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Abstract Foil air bearings (FABs) are the mainstay

of oil-free turbomachinery technology which is under-

going rapid expansion. A rotor system using such

bearings is a nonlinear multi-domain dynamical

system comprising the rotor, the air films and the foil

structures. Multi-pad (segmented) FABs offer oppor-

tunity for enhanced stability performance but are

naturally more computationally challenging than sin-

gle (360�) pad FABs. Their analysis has been limited

to a simple model that ignores the detachment of the

top foil from the underlying foil. Although a correc-

tion can be applied for the rotor vibration, the actual

top foil deflection cannot be predicted. Additionally,

reduced order modelling techniques have so far not

been applied to such bearings. This paper presents the

nonlinear and linearised dynamic analyses of three-

pad FAB rotor systems considering foil detachment

and using both Galerkin Reduction (GR) and Finite

Difference (FD) to model the air film. Various models

for the force distribution on the top foil are considered

for use within a bilinear foil model, focusing on the

ability to achieve numerical convergence. GR halved

the computation time for a waterfall graph, without

compromising the accuracy of the prediction of the

nonlinear response. The results are validated against

results from the literature.

Keywords Nonlinear vibrations � Order reduction �
Linearization � Rotordynamics � Foil air bearings

Abbreviations

LE Leading edge

TE Trailing edge

EO Engine order

FAB Foil-air bearing

SESMA Static equilibrium stability and modal

analysis

GR Galerkin reduction

ROM Reduced order modelling

OIS Onset of instability speed

RE Reynolds equation

SEC Static equilibrium configuration

SEFM Simple elastic foundation model

TNDA Transient nonlinear dynamic analysis

FD Finite difference

FE Finite element

1 Introduction

The environmental and technological advantages of

replacing oil or grease-lubricated bearings with oil-

free alternatives have motivated research into foil air
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bearing (FAB) technology [1–4]. The lubrication in

FABs is provided by the air film between the journal

and a compliant foil structure that comprises a top foil

(forming the bearing surface) and an underlying

supporting spring (typically in the form of a corru-

gated foil referred to as ‘‘bump foil’’). The FAB is self-

acting i.e. the air film is pressurised by the hydrody-

namic action induced by the rotation of the journal

relative to the top foil. Despite having numerous

benefits over conventional bearings [1–3], a signifi-

cant drawback that has limited the usage of the FAB is

the complexity of its mathematical model in compar-

ison with conventional journal bearings, presenting a

greater challenge to predict nonlinear phenomena.

Experimental results reveal non-linear responses with

sub-synchronous vibrations that are not predicted by

conventional theoretical models based on rotordy-

namic coefficients [5].

The prediction of such phenomena requires due

consideration of the nonlinear multi-domain dynam-

ical system that comprises the coupling between the

rotor, the air films and the foil structures where each is

governed by a set of time-based differential equations

[6, 7]. The nonlinear time domain solution approach

used in the present paper is based on Bonello and

Pham’s [8, 9] simultaneous solution of all state

variables in time, which has also been followed by

other researchers e.g. [6, 10]. This ensures that the

multi-domain system remains fully coupled by allow-

ing for the construction of a system of ordinary

differential equations (ODEs) that can solve the

compressible Reynolds Equation (governing the air

films) as well as other state variables at each time step.

The approach was further developed in [11] for

linearized rotordynamic analysis, wherein eigenvalue

analysis of the Jacobian of the fully coupled dynamical

system system (evaluated at the static equilibrium

condition of the nonlinear system) enabled the rapid

prediction of the onset of instability speed (OIS) and a

full modal analysis (expressed in a Campbell dia-

gram). Such an approach was later used in [7, 12] and

by other researchers in [12, 13]. As noted in [12] and

demonstrated in [14], Jacobian-based linearization is

superior to the traditional linearization approach based

on linear force coefficients since the latter is unable to

detect predicted instabilities that originate from the

foil domain.

A foil air bearing (FAB) can be either single (360�)
pad, or multi-pad (segmented). Figure 1b illustrates

the latter type of bearing with three pads. Such an

industry-designed bearing has been used in experi-

mental and theoretical work by Larsen and co-authors

[6, 13, 15–19] and in theoretical work by other authors

[11, 14] who correlated their work with those of

Larsen et al. The present paper will focus on three-pad

FABs. As shown in Fig. 1b, each pad is free at the

trailing edge (TE) and clamped at the leading edge

(LE), facilitating an inlet slope at the LE which is

found to influence static and dynamic results, partic-

ularly improving stability characteristics [6, 15, 16].

In all the previous studies [6, 11, 13, 16] involving

fully coupled (simultaneous) solution of rotor systems

with three-pad FABs, the foil pad (comprising bump

foil and top foil) has been modelled using a Simple

Elastic Foundation model (SEFM) for the bump foil

(top foil ignored [6, 11, 16]) or a variation thereof that

additionally included the top foil as a non-detachable

structure [13]. The classic SEFM is a popular choice

because of its simplicity and computational efficiency,

but it is subject to a number of assumptions and

limitations:

• SEFM assumes that the foil stiffness is linear and

ignores the stiffening effect generated by friction

forces in the sliding contact points;

• it assumes a continuous distribution of compliance

and damping wherein the foil deformation at any

given point is dependent only on the pressure at

that point;

• it ignores top foil sagging between bumps (deflec-

tion is based only on the bump foil);

• the SEFM cannot model the detachment of the top

foil from the bump foil, which happens in air film

regions that are below atmospheric pressure.

To compensate for this latter limitation, the Gümbel

condition is applied wherein sub-atmospheric pres-

sures are truncated when integrating for the air film

forces on the journal [6, 11, 16]. This is based on the

assumption that sub-atmospheric pressures will revert

to atmospheric once the detached part of the top foil

reaches an equilibrium position. This correction is

only intended for the prediction of rotor vibration, and

can be very effective in this regard when the foil pads

have a clamped leading edge and free trailing edge (as

with the three-pad bearing shown in Fig. 1b, which

was considered in [6, 11, 16]). However, the Gümbel

correction does not do anything to the foil deflection.
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As a consequence, simulations of foil deflection based

on SEFM are not realistic in two principal ways:

(a) they cannot simulate the detachment of the top

foil (which is considered stuck to the bump foil);

(b) the deflection at the free end of each pad is zero

at all times (due to the second assumption listed

above, since the pressure at the ends of a pad is

atmospheric). It is noted that combining a

classic SEFM for the bump foil with a non-

detachable structural model for the top foil may

result in a non-zero deflection at a free end (e.g.

Figure 7 of [13]). However, even in such a case

the pad deflection profile is still seen to be

changing course and rapidly diminishing from a

local maximum magnitude as it approaches the

free end (due to the dominant influence of the

SEFM).

This lack of a realistic representation of the foil

deflection is naturally exacerbated with multi-pad

bearings, which have openings to atmosphere at

multiple angular locations (Fig. 1b). This means that

the true distribution of the thickness of the air film

cannot be predicted. It is therefore desirable to directly

model the detachment of the top foil from the bump

foil in multi-pad bearings using a bilinear foil model as

done for single pad bearings in [20–22].

Multi-pad bearing systems are computationally

intensive due to the need to consider the compressible

Reynolds Equation (RE) for the air film of each pad

within the solution process of the fully coupled multi-

domain system. Up to now, the RE in three-pad FABs

has been modelled through spatial discretization

methods like Finite Element (FE) or Finite Difference

(FD)/Finite Volume (FV). FE/FV involves element-

based discretization of the RE and has been used in

[6, 12, 13]. Element-based discretization usually needs

a matrix assembly process to convert the RE from a

partial differential equation (PDE) into a set of

ordinary differential equations (ODEs), which can be

time consuming knowing that it needs to be repeated at

the beginning of each time-integration step. In another

discretization approach, FD is used in [11, 20], which

does not need any assembly process or interpolation of

the field variable to derive the system of ODEs. In both

FE [6, 23] and FD [9, 11, 16, 20, 24, 25] approaches,

discretization is done spatially on a grid of nodes and

the number of ODEs is the same as number of nodes,

which can get very large in multi-pad FAB rotor

systems. This problem can be mitigated through the

application of reduced order modelling (ROM) based

on Galerkin Reduction (GR), as has been done so far

for single pad FAB rotor systems e.g. [21, 26]. GR

operates on the air film domain of the fully coupled

multi-domain (rotor/air film/foil structure) system,

transforming the RE into a system of ODEs. GR does

not need spatial discretization, but rather, it projects

the equations onto a finite dimensional function space,

and minimises the residual of the obtained ODEs (i.e.

GR is a mesh-free method). The span of this space

determines the number of ODEs which is usually

much smaller than the aforementioned approaches.

Motivated by the issues raised in the previous two

paragraphs, the novel contributions of the present

paper are twofold:

Fig. 1 Rotor-FAB system: a generic rotor system mounted on two FABs; b three pad bearing c (A or B)
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• the application to three-pad FAB rotordynamic

analysis of a bilinear foil model that allows

detachment of the top foil from the bump foil;

• the application of ROM in the aforementioned

rotordynamic analysis of three-pad FAB-rotor

systems.

These contributions build on the recent contribution

of the authors [21] involving the application of

Galerkin Reduction (GR) to single pad bearings.

However, as shall be seen in the present paper, the

first-time application of the foil detachment model to

three-pad bearings brings with it new computational

challenges involving numerical convergence that

require careful consideration of the modelling of the

force distribution on the detachable top foil.

2 Modelling and analysis

With reference to Fig. 1, the mathematical model of

the generic rotor supported on two FABs (A, B) can be

expressed in the dynamical system form,

s
0 ¼ v s; sð Þ ð1Þ

where s is the vector of state variables and ðÞ
0
denotes

differentiation with respect to nondimensional time

s ¼ Xt=2. Equation (1) can be expressed in terms of

the subset equations corresponding to the coupled

domains of the air films (subscript ‘a’), foils (subscript

‘f’) and rotor (subscript ‘r’) as follows:

s
0 ¼

saA
saB
sfA
sfB
sr

2
66664

3
77775

0

¼

vaA sð Þ
vaB sð Þ
vfA sð Þ
vfB sð Þ
vr s; sð Þ

2
66664

3
77775

ð2Þ

The air film and foil domains of each bearing c (A
or B) are themselves subdivided into three sub-

domains corresponding to the pads, as follows:

sac ¼
1sac
2sac
3sac

2
4

3
5; vac sð Þ ¼

1vac sð Þ
2vac sð Þ
3vac sð Þ

2
64

3
75 ð3aÞ

sfc ¼
1sfc
2sfc
3sfc

2
4

3
5; vfc sð Þ ¼

1vfc sð Þ
1vfc sð Þ
1vfc sð Þ

2
64

3
75 ð3bÞ

where for pad no. k ¼ 1. . .3ð Þ of bearing c (A or B):

• ksac is the air film state vector and kvac sð Þ the

corresponding evolution vector function;

• ksfc is the top foil state vector and kvfc sð Þ the

corresponding evolution vector function;

• the circumferential domain of the pad is defined

with reference to Fig. 1b by the following equa-

tions (where the subscripts LE, TE refer to leading

edge and trailing edge respectively):

khLEc � h� khTEc ð4aÞ

khTEc ¼ khLEc þ hpadc ð4bÞ

khLEc ¼ hstc þ k � 1ð Þ 2p
npad

ð4cÞ

2.1 Rotor equations

The generic modally-transformed rotor equation of

[11] comprising a rotor mounted on two FABs at either

end is considered. The modes used in the transforma-

tion pertain to the given system at zero rotational

speed and with the FABs removed. Hence, the subset

of Eq. (2) pertaining to the rotor is as follows:

sr ¼
q

q
0

� �
;

vr s; sð Þ ¼
q

0

4

X2

�Kqþ X
2
HT

gPHaq
0 þHT

fs
fs þHT

fu
fu sð Þ

þHT
fJA
fJA saA ; sfA ; eAð Þ þHT

fJB
fJB saB ; sfB ; eBð Þ

0
@

1
A

2
6664

3
7775

ð5Þ

In Eq. (5):

• q sð Þ is the H � 1 vector of modal coordinates and

K the H � H matrix of squares of natural frequen-

cies of the modes used in the modal superposition.

• ec is the vector of eccentricities in the Cartesian

directions of the journal each bearing c (A or B),

normalized by the radial clearance c and is

determined by modal superposition as follows:

ec ¼ ex ey½ �T ¼ HfJcq sð Þ=c ð6Þ
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where HfJc is the corresponding 2� H transfor-

mation matrix of mass-normalised modal

displacements.

• fu, fs, fJc are vectors containing the Cartesian

components of the unbalance forces, static loads

and air film force respectively and are transformed

to modal forces through multiplication with the

corresponding transposed modal matrices (HT
fu
,

HT
fs
, HT

fJc
).

• fJc is determined from the air film pressure [21]:

fJc ¼ PaR
2 r

L
2R

� L
2R

r
2p

0

~pc � 1
� � sin h

� cos h

� �
dhdn ð7Þ

where L, R are the bearing length and radius

respectively, ep ¼ P
Pa
is the air film non-dimensional

pressure, and n ¼ z
R is the local non-dimensional

axial coordinate relative to the bearing mid-

section.

• The term X
2
HT

gPHaq
0
accounts for the gyroscopic

effect on the rotor, where P contains the polar

moment of inertia of the rotor, discretised at

various locations [11].

2.2 Foil equations

The equations in this section refer to pad no.

k ¼ 1. . .3ð Þ of bearing c (A or B). Hence, the domain

of h is defined by Eqs. (5a–c). For clarity, the left-hand
superscripts k and right-hand subscripts c are omitted

from the following presentation i.e. ksfc ,
kvfc sð Þ

Eqs. (3a, 3b)) are presented simply as sf , vf sð Þ.
As in [21], a superposition of a truncated series of

mf undamped modes serves as a representation of the

vibrating shape of the top foil of each pad in bearings

A or B [21]. The non-dimensional deflection of top foil

in the radial direction is then given by

~w n; hð Þ ¼ vw n; hð Þqf

¼ vw;1 n; hð Þ � � � vw;mf
n; hð Þ½ �

qf1

..

.

qfmf

2
64

3
75 ð8Þ

where vw n; hð Þ is the mf � 1 vector of mass-normal-

ized modal displacements in the radial direction,

divided by c, evaluated at an individual generic

location n; hð Þ, and qf the correspondingmf � 1 vector

of modal coordinates. Following [20], the subset of

Eq. (2) pertaining to pad no. k ¼ 1. . .3ð Þ of bearing c
(A or B) is as follows:

sf ¼
qf
qf 0

� �
; vf sð Þ

¼
qf 0

4

X2
�X

2
Dfqf 0 � Kfqf þHT

d� fp �HT
dfb

� �
2
4

3
5

ð9Þ

In Eq. (9):

• Df , Kf are diagonal matrices describing propor-

tional damping and natural frequencies-squared of

the top foil of the pad under consideration [20];

• Hd is the modal matrix whose columns contain the

mass-normalized modal displacements of the top

foil in the radial direction evaluated at the locations

of the bump reaction forces in fb;

Hd� is the modal matrix whose columns contain the

mass-normalized modal displacements of the top

foil in the radial direction evaluated at the locations

of the air film forces in fp.

It is noted that the latter definition represents a

generalization of the system in [20, 21] where the air

film forces were discretized at the same locations as

the discretely spaced apexes of the bumps, and the

variation of the deflection of the top foil in the axial

direction was not considered. In the present case, the

air film pressure forces in vector fp are applied to sub-

areas of the top foil that are centered at np positions

along the circumferential (h) direction, where np is a

generic number that is not necessarily equal to nb (the

number of bumps along the h direction for the pad).

The expression for fp is given by the following two

alternative forms, depending on the assumption used

for the variation of the deflection of the top foil in the

axial direction. For a pad of axial length L and radius

R:

• if using mode shapes of a beammodel to model the

top foil (i.e. top foil deflection is assumed not to

vary with axial position), fp is given by:

fp ¼
Fp1

..

.

Fpnp

2
64

3
75;Fpj ¼ PaR

2

Z

Aj

ep � 1ð ÞdA ð10Þ
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where Aj :¼ � L
2R ;

L
2R

� �
� hj � hpad

2np
; hj þ hpad

2np

h i
is

sub-area no. j of the top foil, centered on circum-

ferential location with angular coordinate hj;
• if using mode shapes of a plate or shell to model the

top foil (i.e. the top foil deflection is assumed to

vary with axial position), the bump foil is essen-

tially assumed to comprise n� 1 strips, each of

width Dz, placed side by side along the axial length
of the bearing (where n is the number of sampling

grid points in n direction), and fp is given by

fp¼ Fp1;1 ��� Fp1;np
��� Fpn�1;np

��� Fpn;np

h iT
;Fpi;j

¼PaR
2

Z

Aij

ep�1ð ÞdA

ð11Þ

where Aij:¼ ni�Dz
2R;niþDz

2R

� �
� hj�hpad

2np
;hjþhpad

2np

h i
and

ni;hj
� �

is the location of the centre of an individual

bump.

The integrals in Eq. (10) or (11) are evaluated

numerically over a sampling grid consisting n� m

points on n� h plane (Figure 2 of [21]) using

Simpson’s rule as follows:

fp ¼ PaR
2A

ep nP1 ; hP1
� �

..

.

ep nPnm ; hPnm
� �

2
64

3
75� 1nm�1

0
B@

1
CA ð12Þ

where

A ¼ TpA ð13aÞ

A ¼ diag að Þ ð13bÞ

a ¼ ah � an ¼
ah1an

..

.

ahman

2
64

3
75 ð13cÞ

in which

• an ¼ an1 � � � ann½ �T and ah ¼ ah1 � � � ahm½ �T
are vectors of integration weights in the respective

directions

n ¼ n1 � � � nn½ �T; h ¼ h1 � � � hm½ �T;
• Tp is a matrix that partitions integral vector

operator a into the top foil sub-areas associated

with the elements in fp and is of size np � nm in the

case of Eq. (10) and of size n� 1ð Þnp � nm in the

case of Eq. (11).

It is recalled that

• np, nb are the numbers of subdivisions in the h
direction used for the air film forces (fp), bump

reactions (fb) respectively;

• n, m are the numbers of divisions of the sampling

grid in the axial (n) and circumferential (h)
directions respectively (considered sufficiently

refined i.e. ‘‘continuous’’ for the purpose of

quadrature).

The above notation allows the consideration of the

following four alternative models for the force distri-

bution on the top foil.

• Model 1 (Discretely-spaced bumpsconcentrated

air film forcesbeam model for top foil, Fig. 2a): in

this case, top foil sagging in-between bumps is

eliminated by discretizing the air film forces at

centers of top foil sub-areas coinciding with the

apexes of the discretely spaced bumps, i.e.

np ¼ nb 6¼ m� 1.

• Model 2a (Discretely-spaced bumps‘‘continuously

distributed’’ air film forcesbeam model for top foil,

Fig. 2b): in this case, top foil sagging in-between

bumps is allowed i.e. np ¼ m� 1 6¼ nb.

• Model 3 (‘‘Continuously distributed’’ bumps‘‘con-

tinuously distributed’’ air film forcesbeam model

for top foil, Fig. 2c): this is an alternative to Model

1 for eliminating sagging wherein the bump foil

part is reduced to a SEFM (i.e. a continuum of

compliance) by putting nb ¼ np ¼ m� 1.

• Model 2b (Discretely-spaced bumps ‘‘continu-

ously distributed’’ air film forcesshell model for

top foil, Fig. 2b): this model differs from 2a with

regard to top foil model (shell rather than beam);

hence, as in Model 2a, top foil sagging in-between

bumps is allowed i.e. np ¼ m� 1 6¼ nb, but the

number of elements in air film force vector fp and

bump reaction force vector fb are n� 1ð Þnp,
n� 1ð Þnb respectively.

The above four models are summarized in Table 1.

It is noted that Model 2b (shell top foil) will have less

sagging in-between bumps relative to Model 2a (beam

top foil). However, it will still have somewhat more

sagging than reality since it always assumes line
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contact between bumps and top foil, whereas in

reality, bump deformation changes the contact inter-

face from a line to an area, which tends to reduce

sagging in-between bumps [27]. This is the rationale

for considering models which eliminate sagging

altogether (Models 1 and 3).

For a bump foil stiffness per unit area of kb (N/m
3),

the vector fb of reaction forces exerted by the bumps

on the top foil is determined according to the vector ed
of normalized radial deflections of the top foil at

locations corresponding to the bump apexes, using a

smoothed bilinear function [20] which is adapted to

the present work as follows:

fb ¼
..
.

Fbr

..

.

2
664

3
775; ed ¼

..

.

edr

..

.

2
664

3
775 ð14a; bÞ

where

Fbr ¼ Fbilinearspringr þ Fsmr
ð14cÞ

Fbilinearspringr is equal to the force from a complex

(damped) spring during full contact edr 	 .
� 	

and zero

otherwise:

Fbilinearspringr ¼
Arkbð Þ edrþ

g
2xref=X

ed
0

r


 �
c edr	.

� 	

0 edr\.
� 	

ð14dÞ

Ar is the area of the top foil associated with bump

no. r, Arkb (N/m) is the stiffness of the spring (bump)

during full contact and Arkbg=xref (Ns/m) is the

corresponding damping coefficient, where g is the

hysteretic damping loss factor and xref (rad/s) is the

reference frequency used for conversion from hys-

teretic to viscous damping (in this work xref ¼ X, the
rotational speed [20]).

Fsmr is the force from a complex spring that is

effective only over the marginal contact state

Fig. 2 Schematic distribution of air filmbump reaction forces on top foil according to Models 1, 2a, 3, and 2b listed above and

summarized in Table 1: a Model 1; b Models 2a and 2b; c Model 3

Table 1 Different

assumptions in modelling

the force distribution on the

top foil (see also Fig. 2

above)

Top foil force distribution model

Model 1 Model 2a Model 3 Model 2b

Concentrated air film forces 4

‘‘Continuously-distributed’’ air film forces 4 4 4

Discretely-spaced bumps 4 4 4

‘‘Continuously-distributed’’ bumps 4

Beam model for top foil 4 4 4

Shell model for top foil 4
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edr

���
���\.

� 	
and has a stiffness that increases linearly

from 0 to Arkb over the domain �.\ edr\.:

Fsmr ¼
Arkbð Þ 1

4.
ed2

r þ
1

2
ed r þ

.
4


 �
þ g
2xref=X

1

2.
ed r þ

1

2


 �
ed
0

r

� �
c edr

���
���\.

� 	

0 edr

���
���	 .

� 	

ð14eÞ

The term Fsmr is introduced to smoothen the

bilinear term, thus ensuring differentiability. Foil

detachment is enabled by setting the smoothing

parameter . to a small positive number ð. ¼ 10�3

unless otherwise stated). Foil detachment is also

enabled, but without smoothing, if . is set to zero.

Foil detachment can be completely suppressed (dis-

abled) by setting . ¼ �1 in Eqs. (14d, 14e).

In the case of using the shell model for the top foil

(Model 2b, Table 1), the number of elements in fb and
ed is n� 1ð Þnb, whereas in the case of using the beam

model for the top foil (Models 1, 2a, 3), the number of

elements in fb and ed will be nb. The assumption of

variation of top foil deflection with axial position

(Model 2b) necessitates consideration of the bump foil

as split into a number n� 1ð Þ of strips (that is in theory
infinite) placed side by side along the axial length of

the bearing since the top foil/bump foil contact model

assumes that the top foil will be in contact with the

bump foil wherever an element in ed exceeds .. Hence,
the supposed added accuracy of considering the top

foil as a shell is offset by the corresponding error

introduced into the bump foil model if the latter is

composed of just one strip (or a few strips).

As stated at the beginning of this section, Eq. (9)

stands for a single pad of a given bearing. The

equations for all pads k ¼ 1. . .3ð Þ of each bearing c (A
or B) are assembled into the coupled system equations

(Eq. (2) as per Eqs. (3a, 3b)).

2.3 Fluid film equations

As in the preceding section, the equations in this

section refer to pad no. k ¼ 1. . .3ð Þ of bearing c (A or

B) and the domain of h is defined by Eqs. (4a,b and

4c); for clarity, the left-hand superscripts k and right-

hand subscripts c are omitted from the following

presentation e.g. khLEc ,
khTEc are presented as hLE, hTE.

The Reynolds equation (RE) for a compressible

fluid can be written as

B
d

ds
ep eh

� 	
¼ $ � ep eh3$ep � ep ehb

� 	
ð15Þ

where $ ¼ o

on
o

oh

� �T
and b¼ bnbh½ �T¼ 0B½ �T, B¼

6lX
Pa

R
c

� �2
is bearing number, eh¼h

c is non-dimensional

film thickness. The boundary conditions applied on

pad edges are ep¼1 and ep0¼0. Following [8], by

defining u¼ ep�1ð Þeh, the Reynolds equation can be

written as

u0 þ ~h0 ¼ 1

B
$ � r ð16aÞ

r ¼ rn
rh

� �
¼ uþ eh

� 	 eh$u� u$eh � b
� 	

ð16bÞ

with boundary conditions u ¼ 0 and u
0 ¼ 0 on pad

edges.

The film thickness eh is given by

eh ¼ 1þ eh0 hð Þ þ sinh �cosh½ �eþ ew n; hð Þ
¼ 1þ eh0 hð Þ sinh �cosh vTw n; hð Þ

� �bh
¼ vTh n; hð Þbh ð17aÞ

eh0 hð Þ ¼ hs
c

1� h=b h� b
0 h[ b



ð17bÞ

bh ¼
1

e

qf

2
4

3
5 ð17cÞ

where eh0 hð Þ is the addendum film thickness of sloped

region of top foil.

2.4 Galerkin reduction with simultaneous

computation of constants (SCC) format

Following the procedure introduced in Sect. 2.3 of

[21], the variable u can be expressed as a Galerkin

projection of order N;M:

u¼vTu n;hð Þûc¼ g� fð ÞTûc

¼ g1 f1 � � � fN½ � � � � gM f1 � � � fN½ �½ �

ûc1

..

.

ûcMN

2
664

3
775

ð18Þ

where buc is the NM�1 vector of GR coefficients and

vu the corresponding vector of 2D base functions,
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which is the Kronecker product of vectors f¼
f 1 nð Þ ��� f N nð Þ½ �T and g¼ g1 hð Þ �� � gM hð Þ½ �T con-

taining orthogonal analytic functions in the respective

n, h directions that satisfy boundary conditions ofu for

a pad (u¼0 on pad edges). These elementary (1D)

base functions are chosen as

f i nð Þ ¼ cos 2i� 1ð Þ pRn
L


 �
; gj hð Þ

¼ sin jp
h� hLE
hTE � hLE


 �
ð19Þ

Following [8], the GR projection of Eq. (16a) is

obtained by multiplying both sides by the NM � 1

vector of 2D base functions vu (see Eq. (18)) and

integrating over the full extent of the pad:
Z

vuv
T
udA


 �
bu 0

c ¼ � 1

B

Z
ðv nð Þ

u rn þ v
hð Þ
u
rhÞdA

�
Z

vu eh
0

dA

ð20Þ

Applying numerical integration to Eq. (20) as

explained in Sect. 2.3.1 of [21], will result in a set of

NM first order ODEs that defines the Reynolds

equation on the domain of a single pad:

bu 0

c ¼ M�1 � 1

B
V nð Þ

u
T
Arn �

1

B
V hð Þ

u
T
Arh � VT

uAh0

 �

ð21aÞ

ra ¼ uþ hð Þ:
� h: � u að Þ � u: � h að Þ � ba1nm�1

� 	
; a ¼ n; hð Þ

ð21bÞ

The above formulation is referred as the simulta-

neous computation of constants (SCC) format [21]

since the integrations of Eq. (20) required to deter-

mine the constants within the right hand side of

Eq. (21a) are evaluated simultaneously with the

solution of Eq. (2) via the matrix A of integration

weights associated with each point of the quadrature

sampling grid (Eq. (13b)). The remaining matrices in

Eq. (21a, 21b) are defined as follows

u ¼ Vubuc ð22aÞ

h ¼ Vh
bh ð22bÞ

M ¼ VT
uAVu ð22cÞ

and the matrices Vu, Vh and their derivatives with

respect to a (a ¼ n; h), are built by concatenating

vu n; hð Þ, vh n; hð Þ evaluated on points of n� m sam-

pling grid:

Vu ¼ vu nP1 ; hP1
� �

� � � vu nPnm ; hPnm
� �� �T ð23aÞ

Vh ¼ vh nP1 ; hP1
� �

� � � vh nPnm ; hPnm
� �� �T ð23bÞ

where vu, vh are given by Eqs. (18) and (17a)

respectively.

The vector of air film state variables for the domain

of the pad under consideration is ksac ¼ buc, and
kvac sð Þ

will be the right hand side (RHS) of Eq. (21a). The

equations for all pads k ¼ 1. . .3ð Þ of each bearing c (A
or B) are assembled into the coupled system equations

(Eq. (2) as per Eqs. (3a, 3b)).

2.5 Finite Difference (FD) discretization

Expanding the terms in Eq. (16a) and evaluating them

on a FD sampling grid consisting nn � mh points on

n�h plane leads to the FD-discretized version of

Reynold Equation as follows:

u
0 ¼ 1

B
½ u nð Þ þ h nð Þ
� 	

:

� h: � u nð Þ � u: � h nð Þ � bn1nnmh�1

� 	

þ u hð Þ þ h hð Þ
� 	

:

� h: � u hð Þ � u: � h hð Þ � bh1nnmh�1

� 	
þ

uþ hð Þ:
� h: � u nnð Þ þ h: � u hhð Þ � u: � h nnð Þ � u: � h hhð Þ
� 	

�
� h

0

ð24Þ

where h is the vector of the air film thickness values at

the grid sampling points and is still determined using

Eqs. (22b) and (23b), as are the vectors of air film

thickness derivatives with respect to h and n) since Vh

does not use GR base functions. It is also noted that in

the present case of FD, nn, mh are used instead of n, m

in the equation for Vh (Eq. (23b)) since the resolution

of the sampling grid used in FD is not necessarily the

same as the quadrature sampling grid used in GR. u in
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Eq. (22a) is the vector of air film state variables u at

the grid sampling points, and the vectors of the spatial

derivatives of u are determined using finite difference

matrices as follows:

u ¼ u nP1 ; hP1
� �

� � � u nPnnmh ; hPnnmh

� 	h iT
ð25aÞ

uðaÞ ¼ V
að Þ
u u;uðabÞ ¼ V

abð Þ
u u a ¼ n; hð Þ ð25bÞ

The vector of air film state variables for the domain

of the pad under consideration is ksac ¼ u, and kvac sð Þ
will be the right hand side (RHS) of Eq. (24). The

equations for all pads k ¼ 1. . .3ð Þ of each bearing c (A
or B) are assembled into the coupled system equations

(Eq. (2) as per Eqs. (3a, 3b)).

2.6 Computational approach

Once Eq. (1) is assembled as per Eq. (2), solution at a

given rotational speed is performed by way of.

• static equilibrium, stability and modal analysis

(SESMA) [11, 21], involving the following steps

• static equilibrium solution of the nonlinear

system, obtained by setting s
0 ¼ 0 in Eq. (1)

and solving the nonlinear algebraic equations

for the static equilibrium condition (SEC);

• free linearized vibration analysis about the SEC

at each individual speed over a range through

an eigenvalue analysis of the Jacobian of the

right hand side of Eq. (1), in order to derive the

Campbell diagrams and stability plots.

• transient nonlinear dynamic analysis (TNDA) of

Eq. (1) using an implicit (stiff) solver (e.g. ode15s

in Matlab)—this involves time integration from

prescribed initial conditions at a given rotational

speed (with or without rotational unbalance) over a

sufficiently long period for the initial transients to

decay and a steady-state response achieved.

Both TNDA and SESMA require the Jacobian of

the dynamical system. With the GR transformation of

the RE, the size of the Jacobian J of the present system

will be 6NM þ 12mf þ 2Hð Þ � 6NM þ 12mf þ 2Hð Þ
since each of the two bearings has three pads, thus

yielding 3NM, 3� 2mf state variables for the air film

and foil structure respectively of each bearing. On the

other hand, if FD was used to transform the RE, there

will be 3nnnh equations for the air film of each bearing

and the size of J would therefore be

6nnnh þ 12mf þ 2Hð Þ � 6nnnh þ 12mf þ 2Hð Þ where
nn�nh is the effective size of the FD grid of one pad

(considering only one symmetric half of bearing and

excluding boundaries [20]). The condensation (and

consequent computational savings) afforded by GR is

based on the premise that NM 
 nnnh for a given

degree of accuracy.

For efficient computation, the Jacobians are deter-

mined from functions supplied to the computational

solver. In the case of GR, the functional expressions of

the Jacobian pertaining to a single pad of each bearing

are those already given in [21] (Sect. 2.4.1).

3 Results and discussion

The rotor-bearing system in Fig. 1 with the dimen-

sions and properties listed in Table 2 [6] is used for

numerical analysis. This systemwas chosen so that the

study’s results could be compared to the experimental

and theoretical results of Larsen and Santos [6], as

well as further theoretical results of Larsen et al. [28]

and Bonello [11]. In this system, the rotor is assumed

to be rigid over the operating speed range (up to * 30

krpm), hence there are 4 degrees of freedom, which

means that H ¼ 4 modes are used to transform the

equations of motion of the rotor subsystem (Eq. (5))

[11]. The analysis in [6, 11, 28] used FE or FD for the

air film domain, rather than order reduction. More-

over, the analysis in [6, 11, 28] did not model

detachment of top foil from bump foil and were based

on the simple elastic foundation model (SEFM) for the

foil with the Gümbel condition applied in order to

correct for ignoring top foil detachment [6, 11] (this is

done during the evaluation of the bearing forces in

Eq. (7) by identifying sub-atmospheric regions

(epc\1) and resetting them to atmospheric (epc ¼ 1)).

The Campbell diagram produced by Bonello in [11]

(showing variation of the natural frequency of damped

linearized vibration about the static equilibrium con-

dition of the nonlinear system over a range of speeds)

is reproduced in Fig. 3. Modes 1, 3 are translational

modes where the mode shape of the rotor is cylindri-

cal, while modes 2, 4 are pitching modes, where the

mode shape of the rotor is double-conical (node

approximately at the midpoint). The simulation in [11]
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for the vibration in mode 1 at 30krpm is shown in

Fig. 3 (showing modal vibration at bearing A). Such

modes where also predicted for the same system by

von Osmanski and Santos in [13]. An important point

to note from Fig. 3 (and the full results for the modes

in [13] and [11]) is that the foil vibration is not realistic

since there is no vibration at the free end of the pad

(where the pressure is atmospheric)—this is a limita-

tion of the SEFM model that is overcome by the foil

detachment model as shown later.

In the present work, top foil detachment is enabled

by setting the smoothing parameter . ¼ 10�3 in

Eqs. (14d, 14e); top foil detachment can be disabled

(suppressed) by setting . ¼ �1 (this latter setting is

only used in Sect. 3.1 for verification purposes).

When referring to FD, the full grid for each of the

three pads is 15� 47 (i.e. effective grid of 7� 47) and

when referring to GR, the quadrature sampling grid

[21] for each pad is the same as the full grid per pad

considered for FD.

Table 2 Parameters of the Siemens foil bearing test-rig [6]—please refer to Fig. 1b

Parameters Value Parameters Value

Bearing radius, R (mm) 33.50 Bump foil stiffness per unit area kb (N/m3) 9� 109

Bearing length, L (mm) 53 Hysteretic damping loss factor g 0.15

Bearing radial clearance, c (lm) 40 Number of bumps per pad along h direction,nb 10

Number of pads 3 Poisson’s ratio of bump foil,m 0:3

First pad leading edge, hstð¼ 1hLEÞ(deg) 30 Ambient pressure, Pa (Pa) 1� 105

Pad arc angle, hpad (deg) 115 Air viscosity, l (Pa�s) 1:95� 10�5

Slope extent, b (deg) 30 Distance of rotor mass centre from left hand bearing, lA (mm) 201:1

Inlet slope, hs (lm) 50 Distance of rotor mass centre from right hand bearing, lB (mm) 197:9

Bump foil pitch, Sb (mm) 7.00 R otor total mass (kg) 21:1166

Bump foil thickness (mm) 0.127 Diametral moment of inertia of rotor, Ixx ¼ Iyy (kgm
2) 525:166� 10�3

Top foil thickness (mm) 0.254 Diametral moment of inertia of rotor, Izz (kgm
2) 30:079� 10�3

Top foil modal damping ratio 0.005 Young’s modulus of top foil (Pa) 2:07� 1011

Top foil density ðkg:m�3Þ 8280 Poisson’s ratio of top foil,m 0:3

NB: the number of bumps per pad along h direction (nb) was not explicitly given in [6] but is deduced in the present work from pad

angular extent hpad and bump pitch Sb

Fig. 3 Campbell diagram

for the system as predicted

with SEFM/Gümbel foil

model in [11] (inset shows

predicted modal vibration at

bearing A in Campbell mode

1 at 30 krpm)
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Unless otherwise stated, the top foil is modelled as a

curved beam and the number of top foil component

modes is mf ¼ 20 (justified in Figure A1 of

Appendix).

3.1 Preliminary verification

The modal top foil/bilinear bump foil model used in

the present work can be reduced as close as possible to

the SEFM/Gümbel model of [6, 11, 28] by disabling

the top foil detachment and then applying the Gümbel

condition. In that situation, the only difference from

the SEFM/Gümbel model will be the inertia and

bending stiffness of the top foil (embedded in the

modal model), which are not influential [20]. Note that

when detachment is enabled, the Gümbel condition is

of course not applied since the air film pressures will

self-adjust accordingly.

To verify the modal, non-detachable/Gümbel

model based on GR, the steady-state responses at

(a) (b)

(c) (d)

ve
rt.

 a
m

pl
itu

de
/c

ho
r. 

am
pl

itu
de

/c

orbit

ve
rt.

am
pl

itu
de

/c
ho

r. 
am

pl
itu

de
/c

orbit

Fig. 4 Verification of predicted journal steady state response at

bearing A (frequency spectra and orbits) for 20 krpm under two

different unbalance levels: (a, b) unbalance at each bearing of

20 gmm, 180� out of phase i.e. uA ¼ 20 gmm; uB ¼ �20 gmm

(a GR 3; 16ð Þ, b prediction from [28] using FE for air film); (c,

d) uA ¼ 40 gmm; uB ¼ �40 gmm (c GR 3; 16ð Þ, d prediction

from [28] using FE for air film) (for the results in this figure,

kb ¼ 9:26� 109 N/m.3 [28] i.e. slightly different from that

quoted in Table 2)
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bearing A for the stable speed of 20 krpm under two

different levels of rotor unbalance were computed by

TNDA and compared against the corresponding

literature results [28] that were obtained by consider-

ing SEFM/Gümbel and Finite Element (FE) dis-

cretization of the air film. As shown in Fig. 4, the

predictions from the present work exhibit nearly

identical behaviour as those from [28] as the level of

rotor unbalance increases (sub-synchronous vibrations

emerging as rotor unbalance is doubled).

Figure 5 compares the no-detachment/Gümbel

model results (Fig. 5a, b) with the results from the

detachment model (Fig. 5c, d) for the case of the

transient (TNDA) response from the default initial

state (journal initially concentric with bearing hous-

ing) at zero unbalance and 20 krpm. Figure 5 also

presents the convergence of the corresponding time

response trajectories for different GR orders N;M. As

the graphs show, N ¼ 3;M ¼ 16 is an appropriate

order to use for the problem in both cases. Another

point to note is the effect of applying Gümbel

condition on the result for the trajectory of the journal.

Even though the foil deformations in Fig. 5a, b (no

detachment) are different from those in Fig. 5c, d

(detachment allowed), the corresponding journal tra-

jectories are similar. This provides evidence that, for

the present system, the Gümbel condition is a good

correction for the journal trajectory prediction if using

a model that ignores top foil detachment.

Figure 6 compares the same transient (TNDA)

response from the default initial state at zero unbal-

ance and 20 krpm as predicted by Finite Difference

(FD) with that predicted by GR for both models (no-

detachment/Gümbel, detachment). The correlation

between FD and GR is seen to be excellent for both

cases.

It should be noted that both detachable and non-

detachable results of Sect. 3.1 and 3.2 are based on

model 1 (see Table 1 and Fig. 2a). For the first part of

the study (this section and next Sect. 3.2), the

emphasis is on this model, which does not allow

sagging to occur in areas between the bumps. This

model for force distribution has been previously used

in [21] to investigate the behavior of a system with

single pad bearings. Sections 3.3–3.5 will consider the

other force distribution models in Table 1.

Fig. 5 Convergence of GR-computed time response of journal trajectory (0.2 s duration) at 20 krpm, no unbalance, for different GR

orders N;Mð Þ: (a, b) no detachment/Gümbel; (c, d) with detachable foil

Fig. 6 Comparison of GR and FD for detachable foil model and

no detachment/Gümbel model (20 krpm, no unbalance)

123

The application of the bilinear foil model to three-pad foil air bearings in rotordynamic analysis… 21569



3.2 Concentrated air film forces and discrete

bumps (Model 1, Fig. 2a, Table 1)

Using Model 1 for the top foil force distribution with

foil detachment, static equilibrium, stability and

modal analysis (SESMA) is performed over a range

of speeds, revealing the unfiltered eigenmodes’ damp-

ing ratios vs speed maps for both GR and FD (see

Fig. 7). Each point at a given rotating speed represents

an eigenmode of the free linearized vibration of the

multi-domain system about its SEC. The vast propor-

tion of these modes involve negligible vibration of the

rotor and need to be filtered out in order to extract the

Campbell diagram (which should result in four modes

of the rotor bearing system at each speed, as was

shown in Fig. 3) following the procedure of [11].

However, use of Model 1 for the force distribution on

the top foil revealed an issue not encountered before—

namely, instability (negative damping ratio) of the

static equilibrium condition at speeds below around 14

krpm (GR), or below around 10 krpm (FD) (identified

by the negative damping ratio branches in the low

speed range of Fig. 7). It was also ascertained that

such low speed instability with Model 1 persisted with

higher resolution FD or higher order GR.

Unlike the unstable mode branch at the higher end

of the speed range (which is a genuine part of the

Campbell diagram), the eigenmodes responsible for

the low speed instabilities are ‘‘pad flutter’’-type

modes involving negligible vibration of the rotor and

considerable vibration in the most-loaded pad of the

bearings, as shown in Fig. 8.

For this reason, to export such unstable flutter

modes from the unfiltered eigenfrequency vs speed

map to the Campbell diagram, the filtering criterion

Fig. 7 Unfiltered eigendamping vs speed map for perturbations about the SEC using Model 1 (Table 1): a using GR (3,16); b using FD

Fig. 8 Unstable modes (perturbations about SEC) at speed of

9 krpm using GR (3,16) for top foil force distribution Model 1

(Table 1) (different instances during the vibration are indicated

by different colours/line types for top foil, and different

colours/markers for journal orbit)
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was modified to allow them to pass, even though they

fail the usual filtering criterion (which imposes a

minimum limit on the journal amplitude [11]).

Figures 9a, b and 10a, b show the Campbell and

modal stability plots for GR and FD respectively, each

with superimposed unstable top foil flutter modes. The

top foil flutter modes in Figs. 9, 10 and 8 at first glance

appear similar to those encountered in [21] for the case

of single (360�) pad FABs. However, unlike the flutter
modes in [21], the present flutter modes are reliably

considered to be artifacts of the numerical modelling

procedure (i.e. they have no physical basis), for the

following reasons:

• Their frequencies (in the kHz) are very much

higher than those of the four Campbell modes, in

contrast with the case in Fig. 8c, d of [21] where

the pad flutter mode frequency was of an order of

magnitude that was similar to those of the Camp-

bell mode frequencies.

• The top foil flutter frequencies and damping ratios

obtained by GR (Fig. 9) are significantly different

from those obtained by FD (Fig. 10) (and both will

be affected by the assumed number of modes used

for the top foil), whereas the normal (Campbell)

modes obtained by GR and FD are in close

agreement.

• The top foil flutter modes in the present case can be

completely eliminated by changing the top foil

force distribution model from Model 1 to any one

Fig. 9 Campbell diagram

and modal damping plot for

top foil force distribution

Model 1 (Table 1) using GR

(3,16) with superimposed

unstable top foil flutter

modes

Fig. 10 Campbell diagram and modal damping plot for Model 1 (Table 1) using FD with superimposed unstable top foil flutter modes
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of the other three models in Table 1, as will be

shown in the following sections.

Such artificial (purely numerical) instability pre-

vented convergent TNDA results over its speed

regime. Although convergent TNDA results outside

the flutter’s speed regime were achievable in certain

cases at low unbalance (e.g. the results in Figs. 4, 5),

continuing with Model 1 to obtain waterfall graphs

over the full speed range of the study (5.4 to 30 krpm)

was considered futile.

With regard to the four Campbell modes in Fig. 9 or

Fig. 10, these are consistent with Fig. 3, and the

salient differences are the abrupt shifts in frequency

and damping in the present case, which occur when-

ever the state of contact of the top foil with a particular

bump changes with speed, as already noted in [21] for

the case of single (360�) pad FABs.

In conclusion, despite the fact that top foil distri-

bution Model 1 (Table 1) worked well for the single

(360�) pad FAB rotor system in [21], it causes

numerical problems when applied to the present

4-degree-of-freedom system fitted with three-pad

FABs.

3.3 Distributed air film forces and discrete bumps

(Model 2a, Fig. 2b, Table 1)

Model 2a (Table 1) allows sagging in between bumps.

In order to reduce this sagging effect, the number of

component beam modes used for the modal superpo-

sition of the top foil is reduced to mf ¼ 16.

Following free vibration analysis about the SEC

using both GR and FD for the air film domain, the

corresponding unfiltered eigenmodes damping ratios

vs speed maps are shown in Fig. 11. Comparing with

the equivalent results obtained in the previous section

using Model 1 (Fig. 7), the numerical problem of

artificial flutter modes at low speeds is seen to have

disappeared using Model 2a (this finding also holds

when the number of top foil component modes is

reverted to mf ¼ 20).

The Campbell diagram and its corresponding

modal damping graphs are extracted from the eigen-

value analysis and are plotted in Fig. 12. These graphs

are seen to be the same as those of the Campbell (i.e.

non-flutter) modes in Fig. 9 or Fig. 10, further illus-

trating the elimination of the aforementioned problem

of artificial instabilities. The 1 EO line intersects with

modes 2, 3 and 4 at about 110 Hz, 155 Hz and 193 Hz

or 6.9, 9.6, 11.7krpm, respectively. Although the 1 EO

line intersects with mode 3, but the intersection point

is a reverse whirl mode which is not excited by

rotational unbalance (which is the normal source of 1

EO excitation). These critical speeds agree with the

values already reported in [6, 11].

The onset of instability speed (OIS) is 29.14 krpm,

which is close to that predicted in the literature using

the SEFM/Gümbel-corrected (no-detachment) foil

model (30.5 krpm) [11] (see Fig. 10 of [11]). Fig-

ure 13(a-d) shows the results for the vibration in each

of the four modes at 29.14 krpm. The vibration of the

rotor in each of these modes is seen to agree with those

published in the literature (e.g. Figure 12–15 of [11]).

However, the top foil vibrations in Fig. 13(a-d) are

evidently different from those in the literature (e.g.

compare Fig. 13a with Fig. 12 of [11]), and give the

more realistic response since the Gümbel correction is

only effective on the journal response and the SEFM

Fig. 11 Unfiltered eigendamping vs speed map for Model 2a (Table 1): a using GR (3,16); b using FD
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model inherently constrains the top foil deflection to

zero at the free ends at all times. It is noted that

Figs. 13(b,c) show differences in the journal orbits at

the two bearings A, B; this is attributed to the slight

asymmetry in the rig (lA, lB slightly unequal in

Table 2).

The waterfall diagram for the steady-state response

of the nonlinear system at low unbalance

(uA ¼ 2:5g �mm and uB ¼ �2:5gmm) with GR

(3,16) is shown in Fig. 14. As in [6], this was done

by performing TNDA at fixed speeds over a range of

speeds; as in [6], at each speed the TNDA was

performed over 1s, with the first 0.2 s (transient stage)

Fig. 12 Campbell diagram

and modal damping for top

foil force distribution Model

2a (Table 1) using GR (3,16)

Fig. 13 Campbell modes at speed of 29.14 krpm for top foil force distribution Model 2a (Table 1) using GR (3,16) (different instances

during the vibration are indicated by different colours/line types for top foil, and different colours/markers for journal orbit)
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neglected from the FFT. It is seen that there is no sub-

synchronous vibration in this graph until around 30

krpm, when a frequency of 100 Hz rises into

prominence. This is in accordance with the Campbell

diagram in Fig. 12 which predicts an OIS of 29 krpm

due to mode 1 becoming unstable at this speed where

its frequency is around 100 Hz. Another important

thing is that waterfall diagram shows two resonance

(critical) speeds at around 6.9 and 11.7krpm, which are

consistent with those already reported from Campbell

diagram in Fig. 12. This graph is in close agreement

with what has been reported experimentally and

theoretically (using SEFM/Gümbel) in [6].

The next waterfall diagram, Fig. 15, is for the case

when the unbalance is set to be uA ¼ 40g �mm and

uB ¼ �2:5g �mm. Now, due to the significantly raised

level of unbalance, a sub-synchronous frequency

component appears from 9 krpm (i.e. much lower

than the OIS). At approximately 11.4 krpm, the sub-

synchronous frequency component bifurcates into a

pair of sub-synchronous frequency components which

tend to increase in amplitude until they vanish

completely at 13.5krpm. This phenomenon is in

agreement with that reported in the corresponding

waterfall diagram of Fig. 7 of ref [6] (that was

evaluated by SEFM/Gümbel foil model). It is noted

however that in ref [6], the bifurcated sub-syn-

chronous frequency pair re-emerges over a short

Fig. 14 Waterfall diagram for rotor unbalance of uA ¼ 2:5 gmmand uB ¼ �2:5 gmm with Model 2a (Table 1) using GR (3,16)

Fig. 15 Waterfall diagram

for rotor unbalance of uA ¼
40gmm and uB ¼
�2:5gmm with Model 2a

(Table 1) using GR (3,16)

cFig. 16 Nonlinear steady-state rotor orbits for Model 2a

(Table 1) using GR (3,16): a uA ¼ 10 gmm and uB ¼
�2:5gmmat speed of11:4 krpm, b uA ¼ 40gmm and uB ¼
�2:5gmm at speed of 11:4 krpm, c uA ¼ 40gmm and uB ¼
�2:5gmm at speed of 9 krpm, d uA ¼ 40gmm and uB ¼
�2:5gmm at speed of 25:2 krpm
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speed range of 17.6 krpm to 19.1 krpm before

completely vanishing again.

Figure 16 shows the nonlinear steady-state

orbital vibration for different level of unbalance at

different speeds. At low unbalance levels, the rotor

response is nearly linear, consisting of the syn-

chronous frequency component and therefore result-

ing in elliptical orbits, as can be seen in Fig. 16a when

the applied unbalance at the speed of 11.4 krpm is

uA ¼ 10g �mm and uB ¼ �2:5g �m. Increasing the

rotor unbalance to uA ¼ 40g �mm and uB ¼
�2:5g �mm at speeds of11:4 krpm and 9 krpm will

lead to the emergence sub-synchronous frequency

components and complicated pattern for the orbit, as

can be seen in Fig. 16 (b,c). On the other hand,

applying the same level of unbalance at the speed

of 25.2 krpm, the sub-synchronous frequency

components disappear, as evident from the elliptical

orbits in Fig. 16 (d). This behavior is in agreement

with that observed in the simulations of reference [6].

The inducing of non-synchronous vibration under high

unbalance has been qualitatively explained as a

Duffing oscillator effect from the foil pad (stiffness

hardening in the bearing force-shaft displacement

relation) by Balducchi et al. [5], using a highly

simplified model that neglected the air film, and which

gave very limited agreement with experiment.

The use of top foil force distribution Model 2a

instead of Model 1 (see Table 1) has resulted in the

ability to generate validated TNDA results. However,

the distribution of air film forces in-between the

discretely spaced bumps allowed the top foil to sag in

the areas between the bumps, and this was considered

to be the cause of numerical convergence issues during

Fig. 17 Campbell diagram and modal damping for Model 3 (Table 1) using GR (3,16)

Fig. 18 Static equilibrium

condition at bearing A at a

certain speed—comparison

between Models 2a and 3

(Table 1) using GR (3,16):

a with 16 top foil modes

b with 20 top foil modes
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TNDA at certain speeds when the number of compo-

nent modes used in the top foil modal superposition

exceeded 19.

For this reason, two further top foil force distribu-

tion models are investigated that eliminate or reduce

sagging, while keeping a continuous distribution of air

film forces—Model 3, Model 2b (see Table 1).

3.4 Distributed air film forces and continuously

distributed bumps (Model 3, Fig. 2c, Table 1)

With reference to Table 1, top foil force distribution

Model 3 eliminates sagging completely under a

continuous distribution of air film forces, by assuming

a similarly continuous distribution of bump apexes

along the circumferential direction. In reality, the

bump apexes are discretely spaced according to the

Fig. 19 Waterfall diagram for rotor unbalance of uA ¼ 40g �mm and uB ¼ �2:5g �mm, with Model 3 (Table 1): a with 16 modes

b with 24 modes

Fig. 20 Convergence study for different number of modes

using GR (3,16) with Model 2b (Table 1) at 20 krpm, no

unbalance
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Fig. 21 Static equilibrium condition at bearing A at a certain speed: a comparison between results of Models 2a, 3 and 2b (Table 1)

using GR (3,16); b using different number of shell mode shapes with Model 2b

Fig. 22 Waterfall diagram

for rotor unbalance of a
uA ¼ 2:5gmm and uB ¼
�2:5gmm b uA ¼
40gmm and uB ¼
�2:5gmm using Model 2b

(Table 1) with 30 shell

modes for top foil

123

21578 T. Pourashraf, P. Bonello



123

The application of the bilinear foil model to three-pad foil air bearings in rotordynamic analysis… 21579



circumferential pitch (Sb in Table 2), but the top foil

detachment model based on this force distribution

model is expected to give results that are the closest to

the published SEFM/Gümbel results of [6, 11] since

the SEFM is a continuously distributed compliance

model for the bump foil. This is evident from the

Campbell diagram of Fig. 17, which unlike that of

Fig. 12 has no abrupt shifts caused by changes in

contact state of a bump, and is therefore closer to the

one from the literature [11]. (The small discontinuities

in Fig. 17 are caused by a change in the contact state of

the bumps; since, in Model 3, the bumps are spaced at

the sampling grid resolution, the change in contact

state happens over an increased number of positions,

resulting in a ‘‘smoother’’ effect).

As shown in Fig. 18, there is no difference in top

foil deformation between the Model 2a andModel 3 of

Table 1 when the number of top foil modes considered

is up to 16, but as this number increases, sagging

begins to appear in-between the discretely-spaced

bumps in Model 2a. The waterfall diagrams in

Fig. 19a, b show that, unlike the case with Model 2a,

increasing the number of top foil component modes

from 16 to 24 does not result in numerical convergence

issues at any speed.

3.5 Distributed air film forces and discretely-

spaced bumps using shell model for top foil

(Model 2b, Fig. 2b, Table 1)

With reference to Table 1, top foil force distribution

Model 2b is expected to reduce top foil sagging under

a continuous distribution of air film forces, in

comparison to Model 2a, by considering a shell model

bFig. 23 Steady-state response at bearing A for rotor unbalance

of uA ¼ 40gmm and uB ¼ �2:5gmm at different speeds with

Model 2b (Table 1) and different numbers of top foil component

modes: 16 shell modes (solid blue line); 30 shell modes (dashed

red line)

Table 3 Computational efficiency of GR compared to FD in

terms of CPU time to obtain waterfall diagrams for rotor

unbalance of uA ¼ 40gmm and uB ¼ �2:5gmm (using 16

beam modes for top foil; CPU times are averages of three

runs on the same machine, which was restarted after each run)

Speed Range Model 2a using FD

CPU time (hr:mins:sec)

Model 3 using FD

CPU time (hr:mins:sec)

Model 2a using GR

CPU time (hr:mins:sec)

Model 3 using GR

CPU time (hr:mins:sec)

5.4:30 55:49:01 46:56:12 27:16:47 22:49:03

Table 4 CPU time to obtain full waterfall graph (speed range of 5.4–30 krpm) using top foil force distribution Model 2b with GR

(3,16) and considering 30 shell modes for top foil

Unbalance level CPU time (hr:mins:sec)

‘low’:uA ¼ 2:5g �mm and uB ¼ �2:5 gmm 60:08:11

‘high’:uA ¼ 40g �mm and uB ¼ �2:5 gmm 95:19:19

Table 5 CPU time to obtain steady-state solution for different speeds for rotor unbalance of uA ¼ 40g �mm and uB ¼ �2:5g �mm,

with Model 2b (Table 1) and two different numbers of mode shapes (Model 2a is included for comparison)

Speed 30 modes with shell mode shapes

(Model 2b)

CPU time (hr:mins:sec)

16 modes with shell mode shapes

(Model 2b)

CPU time (hr:mins:sec)

16 modes with beam mode shapes

(Model 2a)

CPU time (hr:mins:sec)

6 krpm 00:46:49 00:29:17 00:24:16

9 krpm 00:52:12 00:38:55 00:22:20

12 krpm 00:58:56 00:45:19 00:25:02

20.1 krpm 00:47:13 00:28:39 00:15:50
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for the top foil rather than beam model. Although the

top foil of each pad is supported by just four strips of

bump foil placed side by side axially (i.e. circumfer-

entially split, as per Fig. 2.3 of [15], it is noted that the

contact model assumes that the top foil is in contact

with a bump foil apex at all points for which the top

foil deflection exceeds the set threshold . (in reality

this would only be physically possible if the bump foil

was split into a very large number of strips placed side

by side over the axial length of the bearing).

As shown in Fig. 20, the number of top foil mode

shapes required to achieve convergence when using

the shell model is at least 30, and with this number,

sagging is negligible (in contrast to the use of beam

modes for the top foil—see Fig. 21). Indeed, with a

shell model for the top foil, the number of modes

required to observe sagging is much higher than the

number required to achieve convergence, as shown in

Fig. 21b, where it is seen that sagging is only visible

when 100 modes are used.

Hence, the waterfall graph of the steady-state

unbalance response could be achieved without any

numerical convergence issues with this number of

shell modes (30) for Model 2b, as shown in Fig. 22 (in

contrast to Model 2a, where the number of top foil

beam modes had to be limited to 19 to avoid

convergence issues arising from excessive sagging).

The only disadvantage of using shell model (Model

2b) is that the time required to obtain the full waterfall

graph is longer than when using the beam model

(Model 2a), as shown in the following section. It should

be noted however that, as shown in Fig. 20, consider-

ing 16 modes with Model 2b appears to be a good

approximation. This is further illustrated in Fig. 23,

(a)
am

pl
itu

de
 (µ

m
)

frequency (Hz)

am
pl

itu
de

 (µ
m

)

frequency (Hz) frequency (Hz)

frequency (Hz)

(b)

frequency (Hz)

(c)

frequency (Hz)

(d) (f)(e)

Fig. 24 Comparison of the simulated steady-state vibration at

bearing A obtained in the present work against the theoretical

and experimental (coast down) results from [6] for the two states

of rotor unbalance: steady-state simulations using present

analysis (Model 2a, GR (3,16)) for low unbalance a and high

unbalance d; theoretical results of [6] for low unbalance b and

high unbalance e; experimental coast down results of [6] for low

unbalance c and high unbalance f
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which compares the FFTs of the steady-state unbalance

response for selected speeds, taking into account 16

and 30modes, and shows that the use of 16modes does

not significantly compromise the accuracy of the

results, while providing considerable time saving.

3.6 CPU times

Table 3 shows the time required to obtain the full

waterfall graph for the case of uA ¼ 40g �mm and uB ¼
�2:5 g �mm using top foil force distribution Model 2a

and Model 3 (Table 1) for both FD and GRmethods. It

is clear that, using GR transformation instead of FD,

reduces the computational cost by around half (reduc-

tion of * 51% for both Model 2a and Model 3).

Using Model 2b (with 30 shell modes for top foil)

instead of Model 2a (with 16 beam modes for top foil)

will increase the computational time for high unbal-

ance from 29 to 95 h (Table 4). However, as noted in

the previous section, considering 16 shell modes in

Model 2b appears to be a good approximation. Table 5

displays the time required to obtain the steady-state

response for those speeds shown in Fig. 23—using

Models 2b and 2a. Use of Models 2a or 2b with 16

beam or shell modes respectively results in consider-

able time savings without significantly compromising

accuracy relative to Model 2b with 30 shell modes.

3.7 Comparison with theoretical and experimental

results from [6]

Figure 24 compares the waterfall diagrams of the

simulated steady-state vibration at bearing A obtained

in the present work against the theoretical and

experimental (coast down) results from [6] for the

two states of rotor unbalance considered: low

(Fig. 24a–c) and high (Fig. 24d–f). The theoretical

results of [6] used FE to model the air film and SEFM

for the foil with Gümbel correction.

The simulations of the present work and those of [6]

correctly predict that at the low unbalance state, over

the speed range considered in [6] (5.4–26.4 krpm),

there is no sub-synchronous activity at the low

unbalance state, whereas in the high unbalance state

there is significant sub-synchronous activity in the

lower speed range, and this is characterized by the

bifurcation of a strong frequency component into a

pair of frequencies. It is noted however that, for high

unbalance, whereas in the present simulations

(Fig. 24d) the strong sub-synchronous frequencies

disappear abruptly beyond a certain speed (13.5

krpm), the sub-synchronous frequencies persist at

higher speeds in the experimental results (albeit at

lower amplitudes, Fig. 24f). The simulations of [6]

(Fig. 24b, e) are in good agreement with the present

simulations (Fig. 24a, d) except for a short speed

interval at the higher unbalance (17.6–19.1 krpm) over

which the sub-synchronous frequency pair re-appears

in the case of [6] (Fig. 24e, indicated by arrows) but

does not do so in the steady-state results of the present

simulation (Fig. 24d). It is noted however, that with

the present work, such a sub-synchronous frequency

pair will re-appear in the transient vibration over the

range 18.2–19.2 krpm, and also in the steady-state

over the same short speed range, if the order of the GR

is reduced to GR (3,8). It is also noted that whereas the

experimental results [6] were taken at slowly reducing

speed over a period of 80s (as per time axes in

Fig. 24c, f), the theoretical results (Fig. 24a, d, b, e)

where steady-state at a fixed speeds. Finally, it is noted

that the simulated residual unbalance responses from

the two models exhibit a relatively large difference in

amplitude levels (Figs. 24a, b) and in either case these

are much lower than the synchronous amplitudes of

the corresponding experimental result (Fig. 24c)

(which was affected by runout [6]). The residual

unbalance response amplitude level from the present

model at 20 krpm has been checked to be linearly

consistent with the cross-verified low amplitude

results in Fig. 4a, b at the same speed.

4 Conclusions

The novel contributions of this paper have been two-

fold: (a) the application of a bilinear foil model, which

allows detachment of the top foil from the bump foil,

to the nonlinear and linearized analyses of rotor

systems with three-pad foil air bearings (FABs);

(b) the application of reduced order modelling via

Galerkin Reduction (GR) to such analyses. Different

force distribution models were considered for the top

foil, which was modelled as a superposition of either

beam or shell modes. The choice of force distribution

model on the top foil was shown to have a critical

influence on the ability to achieve numerical conver-

gence. Aside from this, the results from different

models were consistent. Model 2b (discretely-spaced
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bumps ‘‘continuously distributed’’ air film forcesshell

model for top foil) is arguably the most realistic. The

substitution of shell by beam (Model 2a) provided the

best compromise between realism and numerical

efficiency, provided the number of component modes

was kept suitably low to limit sagging in-between

bumps to the same level as Model 2b.

GR proved to be a reliable replacement for Finite

Difference (FD) in terms of computational times,

particularly when performing time-consuming analy-

ses such as finding the steady-state time response,

where use of GR reduced the computation time for a

waterfall graph by around a half.

The simulation results from the top foil detachment

model were thoroughly verified against theoretical

results from the literature that used the simple elastic

foundation model (SEFM) with Gümbel correction (to

correct for the lack of modelling of the top foil

detachment), and no order reduction, as well as

experimental results from the same literature. The

theoretical results from the literature and the present

model were similarly successful in predicting the

salient nonlinear phenomena observed in the experi-

mental results. Such agreement between the rotor

vibration predictions is, in itself, a validation of the

suitability of the Gümbel condition in this particular

literature case study. What is important to emphasise

is that the advanced model of the present work

achieved such validated predictions for the rotor

vibration without sacrificing the realism of the simu-

lation of the dynamics of the top foil. Having such a

realistic model for the top foil, in addition to reduced

order modelling, is essential if one is to properly

investigate the effect of design modifications to the

foil.
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Appendix

See Table 6 and Fig. 25.

Table 6 Convergence for

Finite Difference (FD) grid

using the onset of instability

speed (OIS) as criterion

(NB: 7 9 47 means

15 9 49 for one pad

including both symmetric

halves and edges)

nn 5 7 9 % Error in OIS (7 9 47 relative to 9 9 93)

nh OIS (krpm)

Model 1 24 29.454 29.397 29.37

47 28.835 28.781 28.756 2 0.5

70 28.77 28.717 28.692

93 28.706 28.653 28.628

Model 2a 24 29.017 28.964 28.939

47 29.166 29.113 29.089 0.47

70 29.35 29.297 29.272

93 29.329 29.276 29.251

Model 3 24 28.365 28.307 28.286

47 28.671 28.612 28.59 1.49

70 29.023 28.953 28.93

93 29.144 29.063 29.045
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10. Baum, C., Hetzler, H., Schröders, S., Leister, T., Seemann,

W.: A computationally efficient nonlinear foil air bearing

model for fully coupled, transient rotor dynamic investiga-

tions. Tribol. Int. 153, 106434 (2021). https://doi.org/10.

1016/j.triboint.2020.106434

11. Bonello, P.: The extraction of Campbell diagrams from the

dynamical system representation of a foil-air bearing rotor

model. Mech. Syst. Signal Process. 129, 502–530 (2019).

https://doi.org/10.1016/j.ymssp.2019.04.018

12. von Osmanski, S., Larsen, J.S., Santos, I.F.: Multi-domain

stability and modal analysis applied to Gas Foil Bearings:

three approaches. J. Sound Vib. 472, 115174 (2020). https://
doi.org/10.1016/j.jsv.2020.115174

13. von Osmanski, S., Santos, I.F.: Gas foil bearings with radial

injection: Multi-domain stability analysis and unbalance

response. J. Sound Vib. 508, 116177 (2021). https://doi.org/
10.1016/j.jsv.2021.116177

14. Bonello, P., Pourashraf, T.: A comparison of modal analyses

of foil-air bearing rotor systems using two alternative lin-

earisation methods. Mech. Syst. Signal Process. 170,
108714 (2022). https://doi.org/10.1016/j.ymssp.2021.

108714

15. Larsen, J.S.: Nonlinear Analysis of Rotors Supported by Air

Foil Journal Bearings-Theory & Experiments. DTU

Mechanical Engineering (2015)

16. Larsen, J.S., Santos, I.F., von Osmanski, S.: Stability of

rigid rotors supported by air foil bearings: comparison of

two fundamental approaches. J. Sound Vib. 381, 179–191
(2016). https://doi.org/10.1016/j.jsv.2016.06.022

Fig. 25 Convergence study for the number of top foil beammodes at 20 krpm, no unbalance, using GR (3,16): aModel 1; bModel 2a;

c Model 3

123

21584 T. Pourashraf, P. Bonello

https://doi.org/10.1016/j.ymssp.2011.07.024
https://doi.org/10.1016/j.ymssp.2011.07.024
https://doi.org/10.1115/1.4002271
https://doi.org/10.1115/1.4002271
https://doi.org/10.1115/97-GT-347
https://doi.org/10.1080/10402000208982578
https://doi.org/10.1080/10402000208982578
https://doi.org/10.1115/GT2014-25552
https://doi.org/10.1115/GT2014-25552
https://doi.org/10.1016/j.jsv.2015.02.017
https://doi.org/10.1016/j.jsv.2017.10.036
https://doi.org/10.1016/j.jsv.2017.10.036
https://doi.org/10.1016/j.jsv.2014.03.001
https://doi.org/10.1016/j.jsv.2014.03.001
https://doi.org/10.1115/1.4027859
https://doi.org/10.1016/j.triboint.2020.106434
https://doi.org/10.1016/j.triboint.2020.106434
https://doi.org/10.1016/j.ymssp.2019.04.018
https://doi.org/10.1016/j.jsv.2020.115174
https://doi.org/10.1016/j.jsv.2020.115174
https://doi.org/10.1016/j.jsv.2021.116177
https://doi.org/10.1016/j.jsv.2021.116177
https://doi.org/10.1016/j.ymssp.2021.108714
https://doi.org/10.1016/j.ymssp.2021.108714
https://doi.org/10.1016/j.jsv.2016.06.022


17. von Osmanski, S., Larsen, J.S., Santos, I.F.: A fully coupled

air foil bearing model considering friction—theory &

experiment. J. Sound Vib. 400, 660–679 (2017). https://doi.
org/10.1016/j.jsv.2017.04.008

18. von Osmanski, S., Larsen, J.S., Santos, I.F.: On the incor-

poration of friction into a simultaneously coupled time

domain model of a rigid rotor supported by air foil bearings.

Technische Mechanik Eur. J. Eng. Mech. 37(25), 291–302
(2017). https://doi.org/10.24352/UB.OVGU-2017-105

19. von Osmanski, S., Larsen, J.S., Santos, I.F.: Modelling of

compliant-type gas bearings: a numerical recipe. In: Pro-

ceedings of 13th International Conference on Dynamics of

Rotating Machinery. 2019. Technical University of Den-

mark (DTU)

20. Bonello, P.: The effects of air film pressure constraints and

top foil detachment on the static equilibrium, stability and

modal characteristics of a foil-air bearing rotor model.

J. Sound Vib. 485, 115590 (2020). https://doi.org/10.1016/j.
jsv.2020.115590

21. Pourashraf, T., Bonello, P.: A new Galerkin Reduction

approach for the analysis of a fully coupled foil air bearing

rotor system with bilinear foil model. J. Sound Vib. 546,
117367 (2023). https://doi.org/10.1016/j.jsv.2022.117367

22. Nielsen, B.B., Santos, I.F.: Transient and steady state

behaviour of elasto–aerodynamic air foil bearings, consid-

ering bump foil compliance and top foil inertia and flexi-

bility: a numerical investigation. Proc. Inst. Mech. Eng. Part

J: J. Eng. Tribol. 231(10), 1235–1253 (2017). https://doi.

org/10.1177/1350650117689985

23. Peng, J.P., Carpino, M.: Coulomb friction damping effects

in elastically supported gas foil bearings. Tribol. Trans.

37(1), 91–98 (1994). https://doi.org/10.1080/

10402009408983270

24. Kim, D.: Parametric studies on static and dynamic perfor-

mance of air foil bearings with different top foil geometries

and bump stiffness distributions. ASME J. Tribol. 129(2),
354–364 (2007). https://doi.org/10.1115/1.2540065

25. Wang, C.-C., Chen, C.O.-K.: Bifurcation analysis of self-

acting gas journal bearings. J. Tribol. 123(4), 755–767

(2001). https://doi.org/10.1115/1.1388302

26. Ghalayini, I., Bonello, P.: The application of the arbitrary-

order Galerkin reduction method to the dynamic analysis of

a rotor with a preloaded single-pad foil–air bearing. J. Eng.

Gas Turbines Power 144(9), 091015 (2022). https://doi.org/
10.1115/1.4055188

27. San Andrés, L., Kim, T.H.: Analysis of gas foil bearings

integrating FE top foil models. Tribol. Int. 42(1), 111–120
(2009). https://doi.org/10.1016/j.triboint.2008.05.003

28. Larsen, J.S., Nielsen, B.B., Santos, I.F.: On the numerical

simulation of nonlinear transient behavior of compliant air

foil bearings. In: 11th International Conference on Vibra-

tions in Rotating Machines (2015)

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

The application of the bilinear foil model to three-pad foil air bearings in rotordynamic analysis… 21585

https://doi.org/10.1016/j.jsv.2017.04.008
https://doi.org/10.1016/j.jsv.2017.04.008
https://doi.org/10.24352/UB.OVGU-2017-105
https://doi.org/10.1016/j.jsv.2020.115590
https://doi.org/10.1016/j.jsv.2020.115590
https://doi.org/10.1016/j.jsv.2022.117367
https://doi.org/10.1177/1350650117689985
https://doi.org/10.1177/1350650117689985
https://doi.org/10.1080/10402009408983270
https://doi.org/10.1080/10402009408983270
https://doi.org/10.1115/1.2540065
https://doi.org/10.1115/1.1388302
https://doi.org/10.1115/1.4055188
https://doi.org/10.1115/1.4055188
https://doi.org/10.1016/j.triboint.2008.05.003

	The application of the bilinear foil model to three-pad foil air bearings in rotordynamic analysis including reduced order modelling
	Abstract
	Introduction
	Modelling and analysis
	Rotor equations
	Foil equations
	Fluid film equations
	Galerkin reduction with simultaneous computation of constants (SCC) format
	Finite Difference (FD) discretization
	Computational approach

	Results and discussion
	Preliminary verification
	Concentrated air film forces and discrete bumps (Model 1, Fig. 2a, Table 1)
	Distributed air film forces and discrete bumps (Model 2a, Fig. 2b, Table 1)
	Distributed air film forces and continuously distributed bumps (Model 3, Fig. 2c, Table 1)
	Distributed air film forces and discretely-spaced bumps using shell model for top foil (Model 2b, Fig. 2b, Table 1)
	CPU times
	Comparison with theoretical and experimental results from [6]

	Conclusions
	Open Access
	Appendix
	References




