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Abstract This study introduces anovel double variable-
length cable pendulum model and experimental setup
featuring elastic suspension and counterweight mass.
Our main goal is to investigate the complex dynamics
resulting fromvariable length’s impact on vibration fre-
quency and amplitude. Through numerical simulations
and experiments, we explore the system’s response to
different external forces. Utilizing methods like phase
plots, bifurcation diagrams, and Lyapunov exponents,
we delve into nonlinear dynamics. We also use vision-
based techniques to assess friction damping-related
vibrations and magnetic field interactions. The results
reveal diverse behaviors, including chaotic and peri-
odic oscillations, shedding light on control functions
and parameter relationships. The developed cable sys-
tem captures intricate nonlinear dynamics and attains
stable vibration modes, as confirmed by vision-based
measurements. This platform can analyze and con-
trol irregular dynamics in systems with elastically sus-
pended weights driven by motors or mobile cranes.
Its nature, encompassing kinematic excitation, electro-
magnetic interactions, and sliding friction, allows for
exploring complex nonlinear dynamics. The system’s
capacity to modulate vibration frequencies contributes
to mitigating persistent vibrations.
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1 Introduction

This study presents a novel research setup, so far
unprecedented. The objective of this investigations is
to transition the concept of a variable-length pendu-
lum with accompanying effects described in distinct
sections to a laboratory level, thereby establishing
the foundation for investigating nonlinear phenomena
and intricate dynamic effects. In light of this, an ini-
tial, approximate physical description and the associ-
ated mathematical models are provided. In the subse-
quent part of this introduction, we elaborate on key
research concepts associated with the described topic,
namely, the applications, mathematical modeling of
such dynamic systems, the significance of frictional
effects, the excitation originating from the appliedmag-
netic field, and finally, the mathematical modeling of
this intricate system.

The variable-length pendulum is a physical concept
governed by certain differential equations and func-
tional principles and is often associatedwith parametric
oscillations [17].Aparametric oscillator can be thought
of as a harmonic oscillator with time-dependent phys-
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ical features [34]. These time-dependent variables are
related to the resonance frequency or damping of the
oscillator.

After conducting an extensive analysis of the exist-
ing studies on the variable-length pendulum across
different models and methodologies, we have iden-
tified specific applications of variable-length pendu-
lum systems. These pendulums have many applica-
tions, including energy harvesters, load-lifting equip-
ment, and robotics [1,3,25,27,36,38,41,43,47], such
as pendulum-like robots in [18,49], to mention but a
few. Especially, as stated by Li et al. many control
strategies are designed based on single pendulum crane
models, which ignore the hooks mass and treat the pay-
load as a mass point [23]. However, the payload will
swing around the hook when the payload is too large,
or the hook mass cannot be directly ignored, which is
called double pendulum effects, making the dynamic
more complex. The underactuated dynamical systemof
a double pendulum gantry crane with the load hoisting
or lowering can be controlled with the use a nonlin-
ear coupled tracking anti-swing controller developed
in [39].

The experimental study described in [27] involved
the development of a testing apparatus coupled with a
mathematical model for energy harvesting. This study
investigated the dependency of the dynamical response
on the pendulum length through both computational
simulations and experimentation.Thefindings revealed
that as the pendulum length decreases, the energy
gain increases. Furthermore, the study suggested that
employingmultiple pendulums could enhance the over-
all dynamic response of the system. In contrary to the
attempts of energy gain effects, Mahmoudkhani et al.
demonstrated a different application by implementing
a flexural pendulum absorber connected to a linear sys-
tem [25]. The system dynamics were simulated using a
sequentialmass-spring-dampermodel, and the velocity
of a specific point on the balanced beam was described
using differential equations. The study unveiled that the
flexural behavior of the beam displayed potential local
bifurcation modes, such as Neimark–Sacker and pitch-
fork bifurcations, resulting in an increased response
rate for the system. In the same field, Krasilnikov et al.
showcased that the auto-parametric absorber rigid pen-
dulum surpassed the performance of the standard rigid
pendulum in terms of durability [19]. Consequently,
auto-parametric pendulum absorption systems demon-

strate their effectiveness, particularly at low excitation
amplitudes.

A comprehensive set of numerical experiments
investigating resonances in a spring pendulum system
with variable length is presented in [32]. In this study,
the equations of motion establish a three-degree-of-
freedom model system. The equations governing the
pendulum angle, elongation, and slider displacement
were formulated using the second derivatives of the
state variables. The Euler–Lagrange equation and the
Rayleigh dissipation function of the pendulum were
employed for the pendulum angle and slider displace-
ment equations, respectively. Under resonance condi-
tions, the variable-length spring pendulum, suspended
from a periodically forced slider, exhibits phenom-
ena like quasi-periodicity and chaotic motions. More-
over, the investigation revealed that in close proximity
to resonance, the influence of body coupling on sys-
tem dynamics could lead to unpredictable dynamical
behaviors. Extensions of this research can be found in
[30], where a discrete wave modulated step function of
length is used to stimulate a parametric pendulum. This
pendulum undergoes mathematical analysis akin to the
approach outlined in [32], and the Lyapunov exponents
of the system were computed in [40].

Considering that a variable-length pendulum can
exhibit both faster and longer oscillations as shown in
the research [19], this modification could lead to an
associated enhancement in fluid pumping efficiency.
Such an improvement aligns with the reduction in
human effort resulting from faster and longer oscilla-
tions compared to a pendulum with a constant length,
as highlighted in another study [45]. As a result, it is
suggested that, in certain engineering applications, a
variable-length pendulum could be preferable over the
conventional constant-length pendulum, offering a sub-
stantial reduction in the necessary human effort.

Let us summarize the advantages of diverse appli-
cations utilizing variable-length pendulum concepts.
They can be found in various fields, including energy
harvesting, load-lifting equipment, robotics, and
pendulum-like robots; research has shown that as the
pendulum length decreases, energy gain increases,
making variable-length pendulums suitable for energy
harvesting applications; the introduction of variable-
lengthpendulums introduces complexdynamics, includ-
ing double pendulum effects, enhancing the system’s
dynamic behavior; adaptive performance and durabil-
ity compared to standard rigid pendulums, especially
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at low excitation amplitudes is shown on the basis of
auto-parametric absorber pendulums; variable-length
pendulums have demonstrated potential for enhancing
fluid pumping efficiency due to the ability to exhibit
both faster and longer oscillations; numerical experi-
ments investigating resonance in spring pendulum sys-
tems with variable length reveal phenomena such as
quasi-periodicity and chaos.

Various methods are employed to derive mathemat-
ical equations for engineering systems. For dynamical
systems, the most commonly used approaches include
theEuler–Lagrangemethod, theHamiltonianprinciple,
and Newton’s second law of motion. In this paper, we
derive a mathematical model for the double variable-
length pendulum with counterweight mass, which has
been previously studied on a smaller scale [34]. Specif-
ically, we develop a more comprehensive model that
captures the dynamics of the double variable-length
pendulum with counterweight mass in greater detail.

Lagrange equations are commonly used to derive
the equations of motion for double pendulum sys-
tems [10,35]. For example, in [22], the Euler–Lagrange
approach is used to derive the governing equations of a
base-excited double pendulum with a magnet attached
to the lower end of the second pendulum and equally
spaced coils placed near the curvature of the magnet
loop. This system can be used to generate electricity,
and the harvested energy can be increased by increasing
the amplitude and frequency of excitation, which can
also be achieved by adding more coils to the harvester
[22]. Additionally, a double pendulum with one-sided
rigid suppression under symmetric excitation leads to
an asymmetric and chaotic system, as presented in [14].

When testing dynamic systems, it is important to
consider friction since it significantly impacts the sys-
tem’s dynamic properties and operating conditions.
The dynamic model presented in this work requires
the consideration of friction phenomena between the
disks and the cables on which the oscillating bodies are
suspended. Therefore, we provide below a few signifi-
cant publications related to this phenomenon: [2,5,20].
The contribution of these publications to the descrip-
tion of the dry contact friction can be summarized as
follows. Beginning from the first one, Kraus et al. focus
on modeling and compensating for friction, with par-
ticular attention to its impact on the rotational motion
of pulleys placed in series and on the control of paral-
lel robots with cable drive [20]. Incorporating friction
into our model to account for dissipative forces, the

dynamics of an extensible cable wound around a pul-
ley, with attention to the Coulomb friction between the
pendulum cable and its support, is comprehensively
addressed in [5]. In addition, Bazaei et al. analyzed
the friction of limited arms moved at low speeds and
developed a new model to compensate for this phe-
nomenon [2]. This model was verified through simu-
lation and experimental studies that used a feedback
control system.

Some significant events associated with the friction
modeling addressed in our study encompass pure dry
sliding friction, the stick–slip effect, viscous friction,
and potentially the Stribeck effect or frictional delay.
These phenomena have been investigated in a survey
of several friction forcemodels for dynamic analysis of
multibody mechanical systems by Marques et al. [26];
a continuous friction model for dynamics and control
with physically meaningful parameters’ by Brown and
McPhee [7]; modeling friction in the dynamics anal-
ysis of selected one-degree-of-freedom spatial linkage
mechanisms byHarlecki andUrbaś [16]; and alsomod-
eling, analysis, and control of dynamical systems with
friction by Olejnik et al. [29].

With respect to the above, we have included pure
dry sliding friction, stick–slip effect, viscous friction
to capture phenomenological model of the nonlinear
dynamical system to gain a better understanding and
determine the precise reactions of the double pendu-
lum of variable length. For instance, as presented by
[26] and others, static models describe the steady-state
behavior of relative frictional force or velocity, while
dynamic models record more physical responses and
properties by incorporating additional state variables
[31]. For this reason, it may be necessary to incor-
porate dynamic friction models with additional con-
trol parameters in the double variable-length pendulum
with counterweight mass to capture the exact physi-
cal response of this complex mechanical system with
unpredictable dynamics.

Electromagnets commonly use solenoids, which
are wire coils arranged in a spring-like configuration.
When an electric current flows through the solenoid, it
generates a magnetic field. The strength of this field is
determined by the properties of the solenoid and pro-
duces a force on charged particles that is directly pro-
portional to their magnitude. A plunger and solenoid or
a pair of solenoidswith uniformwindingmake a typical
tractive electromagnet pair in the investigated system.
The solenoids experience forces from the current flow-

123



19726 P. Olejnik et al.

ing through them, which causes the plunger to move.
When the forces acting on the plunger are equalized,
the plunger ceases to move. For instance, the plunger
is centered in the solenoid and balances the forces.
An electromagnet can quickly alter the magnetic field
by adjusting the electric current flowing through the
winding. A solenoid-generated external magnetic field
interacts with a cylindrical permanent magnet plunger
to drive a magneto-mechanical oscillator. For instance,
this mechanism was used by Polczyński et al. to inves-
tigate various pendulum systems [33].

Hao et al. introduce a new magneto-mechanical
oscillator model that emphasizes significant parallel
leaf spring deflection and the electromagnetic actu-
ator [15]. A model of magnetic forces from a sin-
gle solenoid actuator was developed using the charge
model and infinitesimal element analysis. Findings
showed that the electromagnetic force depends on the
permanent magnet’s position, hindering pure harmonic
excitation for large oscillation amplitudes. An elec-
tromagnetic actuator design with paired solenoids to
control double pendulum dynamics was introduced.
This design employs quasi-constant force to main-
tain near-constant excitation. This actuator provides a
broad excitation range.Motionof amagnetically forced
spring pendulumwas studied also using a uniformmag-
netic field [28].

Due to the increasing need to consider nonlineari-
ties in dynamical systems, bifurcation diagrams have
become a highly useful tool in engineering applications
for the nonlinear analysis of dynamical systems. There-
fore, the analysis of bifurcation phenomena observed
in the dynamic response of analyzed systems cannot
be avoided, especially in the case of nonlinear mul-
tiparameter dynamical systems. Bifurcation diagrams
can be constructed simply using appropriate orthogo-
nal decomposition modes that are computed on the fly
when the bifurcation parameter is changed [42].

The theory of dynamical systems, in which differ-
ential equations play a fundamental role [17], is used
to describe complex dynamic behavior. In such sys-
tems, period-doubling bifurcation occurs when a small
change in a systemparameter causes a newperiodic tra-
jectory to emerge from the existing periodic trajectory,
with a doubled original oscillation period. It is impor-
tant to distinguish between the halving bifurcation and
the period-doubling cascade. This is the standard route
to collapsing into chaos. This matter refers to homo-

clinic, subharmonic, and superharmonic bifurcations
for a periodically varying length pendulum [4].

Understanding the predictability of a dynamical sys-
tem requires a definition of the concept itself, as well as
the application ofmathematical tools such as Lyapunov
exponents. In this work, we focus on the spectrum of
Lyapunov exponents, which enables us to character-
ize the rate of separation of the double pendulum mass
from its initial position in space over time. The sys-
tem’s complete trajectory is determined by its position
and momentum, and to analyze its chaotic orbits, we
calculate the greatest Lyapunov exponent as described
in [6]. In general, a positive Lyapunov exponent indi-
cates that the double variable-length pendulum with
counterweight mass under study in this work is chaotic,
provided that other conditions such as the compactness
of the phase space are met [29].

In [9], Lyapunov exponents were investigated as
a function of excitation amplitude during modulation
of chaotic motion of a pendulum with excitation. In
[24], the authors applied the Poincaré–Birkhoff fixed-
point theorem and showed that there is a fixed, non-
permanent periodic solution for a forced pendulum of
variable length. In [37], it is indicated that by appropri-
ately selecting the threshold speed during modulation
of the rotational pendulum force, a controlled pendu-
lum can achieve constant rotations for both constrain-
ing regularities, despite different initial conditions and
forcing parameters. The concept of a variable-length
pendulum has also been applied in [44,48] to control
a crane system and in [12] to improve performance of
nonlinear absorber using surrogate optimization.

Based on a literature analysis, it is clear that mod-
eling and analyzing parametric dynamical models of
variable-length pendulumswith various forms of exter-
nal forcing can be very challenging. However, the
potential applications of these systems in mechanical
and mechatronic systems make them an important sub-
ject of research, with significant relevance in both the-
ory and practical engineering applications. Addition-
ally, investigating these systems allows for the use of
modern tools and methods for solving and analyzing
parametric dynamical systems.

In Sect. 2, we introduce our original experimen-
tal test stand. In Sect. 3, we describe the physical
and mathematical models used to capture the most
important mechanical phenomena and general princi-
ples of the dynamical modelling process. These mod-
els include Lagrangian mechanics, friction modelling
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in pulley sliding bearings, electromagnetic actuation
mechanisms, and kinematic forcing. Section4 presents
the results of our numerical simulations, nonlinear
dynamical analyses, and vision-based measurements
on the real experimental stand. Finally, in Sect. 5, we
provide our observations and conclusions.

2 The experimental laboratory stand

In this part of the paper, the main principles of con-
struction and purpose of the original research setup
are presented, aimed at achieving the desired dynamic
functionalities.

In the investigated double variable-length pendulum
with counterweight mass, one of the weights, called a
pendulum, is set in pendulous motion by a kinematic
forcing, while the other weight, a counterweight on the
second endof the elastic cable joining bothweights, can
move freely in the direction of the Earth’s gravitational
field. This model assumes that both weights move in
the same plane and do not interfere with each other.
As already mentioned in previous chapters, the practi-
cal development undertaken in this work involves the
attachment of a second pendulum, which is springily
connected to the former. This concept was analyzed
with the aim of implementing a real system with the
above distribution of vibrating masses, subjected to
kinematic forcing applied to the suspension point of
the variable-length double pendulum. Given that the
described pendulum is suspended by a rotating pul-
ley and its length is variable, the design of the pro-
posed stand takes into account a rigid frame structure
equipped with a servo drive that sets the movement of
the end-effector—a slider in a linear ball bearing with
an attached pulley.

An original laboratory stand, shown in Fig. 1, allows
for observation of the dynamical behavior of a real
double variable-length pendulum with counterweight
mass. Control of the horizontal movement of one of
the rotating pulleys, which is placed in the slider, is
achieved using a servomotor (2). This allows for lim-
iting the movement of the counterweight of mass M ,
or for performing kinematic forcing of the suspension
point of the flexible pendulum. These actions provide a
limited dynamic range of vibration amplitude for both
pendulumbodies,m1 andm2, while keeping the system
in a sensitive state of dynamic equilibrium.

The pendulum’s suspensionwas forced by replacing
one pulley with two smaller pulleys. The axis of rota-
tion of the pulleys is located above the pendulum and
is not permanently connected to the frame of the sta-
tion. Instead, it has the ability to move horizontally and
relatively to the frame according to a given trajectory
of movement, such as the function f0 sin(ωt) of time
t , where f0 is the amplitude and ω is the angular fre-
quency. Using a position- or velocity-controlled servo,
the designed propulsion system is able to accurately
reproduce the complex trajectories of the position and
speed of the suspension point of the pendulum under
test.

To block or partially restrict the movement of the
counterweight, two current-fed coils are located near
it. With this solution, the displacement of the counter-
weight with mass M can be periodically limited with
different forces and alternating electromagnetic fields.

The stand is constructed in such a way that a double
pendulum with masses m1 and m2 can move freely in
a complex motion, with a pair of electromagnets peri-
odically switched on or off to act on a counterweight
of mass M . As a result, the length of the first pendulum
does not increase beyond the permissible value deter-
mined by the length of the cable. The upper limit of
the length of the first pendulum is reached when the
sum of the masses m1 + m2 is much greater than the
mass M of the counterweight or when the sum of the
instantaneous contributions of the inertia force in the
pendulum motion exceeds the inertia of the counter-
weight. In both situations, the pendulum system drops
downwards, and the cable hits the ground.

Aluminum modular profiles provide the necessary
construction and strength to meet the assumptions
of the mathematical model and the physical problem
defined based on the concept of the variable-length
pendulum. The remaining components are made of
machined aluminum or 3D printed plastic. Specific
components of the experimental stand, designed to
operate with a double pendulum slung through pulleys,
are shown in the pictures below (see Fig. 2).

A connecting rod (9) with Igus spherical heads
attached to the ends (8) was used as a link between
the crank (7) and the end-effector, which consists of a
linear plain bearing with an attached movable pulley
(14). This solution allows us to adjust the length l2 of
the second arm of the mechanism. The ball joints of the
Igus heads compensate for inaccuracies that may arise
during installation of the drive system, from the motor
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Fig. 1 A prototype of the
experimental realization of
the laboratory stand is
shown placed on a Stewart
platform table. The
pendulum masses, shown in
white and blue, are fixed to
the cable, and the slider is
marked in green

Fig. 2 A particular view of
the experimental station’s
components is shown,
highlighting the crank
mechanism (a) and the
overhanging pendulum
cable. A fast camera uses a
green marker to estimate the
position of the slider

axis to the end-effector. The linear bearing of the slider
is achieved using a rail (12) and a ball bearing (11).

The stand is equippedwith beammounts (17) for the
electromagnet coils (16), which are enclosed in plas-
tic coil mounts (15) that allow for adjustment of their
spacing and modification of the shape of the magnetic
field acting on the counterweight M . These two coils,
located above and below the counterweight, serve as
controllable repellers that stop its position. Using the
capabilities of the IndraDrive servo amplifier, we can
control these coils from an external LabVIEW pro-
gram. Thanks to this, this pair of coils acts as a gener-
ator of an external electromagnetic field, which forces
or sometimes initiates the beginning of an experiment.

3 Mathematical and dynamical modeling

In this section, we outline the process of deriving
the equations of motion for a four-degree-of-freedom
mechanical system, which serves as a model for a
swinging machine [46]. We will employ Newton’s sec-
ond law of motion and the Lagrange–Euler method to
establish the governing dynamic equations of motion
for the double variable-length pendulum with a coun-
terweight mass. Both approaches are anticipated to

yield a precise mathematical representation of the ana-
lyzed dynamic systems. Prior to deriving the model,
several assumptions were made:

A1 A damped spring model between the two pendu-
lum masses m1 and m2 is incorporated.

A2 The mass of the cable that couples all the system
masses is negligible.

A3 The system is non-symmetric. This means that
the kinematic excitation applied to the point of
suspension of the two pendulum masses m1 and
m2 puts more inertia on the right-hand side of the
pendulum of the two coupled masses m1 and m2,
as shown in Fig. 3.

A4 Air resistance-caused drag forces acting on the
masses of the system are neglected.

3.1 The dynamical modelling

Our derivations in this section are based on the use
of Newton’s second law and the associated free body
diagram of the investigated physical model shown in
Fig. 3. All forces acting in the plane (x, y) and dimen-
sions are indicated with respect to the origin O(0,0).

After reviewing the potential fields of application
discussed in [46], we added a spring pendulum on the
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Fig. 3 Free body diagram of the investigated physical model of
the double variable-length pendulum with counterweight mass
and kinematic excitation

opposite side of the counter mass M and a suspen-
sion system based on a Maxwell element with a stiff-
ness k and a damper c placed between the two pendu-
lums with masses m1 and m2. Point O1 is fixed, while
O2 is movable and can oscillate on the line (O, X),
allowing for the variation of the length l1(t)—the first
state variable—and the double pendulum couplings.
The length l20 between the two point-focused masses
of the pendulum is constant due to elongation under a
static gravitational force, while l2(t) is the state mea-
sured after the dynamic extension caused by the spring
connection with stiffness k between the masses.

Using Newton’s second law of dynamics, we estab-
lished the equations of motion, assuming that the links
are massless and the masses are concentrated at the
points where the subsequent cords connect. The vec-
tor to the counter mass M in the assumed system of
coordinates is defined as follows:

�rM = [XM ,YM ], for XM = −s,

YM = Ln − l1(t) − s − X0(t), (1)

where X0(t) = f0 sin (ωt + θ) is a time function that
represents the periodic kinematic excitation, measured
from the origin of the global coordinate system O(0,0)

in the X direction. Here, ω and θ are the angular fre-
quency and phase shift of the excitation, s represents
the distance in the X direction from O(0,0) to the fixed
support point O1, while Ln represents the length of the
entire cable between the centers of the counterweight
mass M and the pendulum m1.

The sum of forces acting on mass M in the Y -
direction is given by:

M �̈rM =
∑ �FM = [0,−Tt,0 + Mg], (2)

where TR represents the total friction force in both pul-
ley bearings, including Coulomb and viscous friction;
see Sect. 3.3.

By defining the second pendulum’s length L2(t) =
l20s + l2(t), we introduce vectors for both pendulous
bodies using the coordinates of vectors �ri :
�r1 =[X1,Y1]

= [X0(t) + l1(t) sin ϕ1(t), l1(t) cosϕ1(t)] ,

�r2 =[X2,Y2]
= [X1 + L2(t) sin ϕ2(t), Y1 + L2(t) cosϕ2(t)]

(3)

where l20s = l20 + l2st , with l20 being the free length
of the spring with stiffness k, and l2st = m2g/k repre-
senting the static elongation of the spring.

We now define the forces acting on the masses of
the first and second pendulums, denoted m1 and m2,
respectively:

�F1 =[F1X , F1Y ]
= [−(Tt,2 + TR) sin ϕ1(t) + Tt,3 sin ϕ2(t),

−(Tt,2 + TR) cosϕ1(t) + Tt,3 cosϕ2(t) + m1g
]
,

�F2 =[F2X , F2Y ]
= [−Tt,3 sin ϕ2(t), −Tt,3 cosϕ2(t) + m2g

]
.

(4)

Here, Tt,3 = kl2(t) + cl̇2(t) represents the force in the
spring-damper Maxwell coupling-based model.

The equations of motion are given in general form:

mi r̈i X (t) = Fi X ,

mi r̈iY (t) = FiY , for i = 1, 2,
(5)

where Fi X and FiY are the force components acting on
mass mi in the (X,Y )-plane. The Newtonian model is
governed by the ODEs (5), which express the dynamic
equilibrium of forces acting in the considered mechan-
ical system.

Based on the deductions above, the dynamics of the
system’s response with generalized coordinates l1(t),
l2(t), ϕ1(t), and ϕ2(t) are described by four second-
order ordinary differential equations (6), which are as
follows:

l̈1 = 1

m1 + M

[
Tt,3 cosϕ21 − Ẍ0

(
m1 sin ϕ1 + M

)

+m1
(
g cosϕ1 +l1ϕ̇

2
1
) − TR − Mg

]
,

l̈2 = 1

2m1m2(m1 + M)

[
Mm2Tt,3

(
cos 2 ϕ21 − 1

)

+ m1m2

(
MẌ0

(
2 cosϕ21 + sin (ϕ2 −2 ϕ1) − sin ϕ2

)
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+ gM
(
2 cosϕ21 + cos (ϕ2 −2 ϕ1) + cosϕ2

)

+ 2
(
(Ml1ϕ̇1 + TR) cosϕ21

+ (m1 + M)L2ϕ̇
2
2 − Tt,3

)) − 2m1Tt,3(m1 + M)

]

ϕ̈1 = 1

m1l1

[
Tt,3 sin ϕ21 − m1

(
g sin ϕ1 +Ẍ0 cosϕ1

+ 2l̇1ϕ̇1
)]

,

ϕ̈2 = 1

2m1L2(m1 + M)

(
− MTt,3 sin 2 ϕ21

− Mm1

(
g
(
2 sin ϕ21 + sin (ϕ2 −2 ϕ1) + sin ϕ2

)

+ Ẍ0
(
2 sin ϕ21 − cos (ϕ2 −2 ϕ1) + cosϕ2

)

+ 2l1ϕ̇
2
1 sin ϕ21

)

− 2m1
(
TR sin ϕ21 + 2(m1 + M)l̇2ϕ̇2

))
. (6)

In Eq. (6), ϕ21 = ϕ2 −ϕ1, Ẍ0 = −ω2 f0 sinωt , f0
is the maximum amplitude of the kinematic excitation,
and ω is the excitation frequency. Furthermore, ϕ1(t)
and ϕ2(t) represent the angles of deflection of the pen-
dulum arms of length l1(t) and l2(t) (relative to their
predecessors) from the vertical axis crossing the center
of the movable pulley at O2, as shown in Fig. 3.

3.2 Lagrangian of the mechanical system

The system under investigation is structurally complex,
so it should be examined from an energetic perspec-
tive. Ideally, one would find its Lagrangian and use
the Euler–Lagrange method based on energy to derive
the mathematical model. This method combines the
kinetic and potential energies, denoted by T and U ,
respectively. In this section, the same symbols are used
to derive the equations of motion.

When proposing the formula for potential energy,
we assume that the masses in the system are concen-
trated in points and that the links connecting them are
massless. A coupling between masses m1 and m2 is
modeled using aMaxwell element with spring stiffness
k and dashpot damping c. The time-dependent kine-
matic excitation is denoted by X0(t) = f0 sin (ωt),
which represents the distance from O2 to the right in
the X2-direction. The masses M andm1 are hanging at
Y0 each and are separated by a distance of s + X0, so
the length of the cable is Ln = 2Y0 + X0. To calculate

the potential energy only, we take Y0 as the reference
coordinate and set it equal to −Ln − f0 + s.

The coordinates for the potential energies of all the
masses are measured in the global coordinate system.
A change in the length l1(t) of the first pendulum will
affect only YM , regardless of the angle ϕ1(t).

To calculate the first term of U for m1, we use the
projection of l1(t) onto the Y -axis, i.e., l1(t) cosϕ1(t).
An increase in Y1 from Y0 also appears on the Y -axis.
If Y0 represents the equilibrium position for masses M
and m1 at ϕ1(t) = 0, then we introduce the distance
from O(0,0) of the global system to m2, which is in
equilibrium at ϕ2(t) = 0. If mass m2 moves from Y20
to Y2 due to the influence of Y1, then virtual work is
done in the gravitational field at some distance from
Y20 (at the free-hanging lengths of the second and first
pendulum, subsequently at Y0, when M is also at Y0) to
Y2. An increase�Y1 affects the potential energy ofm2.
We have all the components needed to write the total
potential energy for the spring of stiffness k between
m1 and m2. After the analysis above, we can propose
the potential energy in the following form:

U = −(m1 + m2)g cosϕ1l1(t)

−m2g cosϕ2
(
l20 + l2(t)

) + Mg
(
X0(t)

−Ln + l1(t) + s
) + 1

2
kl22(t), (7)

where l2(t) represents an incremental change in the
length of the second pendulum, measured from l20.

The total kinetic energy T as the sum of the kinetic
energies TM , T1, T2 possessed by the system masses
working in a serial chain connection M–m1–m2 is
given in the form:

T = TM + T1 + T2

= 1

2
M

(
Ẋ0 + l̇1

)2 + 1

2
m1l

2
1 ϕ̇

2
1 + m1 Ẋ0

(
l1 cosϕ1ϕ̇1

+l̇1 sin ϕ1
) + 1

2
m1 Ẋ

2
0 + 1

2
m1l̇

2
1

+1

2
m2

[(
(l2 + l20)ϕ̇2 sin ϕ1

−l̇2(t) cosϕ2 + l1 sin ϕ1ϕ̇1 − l̇1 cosϕ1
)2

+(
(l2 + l20) cosϕ2ϕ̇2

+l̇1 sin ϕ2 + l1 cosϕ1ϕ̇1 + l̇1 sin ϕ1 + Ẋ0
)2

]
.

(8)

Subsequently, the non-conservative force that cap-
tures damping of the system along the displacement l2
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is derived from the Rayleigh dissipation function:

R(q̇i ) = 1

2
c

(
d(l20 + l2(t))

dt

)2

= 1

c

(
dl2(t)

dt

)2

= 1

2
cl̇22(t). (9)

The Euler–Lagrange equations, with the Lagrangian
L defined in terms of four degrees of freedom,
namely the vector of generalized coordinates qi =
[l1, l2, ϕ1, ϕ2] and the vector of generalized forces
Qi = [−TR, 0, 0, 0], yield:

d

dt

∂L

∂q̇i
− ∂L

∂qi
+ ∂R

∂q̇i
= Qi , for i = 1 . . . 4. (10)

Finally, by solving the Euler–Lagrange equations
(10) with the assumptions and definitions given in (7),
(8), and (9), we obtain an identical system of second-
order differential equations (6), which proves the cor-
rectness of our derivations.

In summary, the obtained model describes the
dynamic behavior of the mechanical system under
examination, which varies over time and throughout
the available space of the angles of rotation of both
mathematical pendulums and the entire length of the
pendulum arms, including negative lengths. However,
the negative length l1 of thefirst arm is beyond the scope
of this model, as it would cause the cable to lose con-
tact with the second movable pulley. Thus, the numer-
ical experiment, as well as the initial conditions and
later dynamic states, must ensure that l1(t) > 0. This
poses problems in finding an appropriate set of con-
stant parameters and initial conditions imposed on the
tested dynamical system. Additionally, dynamic anal-
ysis, including the determination of bifurcation plots,
becomes much more challenging, as this condition
must be met for all values of the control parameter and
in each iteration of the discrete solution.

3.3 Modeling friction in pulley bearings

Now, we will present a model of the friction force in
the bearings of both pulleys placed horizontally at a
distance of X0(t) + s, as shown in Fig. 3. We consider
Coulomb and viscous friction. In the first andmost intu-
itive assumption, the rotation of the pulleys takes place
under friction in the contact surface with the cable. It

should be noted that the diameter of the pulley is dis-
regarded, but it cannot be too small formally, because
of the difficulty in describing the change in the tension
force when bending the cable.

The Coulomb friction model is used to model the
tangential forces on the contact surface, which depend
on the relative speed of movement of the two dry
surfaces of solids forming the frictional contact [29].
Coulomb friction models are widely used, and depend-
ing on the application, a number of functional forms
are distinguished, with a discontinuity expressed math-
ematically by the sgn function. However, we begin the
current derivation by defining a simple frictional con-
tactmodel as the starting point, which linearly connects
the Coulomb and viscous friction models.

We derived the equations of motion for the consid-
ered triple pendulum (reduced to a double pendulum in
the context of the dependent movement of the counter-
mass M), which is suspended by an inextensible cable
through two pulleys. We assumed dry friction occur-
ring on the contact surfaces of both rotary slide bear-
ings, while ignoring the friction on the contact surfaces
of the cable and the two roller sleevesmounted on these
bearings. To bring our dynamic model closer to the real
system used in the experimental part of this work, we
introduced the bearing resistance TR,i in the form of
the sum of Coulomb and viscous friction forces.

We assumed that the cable connecting bodies M and
m1 experiences no slip on the outer surface of these
sleeves. In the ideal case without friction, Tt,i = Tt,i−1,
so the tensile forces in front of and behind the rolling
sleeves are equal. However, after taking into account
the effects of the resistance on the rotation of the sliding
bearings, i.e., Coulomb friction force Tc,i and the force
of viscous friction Tv,i at the i-th pulley at points Oi ,
we obtain:

Tt,i = Tt,i−1+TR,i = Tt,i−1+Tc,i +Tv,i , for i = 1, 2.

(11)

The above formula describes the balance of forces
in the cable guided through rollers around both sliding
bearings, taking into account the friction force TR,i at
the cable speed l̇1.

Viscous friction depends on the speed of move-
ment of the cable, the associated sliding bearing, and
a certain factor. Assuming that the cable is constantly
stretched over the entire length of Ln , which is true for
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the mechanical system under consideration, its speed
around each bearing will be the first derivative of the
change in length l1(t) of the pendulum of m1. In this
case, it is sufficient to assume a certain constant value
of the viscous friction coefficient, denoted by di for
each of the pulleys. Thus, we arrive at the formula
Tv,i = di l̇1.

The first component of the drag force, namely
Coulomb friction, seems to be more difficult to model.
The normal force exerted by pull forces on both sides
of the sliding bearings must be determined. One of
these forces acts at a constant wrapping angle α1 of
the roller, while the second one depends on the α2

angle and changeswith time due to the dynamic change
in the angle ϕ1(t) of the m1 pendulum. The wrapping
angles for the first (fixed) and the second pulley mov-
ing horizontally with amplitude X0(t) are as follows:
α1 = π/2, α2 = π/2 − ϕ1(t), respectively.

Equation 12 defines the Coulomb friction force in
the bearing of the i-th pulley. This force is calculated
based on the basic definition, where Tc,i is the friction
force,μi is the coefficient of friction for the i-th pulley,
TN ,i is the normal force on the pulley bearing, and l̇1
is the velocity of the cable. The sign function, sgn,
ensures that the direction of the friction force opposes
the direction of the cable’s motion.

Tc,i = sgn l̇1μi TN ,i . (12)

Following [20], TN ,i is the i-th force of normal reaction
of a particular pulley bearing:

TN ,i =
√
T 2
t,i − 2Tt,i Tt,i−1 cosαi + T 2

t,i−1. (13)

The normal force in Eq. (13) acts at the bisector of
the wrapping angle formed by the cable and the pulley.
This allows for the following approximation:

TN ,i ≈ Tt,i + Tt,i−1

2

√
2(1 − cosαi ) . (14)

The relationship for the tension forces acting between
successive pulleys is unknown. To determine this rela-
tionship,we first eliminate TN ,i by substitutingEq. (14)
into (12) and then, substituting Tc,i in (11). We then
solve the resulting algebraic equation for Tt,i , giving:

Tt,i = Tt,i−1T̃c,i + 2(Tv,i + Tt,i−1)

T̃c,i − 2
(15)

for T̃c,i = sgn l̇1μi
√
2(1 − cosαi ) and Tv,i = di l̇1, for

i = 1, 2.
The additional term that reflects the total frictional

resistance TR , which is an external force to themechan-
ical system and exists in both pulley bearings Oi , can
be found as a sum of differences TR,i = Tt,i − Tt,i−1

(see Eq.(11)). Specifically, TR = TR,1 + TR,2, where
the first tension force is initially Tt,0 = Mg − m1l̈1(t)
(see Fig. 3).

3.4 The electromagnetic actuator design and output

Figure 4 shows the details of a double-identical
solenoid actuator. This type of actuator uses two
solenoids that are mounted in parallel with each other
[11,13]. The use of two identical solenoids offers sev-
eral benefits. First, it ensures that the actuator produces
a balanced force because the two solenoids are identi-
cal in size and strength. Second, it provides redundancy
in case one of the solenoids fails, as the other solenoid
can continue to provide motion [8,11,13,50]. Finally,
it allows for greater control over the motion produced
by the actuator since the two solenoids can be indepen-
dently controlled, as discussed in [11] or [33].

As stated by [11], the charge model states that the
force exerted by a permanent magnet in an external
magnetic field can be expressed as follows:

�F =
∫

v

ρ �Bextdv +
∮

s
σ �Bextds, (16)

where ρ = −∇ · �M and σ = �M · �n are equivalent
volume and surface charge density, respectively; �Bext

is the external magnetic field, and �M is the magnetic
moment of the permanent magnet per unit volume.

Additionally, the formula �M = Br/μ0 can be
used to determine the magnetic moment, where Br
is the residual flux density of the permanent magnet.
The cylindrical magnet plunger is polarized with fixed
and uniform magnetization along its axis, denoted as

�M = Ms�i , resulting in ρ = −∇ · �M = 0. The mag-
netic force acting along the x-axis is given by:

�Fx =
∮

s
σ �Bxds , (17)

where Bx is a function of the variable x . In our case, the
magnetic plunger is a hollow cylinder, then, to evaluate
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Fig. 4 The magnetic
plunger rod is a
counterweight placed
between two identical
solenoids in the
twin-solenoid actuator

σ , the unit surface normal is determined as follows:

�n =
{−�i : xl = x − l

2 ,
�i : xr = x + l

2 ,

−e�r : r = d1
2 , e�r : r = d2

2 ,
(18)

where e�r is the unit vector in the direction of �r . If the
permanent magnet’s north and south poles are on its
left and right sides, respectively, then its end surface’s
charge density is described as:

σ = {
M : xl = x − l

2 , −M : xr = x + l
2 , (19)

where l, d1, and d2 are the lengths of the inner and
outer radii of the magnet cylinder, xl and xr are the
coordinates of the permanent magnet’s left and right
regions on the x-axis.

Equations (16) and (19) are used to calculate the
force acting on the permanent magnet plunger, as
described below:

Fx =
∮

s
σmBxds

=M

[
Bx

(
x − l

2

)
− Bx

(
x + l

2

)] ∫ d2
2

d1
2

∫ 2π

0
rdrdθ

=
Brπ

(
d22 − d21

)

4μ0

[
Bx

(
x − l

2

)
− Bx

(
x + l

2

)]
.

(20)

The amplification of the driving force is a function
of the displacement variance x , as shown by the cal-
culations above for a single solenoid actuator. A more
effective electromagnetic actuator is described in [15],
which involves two similar and coaxial solenoids with
coils wound in opposite directions and fed by the same

currents. This results in a constant force that is indepen-
dent of displacement, making it suitable formechanical
and mechatronic applications.

We assume that the distance between the centers
O ′ and O ′′ of the wound air coils that create the pair
of solenoids passing the same, but mutually reversed
direction current is d. The magnetic moving body, with
a coordinate system attached at O , operates approxi-
mately along the imaginary line created by O ′ − O ′′.

Using Eq.(20), we can derive the electromagnetic
force as shown below:

F(x) = Fx

(
x − d

2

)
+

(
x + d

2

)
. (21)

To analyze the nature of the resulting electro-
magnetic force acting on the counterweight mass, or
plunger (as seen in Fig. 4b), in the experimental stand,
force curves were constructed and are shown in Fig. 5a.
The characteristics of the electromagnetic force gen-
erated by a constant direct current, such as those in
Fig. 5a, can be used to determine which of the four
types of quasi-constant force (QCF), oblique linear
force (OLF), single peak force (SPF), and double peak
force (DPF) is being produced.

The various types of forces reflect the connections
between displacement and force, which can be altered
by changing the properties of the electromagnetic actu-
ator, such as the length, thickness, and radius of the
solenoid, the number of turns in the coil, and the dis-
tance between a pair of solenoids. As d decreases and
increases, the force curves transform into SPFs and
DPFs, respectively, for instance, at d = 75 and 92 mm
. For example, according to Fig. 5a, the QCF zone is
present at x = 0 when d = 83 mm. The OLF region is
visible in the plot shown in Fig. 5a, where the force is
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Fig. 5 The actuator’s force
characteristic, including the
QCF, SPF and DPF (a) and
its dependence on varying
current in the coils (I = 3 A
for experiments in Sect. 4.3)

Fig. 6 The segments of
OLF and SPF for the single
solenoid actuator. The
single solenoid actuator’s
forces at various parameters
d2 and L

between−10 and 15 N. The segments of OLF and SPF
for the single solenoid actuator can be seen in Fig. 6a
and b. It should be noted that a single solenoid actuator
can only produce SPFs and OLFs. On the other hand,
an actuator powered by a pair of identical solenoids can
produce all four types of forces.

3.5 The kinematic forcing

Tomaintain the suspensionpoint of the double variable-
length pendulum, we used a servo connected to a mov-
able pulley through a crank mechanism (as demon-
strated in a similar way in [21]). As shown in Fig. 7a,
the crank with a length of l1 on the segment (x0, y0)-
(x1, y1) and the connecting rod with a length of l2
on the segment (x1, y1)-(x2, y2) form a simple kine-
matic chain. The end of this chain, located at the point
(x2, y2), determines the position of the end-effector,
which is the slide that supports the suspended pulley.

Therefore, the relationship between the angular
position α of the servo shaft and the position x2 of
the pulley in space is generally nonlinear. This means,
for example, that the horizontal sinusoidal motion of
the end-effector may not correspond exactly to the sine
of the servo’s α angle.

In the kinematic model of the driving system, we
assume that the servo’s axis of rotation is located at
point (x0, y0) in the coordinate system (X,Y ). The
position of the servo shaft in this stationary reference
frame is determined by the angle α. The point (x1, y1)
represents the joint connecting the crank (fixed-length
arm l1) and the connecting rod (fixed-length arm l2) of
the mechanism. The position of the end-effector of this
mechanism on the plane is indicated by point (x2, y2),
which can only move along the X axis. Therefore, its
coordinate in the Y direction is a constant value that
depends on the dimensions of the frame structure.

When determining the desired functional relation-
ship between the time dependent α angle and the
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desired position (x2(t), y2), i.e., when solving the prob-
lem of inverse kinematics, we use Fig. 7a to find:
y1 = y2 + l2 sin β.

The coordinates of the connecting rod position
should be independent of the β angle and the coor-
dinates of the intermediate joint at the point (x1, y1).
Another relation for y1 is given by the formula:
l1 cosα = y1 − y0.

After inserting y1 and calculating sin β, we obtain a
relationship between angles α and β based on two rect-
angular triangles with hypotenuses l1 and l2, respec-
tively, as well as the second dependence of β angle on
the observation x1 = x0 − l1 sin α, i.e.:

sin2 β = (y0 − y2 + l1 cosα)2

l22
,

cos2 β = (x0 − x2 − l1 sin α)2

l22
. (22)

We use the Pythagorean identity sin2 β+cos2 β = 1
to incorporate the terms in Eq. (22) into an equation
that includes the desired function of the α angle for
an input function of displacement X0(t) of the end-
effector with amplitude f0 and angular frequency ω.
We also take into account the approximate relationship
between x2(t) and X0(t).

Continuing the transformation, we obtain the final
nonlinear algebraic equation for the sought t-dependent
α angle that the servo will produce:

x20 + x22 (t) + y22 + l21 − 2(x0x2(t) + y0y2)

+2(x2(t) − x0)l1 sin α(t)

+2(y0 − y2)l1 cosα(t) = l22 . (23)

The problem of inverse kinematics, which consists
of solving a nonlinear algebraic equation (23) in which
time t is a parameter, is solved numerically in an
approximate manner. The values of the α(t) function
are obtained in the form of a series [ti , αi ], where i =
1 . . . n, subject to the constraint x2(t) = f0 sin(ωt).

In Fig. 7, the green circle corresponds to the cir-
cle located at O2 in Fig. 3a. The kinematic forcing
trajectory α(t) is applied by the servo and shown on
a background of a π -phase shifted sine. The function
β(t) represents the angle of the connecting rod and is
shown in green with an approximate analytical inter-
polation (b).

The trajectories of the numerical solution are illus-
trated in Fig. 7b and exhibit three periods of the α(t)
function, measured in radians and obtained as the solu-
tion of Eq. (23) for n = 900 iterations at �t ≈ 0.042

s. The parameters of x2(t) are ω = 0.5 rad/s , f0 = 0.1
m, and the crank mechanism’s lengths are l1 = 0.2 m
and l2 = 0.4 m, with an initial position of (x0, y0) =
(−0.1, 0)m.

Based on the analysis of the obtained solution, it can
be seen that, with the construction parameters used on
the test stand (l1 = 0.16, l2 = 0.18, y0 = 0.08 m,
and α(0) = 0 rad), the function describing the angular
position of the servo shaft over time almost coincides
with an ideal sine function. This analysis of the kine-
matics of the end-effector’s excitation mechanism led
to the assumption that the quasi-sinusoidal profile set
on the servo will generate, with good approximation, a
displacement of the form x2(t) = f0 sin(ωt). Since the
profile has a similar shape to a harmonic function, we
assume that the trajectory of motion in the X direction
of the movable pulley is described by a sine function.

We assume that y2 is a constant value and express the
horizontal displacement of the pulley that represents
the reciprocating motion x2(t) of the suspension of the
double pendulumby a nonlinear function that describes
the relationship between: (a) the position of the end-
effector and the α angle at which the servo drive shaft
is set; (b) constant values, i.e., the arm lengths l1 and l2;
(c) the position of the motor axis at a point determined
by the dimensions of the frame structure (x0, y0); (d)
and the coordinate of the axis of rotation of the end-
effector’s pulley at y2, measured in the Y direction.

4 Results and discussion

This section unveils the outcomes derived from both
our numerical and experimental simulations of the
multibody nonlinear system. In order to ascertain the
system’s complexity and non-smooth characteristics,
various techniques have been employed, encompass-
ing analysis of time histories, phase planes, bifurcation
diagrams, and Lyapunov exponents. The assessment
extends further to the application of vision-based mea-
surements in the final stage. This innovative approach
enables the capture of motion trajectories of the dou-
ble pendulum, thus enriching our understanding of the
system’s dynamic complexity.

The mathematical model given by Eqs. (6) and (12)
has been solved numerically using the Runge–Kutta
procedure with adaptive step-size. The results describe
the concept of a double variable-length pendulum with
counterweight mass, kinematic excitation and electro-
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Fig. 7 A physical model of
the crank mechanism (a)
and its time trajectory (b)
kinematically forcing the
suspension point O2(x2, y2)

magnetic forcing as well, demonstrating the system
behavior with a double pendulum and suspension sys-
tem between the two pendulums excited by an electro-
magnet and armature. The excitation frequency has a
crucial influence on the system dynamics; therefore, its
impact will be discussed in next step.

4.1 Time trajectories

Figure8 shows thenumerically computed time responses
of a variable-length pendulum subjected to external
kinematic forcing at the suspension point.

In Fig. 8a, three interesting frictional responses
of the damped oscillator are shown for different
static coefficients of friction on the sliding surface
between the cords strung over the pulleys. The green
curve clearly illustrates the influence of this parame-
ter, exhibiting a coexistence of stick–slip friction that
results in temporary absence of length variation in the
pendulum. The pendulum starts its evolution at a length
of 0.49 m, then stabilizes its oscillations around the
intended target length, with lower first harmonic fre-
quency during transient and higher second harmonic
frequency in steady state. An intriguing observation is
the decreasing amplitude range with increasing static
friction force, leading to progressively decreasing peak
responses in blue, red, and green colors (as the friction
coefficient increases). After a considerable time inter-
val, the variable-length pendulum reaches the target
length, and small amplitude oscillations are observed
around this length, associated with the forcing fre-
quency at the suspension point.

On the other hand, the trajectories in Fig. 8b look
very similar, but with the fundamental difference that
the influence of the viscous friction coefficient in the
governing equation (15) is no longer significant. This
is evidenced by the nearly overlapping time character-
istics.

Fig. 8 The impact of the static friction coefficient μi (a) and
the viscous friction coefficient di (b) on the transient dynamical
response of the first pendulum body. Parameters: The parameters
used in the computations are as follows: m1 = 1.3, m2 = 1.2,
M = 2.6 kg , c = 0.7 N·s·m−1 , f0 = 0.1 m, ω = 7 rad/s ,
k = 140 N·s·m−1. Initial conditions: l1(0) = 0.49, l2(0) = 0.1,
l20 = 1 m, ϕ1(0) = π/6, ϕ2(t) = −π/6 rad

4.2 The phase planes, bifurcation diagrams and
Lyapunov exponents

The analysis of bifurcations in the eight-dimensional
state space of the dynamical system is based on vari-
ation of the angular frequency of kinematic excitation
of point O2, denoted by ω.
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Fig. 9 A bifurcation diagram l1(ω) is shown for 250 projections
of Poincar’e maps onto the selected direction l1 (red dots) versus
the bifurcation parameterω. The bifurcational dynamics is quan-
tified by the distribution of the first maximal Lyapunov exponent
λ1(ω) (green dots). Model parameters: ω1...250 = 7.9 . . . 8.996
at step �ω = 0.004 rad/s , f0 = 0.046 m, θ = 0.0873 rad ,
m1 = 0.6, m2 = 0.52, M = 1.135 kg , k = 80 N/m, c = 1
N·s/m, s = 1, L0 = 12, l20 = 0.5 m, μc = 0.001, di = 0.
Simulation parameters: 8000 periods of the kinematic forcing,
start period of the observation 6000, relative tolerance 1.5 ·10−6,
absolute tolerance 1.5 · 10−6

Bifurcation diagram of the orbits of the investigated
dynamical system shown in Fig. 9 reveals numerous
periodic windows. Such windows result from multiple
period doublings of the vibrations of the first pendulum
(in the direction of l1), which frequently evolve into
multi-periodic and occasionally into chaotic orbits.

It can be observed that the transition from the 1-
period orbit ω19 through successive period doublings,
and sometimes reductions in the periodicity number,
is quite extensive. Only in the final range of bifurca-
tion parameters (approximately from ω210 onwards),
a substantial region of chaotic vibrations emerges, as
evidenced by the high value of the first (largest) Lya-
punov exponent. The Kaplan–Yorke dimension dK P in
the range ω210...250 falls within 1.72−3.33. The high
complexity of this diagram indicates that the dynamic
response of the studied system is unpredictable and
strongly dependent on the angular frequency of exter-
nal excitation.

Conducting a deeper dynamic analysis of this bifur-
cation diagram, let us discuss a few interesting scenar-
ios of dynamic changes shown in Figs. 10 and 11.

Fig. 10 A whale-shaped blue Poincaré map (a) on the orange
background of phase-space projection on the plane ϕ̇1(ϕ1) and its
transformation into chaotic undetermined map (b). The typical
quasi-periodic orbit (a) of time-dependent angle of rotation of
the first pendulum is observed in the window ω1...210 mostly
occupied by periodic dynamics (t0 and t f is the initial and final
time of observation

The left part of the discussed bifurcation diagram of
the investigatedmulti-degree-of-freedomdynamic sys-
tem determines a regular and periodic pattern of vibra-
tion dynamics. This is evident, for example, through
the Poincaré maps and trajectories displayed in Fig. 10
for 2000 periods of the external excitation X0(t).

A chaotic orbit emerged as the bifurcation param-
eter increased, following a series of wraps around the
quasi-periodic whale tail loop shown in Fig. 10a and
subsequent splitting at growing values of the kinematic
excitation frequency is visible in Fig. 10b. This presents
a highly interesting instance of a transition to chaos
observed within this dynamic system (it is notewor-
thy that the Coulomb friction coefficient μc is very
small—see model parameters under Fig. 9). However,
we are unable to illustrate this winding and subsequent
complex quasi-periodic loop splitting here, as it would
require including numerous figures depicting this tran-
sition.
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Fig. 11 A scenario of sudden appearance of a quasi-periodic
solution (a) in the chaotic window for ω210...250 situated on the
right-hand side of the bifurcation orbit diagram in Fig. 9. A rep-
resentative blue Poincaré map (b) on the background of orange
phase-space projection l̇1(l1) of time-varying length of the first
pendulum is observed in the windowmostly occupied by chaotic
dynamics

The sudden emergence of multi-period motion
within the domain of chaotic vibrations is observed
within the chaotic window at ω228 = 8.899 radians per
second, as depicted in Fig. 11a. By either increasing
or decreasing the excitation angular frequency by an
increment �ω on the diagram, we return to irregular
behavior and even to chaos, as shown in Fig. 11b.

To sum up the numerical experiments, condition-
ing and precise solution at high accuracy of numerical
integration is required. Only feasible solutions deter-
mined by mechanical constraints should be considered
for the double variable-length spring pendulum. The
length l1 of the first pendulum must be within the per-
mitted length range, which is determined by the length
L of the cable connecting the pendulum mass m1 and
the countermassM ,minus the distance s+X0(t). Here,
s is the constant separation between both supports of
the system, and X0(t) represents the sinusoidal kine-
matic forcing of the amplitude f0.

If the solution along l1(t) = 0, i.e., it reaches the left
boundary or L − s − X0(t), the right boundary of the
constraint, then numerical integration is stopped, as our
physicalmodel does not account for hitting an obstacle.
Consequently, certain maps are omitted in all bifurca-
tion diagrams, which can sometimes result in gaps for
certain bifurcation parameters, creating an interrupted
bifurcation diagram that reflects real dynamical effects.

The qualitative assessment of the obtained trajecto-
ries was performed using the spectrum of Lyapunov
exponents, the maximal value λ1 of which is shown
in Fig. 9. The conditions under which the spectrum of
Lyapunov exponents for the analyzed dynamical sys-
tem has been computed are as follows: i) The QR-
decomposition on the parallelogram matrix is applied
N times. This value is computed as 10 · h · Ne, where
h represents the step time of numerical integration and
Ne represents the length of the eight-dimensional time
trajectory discretized at every h. ii) The growth rates
along the trajectory are then averaged over N succes-
sive steps, yielding the Lyapunov exponent spectrum.
The parallelogram is re-normalized at each step. iii)
The resulting spectrum, which has a vector size depen-
dent on the dimension of the state space, is sorted from
the maximum to the minimum value. iv) The initial
state u0 for computation is determined by initializing
the numerical model from the same initial conditions
used to solve the system. v) An extra transient time ttr
is applied to evolve the system before the algorithm is
applied. vi) An individual evolution time of �t = 0.1
is used.

4.3 Vision-based measurements on the experimental
stand

To measure the real displacements of the pendulum
bodies and the slider on the laboratory stand, a vision-
based method was employed. A video was recorded
at a frame rate of 59.94 fps, with markers of different
colors attached to the elements to be tracked to facilitate
data processing, see Fig. 14. Subsequently, a Python
script utilizing OpenCV was developed to extract the
data. Three sinusoidal excitation profiles with different
amplitudeswere used as presented in Tab. 1, and videos
were recorded for each profile.

Recording and processing with the picture frames
resulted in a total of 12 time histories of real responses,
as shown in Figs. 12 and 13. It is noticeable that for
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Table 1 The cases of the
investigated system
configuration shown in
Figs. 12 and 13 with respect
to different parameters of
the control input signal

Case X0 signal
amplitude
(mm)

X0 signal
period (s)

Type of m1-m2 con-
nection

Coils state

I 13 0.65 Cable Disabled

II 13 0.65 Enabled

III 18 0.41 Disabled

IV 18 0.41 Enabled

V 23 0.40 Disabled

VI 23 0.40 Enabled

VII 13 0.65 Spring Disabled

VIII 13 0.65 Enabled

IX 18 0.41 Disabled

X 18 0.41 Enabled

XI 23 0.40 Disabled

XII 23 0.40 Enabled

cases where the electromagnetic coils were switched
off, the system begins to stabilize around t = 15 sec-
onds.

In Fig. 12e, the pendulum even stopped falling com-
pletely, despite the 18 mm amplitude of the excitation
signal applied to the coils. However, this excitation
resulted in larger values of the angular displacementsϕ1

andϕ2, and caused the distances l1 to follow a smoother
trajectorywith lower amplitudes. In the case of the bod-
ies m1 and m2 coupled with springs, shown in Fig. 13,
the second type of excitation resulted in system stabi-
lization after t = 15 seconds.

Case III confirms the numerical observations in
Fig. 8 of slow stabilization of the lower frequency time
response at a steady-state value, accompanied by oscil-
lations of the length l1 at the excitation frequency of the
right cable-suspended roller, which serves as the pivot
point for the entire pendulum system.

It is worth mentioning another interesting behavior
of the first pendulum, observed in Case V. Despite the
kinematic excitation of the first pendulum, it exhibits
almost no rotation relative toϕ1. Instead, due to the syn-
chronization of vibrations with the second pendulum,
the first flexible link moves left and right, behaving like
a rigid connector and almost not bending. This confirms
the unprecedented diversity of possible combinations
of dynamic responses of the studied system.

During experimental investigations, several chal-
lengeswere encountered: 1)Achievingprecisemechan-
ical excitation control for the movable roller’s position
proved difficult. After several unsuccessful attempts,
a ready-made servo mechanism with a dedicated con-
troller and regulator was implemented. This solution
enabled the imposition of nearly any displacement
characteristic for the suspension point while maintain-
ing high positioning precision, regardless of friction
resistance in the closely fitted sliding guide. 2) Con-
tactless measurement of each pendulum mass posi-
tion required a high-precision video camera, followed
by the development of image recognition algorithms,
specifically those accurately detecting the centers of
masses. Notably, this was challenging due to the bodies
rotating around the link, exhibiting variable geometry
concerning the object, and undergoing color changes.
Filtering and transformations on all registered image
frames allowedmeasurement independence from these
factors. 3) The last challenge involved estimating the
center of the extracted shapes and calculating the
observed shape’s center in the adopted coordinate sys-
tem. Real positions of observed bodies were detected
after two-dimensional interpolation and sharpening
with adaptation using a dedicated program.
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Fig. 12 Variables ϕ1, ϕ2, X0, l1, l2 versus time for the cable connection m1–m2
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Fig. 12 continued
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Fig. 13 The same variables versus time for the elastic connection m1–m2
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Fig. 13 continued
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Fig. 14 Time histories and pictures of motion at time instances (red vertical lines)

5 Conclusions

For the first time, a research stand with a broad cogni-
tive horizon based on the double variable-length pen-
dulum with counterweight mass at various sources of
forcing has been presented. The investigated dynamic
system is adapted to observe a wide range of dynamic
behaviors related to variable-length pendulum models
and their modifications. Several ways of kinematic and
force excitationwere considered to control the dynamic
behavior as well as to observe irregular dynamics,
which are the basis of difficulties encountered when

controlling such systems, such as elastically suspended
weights on cables driven by motors mounted on arms
ormoving cranes. Using the detailed physical, mechan-
ical, and mathematical foundations provided, this sys-
tem can be developed in many directions, such as con-
trolling the angle of the first pendulum deflection when
disturbed by the second pendulum by attaching a low-
mass spring. We are dealing with a strongly nonlin-
ear dynamic system that includes kinematic excitation
of the cable suspension point, excitation caused by
electromagnetic interaction, sliding friction, and pre-
cise measurement of the moving mass markers using a
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vision system supported by highly specialized software
capable of measuring the position of multiple observed
markers with an accuracy of about one micrometer.

Real and numerical trajectories primarily demon-
strate and confirm the significantly low frequency of
length variation in comparisonwith the higher frequen-
cies of pendulum body oscillations. In both cases, there
is an observed gradual descent of the elastically linked
masses of the investigated pendulum until the system
attains a stable dynamic equilibrium. Subsequently,
with the specified counterweight mass, the vibrations
evolve into a stable periodic orbit. The presentation of
numerical solutions serves to verify the correctness of
deriving the intricate dynamic model and to showcase
the potential dynamic complexity inherent in the stud-
ied system. This work lays the foundation for future
explorations, including deep learning applications to
unveil hidden physical phenomena.
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40. Śmiechowicz,W., Loup,T.,Olejnik, P.: Lyapunov exponents
of early stage dynamics of parametric mutations of a rigid
pendulum with harmonic excitation. Math. Comput. Appl.
24(4), 69 (2019). https://doi.org/10.3390/mca24040090

41. Starosta, R., Sypniewska-Kamińska, G., Awrejcewicz, J.:
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