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Abstract To obtain explicit understanding of the
behavior of dynamical systems, geometrical methods
and slow–fast analysis have proved to be highly useful.
Such methods are standard for smooth dynamical sys-
tems and increasingly used for continuous, non-smooth
dynamical systems. However, they are much less used
for random dynamical systems, in particular for hybrid
models with discrete, random dynamics. Here we pro-
pose a geometrical method that works directly with
the hybrid system. We illustrate our approach through
an application to a hybrid pituitary cell model in
which the stochastic dynamics of very few active large-
conductance potassium (BK) channels is coupled to a
deterministic model of the other ion channels and cal-
cium dynamics. To employ our geometric approach,
we exploit the slow–fast structure of the model. The
random fast subsystem is analyzed by considering dis-
crete phase planes, corresponding to the discrete num-
ber of open BK channels, and stochastic events corre-
spond to jumps between these planes. The evolution
within each plane can be understood from nullclines
and limit cycles, and the overall dynamics, e.g.,whether
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the model produces a spike or a burst, is determined
by the location at which the system jumps from one
plane to another. Our approach is generally applicable
to other scenarios to study discrete random dynami-
cal systems defined by hybrid stochastic–deterministic
models.
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1 Introduction

Biological systems are often influenced by discrete,
stochastic events and are therefore appropriately
described by hybrid stochastic–deterministic models.
Whereas smooth dynamical systems are routinely stud-
ied with geometrical techniques, this is still not the
case for random dynamical systems such as the ones
emerging from hybrid models. The main purpose of
the present work is to propose a geometrical method
for analyzing hybrid systems, which we illustrate with
an application to a hybrid model of cellular electro-
physiology.

Many cell types rely on electrical activity to trans-
duce stimuli to signals to be communicated to other
cells. In particular, most endocrine cells release hor-
mones as a result of calcium influx via voltage-
sensitive Ca2+channels that open during electrical
activity, which triggers calcium-dependent exocytosis
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of hormone-containing vesicles [3,6,22,24,27]. Pitu-
itary endocrine cells, such as the prolactin-secreting
lactotrophs studied here, are generally small, and
hence, stochastic ion channel dynamics can have a
large influence on the electrical patterns that they
exhibit, and, therefore, on the amount of hormone being
released [10,25].

Large-conductance potassium (BK) channels play a
particular important role in lactotrophs, since they can
promote so-called bursting electrical activity, where
small action potentials fire from a depolarized plateau
[30,32]. This effect is biologically relevant, since burst-
ing leads to higher rates of secretion than simpler
action potential firing [28,31,32]. Previous mathemati-
cal deterministicmodeling and slow–fast analyses have
provided insight into how BK channels promote such
bursting [30,33].

However, very few BK channels are active, and
mathematical models must therefore take this stochas-
tic and discrete aspect into account. The discrete aspect
is particular for BK channels due to their scarcity, and
indeed, analyses of the effects of stochastic dynamics of
other types of ion channels have typically assumed that
the system could be described by stochastic differential
equations [8,11–13,17,20,21,23]. Such a continuous-
noise approach can be justified through an appropriate
approximation to the underlyingMarkov chain dynam-
ics of the ion channel population in the case of a suffi-
ciently high number of active ion channels [11–13].

A recent simulation study [25] provided some
insight into the role of discrete stochastic BK dynam-
ics for shaping electrical activity in pituitary cells. The
authors found numerically that stochastic opening of
a BK channel increases the probability of observing a
burst if the event happens during the action potential
(AP) upstroke or near the AP peak, but lower the burst
probability if it occurs after the AP peak. The oppo-
site was observed for stochastic BK channel closing
events.

Here we extend the work by Richards et al. [25]
by considering a biologically more correct formulation
of the control of BK channels [19], and we provide a
detailed mathematical analysis of how stochastic open-
ing and closing of discrete BK channels may or may
not lead to a burst. Our analysis is based on casting the
model in a random dynamical system formulation [1]
combined with geometric analysis. We note that since
the BK channel transition probabilities depend on the
membrane potential V , the discrete-noise model that

we study is not a so-called blinking system where the
stochastic dynamics is independent of the deterministic
part, i.e., a system purely driven by a discrete random
process, e.g., a Markov chain [2,14].

Our analysis also differs from traditional geometri-
cal analyses of discrete stochastic models of cellular
electrical activity, which typically analyze the deter-
ministic model with tools from the theory of (smooth)
dynamical systems, and then consider noise as per-
turbations that “pushes” the system around in phase
space [10,25]. Here we will show that it is important
to understand when and where the “pushes,” i.e., the
stochastic events, occur. This insight can be obtained
by, first, taking advantage of the slow–fast structure of
the model, and, then, considering a family of nullclines
lying in discrete phase planes corresponding to the
discrete number of open BK channels. Together these
planes form the phase space of the fast subsystem, and
stochastic events correspond to jumps between these
planes. The dynamics of the systemwithin each plane is
determined by geometrical structures such as the null-
clines until the next stochastic event, and insight into
the overall dynamics can be understood by consider-
ing where stochastic jumps between planes occur with
respect to the nullclines.

2 Methods

We devise and analyze a hybrid version of the model
by Tabak et al. [30],

V̇ = −(
ICa(V ) + IKv(V, n) + ISK(V,Cac)

+ IBK(V,Caloc) + IL(V )
)
/Cm, (1)

ṅ = (n∞(V ) − n)/τn, (2)
˙Cac = f (α ICa(V ) − kc Cac), (3)

where overdots indicate differentiation with respect to
time t . V is the cellular membrane potential, n is a gat-
ing variable for the voltage-sensitive K+ current (IKv),
and Cac is the free cytosolic Ca2+ concentration. ICa
and IL are (deterministic) voltage-dependent Ca2+ and
leak currents, respectively, ISK is the (deterministic)
Ca2+-gated small-conductance K+ (SK) current, while
IBK represents the stochastic BK current, which is a
function not only of V , but also of the local Ca2+ con-
centration, Caloc, at each BK channel, which depends
on the surrounding open Ca2+ channels (as explained
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below). Cm is the membrane capacitance, α changes
current to flux, kc is the Ca2+ removal rate and f is the
ratio of free-to-bound Ca2+.

The deterministic currents are modeled as

ICa(V ) = gCa mCaV,∞(V )(V − VCa), (4)

IKv(V, n) = gK n (V − VK ), (5)

ISK(V,Cac) = gSK s∞(Cac)(V − VK ), (6)

IL(V ) = gL (V − VL), (7)

where gX represents the whole-cell conductance of the
channel X and VX the corresponding reversal potential.
The steady-state activation functions,mCaV,∞ and n∞,
are described by Boltzmann functions,

mCaV,∞(V ) = 1

1 + exp((vm − V )/sm)
, (8)

n∞(V ) = 1

1 + exp((vn − V )/sn)
, (9)

and the steady-state calcium-dependent activation func-
tion, s∞, by

s∞(Cac) = Ca2c
Ca2c + k2s

. (10)

The randomness of the system is due to the stochastic
current IBK, which is modeled by

IBK =
nBK∑

i=1

ḡBK1OBK,i (V − VK )

= ḡBKmBK(V − VK ),

(11)

where ḡBK is the BK single-channel conductance, nBK
the number of BK channels and 1OBK,i an index func-
tion that equals 1 if the i-th BK is open and 0 otherwise,
so that mBK indicates the total number of open BK
channels. In order to compute the state of the BK chan-
nels, we exploit a model of single-channel gating with
two states (closed and open), whose dynamics are reg-
ulated globally via membrane potential V , and locally
via the Ca2+ nanodomains below the mouth of stochas-
tic CaV channels surrounding the single BK channel
[18,19], forming an ion channelBK-CaVcomplexwith
a stoichiometry of 1–4 CaV channels per BK channel
[5,29]. Therefore, in order to model the stochastic gat-
ing of BK channels, we describe the transition from
one state (closed or open) to another for each BK chan-
nel and the surrounding CaVs. (Ct

X corresponds to the
closed state and Ot

X to the open state of the channel X

at time t .) Then, we define the transition matrix for the
single BK,

QBK =
⎡

⎣
P

(
Ct+Δt
BK |Ct

BK

)
P

(
Ct+Δt
BK |Ot

BK

)

P
(
Ot+Δt
BK |Ct

BK

)
P

(
Ot+Δt
BK |Ot

BK

)

⎤

⎦

=
[
1 − k+Δt k−Δt
k+Δt 1 − k−Δt

]
, (12)

and for each CaV surrounding the BK channel,

QCaV =
⎡

⎣
P

(
Ct+Δt
CaV |Ct

CaV

)
P

(
Ct+Δt
CaV |Ot

CaV

)

P
(
Ot+Δt
CaV |Ct

CaV

)
P

(
Ot+Δt
CaV |Ot

CaV

)

⎤

⎦

=
[
1 − αΔt βΔt

αΔt 1 − βΔt

]
, (13)

where the elements correspond to the transition proba-
bilities between the indicated states in the time interval
[t, t + Δt], provided that Δt is small. Hence, α and β

represent the voltage-dependent Ca2+ channel opening
and closing rates, respectively, and are given by [19,26]

α(V ) = mCaV,∞(V )

τCaV
, (14)

β(V ) = 1 − mCaV,∞(V )

τCaV
. (15)

In equation (12), k+ and k− are the voltage and Ca2+-
dependent opening and closing rates for BK channels,
and are modeled as in [19],

k+(V,Caloc) = w+(V ) f +(Caloc)

= w+
0 e

−wcoV 1

1 +
(

Kco
Caloc

)nco , (16)

k−(V,Caloc) = w−(V ) f −(Caloc)

= w−
0 e

−wocV 1

1 +
(
Caloc
Koc

)noc , (17)

with Caloc determined by the number of surrounding
open CaV channels, nCaVBK,o ,

Caloc = nCaVBK,oCao + Cac, (18)
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with

Cao = iCa
8πr DCaF

exp

⎡

⎢⎢
⎣

−r
√

DCa
k+
B [Btotal]

⎤

⎥⎥
⎦. (19)

Here, iCa = ḡCa(V − VCa) is the single-channel Ca2+

current, r the distance between CaVs and the BK chan-
nel in a single BK-CaV complex, DCa the Ca2+ diffu-
sion constant, [Btotal] the total amount of Ca2+ buffer
and k+

B the rate of the buffer. When all the surrounding
CaVs are closed (i.e., nCaVBK,o = 0), then Caloc = Cac.
Note thatwe assume the linear buffer approximation for
computing the Ca2+ profile from n open channels by
superimposing n nanodomains found for single, iso-
lated CaVs.

The hybrid system was solved with a fixed time step
procedure implemented in MATLAB/Simulink with
Δt = 0.01 ms. Since we are interested in long-term
behavior, the choice of the initial values is irrelevant.
A third-order Bogacki–Shampine scheme was used to
solve the ODEs (1)–(3). The stochastic part of the
model, computing the state of the BK-CaV complex,
was updated as follows. At any time point t , a random
number ξ uniformly distributed on the interval [0, 1]
was generated for each of the surrounding CaV chan-

nels, and a transitionwasmade based upon the subinter-
val in which ξ fell; for example, if the CaV channel was
open (Ot

CaV) (see the second column of QCaV defined
by (13)), it remained open if ξ < 1 − βΔt ; otherwise,
a transition to the closed (Ct+Δt

CaV ) state occurred. Simi-
larly, a random number η uniformly distributed on the
interval [0, 1] for the BK channel was generated, and a
transition was made based upon the subinterval that η

belonged to.
Table 1 reports the parameter values of the model.

MATLAB code and Simulink schemes implemented
for the devised hybrid model with different configu-
rations of the single BK-CaV complex (i.e., different
stoichiometries) and their number (i.e., nBK) are pro-
vided in a freely accessible online repository (see Sec-
tion “Data availability”).

3 Results

The hybrid model produces different kinds of behav-
ior depending on the configuration of the BK-CaV
complexes and their number. Figure1 shows simulated
traces for nBK = 5 BK channels in complexes with
1, 2 or 4 CaVs, which are located either 13 nm or 30
nm from the BK channel of the complex. The mem-

Table 1 Parameter values of the pituitary model

Parameter Value Unit Parameter Value Unit

C 10 pF ḡCa 0.002 nS

gCa 2 nS VCa 60 mV

vm −20 mV sm 12 mV

gK 3 nS VK −75 mV

vn −5 mV sn 10 mV

τn 30 ms τCaV 1.25 ms

gSK 1.2 nS ks 0.4 µM

gL 0.2 nS VL −50 mV

fc 0.01 – α 0.0015 µM fC−1

kc 0.12 ms−1 ḡBK 0.1 nS

w−
0 3.32 ms−1 w+

0 1.11 ms−1

woc 0.022 mV−1 wco − 0.036 mV−1

Koc 0.1 µM Kco 16.6 µM

noc 0.46 – nco 2.33 –

DCa 0.250 µm2 ms−1 F 0.096485 C µmol−1

kB 0.5 µM−1 ms−1 Btotal 30 µM

r 0.013–0.030 µm
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Geometric slow–fast analysis of a hybrid pituitary cell model

Fig. 1 Cellularmembrane potentialV (upper plot in each panel),
the gating variable n for the Kv current (second plot), the free
cytosolic Ca2+ concentration Cac (third plot) and the number of
open BK channels (lower plot, mBK open) with respect to time
by assuming a number of total BK (nBK) equal to 5. For each
BKCa-CaV ion channel complex, different stoichiometries are

employed: 1:1 for the first row (a and b); 1:2 for the second row
(c and d); 1:4 for the third row (e and f). Also, two different val-
ues for the distance r between CaVs and BK channel in a single
BK-CaV complex are considered: r = 13 nm for the first column
(a, c and e); r = 30 nm for the second column (b, d and f)
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brane voltage V exhibits both single action potential
firing aswell as so-called bursts where small-amplitude
action potentials and voltage fluctuations appear from a
depolarized plateau. Interesting, bursting appears to be
less frequent in the BK-CaV configurations with either
many CaVs located close to the BK channel (1:4 sto-
ichiometry, r = 13 nm, Fig. 1e), or with few CaVs
at a greater distance from the BK channel (1:1 stoi-
chiometry, r = 30 nm, Fig. 1b). These two cases cor-
respond, respectively, to the configurations where we
would expect BK channels to open readily or less fre-
quently, as confirmed by the lower traces showing the
number of open BK channels.

With more BK channels, bursting seems to be more
frequent (Fig. 2, nBK = 15). However, as seen most
clearly for the configurationwith 1:4 stoichiometry and
r = 13 nm (Fig. 2e), the larger number of BK channels
tend to make the interburst interval more depolarized
(∼ − 50 mV) and the active phase of the burst more
hyperpolarized (∼ − 30 mV), compared to the behav-
ior seen for nBK = 5 (Fig. 1).

To understand the differences seen in the stochas-
tic simulations for the various configurations, we first
aim at obtaining a geometric understanding of why the
model sometimes produces a burst and sometimes pro-
duces a spike. We will then take advantage of this
insight to explain the behavior seen in the different
cases in Figs. 1 and 2.

The timescale of the gating variable n of the Kv
current is τn = 30 ms, mBK has timescale of a few ms
[7,19], whereas Cac has timescale 1/( f kc) = 833 ms,
which allow us to treat the system as a slow–fast system
withCac as a slowvariable, and the remaining variables
(V, n,mBK) as a hybrid (random) fast subsystem of the
full model.

The phase space of this subsystem is composed
of 1 + nBK discrete planes, more specifically—since
n ∈ [0, 1]—it equals R × [0, 1] × {0, . . . , nBK}. It is
useful to consider the V and n nullclines for fixedmBK,
the number of open BK channels. The n nullcline is
independent of mBK and given by n = n∞(V ). The
V nullcline, in contrast, depends on mBK and on the
(fixed) value of Cac.

Drawing these nullclines for nBK = 5 and Cac =
0.4µM in each of the planesR×[0, 1]×{mBK} shows
that formBK = 0 only a single stable equilibrium exists
at V ≈ −15 mV, which is surrounded by an unstable
limit cycle and a larger stable limit cycle (Figs. 3b,
c and 4b, c). Increasing mBK, the V nullcline moves

downwards and the unstable limit cycle disappears so
that the upper stable equilibrium becomes unstable for
mBK = 1 and mBK = 2, where three equilibriums are
present: The lower one is stable and the one in the
middle is a saddle point. For mBK ≥ 3, only the lower
stable equilibrium is present.

At the beginning of an action potential when the
cell is hyperpolarized, the BK channels tend to close
somBK = 0most of the time. For this value ofmBK, the
system is attracted to the large limit cycle. However, as
V increases the opening rate of the channels increases
compared to their closing rate and the fast subsystem
jumps to the planes withmBK > 0, eventually reaching
the planewithmBK = 5 (Fig. 3a–c). In parallel with the
increase in mBK, the Kv gating variable n increases as
well, with the result that the fast subsystem is above the
V nullcline in the mBK = 5 plane when the trajectory
reaches this plane. Consequently, V starts to decrease
whereas n still increases. As the cell hyperpolarizes,
the BK channels begin to close, eventually followed by
a decrease in the n variable.

What distinguishes a spike from a burst is the point
at which the trajectory reaches the mBK = 0 plane.
If it happens above and to the left of the middle part
of V nullcline, V will continue to decline, terminat-
ing the action potential so that a single spike occurred
(Fig. 3). This is true even if a BK channel should open
as this would move the V nullcline downwards and the
trajectory would remain above.

If, on the other hand, the trajectory reaches the
mBK = 0 plane below/to the right of the V nullcline
as in Fig. 4c, V starts to increase leading to a second
action potential. This scenario might repeat itself sev-
eral times with the result that a burst is formed. During
the burst, the Ca2+ level Cac increases (Fig. 4a), which
moves the V nullcline downwards (Fig. 4c). This shift
increases the probability that the system hits above/to
the left of the V nullcline in themBK = 0 plane, which
would terminate the burst. That is, slow feedback from
Ca2+ contributes to controlling the end of the burst.

With lessCaVs in theBK-CaVs complexes, orwith a
greater distance between the CaVs and the BK channel,
the steady-state average fraction of open BK channels
decreases for any given V (Fig. 5), as expected from the
biophysical fact that BK channels are Ca2+ activated,
and hence, if a lower Ca2+ concentration is present at
the BK channel because of fewer or more distant CaVs
in its complex, the open probability decreases.
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Fig. 2 V, n,Cac and mBK as functions of time for nBK = 15. Details as in Fig. 1
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Fig. 3 Single action potential example. A single action poten-
tial (spike) for nBK = 5 BK channels in complexes with 4 CaVs
(i.e., 1:4 stoichiometry) located 13 nm (= r ) from the BK of the
complex. a V , n, Cac and mBK as functions of time. It corre-
sponds to the spike of Fig. 1e for 4.64 ≤ t ≤ 4.72. The colors of
the curves indicate different phases of the action potential for eas-
ier comparison to (b) and (c). b Projection of the simulation in (a)
onto the phase space of the fast (V, n,mBK) subsystem (colors as
in (a)). The phase space is composed of the gray planes given by
constant mBK, and random opening and closing of BK channels
correspond to jumps between these planes. For fixedmBK, the V
(light blue) and n (red) nullclines are shown for Cac = 0.4µM.
c Phase planes for fixed mBK as indicated and Cac = 0.4µM,

corresponding to the gray planes in (b), with V (light blue) and
n (red) nullclines. The red circle for mBK = 0 represent the first
sample of the time simulation. The violet oval for mBK = 0
indicates the unstable limit cycle. Gray asterisks indicate initial
conditions for different deterministic orbits obtained by keeping
mBK fixed and equal to the value of the corresponding panel. For
mBK = 0, the trajectories starting outside the unstable limit cycle
converge to a stable period orbit (gray). The simulation in (a) is
projected onto the plane with the corresponding value of mBK
using dots with colors as in (a). Note how the system returns to
the mBK = 0 plane to the left of the V nullcline (green points),
which forces V to decrease further, ending the action potential.
(Color figure online)
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Fig. 4 An example of a burst for nBK = 5 with 1:4 stoichiom-
etry and r = 13 nm. It corresponds to the burst of Fig. 1e for
4.12 ≤ t ≤ 4.35. Legends as in Fig. 3. In the first subplot of
(c), for mBK = 0, the V -nullcline (light blue) and the unsta-
ble limit cycle (violet) are calculated for Cac = 0.4µM (solid),
Cac = 0.42µM (dashed) and Cac = 0.46µM (dotted; the limit
cycle is very small with center (−17 mV, 0.23)). Note how the
system returns to the mBK = 0 plane to the right of the V -

nullclines the first two times (first time, green points to the right
of the solid light blue line; second time, black points to the right
of dashed light blue line), leading to a new increase of V . Only the
third time, when Cac has increased, moving the V nullcline fur-
ther downwards (dotted light blue line), does the system (brown
points) return to the mBK = 0 plane to the left of the V null-
cline, which causes a further decrease of V , terminating the burst.
(Color figure online)
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Fig. 5 Steady-state BK activation function, mBK,∞ (see Eq. 29
in [19])

This observation implies for example that with only
a single CaV located in the BK-CaV complexes, less
BKchannelswill open as the cell depolarizes during the
beginning of the action potential, compared to the case
with 1:4 stoichiometry. For example, in Fig. 6 (1:1 sto-
ichiometry and r = 13 nm), only 1–2 BK channels are
open during most of the first increase in V (red points),
in contrast to the 2–4 BK channels being open during
the upstroke in Fig. 4 (1:4 stoichiometry and r = 13
nm). This implies that the system is below the V null-
cline for a longer time, leading to a first peak at V ∼ 0
mV, compared to the peak at V ∼ − 10mV for the case
of 1:4 stoichiometry. Moreover, during the beginning
of the downstroke (blue points in Fig. 6c) the system is
relatively close to the V nullcline, meaning that V does
not decrease rapidly. Altogether, the long time that the
systems spends at very depolarized V , allows the vari-
able n to increase more than in the previous case. The
result is that when BK channels eventually close and
the system reaches themBK = 0 plane, it will often fall
within the unstable limit cycle and begin to spiral coun-
terclockwise. Even if one or two BK channels open, the
system is still in the region of the (V, n) planewhere the
unstable limit cycle is lying in themBK = 0 plane.Only
when Cac has increased sufficiently, so that the V null-
cline has moved sufficiently downwards, is the system
able to escape and terminate the burst. To obtain spik-
ing, the system must fall outside and to the left of the
unstable limit cycle when reaching themBK = 0 plane,
which is confirmed by our simulations (not shown).

To summarize, compared to the 1:4 stoichiometry
scenario, the fact that the opening probability for BK

channels is lower causes n to increase so much that
the system often falls on the inside of the unstable
limit cycle when returning to the mBK = 0 plane.
This mechanism explains why bursting is more fre-
quent with fewer CaVs in the BK-CaV complexes for
r = 13 nm, compare panels (a) and (e) in Fig. 1.

A similar explanationunderlies the increasedpropen-
sity for bursting when CaVs are located 30 nm (rather
than 13 nm) from the BK channel in the complex with
1:4 stoichiometry (panels (e) and (f) in Fig. 1). Again,
BK channels tend to open less during the upstroke so
that n can increase more, which eventually makes V
decrease.AsV decreases, theBKchannels tend to close
and the system reaches themBK = 0 plane at fairly high
n values (Fig. 7) so that the system might fall inside or
very close to the unstable limit cycle, but to the right
of the V nullcline, thus creating small-amplitude oscil-
lations (Fig. 7). This mechanism is similar to the one
described producing bursting for r = 13 nm and 1:4
stoichiometry, but it is more frequent for r = 30 nm
since n typically will be higher at the action potential
peaks, compare the red traces in panels (e) and (f) in
Fig. 1.

WithmoreBKchannels in the cells, a higher number
of BK channels will be open in spite of the same open-
ing probability. For example, with nBK = 15 instead
of nBK = 5, three times as many BK channels will
be open on average, in spite of all other configurations
(membrane potential V , number of CaVs per BK-CaV
complex, and CaV-to-BK distance r ) being identical.
Thus, during the upstroke, the system quickly reaches
mBK > 5, and the many open BK channels stop the
increase in V and lead to a first peak at V < −20 mV
(Fig. 8). As a consequence of the relatively weak depo-
larization of the membrane potential, few Kv chan-
nels become activated, i.e., n remains low (n < 0.08
in Fig. 8). Geometrically, this means that the system
remains in the lower part of the (V, n) planes. Conse-
quently, when the BK channels close during the down-
stroke and the system reaches the mBK = 0 plane, it
will be to the right of the V nullcline (Fig. 8c), and the
system will produce additional oscillations going from
V ≈ − 40 mV to V ≈ − 25 mV, until Cac increases
sufficiently to move the V nullcline downward so that
the system falls in the region above the V nullcline.
In contrast to the previous cases, this occurs for much
lower n values, and hence, the system does not follow
the trajectories that reach aminimum for V at− 60mV.
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Fig. 6 An example of a burst for nBK = 5 with 1:1 stoichiom-
etry and r = 13 nm. It corresponds to the burst of Fig. 1a for
4.82 ≤ t ≤ 4.96. Legends as in Fig. 3. Note how the system
returns to the mBK = 0 plane (first subplot of (c)) within the
unstable limit cycle (green points inside the violet oval) leading
to a new increase of V (magenta points). Only the second time,

when Cac has increased moving the V nullcline slightly down-
wards, does the system return to the mBK = 0 plane to the left
of the V nullcline (cyan points to the left of the dotted light blue
line with Cac = 0.44µM), which causes a further decrease of
V , terminating the burst. For Cac = 0.44µM, the unstable limit
cycle is also reduced. (Color figure online)
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Fig. 7 An example of a burst for nBK = 5 with 1:4 stoichiom-
etry and r = 30 nm. It corresponds to the burst of Fig. 1f for
3.68 ≤ t ≤ 3.91. Legends as in Fig. 3. Note how the sys-
tem returns to the mBK = 0 plane (first subplot of (c)) to the
right of the V -nullclines the first two times (first time, green
points to the right of the solid light blue line for Cac = 0.4;
second time, black points to the right of dashed blue line with
Cac = 0.45µM), leading to a new increase of V . Only the third
time, when Cac has increased, moving the V nullcline down-

wards, does the system return to the mBK = 0 plane to the left
of the V nullcline (brown points to the left of the dotted blue
line with Cac = 0.49µM), which causes a further decrease of
V terminating the burst. Note how the oval unstable limit cycle
for mBK = 0 reduces by increasing Cac, approaching to the
infinitesimal cycles with centers (−17 mV, 0.24) and (−18 mV,
0.23) for Cac = 0.45 and Cac = 0.49µM, respectively. (Color
figure online)
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Fig. 8 An example of a burst for nBK = 15 with 1:4 stoichiom-
etry and r = 13 nm. It corresponds to the burst of Fig. 2e for
0.93 ≤ t ≤ 1.16. Legends as in Fig. 3. Note how the system
returns to the mBK = 0 plane (first subplot of (c) and the rela-
tive zoom in reported in the second subplot) to the right of the
V -nullclines more times and within the unstable limit cycle (see
magenta, cyan, black, yellow, green, brown and violet points
to the right of the solid light blue line for Cac ≈ 0.38), lead-
ing to additional oscillations of V from −40 to −25 mV. Only,

when Cac has increased, moving the V nullcline downwards,
does the system return to the mBK = 0 plane to the left of
the V nullcline (orange points to the left of the dotted blue
line with Cac = 0.41µM), which causes a further decrease
of V terminating the burst. Note how the oval unstable limit
cycles for mBK = 0 reduce by increasing Cac: compare the
greater violet oval for Cac = 0.38µM with the smaller one for
Cac = 0.41µM. (Color figure online)
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4 Discussion

Understanding how complex dynamics arises in non-
linear, hybrid deterministic-stochasticmodels is impor-
tant for providing insight into the role of underlying
mechanisms and for controlling the corresponding sys-
tems. Geometrical methods have proved highly useful
for deterministic systems, also in biology [9,15,16].
Whereas deterministic models driven by continuous
stochastic processes, e.g., Wiener processes, have been
quite extensively studied [4,8,20], this is not the case
for discrete hybrid systems. However, some results do
exist for systems driven by aMarkov chain independent
of the other (deterministic) variables, so-called blink-
ing systems [2,14].

The model of electrical activity in a pituitary cell
with stochastic ion channels that we studied here does
not fall within either of the examples mentioned above,
but is a truly random dynamical system [1], since the
transition rates of the stochastic variable (mBK) depend
on the deterministic variables (V ). Recent studies have
studied similar hybrid models of stochastic electri-
cal activity by analyzing the corresponding “average”
deterministic model with geometric tools, and then
interpreting ion channel noise as random perturbations
(“pushes”) of the deterministic system [10,25].

In contrast, here we have shown how one can work
directly with the hybrid system. This is achieved by
analyzing the hybrid (fast subsystem) phase space as
the union of discrete planes, each one corresponding to
a certain value of the discrete stochastic variable mBK

indicating the number of open BK channels. In the ter-
minology of random dynamical systems, each of these
planes is a fiber, and the random part of the model cor-
responds to jumps between these fibers. We showed
that the locations of geometric structures, in particu-
lar nullclines and an unstable limit cycle, govern the
behavior for fixed mBK, and that the overall dynamics,
e.g., whether the model produces a spike or a burst, is
determined by the location at which the system jumps
from one plane to another, in particular, the point at
which the system reaches the mBK = 0 plane plays an
important role.

To reach this description, we took advantage of the
slow–fast structure of the model. Since the Ca2+ vari-
able Cac operates on a slower timescale than the other
variables, it can be treated as a (slowlyvarying) parame-
ter in the fast subsystem.For ourmodel, this assumption
has the big advantage that the fibers corresponding to

fixed mBK values become two-dimensional (the (V, n)

phase planes shown in panels (b) and (c) in Figs. 3, 4, 6,
7 and 8), which helps geometrical reasoning. The slow
dynamics of Cac was taken into account by considering
how the relevant geometrical structures, in particular
the V -nullcline, move as Cac changes.

The strength of our approach is maybe best exempli-
fied by its ability to explain counterintuitive numerical
results. We noted that spiking is more frequently seen
both when BK channels are located in complexes with
four CaV channels at a distance of r = 13 nm (Fig. 1e),
which would lead to a high BK open probability, and
whenBKchannels are associatedwith just a singleCaV
at a large distance (r = 30 nm, Fig. 1c), correspond-
ing to a low BK open probability. Thus, there seems to
be a window of intermediate BK opening probabilities
where bursting is favored. We explained this by notic-
ing that if the BK channels open to readily during the
upstroke, the gating variable n does not increase very
much since the V variable begins to decrease early.
When returning to the mBK = 0 plane the system is
often below that unstable limit cycle, but at n large
enough to be above the V nullclines, which ends the
action potential. If the BK channels open more slowly,
V and consequently n increase more, so that the sys-
tem returns to the mBK = 0 plane near or even inside
the unstable limit cycle, thus creating a second action
potential, i.e., a burst, before hyperpolarizing. In con-
trast, if the BK channel do not open sufficiently, so that
mBK ≤ 1 except on rare occasions (see Fig. 1c), the
system basically follows the stable limit cycle, corre-
sponding to spiking, in the mBK = 0 plane, and the
large orbit in the mBK = 1 plane (see gray curves in,
e.g., Fig. 3c). Biologically, this suggests that BK-CaV
complexes could be appropriately tuned to increase the
burst frequency.

Our analysis can also explain geometrically the
observations by Richards et al. [25] that opening a BK
channel just before the action potential peak increases
the probability of observing a burst, whereas opening a
BK channel during the downstroke of the action poten-
tial reduces the chance of producing a burst. If a BK
channel opens at high V , the V nullcline moves down
and V will stop increasing and begin decreasing, which
leads to less activation of Kv channels (smaller n). The
results is that the system returns to themBK = 0plane at
lower n values, where it is more likely to fall below and
on the right of the middle branch of the V nullcline. In
contrast, if a BK channel opens during the downstroke
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when both V and n are decreasing, the downward shift
of the V nullcline will accelerate the decrease of V , so
that when the system eventually reaches the mBK = 0
plane, it will more likely hit above and to the left of the
middle part of the V nullcline.

In summary, we have presented a—to the best of our
knowledge—novel method that combines ideas from
standard geometrical analysis of smooth dynamical
systems with a picture taken from random dynamical
systems, where stochastic events correspond to random
jumps between fibers. This approach, which success-
fully allowedus to explain complexbehavior in a hybrid
model of electrical activity influenced by stochastic
ion channel dynamics in a pituitary cell, should be
useful for similar models in cell biology as well as
for other applications of nonlinear, hybrid models. We
conclude that, similar to deterministic systems, the use
of geometric slow–fast analysis of stochastic models
allows analysis of the dynamics of lower-dimensional
subsystems, and the overall model behavior can be
understood globally by appropriate integration of the
information obtained for the subsystems. Future work
should investigate more theoretical aspects of our ana-
lytical approach for discrete-noise random dynamical
systems, as well as aim to develop the proposedmethod
further.
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