1;iðt0;iÞ holds.
A variable zR;i ¼ e1;i � ei is defined, its derivative can
be derived in (A5) by using (A2) and the fact ofUi � 0.

_zR;i ¼ _�e1;i � _ei ¼
_�e1;i �e2;i þ Ui

� �
� e2;iUi

�e2;i þ Ui

¼
� _�e1;ie2;i þ _�e1;i � e2;i

� �
Ui

�e2;i þ Ui
; if ei � 0 ðA5Þ

The partial derivative of _zR;i with respect to Ui can be

derived in (A6).

o _zR;i
oUi

¼
_�e1;i�e2;i
� �

�e2;iþUi

� �
þ _�e1;ie2;i� _�e1;i�e2;i

� �
Ui�

ð�e2;iþUiÞ2

¼
e22;i

ð�e2;iþUiÞ2
�0

ðA6Þ

Based on the positiveness of (A6), (A7) can be derived

by using the fact of Ui ¼ k1;ijeijk1i þ k2;iðjeij þ

a
1

k2;i

i Þk2;i � k1;ijeijk1;i þ k2;iai.

_zR;i�
� _�e1;ie2;iþ _�e1;i�e2;i

� �
k1;ijeijk1;i þk2;iai
� �

�e2;iþk1;ijeijk1;i þk2;iai
; if ei�0

ðA7Þ

Besides, we can easily obtain (A8) by using (A1) and
(13).

ai�/�
2;i¼

1

k2;i

_�e1;iþG2 kR;�e1;i�ei
� �

_�e1;i�e2;iþG2 kR;�e1;i�ei
� �e2;i�k1;ie

k1;i
i

" #
; if ei�0

ðA8Þ

In the light of (A7) and (A8), we can achieve (A9).

_zR;i �
� _�e1;ie2;iG2 kR; �e1;i � ei

� �
þ _�e1;i � e2;i
� �

e2;iG2 kR; �e1;i � ei
� �

�e2;i _�e1;i � e2;i
� �

þ _�e1;ie2;i

¼ �G2 kR; �e1;i � ei
� �

; if ei � 0

ðA9Þ

Remark A2 In the light of (A9) and (16), it is clear

that _zR;i ¼ _e1;i � _ei � 0 holds when ei � e1;i � 1 holds

(1 defined in (16) is a small positive constant
satisfying1\je1;ij), which means ei cannot further

grow to be greater than e1;i � 1 once it reaches e1;i � 1.
Therefore, eiðtÞ will not exceed e1;iðtÞ for t[ ti;0 if

ei ti;0
� �

\e1;iðti;0Þ is satisfied.
Similar to the previous steps (A5)-(A9), a variable
zL;i ¼ ei � e1;i is defined, its derivative can be derived

in (A10) by using (A2) and the fact of Ui � 0.

_zL;i ¼ _ei � _e1;i ¼
�e2;iUi � _e1;i �e2;i þ Ui

� �
�e2;i þ Ui

¼
� _e1;i�e2;i þ �e2;i � _e 1;i

� �
Ui

�e2;i þ Ui
; if ei\0 ðA10Þ

The partial derivative of _zL;i with respect to Ui can be

derived in (A11)

o _zR;i
oUi

¼
�e2;i � _e1;i
� �

�e2;i þ Ui

� �
þ _e1;i�e2;i � ð�e2;i � _e1;iÞUi

ð�e2;i þ UiÞ2

¼ e22i
ð�e2;i þ UiÞ2

[ 0

ðA11Þ

Based on the positiveness of (A11), (A10) can be

written as (A12) by using the fact of Ui ¼ k1;ijeijk1;i þ

k2;iðjeijþ a
1

k2;i

i Þk2;i � k1;ijeijk1;i þ k2;iai.
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_zL;i�
� _e1;i�e2;iþ �e2;i� _e1;i

� �
k1;ijeijk1;i þk2;iai
� �

�e2;iþk1;ijeijk1;iþk2;iai
; if ei\0

ðA12Þ

Besides, we can achieve (A13) by using (A4).

ai �/�
1;i ¼

1

k2;i

_e1;i � G2 kL; ei � e1;i
� �

�e2;i � _e1;i þ G2 kL; ei � e1;i
� � �e2;i � k1;ið�eiÞk1;i

" #
; if ei\0

ðA13Þ

In the light of (A12) and (A13), we can obtain (A14).

_zL;i �
� _e1;i�e2;i � �e2;i � _e1;i

� �
�e2;i

� �
G2 kL; ei � e1;i
� �

�e2;i �e2;i � _e1;i
� �

þ _e1;i�e2;i
¼ �G2 kL; ei � e1;i

� �
; if ei\0

ðA14Þ

Remark A3 In the light of (A14) and (16), it is clear
_zL;i ¼ _ei � _e1;i � 0 holds at ei � e1;i þ 1 (1 defined in

(16) is a small positive constant satisfying 1 \je1;ij),
which means ei cannot further decline to be smaller
than e1;i þ 1 once it reaches e1;i þ 1. Therefore, eiðtÞ
will not be smaller than e1;iðtÞ for t[ ti;0 if

ei ti;0
� �

[ e1;iðti;0Þ.
According to Remark A2 and Remark A3, it is clear
that e1;i tð Þ\ei tð Þ\�e1;iðtÞ holds for t[ t0;i as long as

e1;i t0;i
� �

\ei t0;i
� �

\�e1;iðt0;iÞ. Therefore, it is also true

e1;i tð Þ\ei tð Þ\�e1;iðtÞ holds for t� t0;i þ tD;i as long as

e1;i t0;i
� �

\ei t0;i
� �

\�e1;iðt0;iÞ holds. Then, we can find

the constant Ui [ 0 referring to the maximum of (10)
for t� t0;i þ tD;i.

Uiðt� t0;i þ tD;iÞ�Ui ¼ k1;iðe�1;iÞ
k1;i þ k2;iðe�1;i

þ a
1

k�
2;i

i Þk
�
2;i

ðA15Þ

where constant e�1;i ¼ max
t[ 0

e1;i tð Þ
�� ��; �e1;i tð Þ

�� ��� �
[ 0. The

constant ai [ 0 is the maximum of ai in (11) for

t� t0;i þ tD;i, which is derived in (A16) by using (A1),

(12) and (13).

ai t� t0;i þ tD;i
� �

� 1þmaxðkc;i;/�
1;i;/

�
2;iÞ\1

þmax kc;i;
/1;i þ k1;iðe�1;iÞ

k1;i

k2;i
;
/2;i þ k1;iðe�1;iÞ

k1;i

k2;i

" #

¼ ai

ðA16Þ

where constants /1;i [ 0 and /2;i [ 0 are the maxi-

mum of /1;iðtÞ and /2;iðtÞ for t� ti;0 þ tD;i. They can

be derived in (A17) and (A18) by using (12)-(16) and

the facts of �e2;i � _e1i [ 0, _�e1i � e2i [ 0 (seeing Remark

3) and e1;i\ei\�e1;i (seeing Remark A2 and Remark

A3).

/1;i t� t0;i þ tD;i
� �

¼
_e1;i � G2 kL; ei � e1;i

� �

�e2;i � _e1;i þ G2 kL; ei � e1;i
� �

�e2;i �
_e1;i
�� ���e2;i
�e2;i � _e1;i

�
�d1;i�d5;i
d3;i

¼ �/1;i

ðA17Þ

/2;i t� t0;i þ tD;i
� �

¼
� _�e1;i � G2 kR; �e1;i � ei

� �
_�e1;i � e2;i þ G2 kR; �e1;i � ei

� �

ð�e2;iÞ�
_�e1;i
�� ��ð�e2;iÞ
_�e1;i � e2;i

�
�d2;i�d5;i
d4;i

¼ �/2;i

ðA18Þ

where positive constants d1;i, d1;i, d2;i, d2;i, d3;i, d3;i,

d4;i, d4;i, d5;i and d5;i are defined in Remark 3.

According to (A15), Remark A2 and Remark A3, (A3)
can be further written as (A19).

_VA;i ¼ � gi
e2;i
�� �� eij j
e2;i
�� ��þ Uij j

þ ð1� giÞ
�e2;i
�� �� eij j
�e2;i
�� ��þ Uij j

Þ
 

ðk1;ijeijk1;i þ k2;iðjeij þ a
1

k2;i

i Þk2;i
�

� �min
e2;i
�� ��

e2;i
�� ��þ Uij j

;
�e2;i
�� ��

�e2;i
�� ��þ Uij j

 !

ðk1;ijeij1þk1;i þ k2;ijeij1þk2;iÞ� �
d5;i

�d5;i þ �Ui

k1;i2
1þk1;i

2
e2i
2

� �1þk1;i
2

þk2;i2
1þk2;i

2
e2i
2

� �1þk2;i
2

2
4

3
5

¼ ��rik1;i2
1þk1;i

2 ðVA;iÞ
1þk1;i

2 � �rik2;i2
1þk2;i

2 ðVA;iÞ
1þk2;i

2 ;

8t� t0;i þ tD;i

ðA19Þ
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where constant ri ¼
d
5;i

d5;iþUi
[ 0.

Remark A4 According to Lemma 1, (A3) and

(A19), we can conclude that ei t� t1;i
� �

¼ 0 can be

achieved within a fixed time t1;i; if

e1;i t0;i
� �

\ei t0;i
� �

\�e1;iðt0;iÞ holds. The fixed time t1;i
is shown in (A20). t1;i is called fixed time because it is

independent of the value of ei t0;i
� �

.

t1;i ¼ t0;i þ tD;i þ
2

ð
ffiffiffi
2

p
Þ1þk1;irik1;iðk1;i � 1Þ

þ 2

ð
ffiffiffi
2

p
Þ1þk�2;irik2;ið1� k�2;iÞ

ðA20Þ

Step 2 In this step, ei t0;i
� �

2 �1; e
1;i

t0;i
� �� 


[

½e1;iðt0;iÞ;1Þ holds.
We can easily find jeiðt� t0;iÞj � jeiðt0;iÞj holds for

t� t0;i because of negative (A4). Then, like (A15)—

(A18), we can find the positive constant Ui [ 0
referring to the maximum of (10) for t� t0;i þ tD;i.

Uiðt� t0;i þ tD;iÞ�Ui ¼ k1;i½eiðt0;iÞ�k1;i þ k2;i½eiðt0;iÞ

þ a
1

k�
2;i

i �k
�
2;i

ðA21Þ

where constant ai [ 0 is the maximum of ai in (20)

when jeij � jeiðt0;iÞj holds. It can be derived in (A22)

by using (A4).

ai t�t0;iþtD;i
� �

�maxðkc;i;/�
1;i;/

�
2;iÞ

�max kc;i;
/1;iþk1;ijeiðt0;iÞjk1;i

k2;i
;
/2;iþk1;ijeiðt0;iÞjk1;i

k2;i

" #
¼ai

ðA22Þ

where constants/1;i[0 and/2;i[0 are the maximum

of /1;i and /2;i when jeij�jeiðt0;iÞj holds. They can be

derived in (A23) and (A24) by using (12)-(16) and the

facts of �e2;i� _e1i[0 and _�e1i�e2i[0 (seeing Remark

3).

/1;i t� t0;i þ tD;i
� �

¼
_e1;i � G2 kL; ei � e1;i

� �

�e2;i � _e1;i þ G2 kL; ei � e1;i
� � �e2;i

�
_e1;i
�� ���e2;i
�e2;i � _e1;i
� � �

�d1;i�d5;i
d3;i

¼ ��/1;i

ðA23Þ

/2;i t� t0;i þ tD;i
� �

¼
� _�e1;i � G2 kR; �e1;i � ei

� �
_�e1;i � e2;i þ G2 kR; �e1;i � ei

� �

�e2;i
� �

�
_�e1;i
�� �� �e2;i

� �
_�e1;i � e2;i

�
�d2;i�d5;i
d4;i

¼ ��/2;i

ðA24Þ

where positive constants d1;i, d1;i, d2;i, d2;i, d3;i, d3;i,

d4;i, d4;i, d5;i and d5;i are defined in Remark 3.

According to (A21) and the fact of jeiðtÞj � jeiðt0;iÞj,
(A3) can be written in (A25).(B14)

_VA;i � �min
d5;i

�d5;i þ ��Ui

 !

k1;i2
1þk1;i

2
e2i
2

� �1þk1;i
2

þk2;i2
1þk2;i

2
e2i
2

� �1þk2;i
2

2
4

3
5

¼ ���rik1;i2
1þk1;i

2 ðVA;iÞ
1þk1;i

2 � ��rik2;i2
1þk2;i

2 ðVA;iÞ
1þk2;i

2

� � ��rik2;i2
1þk2;i

2 ðVA;iÞ
1þk2;i

2 ; 8t� t0;i þ tD;i

ðA25Þ

where constant ��ri ¼ min
d5;i

�d5;iþ ��Ui

� �
[ 0.

Remark A5 According to [51, Th. 4.2], (A3) and

(A25), we can conclude that ei t� t2;i
� �

¼ 0 can be

achieved within a finite time t2;i. The finite time t2;i is
shown in (A26). t2;i is called finite time because it is

dependent on ei t0;i
� �

.

t2;i ¼ t0;i þ tD;i

þ 2

ð
ffiffiffi
2

p
Þ1þk�2;irik2;ið1� k�2;iÞ

½1
2
e2i ðt0;iÞ�

1�k�2;i

ðA26Þ

In the light of Remark A1, Remark A4 and Remark
A5, the proof is complete.
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Appendix B

The proof of Theorem 2 consists of 2 steps. The 1st

step is to prove the inequations 0\li � 1, 0\l
i
� 1,

Bs;i [ 0 and Bs;i\0 will hold. The 2nd step is to prove

the condition descried by (20)–(27) can guarantee the

satisfaction of constraints (4) and (5) during 0� t� t0;i
if the initial state does not violate (4) and (5).

Step 1 In the light of (10–16) and the fact that

G1 /�
2;i; kc;i

� �
� 1þmaxð0;/�

2;iÞ (Seeing (A1) in

Appendix A), (B1) can be derived.

U i¼k1;ij�e1;ijk1;i þk2;iaiðeiÞjei¼�e1;i[k1;ij�e1;ijk1;i

þmaxf /2;i eið Þjei¼�e1;i �k1;ij�e1;ijk1;i
h i

;0g

¼max
� _�e1;i�G2 kR;�e1;i��e1;i

� �
_�e1;i�e2;iþG2 kR;�e1;i��e1;i

� � �e2;i
� �

;k1;ij�e1;ijk1;i
" #

¼maxð
_�e1;ie2;i
_�e1;i�e2;i

;k1;ij�e1;ijk1;iÞ[0

ðB1Þ

According to (B1) and the fact of e2;i\0 (seeing

Remark 3), (B2) can be derived.

�Xi tð Þ ¼
e2;iU i

�e2;i þ U i

\min 0;
e2;i

_�e1;ie2;i
_�e1;i�e2;i

�e2;i þ
_�e1;ie2;i
_�e1;i�e2;i

0
B@

1
CA

¼ minð0; _�e1;iÞ ðB2Þ

According to (B2) and (27), as well as the facts of

hiðtÞ� 0 (seeing (23)), e2;i\ _�e1;i (seeing Remark 3),

e2;iðtÞ[ 0 and e2;iðtÞ\0 (seeing Remark 3), we can

obtain (B3) and (B4).

F 1;i tð Þ ¼
minð _�e1;i tð Þ; �e2;i tð ÞÞ � �XiðtÞ

�hi tð Þ þ �e2;i tð Þ � e2;i tð Þ

[

_�e1;i tð Þ � _�e1;iðtÞ
�hiðtÞ þ �e2;iðtÞ � e2;iðtÞ

¼ 0; if _�e1;i\�e2;i

�e2;i tð Þ
�hiðtÞ þ �e2;iðtÞ � e2;iðtÞ

[ 0; if _�e1;i � �e2;i

8>>><
>>>:

ðB3Þ

F 1;i tð Þ¼
minð _�e1;i tð Þ;�e2;i tð ÞÞ� �XiðtÞ

�hi tð Þþ�e2;i tð Þ� e2;i tð Þ
�
�e2;i tð Þþ

�e2;iU i

�e2;iþU i

�e2;i tð Þ�e2;i tð Þ

\
�e2;i tð Þ�e2;i tð Þ
�e2;i tð Þ�e2;i tð Þ

¼1

ðB4Þ

In the light of (10)-(16) and the fact that

G1 /�
1;i; kc;i

� �
� 1þmaxð0;/�

1;iÞ (Seeing (A1) in

Appendix A), (B5) can be derived.

U i¼k1;ije1;ij
k1;i þk2;iaiðeiÞjei¼e1;i

[k1;ije1;ij
k1;i

þmaxf /1;i eið Þjei¼e1;i
�k1;ije1;ij

k1;i
h i

;0g

¼max
_e1;i�G2 kL;e1;i�e1;i

� �

�e2;i� _e1iþG2 kL;e1;i�e1;i
� ��e2;i;k1;ije1;ijk1;i

" #

¼max
_e1;i�e2;i
�e2;i� _e1i

;k1;ije1;ij
k1;i

� �
[0

ðB5Þ

According to (B5) and the fact of e2;i [ 0 (seeing

Remark 3), (B6) can be derived.

Xi tð Þ ¼
�e2;iU i

�e2;i þ U i

[ max 0;
�e2;i

_e1;i�e2;i
�e2;i� _e1i

�e2;i þ
_e1;i�e2;i
�e2;i� _e1i

0
@

1
A

¼ maxð0; _e1;iÞ ðB6Þ

According to (B6) and (27), as well as the facts of

hiðtÞ� 0 (seeing (23)), _e1;i\�e2;i (seeing Remark 3),

e2;iðtÞ[ 0 and e2;iðtÞ\0 (seeing Remark 3), we can

obtain (B7) and (B8).

F 2;i tð Þ ¼
maxð _e1;i tð Þ; e2;iðtÞÞ � XiðtÞ

hiðtÞ þ e2;i � �e2;iðtÞ

¼

_e1;i tð Þ � XiðtÞ
hiðtÞ þ e2;i � �e2;iðtÞ

[ 0; if _e1;i tð Þ [ e2;iðtÞ

e2;iðtÞ � XiðtÞ
hiðtÞ þ e2;i � �e2;iðtÞ

[ 0; if _e1;i tð Þ� e2;iðtÞ

8>>><
>>>:

ðB7Þ

F 2;i tð Þ ¼
maxð _e1;i tð Þ; e2;iðtÞÞ � XiðtÞ

hiðtÞ þ e2;i � �e2;iðtÞ

\
e2;i tð Þ �

�e2;iU i

�e2;iþU i

e2;i tð Þ � �e2;i tð Þ
\

e2;iðtÞ � �e2;iðtÞ
e2;iðtÞ � �e2;iðtÞ

¼ 1

ðB8Þ
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Remark B1 Based on (B3), (B4), (B7) and (B8), we
can easily conclude that 0\F 1;i tð Þ\1 and

0\F 2;i tð Þ\1 hold. Therefore, by using (27), it is

true 0\l0;i\1 and 0\l
0;i

\1 hold. Then, by further

using (24), we can conclude that 0\li � 1 and
0\l

i

� 1 hold.

Remark B2 In the light of (22) and (23), hiðtÞ� 0

and hiðtÞ� 0 hold. In the light of Remark A1 in
Appendix A, e2;i\Xi\�e2;i holds for all ei 2 R.

According to Remark B1, 0\li � 1 and 0\l
i
� 1

hold. Therefore, it is clear Bs;i ¼
li hi þ e2;i � Xi

� �
[ lihi � 0 and Bs;i ¼

l
i
hi þ e2;i � Xi

� �
\l

i
hi � 0 hold for all ei 2 R.

Step 2 After a simple mathematic manipulation, (21)
can be written as (B9).

�Bs;i ¼ �lið �hi þ �e2;iÞ þ ð1� �liÞXi � Xi

Bs;i ¼ l
i
hi þ e2;i
� �

þ ð1� l
i
ÞXi � Xi

	
ðB9Þ

Based on (B9) and (9), it is clear that (B10) can hold as
long as (20) holds.

l
i
hi þ e2;i
� �

þ ð1� l
i
ÞXi\ _ei\�lið �hi þ �e2;iÞ þ ð1

� �liÞXi

ðB10Þ

According to (B10), we can obtain the left of (B11) by
using the facts of e2;i þ hi\Xi (seeing (A1) in

Appendix A) and 1\l
i
� 1 (seeing Remark B1) on

the one hand, and we can derive the right of (B11) by

using the facts of Xi\hi þ e2;i (seeing (A1) in

Appendix A) and 1\li � 1 (seeing Remark B1) on
the other hand.

hi þ e2;i\ _ei\ �hi þ �e2;i ðB11Þ

Remark B3 According to (22) and (23), hi ¼ 0 and
hi ¼ 0 hold for t� 0 if the initial state _ei 0ð Þ satisfies
constraint (5) such that e2;ið0Þ\ _ei 0ð Þ\�e2;ið0Þ. There-
fore, e2;i\ _ei\�e2;i holds by using (B11).

Clearly, the necessary condition of tracking errors
violating constraint over ð0; t0;i� is the existence of 2

moments t�1;i; t
�
2;i 2 ð0; t0;i� such that ei tð Þ ¼ e1;iðtÞ and

_ei tð Þ� _e1;iðtÞ hold for t ¼ t�1;i on the one hand, ei tð Þ ¼

e1;iðtÞ and _ei tð Þ� _e1;iðtÞ hold for t ¼ t�2;i on the other

hand. Then, in the light of (24), it is clear li ¼ l0;i
holds when zR;i ¼ e1;i � ei ¼ 0, while l

i
¼ l

0;i
holds

when zL;i ¼ ei � e1;i ¼ 0. After that, according to

(B3), (B7), (B10) and (27), we can derive (B12) and

(B13) by using the facts of hi � 0, hi � 0 (seeing (22)
and (23)), e2;i\Xi eið Þjei¼�e1;iðtÞ\0 and

0\Xi eið Þjei¼e1;i tð Þ\�e2;i (seeing Remark A1 in Appen-

dix A).

_ei t¼ t�1;i

� �
\l0;i hiþe2;i

� �

þ 1�l0;i
� �

Xi eið Þjei¼e1;i\F 1;i hiþe2;i�Xi eið Þjei¼e1;i

� �

þXi eið Þjei¼e1;i\
minð _e1;i tð Þ;e2;i tð ÞÞ�Xi

hiþe2;i�Xi eið Þjei¼e1;i

hiþe2;i�Xi eið Þjei¼e1;i

� �
þXi eið Þjei¼e1;i� _e1;i

�XiþXi eið Þjei¼e1;i ;8t¼ t�1;i

ðB12Þ

_ei t¼ t�2;i

� �
[l

0;i
hiþe2;i
� �

þ 1�l
0;i

� �
Xi eið Þjei¼e1;i

[F 2;i hiþe2;i�Xi eið Þjei¼e1;i

� �

þXi eið Þjei¼e1;i
[

maxð _e1;i tð Þ;e2;iðtÞÞ�Xi

hiþe2;i�Xi eið Þjei¼e1;i

hiþe2;i�Xi eið Þjei¼e1;i

� �
þXi eið Þjei¼e1;i

� _e1;i�Xi

þXi eið Þjei¼e1;i
;8t¼ t�2;i

ðB13Þ

According to (17), k2;i ¼ 1 holds for 0� t� t0;i. Then,
by using (9)-(10), we can obtain (B14) and (B15).

Xi eið Þjei¼�e1;i ¼
e2;iUi eið Þjei¼�e1;i

�e2;i þ Ui eið Þjei¼�e1;i

\
e2;iU i

�e2;i þ U i

¼ �Xi; 8t ¼ t�1;i

ðB14Þ

Xi eið Þjei¼e1;i
¼

�e2;iUi eið Þjei¼e1;i

�e2;i þ Ui eið Þjei¼e1;i

[
�e2;iU i

�e2;i þ U i

¼ Xi; 8t

¼ t�2;i

ðB15Þ
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Remark B4 According to (B12)-(B15), it is clear

_ei tð Þ\ _e1;i holds for t ¼ t�1;i, while _ei tð Þ[ _e
1;i
holds for

t ¼ t�2;i, which are contradictory to the definition of t
�
1;i

and t�2;i. Since the existence of t�1;i and t�2;i is the

necessary condition of tracking error violating con-
straint, the tracking error will not violate the constraint
for t 2 ð0; t0;i�.

In the light of Remark B1, Remark B2, Remark B3

and Remark B4, the proof is complete.

Appendix C

The proof of Remark 5 consists of 2 steps. The 1st step

is to prove that _Xi is non-singular for 0� t� t0;i. The

2nd step is to prove _Xi is non-singular for t[ t0;i. t0;i
is the time of reaching sliding manifold such that

si t� t0;i
� �

¼ 0 holds, which was firstly mentioned in

(17).

Taking the derivative of Xi in (9), _Xi can be derived

in (C1)-(C5).

X
:

i
¼ giðC1;i

_Ui þ C2;iÞ � ð1� giÞð �C1;i
_Ui þ �C2;iÞ

ðC1Þ

where C1;i ¼
�e2

2;i

ð�e2;iþUiÞ2
, C2;i ¼

_e2;iU
2
i

ð�e2;iþUiÞ2
, C1;i ¼

e22;i
ðe2;iþUiÞ2

and C2;i ¼
_e2;iU

2
i

ðe2;iþUiÞ2
. Clearly, C1;i; C2;i;, C1;i

and C2;i are non-singular due to the facts of Ui � 0,

e2;i [ 0 and e2;i\0 (seeing Remark 3).

_Ui ¼
oUi

oei
_ei þ

oUi

ok2i
_k2;i þ

oUi

oai
_ai ðC2Þ

oUi

oei
_ei ¼ ½k1;ijeijk1;i�1 þ k2;ik2;iðjeij

þ a
1

k2;i

i Þk2;i�1�sgnðeiÞ _ei ðC3Þ

oUi

ok2;i
_k2;i ¼ k2;iðjeij þ a

1
k2;i

i Þk2;i�1½ jeij þ a
1

k2;i

i

� �
lnðjeij

þ a
1

k2;i

i Þ � ln aið Þ
k2;i

a
1

k2;i

i � _k2;i

ðC4Þ

oUi

oai
_ai ¼ k2;iðjeij þ a

1
k2;i

i Þk2;i�1a
1

k2;i
�1

i _ai ðC5Þ

By using (11–16), we can obtain _ai in (C6)-(C13).

If ei � 0:

_ai ¼
oG1

o/�
2i

d/�
2i

dt
¼

0; if /�
2;i \� kc;i

1

2
þ 1

2
sin p

/�
2;i

2kc;i

� �� 

_/�
2;i; if � kc;i �/�

2;i � kc;i

_/�
2;i; if /

�
2;i [ kc;i

8>>><
>>>:

ðC6Þ

_/
�
2;i ¼ 1

k2;i
ð _/2;i � k1;ik1;ie

k1;i�1
i _eiÞ C7)

_/2;i¼
€�e1;ie2;i� _�e1;i _e2;iþG2;i0e2;i _�e1;i� _ei

� �
�G2;i _e2;i

ð _�e1;i�e2;iþG2;iÞ2

�e2;i
� �

� � _�e1;i�G2;i

_�e1;i�e2;iþG2;i

_e2;i

ðC8Þ

G2;i ¼
0; if e1;i � ei\1

kRðe1;i � ei � 1Þ2; if e1;i � ei � 1

	
;G

0

2;i

¼ 0; if e1;i � ei\1
2kR e1;i � ei � 1
� �

; if e1;i � ei � 1

	

ðC9Þ

If ei\0:

_ai ¼
oG

o/�
1i

d/�
1i

dt
¼

0; if /�
1;i \� kc;i

1

2
þ 1

2
sin p

/�
1;i

2kc;i

� �� 

_/�
1;i; if � kc;i �/�

1;i � kc;i

_/�
1;i; if /

�
1;i [ kc;i

8>>><
>>>:

ðC10Þ

_/
�
1;i ¼

1

k2;i
½ _/1;i þ k1;ik1;ið�eiÞk1;i�1 _ei� ðC11Þ

_/1;i ¼
€e1;i�e2;i � _e1;i _�e2;i � G1;i0�e2;i _ei � _e1;i

� �
� G1;i _�e2;i

ð�e2;i � _e1i þ G1;iÞ2
�e2;i

þ
_e1;i � G1;i

�e2;i � _e1i þ G1;i

_�e2;i

ðC12Þ

G1;i ¼
0; if ei � e1;i\1

kLðei � e1;i � 1Þ2; else

(
;

G0
1;i ¼

0; if ei � e1;i\1

2kL �e1;i � ei � 1
� �

; else

( ðC13Þ

Where constants kc;i [ 0 and 1[ 0, variables /�
1;i and

/�
2;i are defined in (12) and (13).

Based on (C6)-(C13), an upper bound of _ai can be

derived in (C14)-(C16).
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j _aij �
1

k2;i
ðj _/1;ij þ j _/2;ij þ k1;ik1;ijeijk1;i�1j _eijÞ ðC14Þ

j _/1;ij �
€e1;i�e2;i
�� ��þ _e1;i _�e2;i

�� ��þ G1;i0�e2;i _ei � _e1;i
� ��� ��þ G1;i _�e2;i

�� ��
ð�e2;i � _e1iÞ2

j�e2;ij þ
_e1;i
�� ��þ G1;i

�� ��
�e2;i � _e1i

_�e2;i
�� ��:

�
€e1;i�e2;i
�� ��þ _e1;i _�e2;i

�� ��þ G1;i0�e2;i _ei� _e1;i
� ��� ��þ G1;i _�e2;i

�� ��
ðd3;iÞ

2
�e2;i
�� ��

þ
_e1;i
�� ��þ G1;i

�� ��
d3;i

_�e2;i
�� ��

¼A1;i

ðC15Þ

_/2;i

�� ���
€�e1;ie2;i
�� ��þ _�e1;i _e2;i

�� ��þ G2;i0e2;i _�e1;i� _ei
� ��� ��þ G2;i _e2;i

�� ��
ð _�e1;i�e2;iÞ2

e2;i
�� ��

þ
_�e1;i
�� ��þ G2;i

�� ��
_�e1;i�e2;i

j _e2;ij:

�
€�e1;ie2;i
�� ��þ _�e1;i _e2;i

�� ��þ G2;i0e2;i _�e1;i� _ei
� ��� ��þ G2;i _e2;i

�� ��
ðd4;iÞ2

e2;i
�� ��

þ
_�e1;i
�� ��þ G2;i

�� ��
d4;i

j _e2;ij

¼A2;i

ðC16Þ

where positive constants d3;i and d4;i are mentioned in

Remark 3.

Remark C1 Based on (C9) and (C13)-(C16), it is
clear that all terms inA1;i andA2;i are not singular for

all ei 2 ð�1;1Þ and _ei 2 ð�1;1Þ. Moreover, the
constant k1;i [ 1 holds. Hence, j _aij is non-singular for
all ei 2 ð�1;1Þ and _ei 2 ð�1;1Þ.
Step 1According to (17), it is clear that k2;iðtÞ ¼ 1 and
_k2;i tð Þ ¼ 0 hold for 0� t� t0;i. Then, (C17) can be

derived.

j _UiðtÞj� k1;ik1;ijeijk1;i�1 þ k2;i

� �
_eij j

þ k2;ij _aij; 80� t� t0;i ðC17Þ

Remark C2 In the light of (C17) and Remark C1, it

is clear _UiðtÞ is non-singular for 0� t� t0;i because the
fact k1;i [ 1.

Step 2 Using the definition of t0;i in (17), it is clear that
siðtÞ ¼ 0 holds for t� t0;i, which means _ei ¼ Xi holds

for t� t0;i. Then, an upper bound of (C2) for t[ t0;i
can be derived in (C18) by using the facts of

0\
�e2;i

�e2;iþUi
\1 and 0\ e2;i

e2;iþUi
\1.

j _Ui tð Þ � k1;ik1;i
�� ��eijk1;i�1j _eij þ k1;ik2;ik2;iðjeij

þ a
1
k2i
i Þk1iþk2i�1 þ k2;ik

2
2;iðjeij þ a

1
k2;i

i Þ
2k2;i�1

þ k2;ijðjeij þ a
1

k2;i

i Þk2;i lnðjeij þ a
1

k2;i

i Þj _k2;i
�� ��

þ k2;i
k2;i

jailnðaiÞj _k2;i
�� ��

þ k2;iðjeij þ a
1

k2;i

i Þ
k2;i�1

ja
1

k2;i
�1

i _aij; 8t[ t0;i ðC18Þ

According to (17), 0:5\k2;i\1 holds for t[ t0;i.

Therefore, ðjeij þ a
1

k2;i

i Þ
k2;i�1

� a
k2;i�1

k2;i

i holds. Then,

k2;iðjeij þ a
1

k2;i

i Þ
k2;i�1

ja
1

k2;i
�1

i _aij � k2;ia
k2;i�1

k2;i
þ 1

k2;i
�1

i _aij j ¼
k2;i _aij j holds. After that, (C19)) can be derived.

j _Ui tð Þ � k1;ik1;i
�� ��eijk1;i�1j _eij þ k1;ik2;ik2;iðjeij

þ a
1
k2i
i Þk1iþk2i�1 þ k2;ik

2
2;iðjeij þ a

1
k2;i

i Þ
2k2;i�1

:

þk2;ijðjeij þ a
1

k2;i

i Þk2;i lnðjeij þ a
1

k2;i

i Þjj _k2;ij

þ k2;i
k2;i

jailnðaiÞj _k2;i
�� ��þ k2;ij _aij:�DiN i ðC19Þ

where the positive constant Di ¼

max½ðk1;ik1;iÞ; ðk1;ik2;ik2;iÞ; ðk2;ik22;iÞ;
k2;i
k2;i

� �
; k2;i� and

the positive variable N i ¼ jeijk1;i�1j _eij þ ðjeijþ

a
1
k2i
i Þk1iþk2i�1 þ ðjeij þ a

1
k2;i

i Þ
2k2;i�1

þ jðjeij þ a
1

k2;i

i Þk2;i

lnðjeijþ a
1

k2;i

i Þj _k2;i
�� ��þ jailnðaiÞj _k2;i

�� ��þ j _aij:

Remark C3 Firstly, according to (17), _k2i
�� �� is

bounded such that _k2;i
�� ��� 1�k�2;i

2
p
tD;i

holds. Moreover,

j _aij is non-singular due to Remark C1. Furthermore,

ðjeij þ a
1

k2;i

i Þk1;iþk2;i�1
and ðjeij þ a

1
k2;i

i Þ
2k2;i�1

are not
singular because k1;i [ 1 and k2;i [ 0:5. Then,

jailn aið Þj and jðjeij þ a
1

k2;i

i Þk2;i lnðjeij þ a
1

k2;i

i Þj are non-
singular because the fact of ai [ 0 (seeing (A1) in
Appendix A), and the fact that lim

x!0þ
xy ln xð Þ ¼ 0 holds

for any x[ 0 and y[ 0. Therefore, we can conclude
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DiN i in (C19) is non-singular for all ei 2 ð�1;1Þ,
_ei 2 ð�1;1Þ and ai 2 ð0;1Þ.
According to (C19) and (C1), (C20) can be derived.

X
:

i

����
�����DiN i þ j _e2;ij þ j _�e2;ij ðC20Þ

According to (C20), Remark C2, Remark C3, _Xi

�� �� is
non-singular for all ei 2 ð�1;1Þ and
_ei 2 ð�1;1Þ. Then, the proof is complete.

Appendix D

The proof of Remark 7 consists of 2 steps. The 1st step

is to prove yi is finite. The 2nd step is to prove @i [ 0 is

finite.

Step 1 Considering the functions f 1 xð Þ and f 2 xð Þ in
x 2 R shown as (D1) and (D2), we can easily obtain

(D3) and (D4).

f 1 xð Þ ¼ xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ c2

p
¼
Z x

�1
ð1þ rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ c2
p Þdr

ðD1Þ

f 2 xð Þ ¼ x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ c2

p
¼
Z x

�1
ð1� rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ c2
p Þdr

ðD2Þ

f 1 xð Þ � f 1ðx� DÞ ¼
Z x

x�D
ð1þ rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ c2
p Þdr ðD3Þ

f 2 xþ Dð Þ � f 2ðxÞ ¼
Z xþD

x

ð1� rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p Þdr ðD4Þ

where constants D[ 0 and c[ 0.

According to Remark B2 in Appendix B, Bs;i [ 0

and Bs;i\0 always hold despite of the value of ei.

Therefore, Bs;i and Bs;i can be written as (D5) after

some mathematic operations.

Bs;i ¼
1

2
Bs;i þ Bs;i

� �
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBs;i þ Bs;iÞ

2 � 4Bs;iBs;i

q

Bs;i ¼
1

2
Bs;i þ Bs;i

� �
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBs;i þ Bs;iÞ2 � 4Bs;iBs;i

q

ðD5Þ

By using (D2), (D5) and (44), and letting

x ¼ Bs;i þ Bs;i, D ¼ 1
@i

and c2 ¼ �4Bs;iBs;i, we can

calculate Bs;i � si in (D6) and si � Bs;i in (D7).

Bs;i � si ¼
1

2
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ c2

p� �
� 1

2
ðx� D

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� DÞ2 þ c2

q
Þ

¼ f 1 xð Þ � f 1 x� Dð Þ

¼
Z x

x�D
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffi

2 þ c2
p Þd

¼ Dþ
Z x

x�D
ffiffiffiffiffiffiffiffiffiffiffiffi
2 þ c2

p d[Dþ
Z x

x�D
ð�1Þd

¼ 0

ðD6Þ

si � Bs;i ¼
1

2
xþ D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ Dð Þ2 þ c2

q� �
� 1

2
ðx

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ c2

p
Þ

¼ f 2 xþ Dð Þ � f 2 xð Þ

¼
Z xþD

x

ð1� ffiffiffiffiffiffiffiffiffiffiffiffi
2 þ c2

p Þd

¼ Dþ
Z xþD

x

� ffiffiffiffiffiffiffiffiffiffiffiffi
2 þ c2

p d[D

þ
Z xþD

x

ð�1Þd

¼ 0

ðD7Þ

According to (44), it is clear si [ 0 and si\0 hold.

Moreover, Bs;i [ 0 and Bs;i\0 hold for all ei 2 R

(seeing Remark B2). Then, it is easy to obtain (D8) and

(D9).

si � Bs;i [ Bs;i

�� ��[ 0 ðD8Þ

Bs;i � si [ Bs;i

�� ��[ 0 ðD9Þ

In the light of (D4), (D5), (D6), (D7) and (44), we

can derive (D10).

yi\
1

ðBs;i � siÞ3ð Bs;i

�� ��Þ3 þ
1

ð Bs;i

�� ��Þ3ðsi � Bs;iÞ
3

ðD10Þ

where x ¼ Bs;i þ Bs;i, D ¼ 1
@i
and c2 ¼ �4Bs;iBs;i.

Remark D1 jBs;ij[ 0 and Bs;i

�� ��[ 0 hold for all ei 2
R (seeing Remark B2). Bs;i � si [ 0 and si � Bs;i [ 0

hold for all Bs;i 2 ð0;1Þ and Bs;i 2 ð�1; 0Þ (seeing
(D6) and (D7)). Moreover, the calculation of Bs;i and

Bs;i is not involved with _ei (seeing (21)). Therefore,

according to (D10), it is easy to conclude yi is finite for
all ei 2 R and _ei 2 R.
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Step 2 According to (24), (25) and (26), it is easy to
find out li 0ð Þ ¼ 1 and l

i
0ð Þ ¼ 1 hold for all eið0Þ 2 R.

Then, in the light of (9) and (21), we can derive (D11)

Bs;i 0ð Þ � si 0ð Þ ¼ li 0ð Þ h0;iF0 0ð Þ þ e2;i 0ð Þ � Xi 0ð Þ
� �

� _ei 0ð Þ þ Xi 0ð Þ
¼ h0;iF0 0ð Þ þ e2;i 0ð Þ � _ei 0ð Þ

si 0ð Þ � Bs;i 0ð Þ ¼ _ei 0ð Þ � Xi 0ð Þ
� l

i
0ð Þ h0;iF0 0ð Þ þ e2;i 0ð Þ � Xi 0ð Þ
� �

¼ _ei 0ð Þ � h0;iF0 0ð Þ � e2;i 0ð Þ
ðD11Þ

According to (22) and (23), the following conclusions

can be drawn. Firstly, h0;iF0 0ð Þ ¼ 0 holds as long as

_ei 0ð Þ\e2;i 0ð Þ holds. Secondly, h0;iF0 0ð Þ ¼ 2 _ei 0ð Þ
holds as long as _ei 0ð Þ� e2;i 0ð Þ holds. Thirdly,

h0;iF0 0ð Þ ¼ 0 holds as long as _ei 0ð Þ[ e2;i 0ð Þ holds.

Fourthly, h0;iF0 0ð Þ ¼ 2 _ei 0ð Þ as long as _ei 0ð Þ� e2;i 0ð Þ.
Then, by using the facts of e2;i\0 and e2;i [ 0 (seeing

Remark 3), (D11) can be written as (D12).

Bs;i 0ð Þ � si 0ð Þ ¼ e2;i 0ð Þ � _ei 0ð Þ; if _ei 0ð Þ\e2;i 0ð Þ
e2;i 0ð Þ þ _ei 0ð Þ; if _ei 0ð Þ� e2;i 0ð Þ

	
[ 0:

si 0ð Þ�Bs;i 0ð Þ¼ _ei 0ð Þ�e2;i 0ð Þ; if _ei 0ð Þ [e2;i 0ð Þ
� _ei 0ð Þ�e2;i 0ð Þ; if _ei 0ð Þ �e2;i 0ð Þ[0

	

ðD12Þ

It is clear that @i in (45) is finite according to (D12).
Then, by working with Remark D1, the proof is
complete.

Appendix E

Proof of Theorem 3 Considering the following
Lyapunov function.

V1;i ¼
1

2
s2i ðE1Þ

Taking the derivative of (E1) and using (28), we can
obtain (E2).

_V1;i ¼ si _si ¼ siðv1;i þ v2;i þ Hi � €hr;i � _XiÞ ðE2Þ

By using (37)-(44), (E3) can be derived from (E2) by
using the fact v2;isi � 0.

_V1;i � � b1;i sij
q1þ1 � b2;i

�� ��sijq2þ1 � ðb3;i þ
1

2
c2i Þs2i

þ siHi � si bHiW
þ
i

ðE3Þ

In the light of Lemma 2 and (41), (E4)-(E6) are
obtained.
If t� ti:

_V1;i � � b3;is
2
i �

1

2
c2i s

2
i þ

1

2
c2i s

2
i þ

H
2

2c2i
ðE4Þ

If ti\t� ti þ T3:

_V1;i � � b3;is
2
i �

1

2
c2i s

2
i þ ð1�Wþ

i Þ
2ð1
2
c2i s

2
i þ

H
2

2c2i
Þ

ðE5Þ

If t[ ti þ T3:

_V1;i � � b1;i sijq1þ1 � b2;i
�� ��sijq2þ1 ðE6Þ

According to (E4)-(E6), we can derive (E7) by using

the fact 0�Wþ
i � 1.

_V1;iðtÞ�

�2b3;iV1;iðtÞ þ
H

2

2c2i
; t� ti

�2b3;iV1;iðtÞ þ
H

2

2c2i
; ti\t� ti þ T3

�b1;iV
q1þ1

2

1;i ðtÞ � b2;iV
q2þ1

2

1;i ðtÞ; t[ ti þ T3

8>>>>>><
>>>>>>:

ðE7Þ

Remark E1 In the light of (E7), it is clear that V1;iðtÞ
is bounded for t 2 ½0; ti þ T3Þ such that

V1;iðtÞ�max½V1;ið0Þ; H
2

4b3;ic
2
i

� holds for t 2 ½0; ti þ T3Þ.
Then, by working with Lemma 1, it is true V1;i

converges to zero within a fixed time t0;i defined in

(46) such that V1;i tð Þ ¼ 0 holds for t� t0;i.
Consider a Lyapunov function in (E8).

V2;i ¼
1

2
n2i ðE8Þ

Where variable ni ¼ si
ðBs;i�siÞðsi�Bs;iÞ

. Taking the deriva-

tive of (E8) and using (37)–(44), we can obtain (E9).
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_V2;i ¼ ni _ni
¼ niK2;iðv1;i þ v2;i þ Hi � €hr;i � _Xi þ K1;iÞ

ðE9Þ

Where K2;i ¼
�Bs;iBs;iþs2i

ðBs;i�siÞ
2ðsi�Bs;iÞ

2
.

Remark E2 It is clear K2;i [ 0 holds because the

facts of Bs;i [ 0 and Bs;i\0 (seeing Theorem 2).

Moreover, it is true that sign nið Þ ¼ signðsiÞ holds as
long as Bs;i\si\Bs;i holds.

According to Remark E2, by using (38)–(43), we can
derive (E10).

_V2;i ¼ �K2;i½ b1;i sijq1 þ b2;i
�� ��sijq2

� �
jnij þ ðb3;i

þ 1

2
c2i ÞjsinijÞ� þ niK2;iK1;i

þ niK2;i �K1;i � K1;i

�� ��sgn nið Þ
� �

W�
i tð Þ

� niK2;iv0;iW
�
i tð Þ þ niK2;iHi � niK2;i

bHiW
þ
i

ðE10Þ

According to (41) and Lemma 2, we can obtain (E10).

niK2;iHi � niK2;i
bHiW

þ
i

�
K2;i nij jH; 0� t� ti

K2;i nij j 1�Wþ
i

� �
H; ti\t� ti þ T3

0; t[ ti þ T3

8><
>:

� K2;i nij jH; 0� t� ti þ T3

0; t[ ti þ T3

(
ðE11Þ

Then, (E12) can be obtained by using (39), (E11),
(E12) and the fact t0;i [ ti þ T3 (seeing (46)).

_V2;i tð Þ�
�niK2;iv0;i þ K2;i nij jH; 0� t� ti þ T3

�niK2;iv0;i; ti þ T3\t� t0;i

(

� �niK2;iv0;i þ
c20;i
2

n2iK
2
i þ

H
2

2c20;i
; 0� t� ti þ T3

�niK2;iv0;i; ti þ T3\t� t0;i

8><
>:

¼ �niK2;iv0;i þ
c20;i
2

niK2;i

ð�Bs;iBs;i þ s2i Þsi
ðBs;i � siÞ3ðsi � Bs;iÞ3

þ H
2

2c20;i
; 0� t� ti þ T3

�niK2;iv0;i; ti þ T3\t� t0;i

8><
>:

ðE12Þ

In the light of (D12) in the appendix D, it is clear

Bs;i 0ð Þ\si 0ð Þ\Bs;i 0ð Þ holds. According to (45),

V2;i 0ð Þ ¼ 1
2
n2i ð0Þ\ 1

2
@2
i holds. Then, we assume there

is a moment T �
i no later than ti þ T3, which indicates

the moment of V2;i first-time reaching 1
2
@2
i such that

V2;i tð Þ ¼ 1
2
n2i ðtÞ ¼ 1

2
@2
i holds for t ¼ T �

i � ti þ T3.

Therefore, it is clear V2;i � 1
2
@2
i and Bs;i\si\Bs;i

hold for 0� t� T �
i , which is equal to (E13).

jsij
ðBs;i � siÞðsi � Bs;iÞ

�@i

Bs;i\si\Bs;i

8<
: ; 80� t� T �

i ðE13Þ

By solving (E13), we can derive the boundary of si for
0� t� T �

i .

si � si � si; 80� t� T �
i ðE14Þ

where si and si are defined in (44).

Theorem 2 indicates Bs;i\0 and Bs;i [ 0 for all t� 0,

which means�4Bs;iBs;i [ 0 always holds. Remark D1

illustrates si\Bs;i and si [Bs;i hold for all t� 0 as

long as @i [ 0. Then, by using (44), it is easy to find

out Bs;i\si\0 and 0\si\Bs;i hold as long as @i [ 0.

After that, by using (E14) and the foregoing discus-
sion, we can easily derive (E15).

0\
1

ðBs;i � siÞ3ðsi � Bs;iÞ
3
� yi; 80� t� T �

i ðE15Þ

where yi is defined in (44).

According to (E12), (E15), (42) and Remark E2, we
can derive (E16) and its integral (E17).

_V2;i tð Þ� � niK2;iv0;i þ
c20;iniK2;i

2
yi �Bs;iBs;i þ s2i
� �

si

þ H
2

2c20;i
; 80� t� T �

i

¼ �
b4;i
2

niK2;i

Bs;i � si
� �

si � Bs;i

� �

�Bs;iBs;i þ s2i
si

þ H
2

2c20;i
; :80� t� T �

i

¼ �b4;iV2;iðtÞ þ
H

2

2c20;i
; :80� t� T �

i

ðE16Þ

V2;i tð Þ� ��b4;it V2;i 0ð Þ � H
2

2b4;ic
2
0;i

" #

þ H
2

2b4;ic
2
0;i

; 80� t� T �
i ðE17Þ

Where the positive constant � ¼ 0:2718.
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According to the definition of T �
i , which illustrates

V2;i tð Þ ¼ 1
2
@2
i holds for t ¼ T �

i , we can derive (E18)

by using (E17).

1

2
@2
i � ��b4;iT

�
i V2;i 0ð Þ � H

2

2b4;ic
2
0;i

" #
þ H

2

2b4;ic
2
0;i

ðE18Þ

Remark E3 (45) implies 1
2
@2
i [V2;i 0ð Þ holds. Then,

if 1
2
@2
i � H

2

2b4;ic
2
0;i

holds, there will be no real solution

T �
i 2 ½0;1Þ to satisfy (E18). It means V2;i tð Þ ¼

V2;i T
�
i

� �
¼ 1

2
@2
i will not happen for0� t� ti þ T3.

Hence, V2;i tð Þ will not reach 1
2
@2
i for 0� t� ti þ T3.

Remark E4 (45) implies 1
2
@2
i [V2;i 0ð Þ holds. Then,

if @2
i\

H
2

b4;ic
2
0;i

holds, we can derive a real solution T �
i 2

½0;1Þ to satisfy (E18), which is detailed in (E19).

According to (47), T �
i satisfying (E19) can guarantee

ti þ T3 � T �
i holds. Therefore, V2;i tð Þ will not reach

1
2
@2
i for 0� t� ti þ T3.

T �
i �

1

b2;i
ln

1
2
n2i 0ð Þ � H

2

2b4;ic
2
0;i

1
2
@2
i � H

2

2b4;ic
2
0;i

0
B@

1
CA

¼ 1

b2;i
ln

V2;i 0ð Þ � H
2

2b4;ic
2
0;i

1
2
@2
i � H

2

2b4;ic
2
0;i

0
B@

1
CA ðE19Þ

Given Remark E3 and Remark E4, V2;i tð Þ will not

reach 1
2
@2
i for 0� t� ti þ T3. Therefore, we can obtain

(E20) by using (E16).

_V2;i tð Þ� �b4;iV2;iðtÞ þ
H

2

2c20;i
; 0� t� ti þ T3

0; ti þ T3\t� t0;i

8><
>:

ðE20Þ

Remark E5 According to (E20), V2;iðtÞ is bounded
for t 2 ½0; t0;i� such that V2;iðtÞ�max½V2;ið0Þ; H

2

2b4;ic
2
0;i

�

holds for t 2 ½0; ti þ T3� and V2;iðtÞ�V2;iðt ¼ ti þ

T3Þ�max½V2;ið0Þ; H
2

2b4;ic
2
i

� holds for t 2 ðti þ T3; t0;i�.

Remark E6 According to Remark E5, V2;iðtÞ is

bounded for t 2 ½0; t0;i�, which means Bs;i\si\Bs;i

holds for t 2 ½0; t0;i�. According to Remark E1,

V1;i tð Þ ¼ 0 holds for t� t0;i, which means siðtÞ ¼ 0

holds for t 2 ½t0;i;1Þ. Since Bs;i\0 and Bs;i [ 0

always hold (seeing Theorem 2), it is obviously true

Bs;i\si\Bs;i holds for 2 ½t0;i;1Þ.

In the light of Remark E1 and Remark E6, the proof

is complete.
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