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Abstract The dynamics of elastic systems coupled

with rotating bladed-rotors is rich and complex, and

the blade number may have an influence on the in-

vacuo system dynamics. This paper aims to model its

nonlinear dynamics in-vacuo and study the effects of

blade number on its dynamics. To this end, a nonlinear

model consisting of a nonlinear inextensible beam, a

motor assembly and a rotating propeller is developed.

This model is linearized, and modal analyses are

performed with different blade numbers. It is validated

numerically and experimentally that a two-bladed

propeller introduces time-varying characteristics,

while the system is time-invariant with more than

two blades. For the two-bladed case, frequencies in the

non-rotating condition split into two frequency loci

with increasing rotational speed; while with more than

two blades, one frequency in the non-rotating condi-

tion increases and the other in the same pair decreases

with increasing speed. A structural instability due to

frequency lock-in is identified in two-bladed config-

uration, while not identified with more than two

blades. The static deformation using the nonlinear

model is calculated and validated against the exper-

iment. In the stable speed range, the frequency

response functions calculated using the nonlinear

and linearizedmodels do not show notable differences.

In the unstable speed range with two-bladed propeller,

the nonlinear model is consistent with the experiment

in terms of unstable frequencies and bounded steady-

state oscillations. The system vibration in the unsta-

ble speed range features forward whirling pattern, in

which the beam vibration is close to the first bending

pattern.

Keywords Nonlinear beam � Blade number �
Propeller-driven aircraft � Beam-propeller system �
Coupled rotor-structures

List of symbols

b; h Width of the cross section of the beam

along y and x axis, respectively

E Young’s modulus of the beam

g Gravitational acceleration

Ipx0; Ipy0; Ipxy0 Initial moments of inertia about the x-

and y- axis and the initial xy product

of inertia of each propeller blade,

respectively
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Ipz Moment of inertia of the propeller

about the z- axis

I1; I2 Second moment of cross-sectional

area of the beam about x and y axis,

respectively

Ia Moment of inertia of the motor

assembly about its center around x or

y axis

iO; jO; kO Unit column basis vectors of the

absolute coordinate system

i1; jO; k1 Unit column basis vectors of the

relative coordinate system after

rotating the absolute one about jO
j Imaginary unit j ¼

ffiffiffiffiffiffiffi

�1
p

L Effective length of the beam

La Total length of the motor assembly

m Mass per unit length of the beam

ma;mp Masses of the motor assembly and

propeller, respectively

Nb Number of blades in a propeller

t Time

w; v Transverse displacements of the beam

in x and y direction, respectively

wa; va Transverse displacements of the

motor assembly in x and y direction,

respectively

wp; vp Transverse displacements of the

propeller in x and y direction,

respectively

zp Distance from the farther end of the

motor assembly to the propeller

ai0 Initial azimuth angle of the ith blade

of the propeller

ai Azimuth angle of the ith blade of the

propeller

ua;up Rotational angles of motor assembly

and propeller about jO, respectively

ha; hp Rotational angles of motor assembly

and propeller about i1, respectively

X Rotational speed of the propeller

1 Introduction

An elastic structure coupled with one or more rotors is

a common configuration in novel means of aerial

transport [1, 2]. Especially, in the aerospace field, a

nacelle or a wing coupled with propellers or rotors is a

typical propulsion system seen in many turboprop

aircraft, tiltrotors and modern electric VTOL con-

cepts. While this system can provide a number of

performance and design advantages, it may introduce

some dynamic and aeroelastic challenges such as

whirl flutter instabilities at high forward speed or

undesirable vibratory loads at certain flight conditions.

These challenges can severely limit the performance

of tiltrotor or propeller-driven aircrafts, so numerous

relevant studies have been carried out to address them

in the past few decades [3, 4]. This research investi-

gates a novel simplified beam-propeller test system

which highlights the nonlinear characteristics in the

structural responses and enables focus on the model-

ing, analytical and experimental challenges.

Even without considering the aerodynamic effects,

the structural dynamics of an elastic structure coupled

with rotors should be studied in detail. Due to the

rotation of the rotor, the gyroscopic effect and the

possible time-varying characteristics are introduced in

the system. The former results in the coupling of

vibrations in two orthogonal directions, and the

change of vibration frequencies with the change of

rotational speed as well as whirling vibration pattern

whose associated mode shapes are known as forward

or backward whirl modes. The latter makes the

dynamics richer and more complicated, e.g., the

occurrence of frequency split, which is the split of a

frequency in the non-rotating condition into two or

more frequencies with the increasing rotational speed

[5–7]. It may also lead to self-excited instability,

which is a kind of structural/mechanical instability

that is similar to ‘ground resonance’ in the helicopter

field [8] and is frequently reported in the studies

concerning the dynamics of spinning wind turbine [9]

and helicopter blades [10–12]. However, the time-

dependency arising from the rotation of propeller is

usually ignored in the studies of whirl flutter.

The study of the influence of the number of hinged

helicopter rotor blades dates back to 1940s [13]. It was

reported that a rotor with two blades does not have

polar symmetry while a rotor with three or more blades

does. Such a difference results in the qualitative

difference in the dynamics for rotors with different

numbers of blades. A rotor with two blades presents a

self-excited instability speed region due to this asym-

metry, while no associated instability region was

observed in the case with three blades. This research
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only takes into account the displacement of the hub in

the plane of rotation and the angular displacements of

the blades. For wind turbines, the modal dynamics

with two- and three-bladed rotors show several

similarities but also significant differences. The blades

can be modeled as beams while the nacelle and tower

as a rigid body [14]. Through experiments and

numerical analysis using software HAWC2, the

Campbell diagrams for two-bladed and three-bladed

turbines show different characteristics, which is

ascribed to the asymmetric inertial property of the

two-bladed turbine [15]. In addition, some studies on

the influence of blade number on the aerodynamic

performance of wind turbines have been carried out

both theoretically and experimentally [16–18]. All

these studies are different from the configuration in

this paper, where the support is modeled as an

inextensible beam, while the propeller and motor as

rigid bodies. The influence of the number of propeller

blades on the structural dynamic characteristics of

propeller-driven system, e.g., Campbell diagram, has

not been investigated in the open literature.

A cantilevered beam can represent a simplified

system for the flexible support structure of the

propeller, e.g., nacelle and engine. The geometrically

nonlinear response of an isolated cantilevered beam

has been studied extensively. The beam is usually

assumed to be inextensible, satisfying an inextensibil-

ity constraint. The two-dimensional nonlinear beam

models were developed to study the nonlinear response

when undergoing large deformation in [19, 20], the

change of resonance under harmonic excitations

[21, 22], as well as the dynamic stability subject to

follower force [23]. In addition, three-dimensional

nonlinear inextensible beam model with flexural–

flexural–torsional couplingwas put forward in [24] and

the force response is studied in [25]. Recently, a three-

dimensional geometrically exact inextensible beam

model was developed by Farokhi and Erturk in [26].

However, in all these studies, the beam is the only

component constituting the investigated system. The

coupling of the nonlinear inextensible beam with a

rotating rotor poses more challenges, e.g., the satisfac-

tion of the dynamic constraints, and generates rich and

interesting dynamics phenomena. To the best of

authors’ knowledge, relevant studies have never been

carried out in the open literature.

Motivated by the above background, a simplified

system mainly consisting of an elastic cantilevered

beam in connection with a rotating propeller at the tip

is studied to progress understanding of the nonlinear

dynamics of an elastic structure coupled with one or

more rotors, originally within the framework of the

UK EPSRC funded MENtOR project [27]. Previous

studies were focused on the linear modeling of an

elastic beam coupled with a rotating propeller [28]. It

was found analytically that the number of blades had

an influence on the time-dependency of the rotor rig

system; however, no experimental validation or sys-

tematical analyses of dynamic characteristics with

different numbers of blades were carried out. The

linear model showed a good prediction capability

manifested by the agreement observed in the fre-

quency-speed diagram and the unstable speed range in

the case of a two-bladed propeller. However, when the

system exhibited the unstable behavior due to the

time-varying characteristics, the vibration response in

the linear model increased without limit, while it was

observed as being constrained and entered a bounded

oscillation in the experiments. These insufficiency and

limitations directed this systematic study into the

influence of blade numbers, nonlinear modeling and

simulation of the beam-propeller system.

The rest of the paper is organized as follows: First,

the experimental setup is presented in Sect. 2; then, the

nonlinear modeling of the beam-propeller system is

given in Sect. 3. The nonlinear model is linearized and

the methods for modal analysis and calculating

frequency response function (FRF) are presented in

Sect. 4. The influence of the number of blades on the

system time-dependency and the resultant dynamics is

introduced in Sect. 5. The analyses of the nonlinear

model in terms of the static deformation and dynamic

time-domain responses are carried out in Sect. 6.

Finally, a discussion is given in Sect. 7 and conclusions

are drawn in Sect. 8.

2 Experimental setup

The detailed experimental setup is shown in Fig. 1. An

aluminum beam with symmetric square cross section

which represents a flexible propeller support is fixed to

a frame using a steel support. The frame is strength-

ened to avoid any resonance in the frequency range of

0–150 Hz. A three-bladed propeller and motor is

linked with the beam using an aluminum adaptor. The

propeller has a diameter of 9 inches (= 22.86 cm) and
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pitch of 9 inches (= 22.86 cm). This geometric

measure of blade pitch is taken as the theoretical

distance a propeller moves forward when it makes a

complete revolution. It is driven by an electric

brushless motor (type: MN2806 KV400) whose rota-

tional speed is controlled by RCbenchmark system

and can be read from RCbenchmark interface. The

motor is linked with the beam via an aluminum

adaptor. While the effective length of beam is

adjustable by controlling the length clamped between

the support and the adaptor, its length was kept

constant as 300 mm during these tests.

Modal tests were carried out for the beam-propeller

system in both the non-rotating and rotating condi-

tions. The purpose of the modal test in the non-rotating

condition was to identify the baseline modal frequen-

cies and system mode shapes. The beam was excited

transversally at 9 locations that divide the beam into

10 equal segments in y–z plane and x–z plane,

respectively, using a modal hammer (PCB 086C03)

(Fig. 1). The acceleration responses were measured by

two single-axis accelerometers (PCB 352A25) that

were attached onto the adaptor in y direction (acc1)

and x direction (acc2). The modal test was performed

when one of the blades was aligned in the y–z plane

and directed toward ? y direction.

The purpose of the modal tests in the rotating

conditions was to study the influence of the rotational

speed on the modal frequencies of the system. In the

modal test, the beamwas excited at location 6 in the x–z

plane using a modal hammer (PCB 086C01) while the

acceleration responses were measured in the same way

as in the non-rotating condition. The test was done at a

number of rotational speeds in the range of 0–246 rad/s.

To confirm the influence of aerodynamics on the modal

frequencies, the test was conducted when the propeller

was rotating in both the ‘positive rotation’ (air flow

starting from the leading edge) and the ‘reverse rotation’

(air flow starting from the trailing edge) while the

propellerwas kept in the same configuration as shown in

Fig. 1.

In both the non-rotating and rotating conditions, NI

9234 module was used to acquire the input hammer

force and the output accelerations. The FRFs from the

hammer force to the accelerations were calculated and

the modal properties were identified using the

PolyMAX method [29].

To research into the influence of the number of

blades, the results were compared with the test using a

two-bladed propeller which was carried out in a very

similar way and introduced in [28]. The difference lies

in the position of the two accelerometers and the

propeller. The test was conducted in the ‘nominal

case’ where the propeller was spinning in the nominal

thrust generating orientation and creating the tensile

thrust force on the beam, and in the ‘revered case’

where the propeller worked in the reverse orientation

and generated the compressive thrust force on the

beam. In both cases, the air flow started from the

leading edge, but the orientation of the propeller in the
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acc1

xy
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propeller

beam
two

accelerometers

motor

modal 
hammerRCbenchmark

support

acc2
adaptor

(a) (b)

(c)

Fig. 1 Experimental setup.

a Full picture b Enlarged

picture of the propeller and

adaptor c RCbenchmark

motor control unit and

modal hammer
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former case was the same as in Fig. 1 while that in the

latter case was reversed to ensure the required leading

edge first air flow conditions. With the two-bladed

propeller, the acceleration responses were also

acquired when the system exhibited instability.

3 Nonlinear modeling

The conventional commercial tools have their limitation

when addressing the problem posed above. For exam-

ple, the inextensibility constraint of the beam cannot be

satisfied easily; for nonlinear modeling, the stability

usually can only be determined through time-domain

simulation; and it is difficult to couple the structural and

aerodynamic models. To analyze the dynamics of the

test rig rigorously and to enable future couplingwith the

propeller aerodynamics, a reduced-order analytical

modeling approach is adopted. To study the underlying

dynamics, the modeling only considers the essential

characteristics while others are simplified or idealized.

The developed nonlinearmodel of the test rig consists of

a beam, the motor and adaptor (collectively called

‘‘motor assembly’’), and the propeller. The beam is

modeled using large deformation Euler–Bernoulli the-

ory with an inextensibility constraint, while the motor

assembly and propeller are modeled as rigid bodies.

Thus, the geometric nonlinearity of the system is

considered. The propeller rotates with a constant speed.

To maintain the focus on the structural dynamics, the

aerodynamics is neglected in the current modeling.

To better describe the vibration, three coordinate

systems are introduced. The first one is the absolute

coordinate system denoted as SO ¼ ðiO; jO;kOÞT ,
where iO, jO and kO represent the unit column basis

vectors. The second coordinate system S1 ¼
ði1; jO; k1ÞT is a relative one that is derived by rotating

the coordinate system SO around jO by an angle c1, and

the third coordinate system S2 ¼ ði; j; kÞT is derived

by rotating the coordinate system S1 around i1 by an

angle c2. The transformation between SO and S1 is

given by

SO ¼ Tyðc1ÞS1;whereTyðc1Þ

¼
cos c1 0 sin c1
0 1 0

� sin c1 0 cos c1

2

4

3

5 ð1Þ

The transformation between S1 and S2 is given by

S1 ¼ Txðc2ÞS2;whereTxðc2Þ

¼
1 0 0

0 cos c2 � sin c2
0 sin c2 cos c2

2

4

3

5 ð2Þ

The rotational angles c1 and c2 differ at different

locations along the beam and for the different modeled

objects. Specifically, the coordinate system

ðip; jp; kpÞT , which is fixed with the motor assembly

(denoted by subscript a) and non-rotating propeller

(denoted by subscript p) and whose origin is the hub of

the propeller, is derived by rotating the coordinate

system SO by the rotational angles ua (or up) and �ha
(or �hp) around jO and i1 in sequence.

The modeling of the beam, the motor assembly and

the propeller as well as the constraints in the system is

introduced in the following subsections, respectively.

3.1 Modeling of the beam

The beam is modeled as a nonlinear inextensible

Euler–Bernoulli beam that is fixed at one and free at

the other end [30]. The inextensibility constraint is

consistent with the physical property of the beam, i.e.,

the axial length of the beam on the neutral line is

unchangeable during deformation [22]. And this

constraint simplifies the mathematical expressions

[30]. Different from the linear modeling by the authors

in [28], the axial vibration of the beam is taken into

account in this study. Therefore, its deformation is

characterized by the transverse displacements (de-

noted by w and v) in two orthogonal directions and

axial displacement u (Fig. 2). The torsion of the beam

is not considered because its natural frequencies are

higher than 1 kHz for the considered beam-propeller

system. The transverse and axial displacements of the

beam are expressed as the summation of the multipli-

cation of the normalized function basis polynomials

and the generalized time-dependent coordinates as

w ¼
X

Nw

i¼1

WiðsÞqwiðtÞ ¼ qTwWðsÞ ð3Þ

v ¼
X

Nv

i¼1

ViðsÞqviðtÞ ¼ qTvVðsÞ ð4Þ

u ¼
X

Nu

i¼1

UiðsÞquiðtÞ ¼ qTuUðsÞ ð5Þ
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where s is the arc length along the deformed beam, Nw,

Nv and Nu are the numbers of terms used in the

summation,

WðzÞ ¼ W1 W2 � � � WNw
½ �T2 RNw�1, VðzÞ ¼

V1 V2 � � � VNv
½ �T2 RNv�1 and UðzÞ ¼
U1 U2 � � � UNu
½ �T2 RNu�1 are the vectors con-

sisting of the Chebyshev polynomials satisfying the

‘fixed-free’ geometric boundary conditions of wð0Þ ¼
vð0Þ ¼ w0ð0Þ ¼ v0ð0Þ ¼ uð0Þ ¼ 0 generated as

described in [28];

qw ¼ qw1 qw2 � � � qwNw
½ �T2 RNw�1, qv ¼

qv1 qv2 � � � qvNv½ �T2 RNv�1 and qu ¼
qu1 qu2 � � � quNu
½ �T2 RNu�1 are the generalized

coordinate vectors. qb ¼ qTu qTw qTv
� �T2

RðNwþNvþNuÞ�1 is the total generalized coordinate

vector of the beam. The vibrations of the motor

assembly and propeller are described by an axial

displacement ua, two transverse displacements wa and

va, and two rotations ua and ha, so the generalized

coordinate vector of the motor assembly and propeller

is expressed as

qmp ¼ ua wa va ua ha½ �T2 R5�1, and qnl ¼
qTb qTmp
� �T2 RNt�1 is the generalized coordinate

vector of the entire model, and Nt ¼ Nw þ Nv þ Nu þ
5 is the total number of generalized coordinates.

The geometric relation between the undeformed

and deformed differential elements is shown in Fig. 2.

The axial strain of the beam on the neutral line is given

by

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u0Þ2 þ v02 þ w02
q

� 1 ð6Þ

where o0 ¼ o oð Þ
os .

Applying the inextensibility constraint e ¼ 0 gives

2u0 þ u02 þ v02 þ w02 ¼ 0 ð7Þ

Because this constraint is dependent on the posi-

tion, it is transformed into the following integral form

in order to satisfy the constraint at any position:

Fig. 2 Nonlinear model of the test rig. The inset shows the geometric relation between the undeformed and deformed differential beam

elements
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Ub ¼
Z L

0

ð2u0 þ u02 þ v02 þ w02Þ2ds ¼ 0 ð8Þ

Two consecutive angles u and h are used to

describe the rotation from the undeformed position to

the deformed one (Fig. 2). According to Fig. 2, the

geometric relation for the two rotational angles, after

simplification using the inextensibility constraint, is

sinu ¼ w0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u0Þ2 þ w02
q ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v02
p ;

cosu ¼ 1þ u0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u0Þ2 þ w02
q ¼ 1þ u0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v02
p

ð9Þ

sin h ¼ v0; cos h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u0Þ2 þ w02
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v02
p

ð10Þ

The approximate expressions for the two angles are

derived from Eqs. (9)–(10) as

u ¼ arcsin
w0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v02
p

¼ w0 þ 1

6
w03 þ 1

2
v02w0 þ 3

8
v04w0 þ 1

4
w03v02 þ 3

40
w05

þ Oðe6Þ
ð11Þ

h ¼ arcsin v0 ¼ v0 þ 1

6
v03 þ 3

40
v05 þ Oðe6Þ ð12Þ

The curvature vector consisting of the curvatures of

the beam about i, j and k is derived from

q1 q2 q3½ � ¼ 0 u0 0½ �TyðuÞ þ �h0 0 0
� �� �

Txð�hÞ ¼ �h0 u0 cos h u0 sin h
� �

ð13Þ

The potential energy of the beam due to bending

deformation is given by

Ub ¼
1

2
EI1

Z L

0

q21dsþ
1

2
EI2

Z L

0

q22ds ¼
1

2
EI1

Z L

0

v002ð1þ v02 þ v04)ds

þ 1

2
EI2

Z L

0

(w002 þ 2w00w0v0v00 þ w002w02 þ w002w04 þ w002w02v02

þ2w00w0v03v00 þ 2w00w03v0v00 þ w02v02v002)ds
þ Oðe7Þ

¼ 1

2
qTbKbqb þ UbNL

ð14Þ

where Kb ¼ diag ONu�Nu
Kw Kvð Þ 2

RðNwþNvþNuÞ�ðNwþNvþNuÞ is linear stiffness matrix of

the beam, Kw ¼ EI2
R L
0
W00W00Tds 2 RNw�Nw ,

Kv ¼ EI1
R L

0
V00V00Tds 2 RNv�Nv ;UbNL is the nonlinear

part of the potential energy expression due to bending

of the beam.

The Kelvin–Voigt constitutive material model

[31, 32] is chosen to represent the dissipation energy

of the beam due to bending. The corresponding

dissipation energy functional is given by

Db ¼
1

2
csI1

Z L

0

_q21dsþ
1

2
csI2

Z L

0

_q22ds

¼ 1

2
csI1

Z L

0

_v002 þ _v002v02 þ 2 _v00v00 _v0 _vþ _v002v04 þ v002v02 _v02 þ 4 _v00v00v03 _v0
� �

ds

þ 1

2
csI2

Z L

0

( _w002 þ 2 _w0w00w0 _w00 þ w02 _w002 þ 2v00w0 _w00 _v0 þ 2v0w0 _w00 _v00 þ 2 _w0v00v0 _w00

þ6v00v02w0 _w00 _v0 þ 2v03w0 _w00 _v00 þ 2 _w0v00v03 _w00 þ 2 _w0w00v02w0 _w00 þ v02w02 _w002

þ2w00v0w02 _w00 _v0 þ 4 _w0v00v0w02 _w00 þ 2v00w03 _w00 _v0 þ 2v0w03 _w00 _v00

þ4 _w0w00w03 _w00 þ w04 _w002 þ _w02w002w02 þ v002w02 _v02 þ _w02v002v02

þv02w02 _v002 þ 2v00v0w02 _v00 _v0 þ 2 _w0v00w00w02 _v0 þ 2 _w0v00v02w0 _v00 þ 2 _w0w00v0w02 _v00

þ2 _w0v002v0w0 _v0 þ 2 _w02v00w00v0w0Þds

þ Oðe7Þ

¼ 1

2
_qTbCb _qb þ DbNL

ð15Þ
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where _o ¼ d oð Þ
dt

, cs is the material coefficient of internal

damping for bending, gs ¼ cs=E is the proportionality

constant of internal damping in bending. Cb 2
RðNwþNvþNuÞ�ðNwþNvþNuÞ is the linear damping matrix

of the beam; DbNL is the nonlinear part of the

dissipation energy functional due to the beam bending

activity.

The kinetic energy of the beam is given by

Tb ¼
1

2
m

Z L

0

ð _u2 þ _v2 þ _w2Þds ¼ 1

2
_qTbMb _qb ð16Þ

where m is the mass per unit length of the beam,Mb ¼
diag Mu Mw Mvð Þ 2 RðNwþNvþNuÞ�ðNwþNvþNuÞ is

the mass matrix of the beam,

Mu ¼ m
R L

0
UUTds 2 RNu�Nu ,

Mw ¼ m
R L

0
WWTds 2 RNw�Nw ,

Mv ¼ m
R L
0
VVTds 2 RNv�Nv .

3.2 Modeling of motor assembly

The motor assembly is modeled as a rigid body. It has

displacements in the axial direction (denoted by ua)

and two transverse directions (denoted by wa and va)

as well as rotational angle ua and �ha about jO and i1
in sequence.

The angular velocity vector of the motor assembly

about ip, jp and kp is derived from the following

equation

xa ¼ xax xay xaz½ �
¼ 0 _ua 0½ �TyðuaÞ þ � _ha 0 0

� �� �

Txð�haÞ
¼ � _ha _ua cos ha _ua sin ha
� �

ð17Þ

The kinetic energy of the motor assembly is then

given by

Ta ¼
1

2
ma _u2a þ _v2a þ _w2

a

� �

þ 1

2
Ia x2

ax þ x2
ay

� �

¼ 1

2
ma _u2a þ _v2a þ _w2

a

� �

þ 1

2
Ia _h2a þ _u2

a cos
2 ha

� �

ð18Þ

where ma is the mass of the motor assembly, and Ia is

the moment of inertia of the motor assembly about its

mass center around x or y axis.

3.3 Propeller modeling

It is assumed the rotor is isotropic, which means all the

blades are the same. The propeller is modeled as a

rigid body with the center of mass at the hub, and it has

displacements in the axial direction (denoted by up)

and two transverse directions (denoted by wp and vp)

as well as rotational anglesup and�hp about jO and i1,

respectively.

The rotating propeller is in rigid connection with

the motor assembly, so their displacements and

rotational angles satisfy the following geometric

relationships

up ¼ ua � zpcð1� cos ha cosuaÞ
wp ¼ wa þ cos ha sinuazpc
vp ¼ va þ sin hazpc
hp ¼ ha
up ¼ ua

8

>

>

>

>

<

>

>

>

>

:

ð19Þ

where zpc ¼ zp � 0:5La is the distance from the center

of the motor assembly to the propeller.

The angular velocity vector of the propeller about

ip, jp and kp is obtained from the following equation

xp ¼ xpx xpy xpz½ �
¼ 0 _up 0
� �

TyðupÞ þ � _hp 0 0
� �� �

Txð�hpÞ þ 0 0 X½ �
¼ � _ha _ua cos ha _ua sin ha þ X
� �

ð20Þ

The moment of inertia matrix of the propeller about

ip and jp is then given by

IpyðtÞ IpxyðtÞ
IpxyðtÞ IpxðtÞ

	 


¼
X

Nb

i¼1

TzðaiÞ
Ipy0 Ipxy0
Ipxy0 Ipx0

	 


TzðaiÞT

ð21Þ

where Ipx0¼
R

y2dm and Ipy0 ¼
R

x2dm are the initial

moments of inertia of each propeller blade about ip and

jp axes, respectively; Ipxy0 ¼
R

xydm is the initial xy

product of inertia. TzðaÞ ¼
cos a � sin a
sin a cos a

	 


is the

transformation matrix. ai ¼ Xt þ ai0 is the azimuth

angle of the ith blade of the propeller around kp. X is

the rotational speed of the propeller, which is positive

if the rotation is clockwise when viewing in ? z

direction, and vice versa.

The kinetic energy of the propeller [33] is given by
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Tp ¼
1

2
mp _u2p þ _v2p þ _w2

p

� �

þ 1

2
xpIpðtÞxT

p ð22Þ

where mp is the mass of the propeller, and IpðtÞ ¼

IpxðtÞ �IpxyðtÞ 0

�IpxyðtÞ IpyðtÞ 0

0 0 Ipz

2

4

3

5 is the moment of inertia

tensor, Ipz is the moment of inertia of the propeller

about kp axis.

3.4 External work

The gravity of the motor assembly and the propeller is

considered and there is an applied external force Fim at

the location of zext from the beam root with an angle of

c with respect to positive x direction in the case of

impulse response (Fig. 2), so the variation of the work

done by the external force is given by

dWext ¼ magdua þ mpgdup þ Fim cos cdwðzextÞ
þ Fim sin cdvðzextÞ

¼ dqTnlfextðqmpÞ ð23Þ

where fextðqmpÞ 2 RNt�1 is the external force vector.

3.5 Motor assembly-beam dynamic constraint

The tip of the beam is in rigid connection with the

motor assembly, so their displacements and rotations

are nominally equal. The displacement and rotation

continuity leads to the following constraint equations:

Uc ¼

uðL; tÞ � ua � 0:5Lað1� cos ha cosuaÞ
wðL; tÞ � ðwa � 0:5La sinua cos haÞ

vðL; tÞ � ðva � 0:5La sin haÞ
uðL; tÞ � ua

hðL; tÞ � ha

2

6

6

6

6

4

3

7

7

7

7

5

¼ 0

ð24Þ

3.6 Equations of motion

To perform the time-domain simulations using the full

nonlinear model, Udwadia-Kalaba method [34] is

used to enforce the constraints in Eqs. (8), (24). To

apply this method, the equation of motion without the

constraints is derived first. The total kinetic, potential

and dissipation energies of the system are given, , by

T ¼ Tb þ Ta þ Tp ð25Þ

U ¼ Ub ð26Þ

D ¼ Db ð27Þ

The equation of motion without the constraints is

obtained by substituting the total kinetic energy and

total potential energy into Lagrange’s equation of the

second kind as follows:

d

dt

oT

o _qTnl

 !

� oT

oqTnl
þ oU

oqTnl
þ oD

o _qTnl
¼ fext ð28Þ

The equation of motion of the nonlinear system

without the constraints, summarized in Eqs. (8), (24),

expressed in matrix form is given by

Mb

M2

	 


|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Mnl

€qnl

þ Kbqb þ bnlðqbÞ þ Cb _qb þ cnlðqb; _qbÞ
gnlðqmp; _qmpÞ

	 


|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fnl

¼ fextðqmpÞ ð29Þ

where M2 2 R5�5 is the mass matrix of the motor

assembly and propeller; thus,Mnl 2 RNt�Nt is the mass

matrix of the whole system; bnlðqbÞ 2 RðNwþNvþNuÞ�1

and cnlðqb; _qbÞ 2 RðNwþNvþNuÞ�1 are the nonlinear

structural force vector of the beam due to the nonlinear

potential energy term UbNL and the dissipation force

vector due to the nonlinear dissipation energy term

DbNL; gnlðqmp; _qmp; tÞ 2 R5�1 is the nonlinear struc-

tural force vector of the motor assembly and propeller

due to the kinetic energy; thus, fnl 2 RNt�1 is the

internal force vector of the whole system. The detailed

expressions are provided in Appendix A.

Then, to satisfy the constraints in Eqs. (8), (24) in

the spirit of the Udwadia-Kalaba method [34], the final

equation of motion in the state-space form is given by

_h1 ¼ h2
_h2 ¼ aþM

�1=2
nl ðAM�1=2

nl Þþðbv � AaÞ

�

ð30Þ

where a ¼ M�1
nl ðfext � fnlÞ, and the generalized coor-

dinate vector in state space is
h1
h2

	 


¼ qnl
_qnl

	 


.
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A ¼ oU
oqnl

, bv ¼ � _qTnl
o2U
oq2

nl

_qnl � 2 o2U
oqnlot

_qnl � o2U
ot2 and

UðqnlÞ ¼
Uc

Ub

	 


is the constraint vector. The detailed

expressions are provided in Appendix A.

However, given the differential nature in which the

constraints are introduced in the above formulation,

the direct use of Eq. (30) may lead to the error

accumulation and constraint drift, ultimately leading

to the divergent behavior during the simulation. To

eliminate this drift in the numerical simulation, the

equation of motion is corrected according to the

method proposed in [35] as follows

_h1 ¼ h2 þM
�1=2
nl ðAM�1=2

nl Þþðbq � Ah2 �U=dtÞ
_h2 ¼ aþM

�1=2
nl ðAM�1=2

nl Þþðbv � Aa� _U=dtÞ

(

ð31Þ

where dt is the integration time step, bq ¼ � oU
ot ¼ 0,

_U is the time derivative of the constraint vector. The

detailed expressions are provided in Appendix A. The

drawback of the correction approach is that it tends to

generate the high-frequency oscillations in the first

and second derivatives of the state variables and the

correction terms do not have physical meaning.

4 Linearized model

To complete the analysis directly in the frequency

domain, the nonlinear model in Sect. 3 is linearized in

this section. The methods of performing modal

analysis and calculating the FRFs for both the time-

invariant and time-varying systems based on the

linearized model are also introduced in this section.

4.1 Equation of motion

This section shows how the nonlinear model with

inextensibility constraint introduced in Sect. 3 is

transformed into the linearized model, and the

relationship between the nonlinear model in this paper

and the linear model in the previous paper [28]. To

proceed with the linear analysis, the nonlinear model

is linearized around the equilibrium position in the

vertical orientation under the influence of gravity.

Since the axial displacements (i.e., u, ua and up) are

assumed to be of higher order than the transverse

displacements w and v, they are neglected in the

present linearized model. Adopting the original inex-

tensibility constraint Eq. (7), the axial displacement of

the beam is written in the following approximate form

u0 � � 1

2
v02 þ w02� �

ð32Þ

Considering the constraints in Eqs. (19), (24), (32),

the external work due to the gravity in the axial

direction in Eq. (23) becomes

dWext ¼ ðma þ mpÞgduðL; tÞ

¼ ðma þ mpÞgd
Z L

0

� 1

2
v02 þ w02� �

ds ¼ �dUba

ð33Þ

Consequently, the potential energy of the beam due

to the axial force is written as

Uba ¼
1

2
ðma þ mpÞg

Z L

0

ðv02 þ w02Þds ¼ ðma þ mpÞg

qTw qTv
� �

R L

0
W0W0Tds O

O
R L

0
V0V0Tds

" #

qw

qv

	 


ð34Þ

The generalized coordinate vector of the linearized

model is

q ¼ qTw qTv wa va ua ha
� �T2 RðNwþNvþ4Þ�1.

The small angle approximation is made, so that

sin a ¼ a, cos a ¼ 1, where a represents any angle.

In the previous study [28], it was shown that adding

the large artificial springs in the frequency domain is

analogous to applying Udwadia-Kalaba method in the

time domain in terms of satisfying the constraints.

Thus, for the purposes of the linear analysis, the

constraint in Eq. (24) is enforced by adding large

artificial springs. Under the above linearization

assumptions, the corresponding potential energy is

given by

Uc ¼
1

2
UT

cLdiag kl kl kr krð ÞUcL ¼ 1

2
qTKcq

ð35Þ

where kl and kr are the stiffness values of the

translational and rotational artificial springs, respec-

tively; and Kc ¼ ATdiag kl kl kr krð ÞA 2
RðNwþNvþ4Þ�ðNwþNvþ4Þ is the stiffness matrix due to

the beam-motor connection using these artificial
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springs, and A ¼ oUcL

oq 2 R4�ðNwþNvþ4Þ, UcL ¼

wðL; tÞ � ðwa � 0:5LauaÞ
vðL; tÞ � ðva � 0:5LahaÞ

uðL; tÞ � ua

hðL; tÞ � ha

2

6

6

4

3

7

7

5

is the linearized form

of the kinematic constraints.

The variation of the work done by the external force

(Fim) is then given by

dWextL ¼ Fim sin cdwðzextÞ þ Fim cos cdvðzextÞ
¼ dqTFimBðzext; cÞ ð36Þ

where Bðzext; cÞ ¼ WðzextÞT cos c
�

VðzextÞT sin c
01�4�T 2 RðNwþNvþ4Þ�1 is the polynomial vector.

Substituting the kinetic energy, dissipation energy,

potential energy and external force vector into the

Lagrange’s equation, the equation of motion for the

linearized model is written as

ML €qþ CL _qþKLq ¼ FimBðzext; cÞ ð37Þ

where ML 2 RðNwþNvþ4Þ�ðNwþNvþ4Þ, CL 2
RðNwþNvþ4Þ�ðNwþNvþ4Þ and KL 2 RðNwþNvþ4Þ�ðNwþNvþ4Þ

are the mass, damping and stiffness matrices of the

linearized model, respectively. CL includes the skew-

symmetric gyroscopic damping matrix and the struc-

tural damping matrix for the beam. After this

linearization, the nonlinear system actually adopts

the form identical to the linear model developed in the

previous study [28] with an exception for the addi-

tional structural damping terms of the beam in CL.

4.2 Modal analysis

As it will be discussed in more detail later, due to the

rotation of the propeller and depending on the number

of blades, the studied system can be either time-

invariant or time-varying. Consequently, modal anal-

ysis is performed using the linearized model according

to one of the method introduced in this subsection.

4.2.1 Time-invariant system

When the system is time-invariant, modal analysis is

performed using the traditional approach. The equa-

tion of motion in Eq. (37) for free vibration is

transformed into the state space as follows

A1 _yþ B1y ¼ 0 ð38Þ

where y ¼ q
_q

	 


2 R2ðNwþNvþ4Þ�1,

A1 ¼
CL ML

ML O

	 


2 R2ðNwþNvþ4Þ�2ðNwþNvþ4Þ, and

B1 ¼
KL O
O �ML

	 


2 R2ðNwþNvþ4Þ�2ðNwþNvþ4Þ.

Then, y ¼ Yekt is substituted into Eq. (38), and the

eigenvalues ki ¼ �fixi þ jxi

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2i

q

and its corre-

sponding eigenvectors Yi are solved, where xi ¼ 2pfi
is the ith undamped natural circular frequency, fi is the

ith undamped natural frequency, and fi is the ith

damping ratio.

4.2.2 Time-varying system

When the system is time-varying, modal analysis is

conducted using the coordinate transform method [5].

While the detailed procedure with equations can be

found in the previous study [28], it is summarized

briefly as follows:

(1) The equation of motion Eq. (37) defined in the

real coordinate system is transformed into that

in the complex coordinate system by performing

a coordinate transform which leads to the time-

varying equation of motion with the complex

valued matrices;

(2) The resultant time-varying equation of motion

with the complex valued coefficient matrices is

expanded into an equivalent time-invariant equa-

tion of motion with the infinite coefficient

matrices;

(3) Finally, the equation of motion with the infinite

coefficient matrices is truncated into a finite size

and a state-space eigenvalue problem is formed

from this truncated formulation. Note that ‘xN’

truncation denotes the case where the finite

submatrices are of the size xN, starting from the

center and 2N ¼ Nw þ Nv þ 4.

4.3 Frequency response function

For the same reason, the calculation of the FRFs also

takes into account the time-dependency nature of the

system. The FRFs are calculated using the linearized
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model, and the methods are introduced in this

subsection.

4.3.1 Time-invariant system

When the system is time-invariant, the FRF is

calculated using the traditional approach. The recep-

tance from the applied force to the displacement

response at the location of zres from beam root at an

angle of b0 from the positive x direction is calculated

as follows

HðxÞ ¼ Bðzres; b0ÞTð�x2ML þ jxCL

þKLÞ�1Bðzext; cÞ ð39Þ

4.3.2 Time-varying system

When the system is time-varying, the FRFs are

calculated with the help of the coordinate transform

method. The procedure is described as follows while

the details can be found in the previous study [28]:

(1) Following Step 3 in Sect. 4.2.2, the frequency

response matrix (FRM) is calculated using the

truncated time-invariant equation of motion;

(2) The 2N 9 2N block in the center of the FRM is

used, where 2N equals Nw ? Nv ? 4, and then

the receptance is calculated using Eq. (40) as

follows

HðxÞ ¼ Bðzres; b0ÞTJ�1HtrðxÞJBðzext; cÞ
ð40Þ

where HtrðxÞ is the 2N 9 2N truncated FRM,

and J is the transformation matrix from the real

generalized coordinate vector to complex gen-

eralized coordinate vector.

5 Comparative analysis between 2- and more-

bladed configurations

As discussed in introduction to this research, there are

qualitative differences between the rotors with two

and more numbers of blades. The attention in this

section is paid to these differences. Initially, the

influence of blade number on the time-dependency of

the system is shown mathematically. Then, two

specific instances of the two-bladed and three-bladed

propeller configurations are compared, numerically

and experimentally, considering both non-rotating and

rotating operating conditions.

5.1 Time-dependency

The simple proof of the time-dependency is given here

while the details can be found in the previous study [28].

Due to the rotation of the propeller, the system with the

rigid rotor can be time-varying or time-invariant

depending on the number of blades. Under the assump-

tion of a rigid isotropic propeller and evenly-distributed

blades, the moments of inertia of the propeller (Ipx, Ipy
and Ipxy) are the only source of potential time-

dependency. From Eq. (21), the moments of inertia

of a propeller with Nb blades about ip and jp and the xy

product of inertia are derived as follows:

Ipx ¼
X

Nb

i¼1

Ipx0 þ Ipy0
2

� Ipx0 � Ipy0
2

cos 2ai þ Ipxy0

sin 2ai ¼
Nb Ipx0 þ Ipy0
� �

=2; Nb � 3

ðIpx0 þ Ipy0Þ � ðIpx0 � Ipy0Þ cos 2bþ 2Ipxy0 sin 2b; Nb ¼ 2

(

Ipy ¼
X

Nb

i¼1

Ipx0 þ Ipy0
2

þ Ipx0 � Ipy0
2

cos 2ai � Ipxy0

sin 2ai ¼
Nb Ipx0 þ Ipy0
� �

=2; Nb � 3

ðIpx0 þ Ipy0Þ þ ðIpx0 � Ipy0Þ cos 2b� 2Ipxy0 sin 2b; Nb ¼ 2

(

Ipxy ¼
X

Nb

i¼1

Ipx0 � Ipy0
2

sin 2ai þ Ipxy0

cos 2ai ¼
0; Nb � 3

ðIpx0 � Ipy0Þ sin 2bþ 2Ipxy0 cos 2b; Nb ¼ 2

�

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>
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>

>

>

>
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<

>
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>
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>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð41Þ

where b ¼ Xt þ a0, and ai ¼ 2pi=Nb þ b is the

azimuth angle for ith blade of the propeller around

kp,
PNb

i¼1 cos 2ai ¼
2 cos 2b; Nb ¼ 2

0; Nb � 3

�

,

PNb

i¼1 sin 2ai ¼
2 sin 2b; Nb ¼ 2

0; Nb � 3

�

[28].

Equation (41) implies that the two-bladed propeller

differs from the propellers with more than two blades.

The former has the time-varying moments of inertia,

which makes the overall beam-propeller system time-

varying, while the latter is time-invariant. In addition,

the propeller with more than two blades possesses the

moments of inertia with the following symmetric

properties Ipx ¼ Ipy and Ipxy ¼ 0.

5.2 Modal analysis using linearized model

In this section, modal analyses using the linearized

model in the non-rotating and rotating conditions with
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two-bladed and three-bladed propellers are performed.

The computed results are validated against the exper-

iment. The differences in the dynamic characteristics

for the cases with the different numbers of blades are

analyzed. Due to the small observed modal damping

values, the structural damping of the beam is not

considered in these analyses. The parameters listed in

Table 1 were derived by trial and error via a judicious

adjustment around their baseline values until a good

agreement between the model and experiment was

reached.

5.2.1 Non-rotating condition

In the non-rotating condition, the system is time-

invariant, so the modal analysis is performed using the

traditional approach (Sect. 4.2.1). It is seen from

Table 2 that with both two-bladed and three-bladed

propellers, there are four modes in the considered

frequency range, among which two modes (mode 1

and 3) feature first and second beam bending in x–z

plane, while the other two modes (mode 2 and 4)

feature first and second beam bending in y–z plane.

The blue and the red lines represent the beam and the

motor assembly, and the green dots indicate the

trajectory of the propeller hub. The main found

qualitative difference, when comparing the two pro-

peller cases, is that the bending modes of the same

order in x–z and y–z planes have clearly distinct modal

frequencies in the two-bladed propeller case. This is

caused by the inertial asymmetry of the propeller. In

the two-bladed case, the bending shapes of the beam in

modes 1 and 3 are localized in the same plane as the

propeller, where the mass moment of inertia of the

propeller about the bending direction is at its maxi-

mum. On the contrary, the bending shapes of the beam

in modes 2 and 4 are perpendicular to the propeller,

where the mass moment of inertia of the propeller

about the bending direction is at its minimum. A

counterintuitive observation in this study, however, is

that the system becomes symmetric with the use of the

three-bladed propeller. This is consistent with Eq. (41)

where the moments of inertia of the propeller are

shown to be symmetric. It can also be anticipated that

the symmetry or asymmetry of the propeller is

independent of the initial azimuth angle.

In addition, the achieved agreement between the

model and experiment is satisfactory in terms of both

the modal frequencies and mode shapes in the non-

rotating condition. This means the asymmetry in the

two-bladed configuration and the symmetry in the

three-bladed configuration are validated against the

experiment. The small differences in the experimental

modal frequencies between modes 1 and 2 and

between modes 3 and 4 in the three-bladed configu-

ration are thought to be caused by the slight asymme-

try in the experimental setup, non-ideal propeller

blade structure, the influence of the sensors and the

impact of the measurement and modal identification

errors. From Sect. 5.1, the asymmetry in the moments

Table 1 The parameters of

the beam-propeller model

Note that the superscript *

means the parameter is

adjusted during a manual

tuning process
?Convergence analysis is

conducted to ensure

sufficient polynomials are

used for the satisfactory

convergence in both the

frequency and time domains

Parameter Value Parameter Value

h 0.003 m gs 4.2 9 10-4 s�m
b 0.003 m Two-bladed propeller

E 70 GPa Nb 2

m* 0.0284 kg/m Ipx0
*,Ipy0,Ipxy0 4.2 9 10-5, 0, 0 kgm2

L 0.3 m mp 0.0112 kg

I1 b3h=12 Ipz
* 9.5506 9 10-5 kgm2

I2 bh3=12 a10,a20 0,p

g 9.81 ms-2 Three-bladed propeller

ma 0.08 kg Nb 3

La 0.05 m Ipx0
*,Ipy0,Ipxy0 4/3 9 10-5, 0, 0 kgm2

Ia maL
2
a=12 mp 0.0143 kg

kl/kr 107 Nm-1/107 Nmrad-1 Ipz
* 3.861 9 10-5 kgm2

Nu/Nw/Nv
? 5/3/3 a10,a20,a30 0, 2p/3, 4p/3

zp 0.05 m
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Table 2 The comparison of the modal properties (including mode shape, modal frequency and damping ratio) of the system in the

non-rotating condition between two-bladed propeller and three-bladed propeller

Blade number Two-bladed propeller Three-bladed propeller

Propeller orientation in x–z plane one blade aligned in y–z plane and directed toward ? y direction

Experiment Model Experiment Model

Mode 1 Mode shape

Natural frequency 3.28 Hz 3.38 Hz 3.16 Hz 3.35 Hz

Frequency error 3.0% 6.0%

Damping ratio 0.0070 / 0.0023 /

Mode 2 Mode shape

Natural frequency 3.36 Hz 3.42 Hz 3.18 Hz 3.35 Hz

Frequency error 1.8% 5.3%

Damping ratio 0.0030 / 0.0030 /

Mode 3 Mode shape

Natural frequency 40.22 Hz 41.16 Hz 57.24 Hz 57.57 Hz

Frequency error 2.3% 0.6%

Damping ratio 0.0091 / 0.0078 /

Mode 4 Mode shape

Natural frequency 70.85 Hz 69.90 Hz 58.10 Hz 57.57 Hz

Frequency error 1.3% 0.9%

Damping ratio 0.0235 / 0.0063 /
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of inertia of the propeller will introduce the time-

varying characteristics of the system in the rotating

condition, which will lead to qualitatively different

dynamic characteristics for the two-bladed and three-

bladed configurations.

5.2.2 Rotating condition

In the rotating conditions, modal analysis is performed

during different rotational speeds of the propeller in

order to compare the frequency-speed diagrams for the

two-bladed and three-bladed propellers. With the

three-bladed propeller, the system is time-invariant,

and modal analysis is performed using the traditional

method (Sect. 4.2.1); while with the two-bladed

propeller, modal analysis is performed using the

coordinate transform method because of the time-

varying characteristics (Sect. 4.2.2).

The variation of the modal frequencies with the

increasing rotational speed (the so-called Campbell

diagram) is plotted to study the influence of the

propeller rotational speed. The rotational speed range

in the simulation ends slightly higher than the speed

when the instability appears in the two-bladed pro-

peller case. The comparison of these diagrams

between the systems with the two-bladed and the

three-bladed propellers is illustrated in Fig. 3, and the

calculated mode shapes at the rotational speed of

8 rad/s are shown in Table 3.

With the two-bladed propeller and the chosen

model truncation order 4N, each mode in the non-

rotating condition splits into two branches with the

increasing rotational speed. The branches with higher

frequency correspond to the forward whirl modes

(whirling direction same as the rotational direction),

while the branches with lower frequency correspond to

the backward whirl modes (whirling direction oppo-

site to the rotational direction). The frequency differ-

ence between the two branches originating from the

same source is twice the rotational speed. The mode

Fig. 3 The Campbell diagrams for a two-bladed propeller with model size of ‘4N,’ and b three-bladed propeller, both with symmetric

support. The experimental configurations are described in Sect. 2. The superscript F or B denotes forward or backward whirl mode. For

two-bladed case, the subscript k(m) indicates the kth eigensolution in cluster m. For three-bladed case, the subscript k indicates the kth
eigensolution
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shapes during the rotating conditions feature these

forward or backward whirling characteristics, in

which the bending of the beam is consistent with

those in the non-rotating condition before the split (see

Table 3). In this case, the whirling trajectory (green

dots) for all the mode shapes forms a circle. The

frequency splits are also dependent on the model

truncation order. Higher order frequency splits will

appear as the model order is increased [28].

As is known for the classical theory of rotating

systems, e.g. [36], with the three-bladed propeller and

the symmetric beam support, when increasing the

rotational speed, the frequency branches display split-

like frequency changes. Owing to the symmetry of the

system, there are initially two coalescent modal

frequencies in the non-rotating condition. With the

increase in the rotational speed, one of the modal

frequencies increases in value (forward whirl mode,

kF2 , k
F
4 ), while the other one decreases (backward whirl

Table 3 The modal property comparison between the two-bladed and three-bladed propeller cases with symmetric support when the

rotational speed is 8 rad/s (the arrow indicates the direction of the propeller hub trajectory). The rotation of the propeller is clockwise

when viewing in ?z direction

Origin in non-rotating condition Mode shape and modal frequency

Two-bladed propeller Three-bladed propeller

Mode 1 in Table 2

kB1ð0Þ: 0.867 Hz kF1ð0Þ: 3.415 Hz
kB1 : 3.34 Hz

Mode 2 in Table 2

kB2ð0Þ: 3.387 Hz kF2ð0Þ: 5.933 Hz kF2 : 3.35 Hz

Mode 3 in Table 2

kB3ð0Þ: 39.88 Hz
kF3ð0Þ: 42.43 Hz

kB3 : 57.20 Hz

Mode 4 in Table 2

kB4ð0Þ: 68.62 Hz kF4ð0Þ: 71.16 Hz

kF4 : 57.95 Hz

123

848 J. Wu et al.



mode, kB1 , k
B
3 ). Furthermore, the frequency difference

between the forward and backward modes in one pair

does not exhibit the previous specific relationship with

the rotational speed. The mode shapes in the rotating

condition feature backward or forward whirling char-

acteristics, in which the bending of the beam is

consistent with those in the corresponding non-rotat-

ing condition (see Table 3). The whirling trajectory

(green dots) for all the mode shapes forms a circle. As

shown in the following diagrams, while the frequency

branches in this case also appear to be like the

frequency splitting, this process is qualitatively dif-

ferent from the process observed in the two-bladed

scenario. Instead, a pair of coalescent frequencies

initially belonging to this symmetric non-rotating

system is subjected to the symmetry breaking action of

the propeller rotation whereby frequencies in this pair

further evolve in the manner with, respectively,

softening and stiffening influence from the rotating

rigid propeller.

The agreement between the modal frequencies

calculated by the model and measured in the exper-

iment is satisfactory with the maximum frequency

difference less than 1 Hz. Due to the slight unbalance

of the propeller, some rotor harmonics (1/rev, 2/rev,

etc.) are also visible in the experiment. The good

consistency between the nominal case and reversed

case with the two-bladed propeller and between the

positive rotation and reverse rotation cases with the

three-bladed propeller indicates that the influence of

still-air aerodynamics on the structural dynamics is

minor. Therefore, this test configuration is accepted as

a sufficiently good approximation of the in-vacuo

model introduced earlier. There are two frequencies

close to each other in the enlarged regions for both

cases. Owing to their magnitude and proximity,

reliable modal identification of this frequency pair

from the measured FRFs was challenging. Hence,

typically, only a single frequency was identified and

presented at each rotational speed in the Campbell

diagrams.

With the two-bladed propeller, there are two

vertically-separated unstable regions in the speed

range of 247.5–260 rad/s due to the frequency lock-

in phenomenon [37, 38]. Such instability was also

observed in the experiment [28]. This self-excited

instability can be explained as a parametric instability

and similar phenomena were reported before, e.g.,

[39, 40]. In this case, the asymmetric property of the

moment of inertia of the propeller generates self-

excitation at the frequency equal to the twice the

rotational speed. The energy supplied to the system

through this route allows the instability to arise.

Specifically, owing to the properties and structure of

the problem, the first instability region arises from the

coalescence between kF1ð0Þ and k
B
�3ð0Þ, while the second

from the coalescence between kF3ð0Þ and kB�1ð0Þ. They

occur in the same speed range because the frequency

differences between kF3ð0Þ and k
B
3ð0Þ and between k

F
�1ð0Þ

and kB�1ð0Þ are both twice the rotational speed, which

makes the notional kB�1ð0Þ crossing kF3ð0Þ at the same

speed as kB3ð0Þ crossing kF�1ð0Þ (the mirror image of

kB�3ð0Þ crossing kF1ð0Þ).

In contrast with the above case, the three- or more-

bladed propeller’s moments of inertia are time-

invariant. This makes the system do not feature the

rotational speed dependent energy supply mechanism.

Furthermore, neglecting the structural and aerody-

namic damping in this numerical study, the system is

conservative since the dissipation work done by the

gyroscopic force is zero and no instability is found in

the model or experiment when the rotational speed is

increased up to 246 rad/s. Fundamentally speaking, a

conservative linear system cannot be made unstable by

gyroscopic forces [41], so the undamped linearized

system will always be stable even when the rotational

speed is increased further.

5.2.3 Influence of the beam support

In the previous analyses, the beam support is sym-

metric. To investigate the influence of the support on

the system dynamics with different numbers of blades,

its second moment of cross-sectional area about y axis

(I2) is increased by 1.3 times, creating an asymmetric

support for the propeller. The Campbell diagrams with

this asymmetric support are illustrated in Fig. 4. With

a two-bladed propeller, because of the asymmetry of

both the beam and moments of inertia of the propeller,

the modal frequencies in the non-rotating condition

change with the initial azimuth angle of the blades.

Thus, instead of splitting from the same frequency, the

frequency branches originate from their respective

sources at the two different neighboring frequencies in

the non-rotating condition. The frequency difference
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between the two branches associated with the same

source pair is still approximately twice the rotational

speed, except in the low-speed range (\ 30 rad/s). The

two unstable regions in the speed range of 266–

279 rad/s due to the frequency lock-in phenomenon

are still present. Different from the case of symmetric

support, however, there are additional veering regions

found between certain frequency branches, e.g.,

between kB4ð0Þ and kF3ð0Þ, which indicates conditional

inter-modal mixing in the case of asymmetric support.

With a three-bladed propeller, due to the asymme-

try of the beam support, the two originally coalescent

modal frequencies in the non-rotating condition of

symmetric support become different.With the increas-

ing rotational speed, one of the modal frequencies still

increases in value (forward whirl mode, kF2 , k
F
4 ), while

the other one decreases (backward whirl mode, kB1 ,

kB3 ). The frequency difference between the forward

and backward modes in one pair still does not exhibit a

specific relationship with the rotational speed. The

whirling trajectory of the propeller hub is no longer a

circle, but an ellipse instead.

Fig. 4 The Campbell diagrams for a two-bladed propeller, model size is ‘4N’. b three-bladed propeller, both cases using asymmetric

support
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5.2.4 Summary of the blade number effects

According to Sect. 5.1, when there are more than two

blades in a propeller, the system does not exhibit the

time-varying characteristics, so its dynamic charac-

teristics will be qualitatively equivalent to the case

with the three-bladed propeller. The influence of blade

number on the system dynamics is summarized in

Table 4.

The analysis in this section is based on the

linearized model, which is only valid in the limited

small deformation region. When vibrating about the

equilibrium position, the linear terms dominate over

the nonlinear terms. When the system loses stability in

the case of two-bladed propeller, the vibration ampli-

tude will increase beyond the linear region, which

necessitates the use of the nonlinear model. The

following study is focused on the dynamics of the

nonlinear model and its comparison with the lin-

earized model in the stable speed region.

6 Analysis of nonlinear model

In this section, the nonlinear model is analyzed in

terms of its equilibrium deformation in the non-

rotating condition, the FRFs in the stable rotational

speed region and dynamic response in the unstable ro-

tational speed region. In contrast with the previous

sections, the beam’s structural damping is included

here since this setup will enable realistic free vibration

analysis in the time domain.

6.1 Analysis of nonlinear static responses

First, the nonlinear model is validated by comparing

the numerically calculated static equilibrium defor-

mation of the system with the two-bladed propeller

with the experimental measurement. The experiment

was conducted by measuring the static deformation of

the system in the initial horizontal orientation under

gravity when the beam was clamped at the left end and

free at the right end (Fig. 5a). The deformation was

measured by a ruler.

The equilibrium deformation is calculated by

setting all the time derivative equal to zero in

Eq. (29), while the nonlinear constraints in Eqs. (8)

and (24) are satisfied by adding stiff artificial springs.

The nonlinear equation to be solved is given by

Kbqb þ bnlðqbÞ
05�1

	 


þ oUcnl

oqTnl
¼ fgðqmpÞ ð42Þ

where Ucnl ¼ 1
2
UT

c diag kl kl kl kr krð ÞUc þ
1
2
klUb is the potential energy associated with the

artificial springs. fgðqmpÞ ¼ 01�Nu
�mg

R L

0
WTds

h

01�Nv
0 �ðma þ mpÞg 0 �mpgzpc cos ha cosua mp

gzpcsin ha sinua�T is the external force vector due to

gravity which is applied in the transversal direction

relative to the horizontally placed undeformed beam.

The nonlinear equation Eq. (42) is solved using

‘fsolve’ function in Matlab. The equilibrium defor-

mation of the system loaded by the two-bladed

propeller under the influence of gravity is shown in

Fig. 5a, from which the deformation of the real system

Table 4 Summary of the influence of blade number on the undamped linearized system dynamics

Blade number Two-bladed propeller Three- or more-bladed propeller

Time-

dependency

Time-varying Time-invariant

Frequency

characteristics

Frequency split from the same source with the increasing

rotational speed, and the frequency difference is twice

the rotational speed

One frequency in the non-rotating condition increases

while the other decreases with the increasing

rotational speed, and the frequency difference does

not exhibit a specific relationship with rotational

speed

Instability Structural instability due to frequency lock-in

phenomenon

No instability [41]1

System type Self-excited system Conservative system2

1 A conservative linear system cannot be made unstable by gyroscopic forces [41]

2 The dissipation work done by the gyroscopic force is zero since the gyroscopic damping matrix is skew-symmetric
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is extracted given that the displacement of the beam tip

is measured by a ruler and compared with the results

calculated by the nonlinear model in Fig. 5b. The

agreement between the model and experiment is good

with the maximum displacement difference less than

1 mm while the tip deflection of the beam reaches

nearly 20 mm. This agreement evidences the correct-

ness of the nonlinear model in terms of elastic and

boundary condition characteristics.

Then, in the vertical orientation, a horizontal

transverse force is applied at the tip of the beam in

the positive x direction, and the equilibrium deflection

of the system is calculated in the same way, as shown

in Fig. 6. This computational experiment is set up so

that the beam exhibits clear geometric nonlinearity

with the increasing force. When the force exceeds 3 N,

and the beam tip displacement exceeds 5 cm, the tip

displacement starts to deviate from the linear

Fig. 5 Static deformation with the two-bladed propeller: a the experimental setup; b the comparison between the nonlinear model and

experiment

Fig. 6 The equilibrium deflection of the system with applied transverse force in x direction from 1 to 14 N: a stroboscopic system

deflection plot, b beam tip displacement-force characteristic
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relationship and the displacement-force slope

becomes smaller (Fig. 6b), indicating, in this coordi-

nate format, the hardening nonlinear characteristics.

This analysis gives us a rough idea at what amplitudes

of deformation the systemmanifests notably nonlinear

behavior.

6.2 Nonlinear response of the rotating system

This section is to compare the nonlinear model with

the linearized model in the stable speed region and

validate the nonlinear response of the system with the

experiment in the case of instability.

In the stable speed region, the purpose is to compare

the FRFs between the linear and nonlinear models. For

the nonlinear model, a force impulse Fim of 10 and

100 N, respectively, with a duration of 2 9 10-3 s is

applied on the beam at the location of 0.12 m (same as

experiment) from the root at the angle of p/4 with

positive x axis. The nonlinear model developed in

Sect. 3 is simulated in the time domain in Matlab’s

Simulink environment using the ‘ode4’ solver with a

fixed step size of 5 9 10-5 s. After obtaining the time-

marched response of the system, the driving-point

displacement response of the beam is calculated. The

simulation lasts for 30 s. The driving-point receptance

is calculated from the impulse force to the displace-

ment response. For the linearized model, the driving-

point receptance is calculated in the frequency domain

using the method introduced in Sect. 4.3. The reso-

nance peaks in the receptances are also compared with

the natural frequencies of the linearized system

calculated by modal analysis using the methods

introduced in Sect. 4.2 with the structural damping

considered. Table 5 illustrates the comparison of the

driving-point receptances between the linearized

model and the nonlinear model with 2-bladed and

3-bladed propellers at two different rotational speeds.

As expected, it can be seen that the receptances

calculated using the linearized model and nonlinear

model do not differ significantly, and the natural

frequencies calculated using the linearized model are

also consistent with the peaks of the nonlinear model

except that some peaks are not clearly visible in the

receptances. The higher impulse force of 100 N

triggers the nonlinearity more than the 10 N impulse.

Table 5 The comparison of the driving-point receptances between the linearized model and nonlinear model using impulse forces of

10 N and 100 N in the stable speed region

Rotational speed (rad/s) Blade number

2-bladed propeller 3-bladed propeller

120

180

The vertical dashed lines indicate the natural frequencies calculated from the damped linearized model
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The receptances of the nonlinear model deviate from

those of the linear model more significantly. The

change of the resonances with the rotating speed can

also be seen by comparing the receptances from across

these two speeds. This indicates that, in the

stable speed region, the use of the developed lin-

earized model is appropriate to approximate the

nonlinear system’s behavior.

In what follows, the nonlinear response of the

system is qualitatively validated against the experi-

ment in the unstable speed region. As shown in

Sect. 5.2, the unstable speed region only exists when

the two-bladed propeller is used in the present test

setup. Here, to enhance the influence of the nonlinear

modeling terms, the nonlinear model is compared with

the experimental measurement completed at the

rotational speed of 259 rad/s where the system loses

stability. This scenario is presented in Fig. 7. In both

the simulation and experiment, the accelerations in

two transverse directions initially increase, while the

dominant frequencies are the two unstable frequencies

that are consistent with the frequency-speed diagram

in Fig. 3a, e.g., 3.8 Hz and 77 Hz in the model, 3.6 Hz

and 77.4 Hz in the experiment.

After the transient build-up stage, the vibration

levels in both the simulation and experiment reach

bounded values. This behavior primarily emerges in

response to the increasing presence of the geometric

nonlinear terms. Furthermore, these bounded oscilla-

tions manifest richer frequency content compared to

the build-up stage which is effectively dominated only

by the two unstable frequencies. By way of inspecting

the spectrograms included in Fig. 7, after reaching the

bounded and steady-state oscillations, there appear

frequencies of 70.2 Hz and 84.4 Hz in the experiment

while 67 Hz and 85.4 Hz components are found in the

simulation. At the time instant of around 58 s, the

simulated displacement at the beam tip reaches 5 cm

(Fig. 8b), after which the nonlinearity starts to take

effect (see Fig. 6b). This is consistent with the

evidence provided by the spectrogram (Fig. 7a),

where the additional frequencies appear

Fig. 7 The comparison between a the nonlinear model and b experiment in terms of accelerations in two transverse directions (upper

row) and the spectrograms of €w (lower row) at the location of 27 cm from beam root at the rotational speed of 259 rad/s (within

unstable speed region) with a two-bladed propeller
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approximately after 58 s. These dynamic characteris-

tics show a good agreement between the model and

experiment.

The predicted vibration behavior between 0 and

150 s is visualized in Fig. 8. It can be seen that the

vibration response of the system resembles that of the

first forward whirl vibration pattern within which the

beam’s modal activity is close to the first bending.

This is also consistent with the findings in the previous

linear study [28] which showed that the first forward

whirling mode, within which the beam vibration

features the first bending pattern, is unstable. How-

ever, contrary to the linear cases, the nonlinear system

realizations presented here reach and remain in the

bounded oscillation regime.

The differences between the experiment and model

include: (1) the transient vibration build-up rate in the

initial stage is different, i.e., the acceleration increases

faster in the experiment than the model; (2) when

reaching the steady-state and bounded oscillation

regime, the acceleration magnitudes in the experiment

and model are notably different, i.e., approximately

200 m/s2 in the model and about 750 m/s2 in the

experiment; (3) after reaching the bounded oscilla-

tions, the additional frequency content in the exper-

iment and model is not exactly the same. These

differences imply that the underlying nonlinear

dynamics of the system may be more complicated

due to other unaccounted factors, e.g., material and

interface nonlinearity of the beam, the in-air induced

aerodynamics in the experiment and other types of

damping since only Kelvin–Voigt type beam damping

is considered. Despite these differences, the model

demonstrates sufficient correspondence with the

experiment, and it helps to elucidate the phenomena

encountered after entering the zones of linear

instability.

7 Discussion

7.1 Methods of constraint application

In this paper, the Udwadia-Kalaba method is used in

the time-domain simulations to satisfy the constraints.

Other methods that can be applied include Lagrange

multiplier method [20] and large artificial springs.

However, Lagrange multiplier method will increase

the number of solved unknown functions, thereby

increasing computational effort. In addition, its appli-

cation will lead to a system of differential–algebraic

equations that are subject to the numerical issues such

as drift [42]. Some methods were proposed to address

these problems, e.g., [43], but long simulation time

Fig. 8 The vibration behavior of the system at the rotational speed of 259 rad/s during the first 150 s calculated by the nonlinear model.

a Perspective view, b Top view. Green dots represent the trajectory of the propeller hub. The rotation of the propeller is clockwise when
viewing in ? z direction
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still poses challenge. Large artificial springs are used

in the linearized model and the frequency domain

simulation to satisfy the constraints. This method is

particularly suitable for frequency domain analyses

but it can generate high-frequency oscillation in the

time domain and thus results in the reduced step size

and more demand on computational time. Udwadia-

Kalaba method addresses these disadvantages, e.g., it

does not increase the dynamic order of the system or

generate differential-algebraic equation; it does not

require particularly reduced step size, so the simula-

tions are generally significantly faster. Further, in

combination with the constraint drift correction

method in [35], the long-time simulations are no

longer a problem. The example from Figs. 7 to 8 is

further expanded in Fig. 9, in which the first derivative

and inextensibility constraint at the beam tip are

illustrated. It can be seen that with the drift correction

using Eq. (33), the inextensibility constraint Eq. (7)

fluctuates around zero, so the constraint is always

approximately satisfied and the stable progression of

the calculation is ensured. The drawback is that the

correction terms have no physical meaning and result

in high-frequency oscillation in the first and second

derivatives of the state variables.

7.2 Influence of nonlinearity order

The previous simulation is conducted using the

nonlinear model with the 5th order approximations.

The comparison of the displacements calculated using

the 5th order and 3rd order models is performed in

Fig. 10. The 3rd order model is derived by ignoring all

the higher terms than the 3rd order in the original 5th

order model. It can be seen that there is a slight

difference in the vibration frequency calculated using

these different nonlinearity orders, so as to cause the

varying phase difference in their results. There is also

a slight difference in the vibration magnitudes, e.g., in

the region of increasing vibration magnitudes

(50–70 s) and in the region of the bounded oscillations

([ 75 s). The difference in their results can be

considered acceptable when the 3rd order model

offers reduced analytical complexity or calculational

time compared to the original 5th order model.

7.3 Emergence of instability

With more than two blades, the rotating propeller does

not introduce the time-varying characteristics into the

system, and the moments of inertia about the two in-

plane axes are the same. In this case, the classical Reed’s

model [3] and Johnson’s model [44] with the time-

invariant moments of inertia can be used. However, the

two-bladed propeller is a special case, where its rotation

introduces both the time-varying characteristics and

gyroscopic effects into the system. Consequently, a self-

excited instability can emerge even in the case of

isotropic rotor. Furthermore, owing to its mathematical

structure, the analytical treatment of this case is different.

Fundamentally speaking, the structural/mechanical

instability studied in this paper is a self-excited

instability, similar to the ‘ground resonance’ in the

helicopter field. The principle in the studied case is

that given an initial perturbation, the propeller gener-

ates the periodic moments with the frequency of twice

the rotational speed in the propeller’s pitch and yaw

directions (i.e., propeller in-plane axes), which then

excite the bending vibrations of the supporting beam.

In return, the bending of the beam excites further the

pitch and yaw motion of the propeller. In the specific

propeller speed range where the natural frequencies of

the beam-propeller system satisfy a specific relation-

ship with the rotational speed, the vibration of the

propeller exacerbates that of the beam and vice versa.

In the linear setting, this interaction makes the system

vibration amplitudes grow without bounds, thus

leading to instability. The energy in this case is

extracted from the motor (or rotation). This phe-

nomenon is different from whirl flutter which, in

Fig. 9 The first derivative and inextensibility constraint at the

beam tip at the rotational speed of 259 rad/s with a two-bladed

propeller
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effect, is an aeroelastic instability where the energy is

extracted from the airstream through the motion of the

structure and the role of the oscillatory aerodynamic

forces along with the gyroscopic effects is crucial. On

the one hand, while the in-air aerodynamic influences

were inevitably part of the present study too, their

impact on the qualitative attributes of the instability

phenomenon studied here were shown to be minor. On

the other hand, the absence of perfect in-vacuo

conditions is seen as one of the main sources of the

observed quantitative discrepancies, e.g., in terms of

the achieved response amplitudes and the exact

positioning of the instability boundaries.

This study is focused on a propeller with isotropic

characteristics and the conclusions are drawn on this

basis. While not within the scope of this paper, an

anisotropic propeller may lead to instability even with

more than two blades [12, 40].

7.4 Further model improvement

In the nonlinear modeling, the only nonlinearity that is

taken into account is the geometric nonlinearity.

Based on the observation in the experiment that the

beam was prone to break at the root when operating in

the unstable speed region, it can be speculated that the

material was working in the plastic deformation region

where the material nonlinearity needs to be considered

as well. The discrepancy between the model and

experiment can be partly ascribed to the absence of the

material nonlinearity. To take into account the mate-

rial nonlinearity, the linear strain–stress relationship

Fig. 10 The comparison of the displacements at the beam tip calculated using a 3rd order model and 5th order model at the rotational

speed of 259 rad/s with a two-bladed propeller
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can be replaced by a nonlinear one, e.g., Ludwick or

modified Ludwick relation in [45–47].

All the experiments were carried out in air with no

imposed airflow. Although the influence of the aero-

dynamics on the frequencies was shown to be minor,

this factor was found to influence primarily the

unstable speed region. The aerodynamic loads may

have an important influence on the nonlinear response

of the system when the rotational speed of the

propeller is high or where the system responses

become significant. This effect was not considered in

this paper since our main focus was on the structural

dynamics and induced interactions.

The intention behind developing this test rig and its

nonlinear model is to study the whirl flutter phe-

nomenon which is a classical aeroelastic instability

typically associated with tiltrotor or propeller-driven

aircraft. When the aerodynamics is considered and the

imposed airflow speed reaches a certain critical value,

the system will lose stability [48]. However, in these

practical conditions, the vibration magnitude will be

constrained by the effect of the system nonlinearity

and the system is expected to enter a limit-cycle/

bounded oscillation regime. Therefore, this nonlinear

model will be used further to study the nonlinear

dynamics in future research.

8 Conclusion

To study the interactional dynamics of rotating propellers

with different numbers of blades mounted on elastic

supports, a rotor rig is proposed,which consists of a beam,

a motor assembly, and a propeller. The corresponding

nonlinear model consisting of a nonlinear inextensible

beam, a motor assembly and a rotating propeller is

developed, in which the dynamic constraints are satisfied

using the Udwadia-Kalaba method. Simulations in the

frequency domain, using the linearized model, and the

time domain, using the nonlinear model, are conducted.

The key conclusions are summarized as follows:

(1) Two-bladed propeller introduces time-varying

characteristics into the system due to the time-

varying moments of inertia, while the system is

time-invariant for propellers with more than two

blades.

(2) With two blades, as observed in the frequency-

speed diagrams, there are frequency splits

originating from the non-rotating condition with

increasing rotational speed. The frequency differ-

ence between the frequency splits in one pair is

approximately twice the rotational speed. In the

cases ofmore than two blades, from the pairs of the

coalescent frequencies in the symmetric non-

rotating case, one frequency increases and the

other decreases with increasing rotational speed. In

this case, there is no specific relationship between

the frequency difference and the rotational speed.

(3) With asymmetric support, the frequency splits in

one modal pair do not originate from the same

frequency in the non-rotating condition in the

case of two-bladed propeller, and there is stronger

coupling between the frequency loci (e.g., veer-

ing). Thewhirling trajectories in themode shapes

are elliptically shaped rather than the circles

observed in the case of symmetric support.

(4) There is a structural instability found due to the

frequency lock-in phenomenonwhen a two-bladed

propeller configuration is considered. However,

there is no comparable instability identified when

more than two-bladed propeller is considered.

(5) The static equilibrium deformation using the

nonlinear model is calculated and validated

against the experiment. The beam starts to

exhibit nonlinearity when the beam tip displace-

ment reaches 5 cm.

(6) In the stable speed range, the receptances

calculated using the nonlinear model and lin-

earized model do not show notable differences.

This indicates that using the linearized model to

approximate the nonlinear system response in

the stable speed region is acceptable.

(7) In the unstable speed range with the two-bladed

propeller, the nonlinear model is consistent with

the experiment in terms of the unstable frequen-

cies and the overall qualitative behavior pri-

marily manifested in terms of the reached

steady-state bounded oscillations. Further, in

both cases, the system vibration in the unsta-

ble speed range features the forward whirling

pattern, in which the vibration of the beam is

close to the first bending mode shape.

Further study will be focused on the influence of

aerodynamics and the nonlinearity on the dynamic

characteristics of the coupled flexible structure-rotor

system.
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Appendix A

Detailed expressions

M2 ¼

maþmp 0 0 �mpzpc cosha sinua �mpzpc sinha cosua

0 maþmp 0 mpzpc cosha cosua �mpzpc sinha sinua

0 0 maþmp 0 mpzpc cosha

�mpzpc cosha sinua mpzpc cosha cosua 0
Ia cos

2 haþmpz
2
pc cos

2 ha

þIpy cos
2 haþ Ipz sin

2 ha
Ipxy cosha

�mpzpc sinha cosua �mpzpc sinha sinua mpzpc cosha Ipxy cosha Iaþmpz
2
pcþ Ipx

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

bnlðqbÞ ¼

oUbNL

oqTu
oUbNL

oqTw
oUbNL

oqTv

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

; cnlðqb; _qbÞ ¼

oDbNL

o _qTu
oDbNL

o _qTw
oDbNL

o _qTv

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

;
oUbNL

oqTu
¼ 0Nu�1;

oDbNL

o _qTu
¼ 0Nu�1

oUbNL

oqTw
¼ 1

2
EI2

Z L

0

2w0v0v00W00 þ 2w00v0v00W0 þ 2w00w02W00 þ 2w002w0W0 þ 2w00w04W00 þ 4w002w03W0þ
2w00w02v02W00 þ 2w002w0v02W0 þ 2w0v03v00W00 þ 2w00v03v00W0 þ 2w03v0v00W00þ
6w00w02v0v00W0 þ 2w0v02v002W0

0

B

@

1

C

A

ds

oUbNL

oqTv
¼ 1

2
EI1

Z L

0

2v00v02V00 þ 2v0v002V0 þ 2v00v04V00 þ 4v
002v03V0

� �

ds

þ 1

2
EI2

Z L

0

2w00w0v00V0 þ 2w00w0v0V00 þ 2w002w02v0V0 þ 6w00w0v02v00V0 þ 2w00w0v03V00 þ 2w00w03v00V0

þ 2w00w03v0V00 þ 2w02v0v002V0 þ 2w02v02v00V00

 !

ds;
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oDbNL

o _qw
T
¼ 1

2
EI2

Z L

0

2w02 _w00W00 þ 2 _v00v0w0W00 þ 2v00v0 _w00W0 þ 2v00v0 _w0W00 þ 2w00w0 _w00W0 þ 2w00w0 _w0W00

þ 2 _v0v00w0W00 þ 2w04 _w00W00 þ 4v0w0v00w00 _w0W0 þ 2 _v0v00w03W00 þ 4v00v0w02 _w00W0 þ 4v00v0w02 _w0W00

þ 2w00w0v02 _w00W0 þ 2w00w0v02 _w0W00 þ 2 _v00v00w0v02W0 þ 2 _v00w00v0w02W0 þ 2v02w02 _w00W00

þ 6 _v0v00w0v02W00 þ 2 _v0w00v0w02W00 þ 2 _v0v00w00w02W0 þ 2v002v02 _w0W0 þ 2w002w02 _w0W0 þ 2 _v0v002v0w0W0

þ 2 _v00v0w03W00 þ 2 _v00w0v03W00 þ 2v00v03 _w00W0 þ 2v00v03 _w0W00 þ 4w00w03 _w00W0 þ 4w00w03 _w0W00

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

ds

oDbNL

o _qTv
¼ 1

2
EI1

Z L

0

2 _v00v02V00 þ 2v00v0 _v0V00 þ 2 _v00v00v0V0 þ 2 _v00v04V00 þ 2v002v02 _v0V0 þ 4v00v03 _v0V00 þ 4 _v00v00v03V0� �

ds

þ 1

2
EI2

Z L

0

2v0w0 _w00V00 þ 2v00w0 _w00V0 þ 2v00w03 _w00V0 þ 2v0w03 _w00V00 þ 2v03w0 _w00V00 þ 2v002w02 _v0V0

þ 2v02w02 _v00V00 þ 2 _w0v00v02w0V00 þ 2 _w0v00v0w02V00 þ 2 _w0v002v0w0V0 þ 6v00v02w0 _w00V0

þ 2w00v0w02 _w00V0 þ 2v00v0w02 _v00V0 þ 2v00v0w02 _v0V00 þ 2 _w0v00w00w02V0

0

B

B

@

1

C

C

A

ds

gnlðqmp; _qmpÞ ¼

�mpzpc cos ha _h
2
a cosua � 2 sin ha _ha sinua _ua þ cos ha cosua _u

2
a

� �

mpzpc � cos ha _h
2
a sinua � 2 sin ha _ha cosua _ua � cos ha sinua _u

2
a

� �

�mpzpc sin ha _h
2
a

� 2 sin ha cos ha _haIa _ua þ mp

zpc _ua sin ha sinua
_ha � _uazpc cos ha cosua _ua � _wazpc _ha sin ha cosua

� _wazpc _ua cos ha sinua � 2z2pc cos ha sin ha
_ha _ua

0

@

1

A

� 2Ipy _ua
_ha cos ha sin ha þ Ipz _ua

_ha cos ha sin ha þ Ipz _ua sin ha þ Xð Þ cos ha _ha � Ipxy _h
2
a sin ha

� mp _wazpc � _ha cosua sin ha � _ua cos ha sinua

� �

� _uazpc � _ha sin ha sinua þ _ua cos ha cosua

� �� �

mp

� _uazpc _ha cos ha cosua þ zpc _ua sin ha sinua _ua � _wazpc _ha cos ha sinua

� _wazpc _ua sin ha cosua � _vazpc _ha sin ha

0

@

1

A

� mp

� z2pc _u
2
a sin ha cos ha � _uazpc _ha cos ha cosua � _ua sin ha sinua

� �

þ _wazpc � cos ha _ha sinua � sin ha cosua _ua

� �

� _vazpc sin ha _ha

0

B

@

1

C

A

� Ipxy _ua sin ha _ha
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2
a cos ha sin ha þ Ipy _u

2
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fextðqmpÞ ¼ 01�ðNuþNwþNvÞ mpgþ mag 0 0 �mpgzpc sinua cos ha �mpgzpc sin ha cosua

� �T

þ Fim 01�Nu
WTðzextÞ cos c VTðzextÞ sin c 01�5

� �T

A ¼ oU
oqnl

¼

UðLÞT 0 0 �1 0 0 �0:5La sinua cos ha �0:5La cosua sin ha
0 WðLÞT 0 0 �1 0 0:5La cosua cos ha �0:5La sinua sin ha
0 0 VðLÞT 0 0 �1 0 0:5La cos ha

0
ouðLÞ
oqw

ouðLÞ
oqv

0 0 0 �1 0

0 0
ohðLÞ
oqv

0 0 0 0 �1
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oqu
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0 0 0 0 0
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bv ¼ � _qTnl
o2U
oq2nl

_qnl � 2
o2U
oqnlot

_qnl �
o2U
ot2

¼

0:5La _h2a cos ha cosua � 2 _ha _ua sin ha sinua þ _u2
a cos ha cosua

h i

0:5La _u2
a sinua cos ha þ 2 _ha _ua cosua sin ha þ _h2a sinua cos ha

h i

0:5La _h
2
a sin ha

�w0ðLÞ _w0ðLÞ2 � w0ðLÞ _v0ðLÞ2 � 2v0ðLÞ _v0ðLÞ _w0ðLÞ � 4:5v0ðLÞ2 _v0ðLÞ2w0ðLÞ � 3v0ðLÞ3 _v0ðLÞ _w0ðLÞ

�1:5w0ðLÞ _w0ðLÞ2v0ðLÞ2 � 1:5w0ðLÞ _w0ðLÞv0ðLÞ _v0ðLÞ � 1:5w0ðLÞ2 _w0ðLÞv0ðLÞ _v0ðLÞ � 0:5w0ðLÞ3 _v0ðLÞ2
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;

where

ouðLÞ
oqw

¼ 1þ 0:5w0ðLÞ2 þ 0:5v0ðLÞ2 þ 3

8
v0ðLÞ4 þ 3

4
w0ðLÞ2v0ðLÞ2 þ 3

8
w0ðLÞ4

	 


W0ðLÞ

ouðLÞ
oqv

¼ v0ðLÞw0ðLÞ þ 1:5v0ðLÞ3w0ðLÞ þ 0:5w0ðLÞ3v0ðLÞ
h i

V0ðLÞ
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oqv
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8
v0ðLÞ4
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oUb
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0
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