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Abstract In this paper we examine the effect of
delamination on wave scattering, with the aim of cre-
ating a control measure for layered waveguides of var-
ious bonding types. Previous works have considered
specific widths of solitary waves for the simulations,
without analysing the effect of changing the soliton
parameters. We consider two multi-layered structures:
one containing delamination ‘sandwiched’ by perfect
bonding and one containing delamination but ‘sand-
wiched’ by soft bonding. These structures are mod-
elled by coupled Boussinesq-type equations. Matched
asymptotic multiple-scale expansions lead to cou-
pled Ostrovsky equations in soft bonded regions and
Korteweg-de Vries equations in the perfectly bonded
and delaminated region. We use the Inverse Scattering
Transform to predict the behaviour in the delaminated
regions. In both cases, numerical analysis shows that
we can predict the delamination length by changes in
the wave structure, and that these changes depend upon
the Full Width at Half Magnitude (FWHM) of the inci-
dent soliton. In the case of perfect bonding, we derive
a theoretical prediction for the change and confirm this
numerically. For the soft bonding case, we numeri-
cally identify a similar relationship using the change
in amplitude. Therefore we only need to compute one
curve to determine the behaviour for any incident soli-
tarywave, creating a framework for designingmeasure-
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ment campaigns for rigorously testing the integrity of
layered structures.
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1 Introduction

Solitary waves are of significant interest from both a
mathematical perspective as well as in physical and
engineering applications. They often arise as solutions
to nonlinear equations such as the Korteweg-de Vries
(KdV) equation (and its extensions) in shallow water
[1–4], theBenjamin-Ono equation for internalwaves of
stratified fluids [5,6], the nonlinear Schrödinger equa-
tion in optics [7,8], and flexural waves in beams [9], to
name a few. From a purely mathematical perspective,
there are many studies into the existence and behaviour
of solitons, for example as solutions to the Boussi-
nesq equation [10,11]. Boussinesq-type equations are
of interest in this study, in the context of solid mechan-
ics. It is well-known that they can describe long longi-
tudinal bulk strain waves in elastic waveguides, such
as rods and metal plates (see e.g. [12–17]). Practi-
cal experiments have confirmed that longitudinal bulk
strain solitons exist in thesewaveguides, which has val-
idated theoretical findings [18–21].

Indeed, layered waveguides with bonding between
the layers can bemodelled by the so-called “doubly dis-
persive equation” (DDE), which can be derived using
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nonlinear elasticity theory for long longitudinal waves
in a bar of rectangular cross-section [22]. The DDE for
a bar of rectangular cross-section σ = 2a × 2b has the
form

ft t − c2 fxx = β

2ρ
( f 2)xx + Jv2

σ
( ft t − c21 fxx )xx , (1)

where f is the longitudinal strain and

β = 3E + 2l(1 − 2v)3 + 4m(1 + v)2(1 − 2v) + 6nv2,

c =
√

E

ρ
, c1 = c√

2(1 + v)
, J = 4ab(a2 + b2)

3
,

(2)

ρ is the density, E is theYoung’smodulus, v is the Pois-
son’s ratio, while l, m, n are the Murnaghan’s moduli,
and a and b are geometric and physical parameters.

The case when the interlayer bonding is missing
over part of the structure, known as delamination, is
important for a wide range of applications in non-
destructive testing for structural damage in the multi-
layer beam-like structures found throughout civil and
mechanical engineering. The governing mathematical
model then takes the form of a scattering problem
and, for a perfectly bonded waveguide (represented
in experiments by cyanoacrylate), we find a series of
Boussinesq equations, with continuity conditions on
the interface between sections [22]. Incident solitons
fission into multiple solitons with dispersive radia-
tion, agreeing with theoretical predictions [22], numer-
ical simulations [23,24] and experimental observations
[20,25,26].

In the case of an imperfect “soft” bonding (repre-
sented in experiments by polychloroprene), a model
based upon a series of anharmonic coupled dipoles can
be used to derive coupled regularisedBoussinesq (cRB)
equations to model long nonlinear longitudinal bulk
strain waves in a bi-layer, assuming sufficiently soft
bonding [27]. In this case, when the materials in the bi-
layer are assumed to have close properties, an incident
solitary wave evolves in the bonded region into a soli-
tary wave with a one-sided, co-propagating oscillatory
tail, known as a radiating solitary wave. In the delam-
inated regions, the solitary wave detaches from its tail
and this can be used as a measure of delamination [28].

In this paper we aim to use theoretical predictions
and numerical simulations to establish an estimate for
the delamination length based upon changes in the
wave during its propagation. We will consider a range

Fig. 1 Three-layer structurewith an initial perfect bonded region
for x0 < x < x1, a delaminated region for x1 < x < x2 and
a perfect bonded region for x2 < x < x3. We assume that the
materials in both layers are identical

of initial conditions by varying the Full Width at Half
Magnitude (FWHM)of the incidentwave,whereas pre-
vious studies have only considered a single fixed inci-
dent soliton [23,28]. Our aim is to find a relationship
between the generated delamination curves for differ-
ent values of FWHM, so that only one curve needs to be
computed, significantly reducing the computation time.
This wider range of predictions allows for the design
of measurement campaigns for detecting and measur-
ing delamination in layered waveguides. We will con-
sider a multi-layered symmetric structure with perfect
bonding, as well as a two-layered structure with soft
bonding. In both cases, we will consider delamination
‘sandwiched’ by bonding. These structures are illus-
trated in Figs. 1 and 2, and are inspired by an existing
experimental set-up [20]. It is worth noting that some
materials, such as photonic media, exhibit bistability or
multistability. This means that the material remembers
past values of the input and, as such, different outputs
can be obtained for the same input [29,30]. However,
for the materials considered in this study, multistabil-
ity is not observed in experiments as the material is
allowed to relax to its natural state after one excitation.

The paper is structured as follows. In Sect. 2 we
introduce the equations describing longitudinal wave
propagation in both the perfectly bonded and soft
bonded cases. We also introduce the weakly-nonlinear
solution for the perfectly bonded case so that we can
create a measure of the delamination length using the-
oretical predictions. In Sect. 3, we begin by illustrating
the evolution of incident solitary waves in the cases of
both a perfectly bonded waveguide and a soft bonded
waveguide. Next, for the perfectly bonded case, we use
theoretical predictions to determine the length of the
delamination region for a variety of incident solitary
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Fig. 2 Bi-layer structure with an initial soft bonded region for
x0 < x < x1, a delaminated region for x1 < x < x2 and a soft
bonded region for x2 < x < x3. We assume that the materials in
both layers are similar, that is, their material properties differ by
O(ε)

waves, tested via numerical simulations and measuring
the amplitude of the transmitted wave with reference
to the incident wave. This gives rise to a relationship
between FWHM of the incident soliton and the delam-
ination length, allowing for efficient computation for
other incident waves. A similar result is also found for
the soft bonded case, analysing the decrease in ampli-
tude after the wave propagates through a delaminated
region. The theoretical prediction is difficult in this
case, so we rely on numerical observations and instruc-
tion from the previous case. In Sect. 4 we conclude our
discussions.

2 Problem set-up

2.1 Perfectly bonded case

We consider the scattering of a long longitudinal strain
solitary wave in a perfectly bonded layered bar with
delamination in the centre, as illustrated in Fig. 1. We
have illustrated three layers in this figure, but the the-
oretical framework established in [22] can accommo-
date any number of symmetric layers, as we assume
that the materials of the layers are identical and that
the bonding is the same between all layers. Explicitly,
this means that the delaminated region occurs in the
same position in each layer of bonding. The longitudi-
nal displacements, u, in this structure are described by
the regularized non-dimensional Boussinesq equations
[22]

u(i)
t t − c2i u

(i)
xx = ε

[
−12αi u

(i)
x u(i)

xx + 2βi u
(i)
t t xx

]
, (3)

where i = 1, 3 represent the perfect bonded regions
and i = 2 represents the delaminated region. We have
the coefficients αi , βi and ci , which can theoretically
vary between sections (representing a waveguide with
differentmaterials in each section), but for our purposes
wewill assume that the sections are of one and the same
material. The parameter ε is the small wave parameter.
The Boussinesq equations are complementedwith con-
tinuity conditions, namely continuity of longitudinal
displacement

u(i)
∣∣∣
x=xi

= u(i+1)
∣∣∣
x=xi

, (4)

and continuity of normal stress

σ (i)|x=xi = σ (i+1)|x=xi , (5)

where σ (i) is defined by our original equation (3) when
written in the form

u(i)
t t = dσ (i)

dx
.

We consider αi = 1 for all i , β1,3 = 1 and

β2(n, k) = n2 + k2

n2(1 + k2)
, (6)

where n represents the number of layers in the struc-
ture and k is defined by the geometry of the waveguide.
Referring to Fig. 1, the cross section has width 2a and
the height of each layer is 2b/n. In our numerical sim-
ulations we will consider various n and k values.

2.1.1 Weakly-nonlinear solution

In order to find theoretical predictions for the evo-
lution of the solitary waves, we construct a weakly-
nonlinear solution and use theoretical results for the
derived equations. For brevity, we only provide a sum-
mary of the results below, more details can be found
in Refs. [23,24,28,31]. We seek a weakly-nonlinear
solution for the strains f (i) = u(i)

x of the form

f (i) = T (i)(ξ, X) + R(i)(η, X) + εP(i)(ξ, η, X)

+ O
(
ε2

)
, (7)

where ξ = x − ci t , η = x + ci t and X = εx . Substi-
tuting the respective weakly-nonlinear solutions into
the differentiated form of (3), then applying space-
averaging (see [23,28,31]) yields leading order equa-
tions for T (i) and R(i), respectively, of the form

T (i)
X − 6

αi

c2i
T (i)T (i)

ξ + βi T
(i)
ξξξ = 0, (8)
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R(i)
X − 6

αi

c2i
R(i)R(i)

η + βi R
(i)
ηηη = 0. (9)

To determine “initial conditions” for the equations
derived in each section, we substitute (7) into the con-
tinuity conditions (4) – (5) to find values for T and
R at the interface, in terms of the previous transmit-
ted wave. This gives rise to transmission and reflection
coefficients in terms of ci . As we have assumed that the
waveguide is one and the same material (so ci = 1 for
all i), we will have full transmission and no reflection.

2.1.2 Theoretical predictions

In [22], theoretical predictions were derived for the
behaviour of an incident soliton entering a delami-
nated region, using the Inverse Scattering Transform
(IST). Here, we briefly overview this approach and
introduce an initial condition in terms of its Full Width
at Half Magnitude (FWHM), a common measure in
experiments. We expand upon this to consider solitons
entering a second bonded region and this is covered in
Sect. 3.2.We can rewrite the transmitted wave equation
(8) in the form

Uτ − 6UUχ +Uχχχ = 0, U |τ=0 = U0(χ). (10)

For a sufficiently rapidly decaying initial condition
U0(χ) on the infinite line, the solution to (10) is related
to the spectral problem for the Schrödinger equation

�χχ + [λ −U0(χ)]� = 0, (11)

where λ is the spectral parameter. Finding the evolution
of the scattering data for the discrete and continuous
spectra and using these to reconstruct the solution to
the KdV equation is known as the Inverse Scattering
Transform (IST) [32]. We can use the results from the
IST to create theoretical predictions for the solitons in
the delaminated region, as well as in the second bonded
region.

We assume that there is an incident soliton in the
first region, which is a travelling wave solution and
thus will move in time but retains its shape. To illus-
trate the theoretical predictions we consider the second
region,wherewehaveβ2 defined as in (6) and the initial
condition for (10) in this region then takes the form

U0(χ) = −Asech2
(χ

l

)
, A = v

2β2
, l = 2√

v
.

(12)

In this case the solution will consist of either one soli-
ton, or a series of solitons, characterised by eigenvalues
in the discrete spectrum, and accompanying dispersive
radiation determined by the continuous spectrum. In
some cases we may see the fission of the initial soliton,
which is when more than one soliton is generated, in
particular when β2 �= 1.

The discrete eigenvalues of (11) take the form λ =
−k2n , where

kn = 1

2l

[√
1 + 4Al2 − (2n − 1)

]
, (13)

for n = 1, 2, . . . , N . Recalling (6), the number of soli-
tons, N , generated in the delaminated region is given
by the largest integer satisfying the inequality

N <
1

2

(√
1 + 8

β2
+ 1

)
. (14)

We can see from (14) that, for β = 1 we will have one
soliton, while for β < 1, we will have more than one
soliton and as β becomes smaller, more solitons will
be generated. This corresponds to either an increase in
layers in the waveguide, or a change in geometry. As
τ → ∞, the solution will evolve into a train of solitary
waves, ordered by their heights, propagating to the right
and some dispersive radiation (a dispersive wave train)
propagating to the left (in the moving reference frame),
i.e.

U (χ, τ ) ∼ −
N∑

n=1

2k2nsech
2(kn(χ − 4k2nτ − χn))

+ radiation, (15)

where χn is the phase shift. In the context of our prob-
lem, if there is an infinite delamination then the solitons
will separate and rank order, while for finite delamina-
tion the solitons will only separate for a large delami-
nation. This allows us to create a measure of the delam-
ination length, by comparing themeasured signal at the
end of the bar to the theoretical prediction.

We introduce the incident solitary wave for T (1), the
exact travelling wave solution of (8), as

T (1)(ξ, X) = −v

2
sech2

(√
v

2
(ξ − vX)

)
, (16)

where v is the phase speed. Solitary waves are often
measured in experiments in terms of their FWHM, so
we rewrite this as

− v

2
sech2

(√
v

4
FWHM

)
= −v

4
, (17)
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and hence we obtain

v =
(

4

FWHM
cosh−1(

√
2)

)2

. (18)

This allows us to generalise the FWHM based measure
to any size of incident solitary wave.

2.2 Imperfect bonding case

The second case we consider is when we have a two
layered waveguide with “soft” bonding between the
layers. This is illustrated in Fig. 2.

The longitudinal displacement in the bonded regions
is described by the regularized non-dimensional equa-
tions

u(i)
t t − u(i)

xx = ε
[
−12u(i)

x u(i)
xx + 2u(i)

t t xx

]
− εδ(u(i) − w(i)), (19)

w
(i)
t t − c2w(i)

xx = ε
[
−12αw(i)

x w(i)
xx + 2βw

(i)
t t xx

]
+ εγ (u(i) − w(i)), (20)

for xi−1 < x < xi , while in the delaminated regions
we have Boussinesq equations

u(i)
t t − u(i)

xx = ε
[
−12u(i)

x u(i)
xx + 2u(i)

t t xx

]
, (21)

w
(i)
t t − c2w(i)

xx = ε
[
−12αw(i)

x w(i)
xx + 2βw

(i)
t t xx

]
. (22)

As with the perfectly bonded case, these equations are
complemented with continuity conditions at the inter-
faces between the sections. We have continuity of lon-
gitudinal displacement

u(i)|x=xi = u(i+1)|x=xi ,

w(i)|x=xi = w(i+1)|x=xi , (23)

and continuity of normal stress

σ (i)
u |x=xi = σ (i+1)

u |x=xi ,

σ (i)
w |x=xi = σ (i+1)

w |x=xi , (24)

for i = 1, 2, where σu and σw are defined by (19) and
(20) as

u(i)
t t = dσ (i)

u

dx
− δ(u(i) − w(i)),

w
(i)
t t = dσ (i)

w

dx
+ γ (u(i) − w(i)),

respectively. We will consider the case here where the
materials in the layers are similar, namely c−1 = O(ε).
We can construct a weakly-nonlinear solution to this
system of equations, as was done in [28], however we
cannot obtain any direct theoretical predictions from
this approach as the derived coupled Ostrovsky equa-
tions are not solvable via the Inverse Scattering Trans-
form. Therefore, we will explore this case numerically
to determine a measure of delamination.

3 Numerical results

We now aim to use the derived weakly-nonlinear solu-
tion and the theoretical predictions of Sect. 2 to intro-
duce a measure of the delamination length in terms of
the change in wave structure. In this section, we first
demonstrate the effect of delamination on the trans-
mitted soliton for both the perfectly bonded and soft
bonded waveguides in Sect. 3.1. We then introduce a
measure of the delamination length for the perfectly
bonded case in Sect. 3.2, and for the soft bonded case
in Sect. 3.3. In both cases we consider how these mea-
sures scale with respect to the incident soliton in order
to rapidly recompute results for a wide range of ini-
tial conditions.Wewill use the finite difference scheme
from [24] to solve the original Boussinesq system and a
semi-analytical method using a pseudospectral scheme
for the derived KdV equations for the perfectly bonded
case, similar to the one used for coupled Ostrovsky
equations in [28]. In all cases our simulations will
use a grid spacing of �x = 0.01 and a time step of
�t = 0.01 for the finite-difference scheme. For the
semi-analyticalmethodwe take�X = 5×10−4,�ξ =
0.1 (and �η = 0.1), corresponding to N = 131, 072
Fourier terms.

3.1 Examples of scattering

Firstly, we demonstrate the effect of delamination on
the propagation of an incident solitary wave, in both
scenarios described in Sect. 2. For the perfectly bonded
case, let us assume a spatial domain x ∈ [−100, 1000]
and we have a delamination starting at x = 0 of
length D. We present three cases: no delamination, a
delamination of length D = 50 and a delamination
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of length D = 300. These results, as well as a com-
parison between the weakly-nonlinear solution and the
directly computed solution, are shown in Fig. 3.We can
see from Fig. 3a that, in the case of no delamination, the
soliton propagateswithout change in shape or structure.
When delamination is introduced in Figs. 3b and 3c, the
soliton fissions into two solitons with accompanying
dispersive radiation. Comparing the case of D = 50
to D = 300, we can see that the second soliton has
become more distinct from the radiation and the first
soliton has tended towards its theoretically predicted
amplitude. Figure3d shows that there is a reasonable
agreement between the direct numerical simulation and
the semi-analytical method when D = 300, with a
slight phase shift and amplitude change. This will be
reduced for smaller values of ε (as we have constructed
a series in increasing powers of ε), however we have
qualitatively the same structure.

Similarly, we consider the case of soft bonding
and an incident soliton. We assume a spatial domain
x ∈ [−500, 1000], with a homogeneous (delaminated)
section for x ∈ [−500,−400] to generate the same
wave in both layers, bonded sections x ∈ [−400, 0]
and x ∈ [D, 1000], with a delaminated region for
x ∈ [0, D]. We again present three cases including
when there is no delamination, a shorter delamination
length of D = 100 and a larger delamination with
D = 300. The results are shown in Fig. 4 for the upper
layer, where the lower layer is qualitatively similar. In
the case of no delamination shown in Fig. 4a we have a
solitarywavewith a one-sided oscillatory tail, knownas
a radiating solitary wave. As the delamination length
increases, the solitary wave begins to lose amplitude
and expel energy into its tail through an exchange of
energy between the layers. These are clear signs of the
presence of delamination in Figs. 4b and 4c, with struc-
tural changes that can be detected and the decay in
amplitude can be quantified to give a measure of the
length of delamination. Note that in this case there is
no comparison between the simulation schemes since
the semi-analytical scheme is not applicable for the soft
bonded case.

3.2 Measure of delamination length for perfect
bonding

We now expand upon the observations from the previ-
ous subsection by introducing a measure of delamina-

Fig. 3 The solution at t = 900 in the final section of the per-
fectly bonded waveguide, for various delamination lengths, and
comparison of the direct numerical (blue, solid line) and semi-
analytical (red, dotted line) simulations. Parameters are ε = 0.1,
FWHM = 5.0, n = 2 and k = 2

123



Detecting delamination via nonlinear 29

Fig. 4 The solution at t = 1200 in the final section of the upper
layer of the soft bonded waveguide, for various delamination
lengths. Parameters are ε = 0.05, FWHM = 5.0, c = 1.025,
α = β = 1.05, δ = γ = 1. The finite-difference method uses a
computational domain of [−500, 1000]

tion based upon the theoretical predictions fromSect. 2.
We then generalise this measure to apply for differ-
ent incident soliton widths. If we assume that the soli-
tons arewell-separated, representing the case of infinite
delamination, the amplitude of the soliton can be found
from the IST. We have

A3 = A1k
2
2k

2
3, k2 = 1

2

(√
1 + 8

β2
− 1

)
,

k3 = 1

2

(√
1 + 8β2 − 1

)
, (25)

where A1 is the amplitude of the incident soliton, A3 is
the amplitude of the lead soliton in the second bonded
region, and k2, k3 are the eigenvalues corresponding
to the lead soliton amplitude in the second and third
regions, as determined by the IST. As the delamination
length is reduced, the amplitude in the third region will
tend towards the initial amplitude, A1.

Denoting the calculated numerical solution as Anum

from the simulation, we introduce a measure of the
amplitude of the lead soliton in the third section of the
bar in comparison to the incident soliton as

σ = Anum − A1

A3 − A1
× 100. (26)

This corresponds with the measure used in [24], where
it was assumed that FWHM = 5. We now compute
the solution using the semi-analytical pseudospectral
scheme for a wide range of values of FWHM with the
aim of determining a general rule for the delamination
length. The delamination length is chosen to be D ∈
[0, 300] and we measure the delamination in multiples
of FWHM.

The results are plotted in Fig. 5a for n = 3, k = 3,
and in Figure 5b for n = 4 and k = 3. We can see that,
as the delamination length increases, the measure σ

increases until it tends to a value of 1, and this behaviour
is replicated for different values of FWHM. For larger
FWHMitmaynot reach this limit for the chosen delam-
ination length. We can also see a similar behaviour for
different values of n and k.

To generalise this approach, we consider the equa-
tion for the phase speed v in terms of FWHM (18). We
can see that v in inversely proportional to the square of
FWHM. Thus, fixing our reference as FWHM = 5, we
letσ be a function of delamination length, parametrised
by FWHM, and we introduce the scaling

σ̃ (D;FWHM) = FWHM
2
σ(D;FWHM), (27)

where

FWHM = FWHM

5
(28)

is defined in order to scale by our reference FWHM =
5. The resulting plots are shown in Fig. 6a for n = 3,
k = 3, and in Fig. 6b for n = 4, k = 3. We see that the
scaled versions are very closely aligned, with the only
disagreement stemming from the restriction on delam-
ination length for larger values of FWHM. Therefore,
after computing one curve for the smallest value of
FWHM, we can reproduce all subsequent curves for
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30 J. S. Tamber et al.

Fig. 5 Plots of the change in amplitude of the lead transmitted
soliton, in comparison to the incident soliton and theoretical pre-
dictions, as measured by σ , for various values of FWHM. Here
we take ε = 0.1

any value of FWHM. This allows for the highly effi-
cient computation of the delamination curves and for
a wide range of experiments with incident waves of
different amplitude.

3.3 Finite delamination with soft bonding

We now consider the soft bonded case outlined in
Sect. 2.2. This case was also studied in Ref. [28], but
for only one value of FWHM. In this work we com-
pute the solution for a wide range of FWHM, using
the finite-difference scheme in [24]. The constructed
weakly-nonlinear solution consists of coupled Ostro-
vsky equations, in contrast to the KdV equations in the
previous case [28]. Therefore we cannot use the IST

Fig. 6 Plots of the scaled delamination curves for the change in
amplitude of the lead transmitted soliton, in comparison to the
incident soliton and theoretical predictions, as measured by σ .
Here we take ε = 0.1

to predict the amplitude of the waves in the bonded
regions as coupled Ostrovsky equations are not inte-
grable via the IST. The incident soliton in this case
evolves into a radiating solitary wave, that is a solitary
wave with a one-sided oscillatory tail.

To determine the change in amplitude, as a measure
of the delamination length, we denote the amplitude of
the soliton or wave packet in each region as AL , where
L is the region index, and we introduce the measure

ζ = |A1 − A3|
A1

× 100. (29)

Fig. 7a presents the results for ζ , computed over a wide
range of FWHM values, for the upper layer. A similar
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Fig. 7 Change in amplitude of the radiating solitary wave in
the soft bonded structure, for various delamination lengths and
values of FWHM. Parameters are ε = 0.05, δ = γ = 1

agreement is seen for the lower layer, but the results
are omitted for brevity.

Proceeding along a similar line of investigation
as for the perfectly bonded case, we now seek an
a FWHM-based scaling of the delamination measure
(29) for the soft bonded case that enables us to repro-
duce all the data in Fig. 7a from a single curve. Unlike
the perfectly bonded case,where the delaminationmea-
sure σ decreases with increasing FWHM, here the
values of the delamination measure ζ increase as the
FWHM is increased. With this in mind, and if we again

choose a reference FWHM value of FWHM = 5, we
introduce a scaling of the form

ζ̃ = ζ

a + b FWHM + c FWHM
2 , (30)

wherea,b, c are constants to bedetermined andFWHM
is given by (28) as before. We note that the choice
a = b = 0 and c = 1 corresponds to the inverse of
the scaling used in (27) for the perfectly bonded case.
However, with this choice the scaling does not provide
a good fit to the data and so we generalise the scaling
to use any quadratic in FWHM with coefficients that
are subject to a normalisation constraint of the form
a + b + c = 1. The results for a = 0.49, b = 0.28,
c = 0.23 are plotted in Fig. 7b and we can see a good
agreement across a range of values of FWHM. How-
ever, this fitting is done using trial and error in order to
find parameters that fit the data rather than theoretical
prediction, as for the previous case. It may be possi-
ble to find an optimal fit using well-known techniques
for nonlinear optimisation; here, we simply provide a
proof of concept for the existence of a scaling law. We
note that the agreement begins toworsen slightly after a
delamination of 40 units of FWHM,which corresponds
to aminimum of 200 in nondimensional units, however
overall the agreement is still good.

We now summarise the scaling used to convert
our nondimenesional variables to dimensional mate-
rial parameters that can be compared to experimental
data, in order to confirmwhether a delamination length
of 200 is reasonable. Referring to the dimensional form
of the DDE in (1), with parameters (2), we introduce
the scaling to nondimensional form via

x̃ = x

X
, f̃ = f

F
, t̃ = t

T
, (31)

where

X =
√

Jν2

2εσc2
(
c2 − c21

)
, T = X

c
,

F = −12εc2ρ

β
X. (32)

Wecan therefore find the correspondingmaterial length
given the nondimensional length. Let us assume a
PMMA bar of 10mm × 10mm cross-section, then
using the parameters for PMMA from [20] we find
that, for ε = 0.1, a delamination length of x = 200
in nondimensional units corresponds to a length of
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approximately x = 520mm, which is significant given
the experimental materials are usually around 600mm
long in total. Therefore, restricting our considerations
to values of delamination less than 200 nondimensional
units is reasonable in the context of practical applica-
tions.

4 Conclusion

In this paper we have considered the scattering of
a bulk strain solitary wave in a delaminated bi-layer
with either perfect or soft bonding between the layers.
The longitudinal displacements are modelled by either
Boussinesq equations (perfectly bonded or delami-
nated sections) or coupled Boussinesq equations (soft
bonded sections), with continuity conditions on the
interface.

Incident solitary waves undergo fission in delami-
nated regions in the perfectly bonded structure, pro-
viding a clear indicator of delamination. We construct
theoretical estimates for the amplitude of the solitons
after a delaminated region, using the Inverse Scatter-
ing Transform. A measure is introduced using the the-
oretical and observed values to predict the delamina-
tion length based upon amplitude changes. This is then
extended for incident waves of different Full Width at
Half Magnitude, and a quadratic scaling is introduced
and verified by numerical results. The significance of
this result is that we now only need to compute a sin-
gle curve in order to perform a wide range of experi-
ments, which significantly reduces computation times
and allows for further experiments (with different inci-
dent solitons) to be performed rapidly. This was con-
firmed for various configurations of the waveguide.

In the case of a soft bonded waveguide with delam-
ination, theoretical estimates cannot be derived using
the Inverse Scattering Transform. Thus we resort to
direct computation of the solution and a comparison
between the amplitude after delamination and the cor-
responding amplitude for the non-delaminated case. A
similar quadratic scaling can be found, which has a
good agreement up to a delamination length of 200 in
nondimensional units or 520mm in physical units. This
is consistent for both layers of the waveguide.

This work facilitates experimentation with a wide
range of initial condition parameters, and provides
a framework for detecting delamination in perfectly
bonded and soft bonded waveguides with similar mate-

rials in the layers. The case with distinctly different
materials in the layers is more complex, and some pre-
liminary studies have been conducted into quantifying
delamination [31].
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