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Abstract This work focuses on the modeling of
contact between sheaves and flexible axially mov-
ing beams. A two-dimensional beam finite element is
employed, based on the absolute nodal coordinate for-
mulation (ANCF) with an improved selective reduced
integration for the virtual work of elastic and viscous
damping forces. For the efficient modeling of contact
between flexible axially moving beams and sheaves in
systems such as belt-drives or reeving systems, a num-
ber of newly developed algorithms is presented. The
computation of normal contact is based on a penalty
formulation using a spring-damper model, while for
the efficient contact detection a bounding boxwhichfits
the exact dimensions of the finite elements is employed.
For the detection and computation of contact, the beam
elements are divided into linear segments. The model-
ing of tangential contact is based on a bristle model for
friction extended for being compatible with an implicit
time integration. A numerical example of a belt drive
showed good convergence and agreement with analyt-
ical solutions.
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1 Introduction

Mechanical systems including contact between highly
slender beams and circular objects are met in ropeway
systems [1–3] cranes and elevators [4,5], belt drives and
conveyor belts [6]. Computing the normal and tangen-
tial contact between circular objects and axiallymoving
beams under large deformations is not straightforward.
As stiffness may be high, the formulation should be
compatible with an implicit time integrator. Especially
in the case that we aim to solve industrial-scale prob-
lems or to perform an optimization through parameter
variations the need to save simulation time becomes
stronger which leads us to a coarser mesh refinement.
To meet these goals, we focus on a segment method,
which allows coarse space-wise discretization and an
implicit integration which can cope with large time
steps.

Various contact detection algorithms for rods under-
going large deformations exist in the literature often
focusing on beam to beam contact. A pioneer work
on beam to beam contact modeling was the one of
Wriggers and Zavarise [7] which has introduced the
so-called point-to-point formulation modeling the con-
tact force as a point force at the closest point between
two curves. Other approaches, e.g. [8], are using the
line-to-line modeling which assumes distributed con-
tact forces and is most commonly based on the mortar
element method, [9]. A few works on beam to beam
contact are using Gauss-points-to-segment modeling,
e.g. [10]. Likewise, works on modeling the contact
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between flexible ropes and circular objects often use
a point-wise contact modeling using points along the
beam with respect to which they define the relative
position of circle and rope, the indentation and they
use them to apply the contact forces, e.g., [5,11–13].
The present work introduces an algorithm for tracking
the circle’s and rope’s relative position which is based
on linear segments to subdivide the beam’s geometry
which is modeled by third order polynomials. A simi-
lar algorithm was used in [14] where a flexible belt is
discretized by 4-node shell linear elements. The pro-
posed algorithm overcomes the limitation of methods
based on the use of integration points to detect the con-
tact with a circle if it lies on the interval between two
nodes.

Existing literature for modeling contact forces is
based on continuous approaches either using a continu-
ous force model [5,15–18], or the unilateral constraint
methodology. The latter is based on the linear com-
plementary problem [19–21] or the differential varia-
tional inequality [22]. The continuous force model or
penalty method has widely been used in the literature
either using linear spring elements [11,12], or nonlin-
ear spring elements [5]. In the current work, the penalty
method is preferred as it is compatible to an existing
multibody code and because for soft materials such as
belts, the contact stiffness is no limiting factor.

For modeling the tangential contact force, many
works, e.g. [11,12,17,18], are using a regularization
of the Coulomb friction law that gives a continuous
tangential force, denoted as tri-linear Coulomb friction
law or creep-rate-dependent friction, as introduced by
Rooney and Deravi [23]. A variation of this model is
used in [13]. A work on contact modeling in reeving
systems, [5], employs a bristle friction model which
tracks the slip and stick regions on the contact region
and updates the tangential contact force accordingly.
This model is originally proposed for control-systems
applications [24], see also review paper [25]. In the
present work, a bristle friction model has been signif-
icantly extended for being compatible with the use of
linear segments and an implicit time integration.

For the numerical modeling of beams undergoing
large deformations in contact with circular objects,
many researchers have used the Absolute Nodal Coor-
dinate Formulation (ANCF), e.g., [13]. Kerkkänen et
al. [12] showed how an ANCF beam model is suit-
able for modeling belt-drives, while Dufva et al. [11]
explored the effect of bending stiffness in the beam

model when modeling structures that include contact
of pulleys and beams. The ANCF beam model used
in the current work is based on an extension for the
original ANCF element [26], inferred using corrected
expressions for the strain energy and bending moment
relations.

The novelty of the present work can be summarized
by an improved implementation of ANCF elements
with a selective reduced integration, a contact mod-
eling which uses linear segments for dividing higher
order interpolation functions, the use of a bounding box
which allows effective contact detection and a bristle
model with history variables which tracks accurately
the stick and slip zones and reproduces the solution
from classical belt theory.

2 Methods

2.1 ANCF beam framework

For the numerical modeling of the beam, we are using
the ANCF beam element in the extended version of
Ref. [26] with slight improvements as shown in the
following. An element with nodes N j1 and N j2 is
described by the generalized element coordinates, q =[
q( j1)T q( j2)T

]T
, in which each node N j is related with

4 generalized coordinates, q( j)T = [
rT |N j r

′T |N j

]T
,

containing the position vector of the two nodes and
their spatial derivatives, r′. Throughout this paper, the
abbreviation ()′ = ∂()

∂ x̄ is used.
The geometry of an ANCF beam element with ref-

erence length L is defined with the use of the local
coordinate x̄ ∈ [0, L] as
r(x̄, t) = S(x̄)q(t) and r′(x̄, t) = S′(x̄)q(t) ,

(1)

in which S is the matrix of the shape functions defined
as

S(x̄) = [ S1(x̄) I S2(x̄) I S3(x̄) I S4(x̄) I ] . (2)

The shape functions used are the third-order polyno-
mials above

S1(x̄) = 1 − 3
x̄2

L2 + 2
x̄3

L3 , S2(x̄) = x̄ − 2
x̄2

L
+ x̄3

L2 ,

S3(x̄) = 3
x̄2

L2 − 2
x̄3

L3 , S4(x̄) = − x̄2

L
+ x̄3

L2 , (3)

which guarantee C2 continuity for the elements. For
the derivation of the equations of motion, we are using
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Table 1 Implemented integration rules in Exudyn

Integration scheme Axial strain Bending

a 5-points GL 3-points GL

b 4-points GL 2-points GL

c 3-points LO 2-points GL

Lagrange kinematics and the virtual work of applied,
elastic and visco-elastic forces. The virtual work of
elastic forces is derived following the definition of the
axial strain and curvature proposed in [27]. The virtual
work of elastic forces is derived using the axial strain
ε = ‖r′‖ − 1 and the material measure of curvature
K = r′×r′′

‖r′‖2 , in which r′ × r′′ is the cross product of
planar vectors as defined in [26]. The virtual work of
elastic forces reads

δWe = δWea + δWeb =
∫ L

0
(E A (ε − ε0)δε dx̄

+
∫ L

0
E I (K − K0)δK dx̄ , (4)

in which δWea and δWeb are the virtual works of axial
and bending forces, while δε and δK are the variations
of ε and K , E is the Young’s modulus, E A the axial
rigidity for a cross section A and E I the flexural rigidity
for second moment of area I .

The elastic forces are integrated numerically using
selective reduced integration based on Gauss quadra-
ture numerical integration rules. Thus, the integrals for
δWea and δWeb are computed separately allowing an
effective combination of twoGauss quadrature integra-
tion rules. The implemented integration schemes, that
is the combined integration rules for the virtual works
of axial and bending forces,make use of theGauss Leg-
endre (GL) andGauss Lobatto (LO) integration rules as
shown in Table 1. These three integration schemes are
available in the multibody dynamics simulation code
Exudyn1 which is used for implementing the numeri-
cal example performed in Sect. 4.

Integration points and weights for the afore-
mentioned integration rules can be found in [28]. If
we denote by (A), the Gauss quadrature rules used for
δWea and by (B) the ones used for δWeb, and m, n are
the numbers of integration points used for δWea and

1 https://github.com/jgerstmayr/EXUDYN.

δWeb, respectively, we can rewrite (4) as

δWe = L

2

m∑
i=1

w
(Am )
i E A

(
ε(x (Am )

i ) − ε0

)
δε(x (Am )

i )

+ L

2

n∑
i=1

w
(Bn)
i E I

(
K (x (Bn)

i ) − K0

)
δK (x (Bn)

i ) ,

(5)

in which xi and wi are the integration points and
weights, respectively. For example, ε(x (Am )

i ) is the
axial strain at the integration point i of (Am) integration
rule.

In previous works employing the above-described
ANCF beam element, [26] the integration schemes a
and b, see Table 1, had been considered. For the inves-
tigations performed in this paper, the newly introduced
scheme c is selected. This scheme resolves the problem
of oscillations occurring in the axial strain and requires
less computational efforts. The improvement of this
integration scheme follows from the fact that axial and
bending strain terms are evaluated at completely dis-
jointed locations. In specific, the axial strain terms are
evaluated at 0, L

2 and L , while the bending terms at
L
2 ± L

2

√
1
3 . This allows axial strains to freely follow

the bending terms at L
2 ± L

2

√
1
3 , while the axial strains

are almost independent from bending terms at 0, L
2

and L . However, note that the numerical integration is
highly reduced in this case which might cause spurious
modes in some applications, [29].

For the virtual work of viscous damping forces, we
are using the approach of [27],

δWve =
∫ L

0
dε ε̇ δε dx̄ +

∫ L

0
dK K̇ δK dx̄ , (6)

with the damping parameters dε and dK . The time
derivatives ε̇ and K̇ read

ε̇ = ∂

∂t

(‖r′‖ − 1
) = r′T ∂

∂t r
′

‖r′‖ = 1

‖r′‖r
′TS′q̇ (7)

and

K̇ = ∂

∂t

(
r′ × r′′

‖r′‖2
)

= 1

(r′T r′)2
(
(r′T r′)

(
(S′q̇) × r′′ + (S′′q̇) × r′)

− (
r′ × r′′) (2r′T (S′q̇))

)
. (8)

The virtual work of the viscous damping forces in (6)
is integrated according to (5).
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2.2 Normal force model

For modeling the normal contact force, we are using
the model of Lankarani and Nikravesh [30]:

fn = kc g
n + dc vn , (9)

in which g represents the gap between the beam ele-
ment and vn is the normal relative velocity. The expo-
nent n in the first term originally comes from the Hertz
contact law and is related with the geometry and the
material of the contacting surfaces, [23]. For the case
of our belt drive where contact occurs between a flat
belt and cylinders, we use n = 1 throughout in our
implementation. In the second term, dc is a function of
g (dc ∝ gn) which makes the second term nonlinear,
[30]. Although this model is proven to be suitable for
contact force models, for the contact models we exam-
ine where the normal relative velocity is very small we
use a constant dc, as a simplification.

The algorithm for defining g and vn is described in
the following section.

2.3 Contact geometry and kinematics

Bounding box for ANCF A boxed search algorithm is
used in order to improve the performance. This boxed
search specifies which beam elements are potential
candidates for having contact with the circular objects
based on their relative location.

The proposed boxed search algorithm is based on
the use of a bounding box the dimensions of which fit
exactly the beam finite elements.

Since the shape functions defined in (3) are third-
order polynomials (1) can be rewritten as

r =
[
rx
ry

]
=

[
a0 + a1 x̄ + a2 x̄2 + a3 x̄3

b0 + b1 x̄ + b2 x̄2 + b3 x̄3

]
(10)

with a0, a1,... and b0, b1,... being constants for the
bounding box calculation. The coordinates of the i th

boundingboxare
(
rx,min,i , ry,min,i

)
,
(
rx,max,i , ry,max,i

)
see Fig. 1, in which

rx,min,i = min{rx : x̄ ∈ [0, L]} ,

rx,max,i = max{rx : x̄ ∈ [0, L]} , (11)

and ry,min,i , ry,max,i accordingly defined. For finding
the extrema of rx , we compute its derivative,

r ′
x = a1 + 2a2 x̄ + 3a3 x̄

2 , (12)

and by setting r ′
x equal to 0 and we get the two roots

x̄1 and x̄2. Hence,

rx,max,i = max{rx (x̄1), rx (x̄2), rx (0), rx (L)} ,

rx,min,i = min{rx (x̄1), rx (x̄2), rx (0), rx (L)} . (13)

If x̄1 or x̄2 /∈ [0, L], we exclude the according rx (x̄1,2)
from (13). The y-coordinates of the bounding box are
computed likewise, using (11)–(13) for ry .
Detailed searchFor computing the relative position of a
beamelementwith a circular object, cubic interpolation
functions for the beam are subdivided using ns linear
segments, see Fig. 2b. Then, we examine the relative
position of the center Ci of the circle, located in pci ,
and the linear segment si , lying between pi and pi+1

of a beam element, see Fig. 2a.
Using the vectors vs = pi+1−pi and vp = pci −pi ,

the projection of vector vp on vs is defined as,

projvsvp = vTp vs

|vs |2
vs = ρvs (14)

Fig. 1 The dimensions of
the bounding box are fitting
exactly the beam elements
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Fig. 2 a Computation of
closest point, P, of a linear
segment, si , and a circular
object, b beam element
divided into linear
segments, normalized
distance, n, and
perpendicular normalized
vector, t

(a) (b)

in which we used the substitution ρ = vTp vs
|vs |2 .

We distinguish three cases with respect to ρ:

1. if ρ <= 0 the closest point is pi , with distance
d = ∣∣pci − pi

∣∣
2. if ρ >= 1 the closest point is pi+1, with distance

d = ∣∣pci − pi+1
∣∣

3. if 0 < ρ < 1 the closest point is between pi and
pi+1 and the distance, d, can be computed as

d =
√∣∣vp

∣∣2 − ∣∣projvsvp
∣∣2 =

√∣∣vp
∣∣2 − ρ2 |vs |2 .

(15)

Therefore, the gap between the circle and the segment
used for defining contact and for calculating fn , see
(9), is

g = d − r . (16)

We approximate the velocity of the point P by interpo-
lating linearly the velocities of pi and pi+1 as follows:

ṗp = (1 − ρ) · vi + ρ · vi+1 . (17)

The normal and tangential gap velocity which are used
for the computation of normal and tangential contact
forces are

vn = (
ṗp − ṗm0

)
n (18)

and

vt = (
ṗp − ṗm0

)
t (19)

respectively. In (18) and (19), n denotes the normalized
vector of d, d = pp − pci in which pp the position
vector of P , and t denotes the perpendicular normalized
vector, see Fig. 2.

2.4 Tangential force model

Existing tangential contact models, e.g. [13,17], are
based on a regularized Coulomb friction that makes
use only of a velocity penalty. Such models suffer from
certain limitations as they are not suitable for static
or quasi-static simulations where no relative velocity
exists.

In this section, we describe an extended tangen-
tial model which makes use of a bristle stiffness μk .
The incorporation of this bristle stiffness is inspired by
the LuGre model introduced in [24] which reproduces
spring-like behavior for small relative displacements
during sticking. Similar to the LuGre model, we con-
sider a sticking phase, in which the relative displace-
ment is constrained by a virtual spring. The tangential
force applied in sticking phase reads:

f (lin)
t = μv · vt + μkΔxstick (20)

in which vt was defined in (19), μv is an optional
penalty factor (can be also understood as friction damp-
ing) andΔxstick is the displacement of the contact point
while sticking, see Fig. 3.

When ‖ f (lin)
t ‖ > μ · ‖ fn‖, withμ being the friction

coefficient, the friction spring breaks and the tangen-
tial force is modeled according to Coulomb friction.
The resulting tangential model can be summarized as
follows

ft =
{
f (lin)
t , if ‖ f (lin)

t ‖ ≤ μ · ‖ fn‖
μ · ‖ fn‖ · sign(Δxstick), else .

(21)

Although a bristle friction model was already pro-
posed for modeling the contact in reeving systems [5],
the model introduced in the present work is signifi-
cantly different. First, for computing Δxstick we make
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Fig. 3 Contact stiffness visualized with a spring

use of a set of history variables. In this way, we avoid
the introduction of an additional dynamic parameter
for the deflection of the bristles, [24]. Furthermore, the
proposed model has been extended from a point-to-
circle contact to a segment-to-circle contact. Finally, it
has been adjusted for being compatible with an implicit
time integration.
Calculation of relative displacement during sticking
Assuming, a material point P on a segment si of a beam
element being in contact with the circle, see Fig. 4, we
want to track the relative position of P and circle’s local
frame. The reference position of P on the segment is
xs,p = ρLseg , in which ρ is the one defined in 2.3,
with Lseg being the segment’s length. For defining the
relative position of P to the circle, we use the arc length

xc,p = α r . (22)

Therefore, we have no relative motion if:

xs,p + xc,p = constant . (23)

Fig. 4 The current sticking position results from the sum of the
position of P relative to the beginning of the segment and the
circle’s frame

Defining the current sticking position xcur Stick as

xcur Stick = xs,p + xc,p , (24)

thedisplacement of contact pointwhile stickingΔxstick
reads:

Δx∗
stick = xcur Stick − xstickRe f ,

and for xc,p ∈ [−πr, πr ]

Δxstick = Δx∗
stick − floor

(
Δx∗

stick

2π · r + 1

2

)
· 2π · r ,

(25)

in which the function floor() is a standardized version
of rounding, available in C and Python programming
languages. In (25), xstickRe f is equal to xcur Stick when
sticking first starts, see Fig. 3, and can be thought as
the reference length of the virtual spring which con-
strains the tangential motion. The algorithm for updat-
ing xcur Stick and xstickRe f is described in the next para-
graph.Note that the vertical offset from the beams’ cen-
treline (resulting by the nonzero width of the beam), as
well as the axial stretch are not considered in the calcu-
lation of (un-)winding of the segment. While a reduc-
tion in segment length reduces this effect because less
(un-)winding occurs, a more consistent computation
of this effect would require an integration of relative
motion, as stretch slightly influences the local changes
of the relative sticking position.
Post Newton step As mentioned, the implemented tan-
gential model considers two possible states, sticking
and slipping, that lead to different computation for-
mulas for the tangential force. Although the compu-
tation of tangential forces occurs during the Newton
method of the implicit integrator the switching from
the one state to the other is not allowed inside the New-
ton method. Thus, we introduce a Post-Newton step
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(PNS()) which computes a set of data variables:

[xgap, xslip, xstickRe f ] (26)

In this data set xgap = g as defined in (16), and for
xslip, there are three cases:

a. xslip = −2: undefined, used for initialization
b. xslip = 0: sticking
c. xslip = ±1: slipping, sign defines slipping direc-

tion

For initializing this data set, we are using [0,−2, 0].
An error (in N) is calculated during every PNS():

ePNS = enPNS + etPNS (27)

in which enPNS corresponds to the calculation of the
normal contact force and etPNS to the calculation of the
tangential contact force. For computing enPNS , if the gap
of the previous PNS(), xgap,last PNS , had a different sign
as the current gap, set

enPNS = kc · ‖xgap − xgap,last PN S‖ , (28)

while otherwise enPNS = 0. For computing etPNS , if
stick–slip-state of previous PNS(), xslip,last PN S , is dif-
ferent from current xslip, set

etPNS = ‖
(
‖ f (lin)

t ‖ − μ · ‖ fn‖
)

‖ , (29)

while otherwise etPNS = 0.
The PNS(), with all operations performed for every

segment, si , is summarized in Fig. 5.
Contact forces computation in the Newton step The
calculation of contact occurs during Newton iterations,
and it is performed only if the PNS() determined con-
tact in any segment, for efficiency. For a segment si , if
xgap,si ≤ 0, the steps are followed:

1. We compute the contact force, fn , according to (9).
2. If xslip �= 1,

– and if the friction stiffness μk = 0 or if xslip =
−2, we set Δxstick = 0,

– else, we compute the current sticking position,
xcur Stick according to (24) and following the
Δxstick from (25) using as xstickRe f the updated
data variable of the last PNS().

– using the tangential velocity from (19), the tan-
gential force is computed by (20).

3. If xslip = 1, the tangential force is set as

ft = μ · ‖ fn‖ · xslip . (30)

Comparison of proposed tangential contact model and
LuGre model To compare the agreement of the pro-
posed tangential contact model with LuGre model, we
reproduce a numerical example described in [24]. To
briefly describe the experimental set up of this example,
a mass, M = 1 kg, is connected to a spring, of stiffness
K = 2 Nm−1, the tip of which has a constant velocity,
v = 0.1 m s−1. The LuGre model, described in [24], is
characterized by six parameters, the bending stiffness
of the bristle σ0 = 105 Nm−1, the bending damping
of the bristle σ1 = 105/2 N sm−1, the viscous stiffness
σ2 = 0.4 N sm−1, the Coulomb friction level Fc = 1
N, the level of the stiction force Fs = 1.5 N and the
Stribeck velocity vs = 0.001 m s−1.

We reproduce the example with the proposed tan-
gential contact model usingμk = 105 andμv = 105/2.
We set viscous stiffness to zero in both models. We
measure the displacement and the velocity of the mass
as well as the friction force and we compare the results
obtained by the LuGre and the proposed model, see
Figs. 6 and 7. While the LuGre model converges to the
proposed model for increasing bending stiffness of the
bristle, the proposed model manifests its superior per-
formance as it reproduces the expected friction force
without the need for an internal parameter. Note that
in the LuGre model the shifting from sticking to slid-
ing depends on the internal dynamic parameter σ0 and
converges to the level of the stiction force Fs = 1.5 N
for increasing σ0, see Fig. 7.

2.5 Mapping contact forces on the beam elements and
sheaves

Contact forces fi with i ∈ [0, ncs] are applied at the
points pi , and they are computed for every contact seg-
ment. For every contact computation, first all contact
forces at segment points are set to zero. If there is con-
tact in a segment si , e.g., gap state xgap ≤ 0, see Fig. 8,
contact forces fsi are computed per segment,

fsi = fn · nsi + ft · tsi (31)

and added to every force fi , initialized with zero, at
segment points according to

fi := fi + (1 − ρ) · fsi
fi+1 := fi+1 + ρ · fsi (32)

while in case xgap > 0 nothing is added.
Note that for the computation of the normal and tan-
gent vector a second option which defines the normal
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Fig. 5 Flowchart for
PNS(). Returns the set of
data variables
[xgap, xslip, xstickRe f ] and
ePNS
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Fig. 6 Position and velocity of mass M obtained by the original LuGre model and the proposed model

Fig. 7 Friction force obtained by the LuGre model and the proposed model on the left and zoom in the shifting from sticking to slipping
region on the right

Fig. 8 Contact forces applied per segment

as a vector pointing from the center of the circle to the
segment point has been investigated. In case of seg-
ments that are short as compared to the circle radius,
the second option is more consistent and produces tan-
gents only in circumferential direction,which improves
accuracy for coarse meshes. However, the first option,
which uses nsi , tsi , vectors vertical and tangential to
the segment, see Fig. 8, lead to always good approxi-

mations for normal directions, irrespective of short or
extremely long segments as compared to the circle.

The forces fi are then applied to the ANCF cable
element at according segment points. The forces on
the circle are computed as the total sum of all segment
contact forces,

fcircle = −
∑
si

fsi (33)

and additional torques on the circle’s rotation simply
follow from

τcircle = −
∑
si

r · ftsi . (34)

3 Convergence in the static friction-less case

We examine the example of a circle of radius r =
0.35m moving toward a flexible beam of Young’s
modulus E = 2 108 Nm2, length L = 1m, density
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Fig. 9 Quasi-static experiment of circle in contact with beam

ρ = 7800 kg/m3 and cross section A = 10−6 m2, see
Fig. 9. The process is quasi-static. The center of the
sheave is linked to a spring of stiffness k = 1Nm−1

connected to the ground. We apply a lateral force
f = 200N at the center of the circle. In Fig. 10, we plot
the absolute error for the y−coordinate of the position
of the center of the circle and the axial forcemeasured at
the middle of beam. The error is calculated as the abso-
lute difference from a reference solution calculated for
128 elements and 12 linear segments. As the numbers
of elements and linear segments increase, we observe
convergence.

4 Numerical experiment

Description of set-up The presented methods are
applied in the numerical example of a belt drive con-
sisting of an elastic belt and two identical pulleys, P1
and P2, see Fig. 11. Although the overall set up of the
system is similar to [13], some key-parameters have

Fig. 11 Belt drive with two pulleys

been changed for making the system suitable for con-
vergence analysis and capable to reach a steady state
motion. Therefore, we find it necessary to describe the
system here.

The belt is modeled by cubic ANCF elements
described in the previous section. The pulleys are mod-
eled as rigid bodies mounted to the ground through
revolute joints. Dimensions and properties of belt and
pulleys are given in Table 2. The initial as well as the
reference length of the belt centreline is the length that
results from the geometry of the system:

lb = 2 · (r + hb/2) · π + 2 · d = 0.4π ≈ 1.25663m .

(35)

The stress-free length of the belt centreline is chosen as
l̄b = 0.95·lb, resulting in a pre-stretch of εre f = −0.05,
which is added to all finite elements before the static

Fig. 10 Convergence of error for the y-coordinate of the position of the center of the circle, on the left, and for the axial force at the
middle of the length of the beam, on the right
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Table 2 Main parameters
for the belt drive

Parameter Value Units Description

Pulleys

r 0.09995 m Pulleys radius

d 0.1π m Distance between two pulleys

Belt

hb 0.0001 m Belt height

wb 0.08 m Belt width

l̄b 0.38π m Stress-free belt length

lb 0.4π m Initial, deformed belt length

εre f −0.05 – Added reference axial strain of the belt

E A 8000 N Axial stiffness

E I 4
3 · 10−3 Nm2 Bending stiffness

ρ 1036 kg/m3 Beam density

dE A 1 N/ms2 Strain proportional damping

Dynamic simulation

ωP1 12 rad s−1 Angular velocity of driving pulley

dP2 2 Nm/s Angular velocity proportional damping at pulley P2

t0 0.05 s Driving start time

t1 0.60 s Driving end time

tτ0 1.0 s Torque τP2 raised at pulley P2

tτ1 1.5 s Torque τP2 at pulley P2 reaches nominal value

tend 2.45 s Simulation end time

Ip 0.25 kgm2 Moment of inertia of pulleys

g 9.81 m s−2 Gravity (in negative y-direction)

computation for initial conditions and thus, results in a
pre-tension of

f pre = E A · εre f = 400N . (36)

While the reference configuration of all beams is
straight, the initial values are computed from a static
computation, in order to avoid vibrations at the begin-
ning of the dynamic simulation.
Dynamic simulation During the dynamic simulation,
the angular velocity of P1 is prescribed, see Fig. 12. In
order to reach a steady state, a torque is added to P2 in
the time range t = [1, 1.5] seconds:

τP2(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0Nm, if t < 1s

25 (0.5 − 0.5 · cos (2(t − 1)π))Nm

if 1s < t < 1.5s

25Nm else .

(37)

Fig. 12 Angular velocity of P2 for varying number of elements
and comparison with angular velocity of P1

The examplewas simulated in themultibodydynam-
ics code Exudyn [31]. For the time integration, an
implicit second-order time integration method (trape-
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Table 3 Nominal and
reference simulation
parameters

Parameter Value Units Description

Nominal simulation parameters

μ 0.5 – Dry friction coefficient

ne 240 – Number of beam elements

dt 5 · 10−5 s Time step size

kc 4 · 109 N/m3 Normal contact stiffness per area

μk 5 · 109 N/m3 Tangential contact stiffness per area

dc 8 · 104 Ns/m3 Normal contact damping

μv
√
msegμk ≈ 3.22 · 106 Ns/m3 Tangential contact velocity penalty

Reference solution parameters

ne 480 – Number of beam elements

dt 10−5 s Time step size

zoidal rule) is used, similar to Newmark’s method [32],
but without numerical damping and with an index 2
constraint reduction, which allows stable integration of
constraints. The discontinuous iteration for the PNS()
uses a tolerance of 10−3 and amaximumof 5 iterations,
which is not reached in case of smaller time steps. The
belt drive has been computed with different parameter
sets (e.g., different number of elements), starting from
a nominal parameter set as well as a reference param-
eter set, which uses finer space and time discretisation
as compared to the nominal test case, see Table 3.
Results The results’ section is split into three parts:

– results of angular velocities and torques over time,
which reflect the overall behavior of the belt drive,

– results of axial forces and contact stresses over the
belt arc length, sl , see Fig. 11. Note that the quan-
tities shown w.r.t. the belt length are given in terms
of the curve parameter sl, see Fig. 11, and

– comparisons with analytical solutions for the belt
drive.

Results over simulation time The overall behavior of
the belt can be seen in Fig. 12 which shows the angular
velocities of both pulleys, noting that the velocity of P1
is prescribed and thus, it is the same for all variations.
The angular velocity of pulley P1 speeds up at 0.05s,
while due to belt elasticity, slip and inertia effects, the
angular velocity of pulley P2 shows vibrations and a
smaller velocity in steady state. We observe almost no
effects for varying number of elements for over 60 ele-
ments.

Fig. 13 Torque at P1 for varying number of elements and com-
parisonwith torque load at P2 (not including torque due to damp-
ing)

The torque in pulley P1, which is highly influenced
by the torque in pulley P2, is shown in Fig. 13 for
different numbers of elements. Note that there is an
angular velocity-proportional (damping) dP2 acting on
pulley P2 as well. It is also clearly seen that vibrations
in the P2 angular velocity are merely damped out until
t = 1s, while there is an additional drop hereafter due
to torque τP2. Torques in Fig. 13 show some oscillatory
behavior for the coarse discretization with 60 elements.
Results along the belt arc length We compare and
evaluate the axial velocity, the tension, tangential con-
tact stresses, normal contact stresses along the belt arc
length varying the number of finite elements as well as
varying the quantities ncs, μ, kc and μk . In Figs. 14,
15, 16, 17, 18, 19, 20, 21, 22, 23 one can distinguish
four different zones for the belt arc length:
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Fig. 14 Normal contact stresses along the length of the belt for
time t = 2.45 s for varying number of elements

Fig. 15 Axial forces along the length of the belt for time t =
2.45 s for varying number of elements

Fig. 16 Axial velocity along the length of the belt for time t =
2.45 s for varying number of elements

1. sl ∈ [0, 0.314)m: top tight span,
2. sl ∈ [0.314, 0.628)m: contact zone P2,
3. sl ∈ [0.628, 0.942)m: bottom slack span,
4. sl ∈ [0.942, 1.257)m: contact zone P1.

Fig. 17 Tangential contact stresses along the length of the belt
for time t = 2.45 s for varying number of elements

Figures 14, 15, 16, 17 show the convergence of the
proposed contact algorithms w.r.t. number of elements.
This number significantly influences the axial veloc-
ity, see Fig. 16, and the tangential contact stresses, see
Fig. 17. Compared to that, the normal contact stresses
only show oscillations for 60 elements, see Fig. 14,
and only minor influences of the number of elements
are seen in Fig. 15.

We evaluate the influence of the normal contact stiff-
ness kc (which is coupled to normal contact damping,
dc), the tangential contact stiffness μk , the number of
segments ns and the friction coefficientμ for otherwise
nominal parameters as shown in Figs. 18, 19, 20, 21.
We observe that increasing the number of linear seg-
ments from 4 to 8 has almost no effect. However, using
fewer segments would worsen the geometric approxi-
mation of the circle for small number of finite elements
and was therefore avoided. In Fig. 19, the friction coef-
ficient shows a high influence on the exponential force
drop in the contact slipping zones of the pulleys as
known from the belt drive theory.

In Fig. 22, we plot the axial forces at t = 1 s for
the different integration schemes explained in 2.1. We
observe oscillatory behavior for integration schemes
a and b, while the solution obtained using integration
scheme c is much smoother in all regions of belt drive.
Comparisonwith analytical solutionFor comparing the
numerical results with available analytical values, we
use the solution at time t = 2.45 s, at which the system
has reached the steady state as shown in Fig. 23. As
known, from classic belt drive literature [33], if F1 is
the axial force on the tight side and F2 is the axial force
on the slack side, see Table 4, the drop of span forces
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Fig. 18 Normal contact
stresses along the length of
the belt for time t = 2.45 s
for varying parameters

Fig. 19 Axial forces along
the length of the belt for
time t = 2.45 s for varying
parameters
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Fig. 20 Axial velocity
along the length of the belt
for time t = 2.45 s for
varying parameters

Fig. 21 Tangential contact
stresses along the length of
the belt for time t = 2.45 s
for varying parameters
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Fig. 22 Beam axial forces along the length of the belt for time
t = 1 s and 60 elements for different integration schemes

Fig. 23 Axial forces along the length of the belt for various time
instants

Table 4 Approximated numerical values at t = 2.45 s for over-
all validation of contact algorithm

Symbol Value Description

F1 665.22N Tight span belt force, see Fig. 23

F2 186.65N Slack span belt force, see Fig. 23

τP1 47.68Nm Torque at pulley P1

τP2 47.68Nm Torque at pulley P2

ωP1 12.00 rad/s Angular velocity pulley P1

ωP2 11.3405 rad/s Angular velocity pulley P2

v1 1.2025m/s Velocity at tight span

v2 1.133m/s Velocity at slack span

Note that some of the measured values are not constant along the
free spans and thus are approximated and rounded. Furthermore,
we only consider absolute values here to simplify computations

Fig. 24 Comparison of axial forces in the contact zone of P1
and analytical solution

is related to torques τP1 and τP2 by

(F1 − F2)r = 47.857Nm ≈ τP1 = 47.68Nm (38)

which results to a relative error equal to 0.37%. Note,
also, that τP2 at time t = 2.45 s results from the
velocity-proportional damping dP2 and the added load
of 25 Nm given by (37):

τP2 = 25 + dP2 · ωP2 = 47.68Nm , (39)

which agrees with τP1, as measured at t = 2.45 s. The
creep computed by the velocities of the spans is

ψ = v1 − v2

v1
= 0.0578 , (40)

while the creep computed from the relative elongation
of the tight and slack spans is

Δε = F1 − F2
E A

= 0.0598 . (41)

Both values are relative values, but they agree well with
3.3% error.

We plot the axial forces in the contact zone of P1 as
resulted from the simulation, and we compare it with
the analytical solution calculated by Euler–Eytelwein
also known as capstan formula, [33]:

F = F1e
μφ (42)

for φ ∈ [0, β] in which
β = 1

μ
ln

(
F1
F2

)
(43)

with corresponding region on the arc length of the belt

sl ∈
[
d + π

(
r + hb

2

)
+ d, d + π

(
r + hb

2

)

+ d + βr

]
, (44)

see Fig. 24. The maximum absolute error is 13.60N,
and the maximum relative error is equal to 2.5%.
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5 Conclusions

In this paper, a model for contact and friction for flex-
ible beams and sheaves and a numerical example have
been provided. We have shown that the proposed con-
tactmodel consisting of an improvedANCF implemen-
tation with a selective reduced integration, a contact
detection based on the subdivision of beam elements
into linear segments, a bounding box for effective con-
tact detection and a bristle friction model with history
variables can be successfully applied for a numerical
example of a belt drive, as the one demonstrated here.
The example of the belt drive showed convergence of
the implementedmethods for increasing number of ele-
ments and for other varying parameters such as the
number of segments and the dry friction. Moreover,
we saw agreement of the obtained axial forces in the
contact zone of the first pulley of the belt drive with the
analytical solution from classical belt theory. Finally,
the resulted beam axial forces along the belt arc length
showed improved behavior for the proposed integra-
tion scheme for the virtual work of elastic and viscous
damping forces. As a consequence, we conclude that
we can use the developed methods for an efficient con-
tact modeling for systems consisting of flexible beams
and sheaves such as belt drives and reeving systems.
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