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Abstract In this paper, the nonlinear dynamics of a

piezoelectrically sandwiched initially curved

microbeam subjected to fringing-field electrostatic

actuation is investigated. The governing motion

equation is derived by minimizing the Hamiltonian

over the time and discretized to a reduced-order model

using the Galerkin technique. The modelling accounts

for nonlinearities due to the fringing-field electrostatic

force, initial curvature and mid-plane stretching. The

electrostatic force is numerically computed using

finite element simulation. The nonlinear dynamics of

the microbeam in the vicinity of primary resonance is

investigated, and the bifurcation types are determined

by investigating the location of the Floquet exponents

and their configuration with respect to the unit circle

on the complex plane. The branches on the frequency–

response curves, which originate from the period-

doubling bifurcation points, are introduced, and the

transition from period-1 to period-2 response is

demonstrated by slight sweep of the excitation

frequency over the time. The effect of DC and AC

electrostatic excitation and the piezoelectric excitation

on the response of the system are examined, and their

effect on the bifurcation types is determined. The force

response curves assuming the AC voltage as the

bifurcation parameter are also introduced; it is illus-

trated that in contrast to in-plane electrostatic excita-

tion, in fringing field-based resonators the resonator is

not limited by pull-in instability, which is substantially

confining the amplitude of the motion in in-plane

resonators.

Keywords Nonlinear dynamics �
Microelectromechanical systems � Initially curved

microbeam � Bistability � Fringing-field electrostatic

actuation � Piezoelectric actuation

1 Introduction

Microelectromechanical systems have been recently

used in diverse applications due to their numerous

advantages. Resonators [1], filters [2], various types of

sensors [3] such as accelerometers and gyroscopes,

different types of actuators [4, 5] are among the

current applications of these systems. A comprehen-

sive understanding of the nonlinear dynamic behavior

of these systems is essential in their successful

implementation in new technologies, especially those
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operating at frequencies near their resonance fre-

quency. Microbeams are one of the most widely used

microstructures in MEMS. Initial curvature may

sometime occur in the microbeams upon the presence

of a minimum defect in their production process.

Therefore, consideration of the quadratic nonlinear

effects of these initial curvatures is highly crucial.

However, initially curved microbeams have shown

several unique properties making them suitable for

special research and application fields. Among these

properties, bistability can be mentioned. Provided to a

proper initial curvature, in contrast to the straight

microbeams, these microbeams can exhibit two

stable equilibrium states in specific ranges of their

operation. They can jump from one equilibrium state

to another, which is known as the snap-through

phenomenon. No power consumption is required to

maintain the bistable systems in any of the stable equi-

librium states. Power is only required to transfer from

one stable equilibrium state to another [6]. The other

superiority of the initially curved microbeams over the

straight or monostable ones is their high displacement

range in addition to their high sensitivity. Thanks to

their interesting and unique features, initially curved

microbeams have been extensively employed in

microelectromechanical systems such as actuators,

sensors [7], switches [6], band-pass filters [8–10], non-

volatile mechanical memories [11, 12] as well as

applications requiring two separate stable states. The-

oretical and experimental studies [13–22] have

recently explored the nonlinear statics and dynamics

of the initially curved microelectromechanical sys-

tems. In this regard, Zhang et al. [22] theoretically and

experimentally investigated the snap-through and

pull-in instabilities in the arch-shaped microbeams.

Younis et al. [14] also investigated the effects of axial

forces on the static behavior and fundamental natural

frequency of the MEMS arches. The theoretical and

experimental investigations of the nonlinear static and

dynamic behavior of MEMS arches were reported by

Ramini et al. [17]. They showed the softening

behavior due to the quadratic nonlinear effect caused

by the arch geometry and electrostatic force for the

actuation close to the first resonant frequency. Ouakad

et al. [13] also examined the static and dynamic

behaviors of electrostatically actuated double-

clamped microarches. Applying the method of mul-

tiple scales, they studied the forced vibration

responses of the microarch near its natural frequency.

A few papers have discussed period doubling bifur-

cation in curved microbeams. Najar et al. [7] studied

the dynamics of a curved microbeam exposed to

electrostatic actuation; they utilized the nonlinearity of

the response to enhance the performance of the

designed sensor.

Parallel-plates actuation is a common method for

electrostatic actuation of themicrobeams in theMEMS-

based devices. The pull-in instability is one of the major

concerns in the parallel-plate electrostatic actuation in

which the fixed electrode is precisely below the

microbeam and stiction may result in the collapse of

the device. The key point in the design of most MEMS

such asMEMS resonators and sensors is the adjustment

of the applied electrostatic force to avoid pull-in. To

prevent pull-in, the fringing-field out-of-plane actuation

arrangement was first introduced by Rosa et al.[23]. In

contrast to the parallel-plate actuation, in the out-of-

plane case, the electrodes are placed on both sides of the

microbeam. The fringing-field electrostatic actuation

works in a contact-lessmanner, hence preventingpull-in

instabilities. In this method, large amplitudes are not

limited by pull-in instabilities and squeeze film damp-

ing. Therefore, this actuation arrangement can increase

the lifelong of the devices with large-displacement

ranges. Thanks to the mentioned advantages, fringing-

field electrostatic actuation is highly useful for the

MEMS. Ouakad [24] presented a numerical model to

determine the electrostatic force in non-parallel elec-

trodes for MEMS applications. In another study,

Ouakad [25] numerically explored the nonlinear

response of a CNT-based nanoactuator considering the

fringing-field out-of-plane actuation arrangement. Kry-

lov et al. [26] explored the efficient parametric excita-

tion in microcantilever beams. Their actuation method

relied on the electrostatic fringing fields. The presented

resonators offer substantially large vibration amplitudes

using tunable forces.

The initially curved microbeam model exposed to

fringing-field electrostatic actuation offers the advan-

tages of both the initially curved microbeam and the

fringing-field electrostatic actuation, which could be

highly promising for the MEMS. A limited number of

studies have addressed the nonlinear dynamics of the

initially curved microbeam under fringing-field elec-

trostatic actuation. Krylov et al. [27] evaluated the

possibility of two-dimensional switching of an ini-

tially curved microbeam under the fringing-field

electrostatic actuation. Tausiff et al. [28] addressed a
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static analysis and eigenvalue problem of the MEMS

arches under fringing-field electrostatic actuation.

Tausiff et al.[29] also examined the nonlinear dynamic

behavior of the microarches under fringing-field

electrostatic actuation in the local vicinity of the

fundamental natural frequency. Their results are only

credible for weak nonlinearities and low amplitudes of

excitation because perturbation analysis by the mul-

tiple scales method has been employed to explore the

resonance behavior of the microbeam. So far, there has

been no discussion in the literature about the determi-

nation of the bifurcation types and the branches that

emanate from the period doubling bifurcation. Previ-

ous studies have shown the necessity of further

investigation of the nonlinear behavior of initially

curved microbeams under fringing-field electrostatic

actuation.

The present research is aimed to comprehensively

analyze the nonlinear behavior of MEMS resonators

based on piezoelectrically laminated initially curved

microbeam exposed to fringing-field electrostatic

actuation. The adjustment of the resonance frequency

is a prominent issue in MEMS resonators. In the

present study, direct piezoelectric actuation is used for

the adjustment of frequency and controlling the

nonlinear behaviors of the structure for the first time.

The nonlinear static and dynamic responses of the

structure in the vicinity of primary resonance are

studied, and the frequency–response curves are

derived by means of shooting [30] and continuation

[31] techniques; therefore, the results will be credible

for strong nonlinearities and high amplitudes of

excitation. The nonlinear behavior has been attributed

to an appropriate source of nonlinearity, and the

bifurcation points have been classified based on the

associated Floquet multipliers. In this study, the

period-doubled branches have been introduced by

carrying out a separate study to capture the periodic

solutions with a doubled period. The effects of the

governing parameters including the viscous damping

ratio, DC and AC electrostatic actuation as well as

piezoelectric excitation on the response of the system

have been examined and discussed.

2 Model description and mathematical modeling

Figure 1 depicts a schematic of the curved beam along

with the lateral electrodes. The double-clamped

microbeam has the length, width and thickness of L,

a and h, respectively. The initial curvature of the

microbeam can be described by w0 xð Þ ¼ b0 1� cosð
2px=Lð ÞÞ=2, in which b0 is the initial elevation of the

midpoint of the microbeam. The material is silicon,

which is considered to be isotropic and linearly elastic

with Young’s modulus Eb, Poisson’s ratio tb and

density qb. As the width of the microbeam is larger

than its thickness a� 5hð Þ, the effective modulus of

elasticity (plane strain) is used as ~Eb ¼ Eb= 1�ð
t2bÞ[27]. For simplicity, the sign of � is avoided on

effective Young’s modulus. Two thin layers of PZT as

a piezoelectric material are deposited throughout the

length on the top and bottom surfaces of the

microbeam. The thickness of the PZT layers is

denoted by hp. The PZT layers are assumed to be

homogenous and isotropic with the respective

Young’s modulus, Poisson’s ratio and density of Ep,

tp and qp, respectively. According to Fig. 1, the

potential difference Vp is separately applied to each of

the piezoelectric layers. Moreover, the lateral elec-

trodes are symmetrically placed on either sides of the

microbeam. The actuation electrodes have the length

of Le, and their width and thickness are the same as the

microbeam. The distance between the actuation elec-

trodes and microbeam edge image on the xy plane is g.

The potential difference V is also applied between the

microbeam and actuation electrodes. The applied

electrostatic voltage is a DC voltage superimposed

by a single-frequency AC component.

Application of DC voltage to the piezoelectric

patches led to an axial force along the microbeam

length. Such an axial force can alter the stiffness of the

microbeam, hence adjusting its natural frequency.

Here the electric field is only applied along the

Electrode

Electrode

Curved Microbeam
Vp

Vp

x

y
z

w

V

w0

V

h

hp
a

Fig. 1 Schematic model of a piezoelectrically laminated

initially curved microbeam under fringing-field electrostatic

actuation
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thickness of the piezoelectric zð Þ. Based on the

governing constitutive equations of the piezoelectric

materials [32], the axial stress due to the piezoelectric

actuation is expressed as:

rp ¼ �e31Ez ð1Þ

in which Ez is the electric field component along the

z-axis and e31 denotes the piezoelectric voltage

constant. Considering Ez ¼ Vp=hp, the axial force

due to the piezoelectric actuation can be expressed by

the following equation, which can be tensile or

compressive depending on the polarity of the piezo-

electric voltage:

Fp ¼
Z

rpdAp ¼ �e31EzAp ¼ �e31
Vp

hp
Ap;

Ap ¼ 2ahp

ð2Þ

Having the axial force due to the piezoelectric

actuation, the governing equation of the system and

boundary conditions can be derived using the Hamil-

ton’s principle. The microbeam is assumed to be long

and thin h � Lð Þ with shallow curvature b0 � Lð Þ;
therefore, the displacement field can be expressed

by[33]:

ux x; z; tð Þ ¼ u x; tð Þ � z
ouz x; tð Þ

ox
uy x; z; tð Þ ¼ 0

uz x; z; tð Þ ¼ w0 xð Þ þ w x; tð Þ
ð3Þ

in which u x; tð Þ and w x; tð Þ; respectively, represent the
axial and transverse displacements of each point on the

neutral axis. Von-Karman theory is also used to

account for the geometrical nonlinear effects due to

the mid-plane stretching [34]. Based on the Von-

Karman assumptions, the only nonzero component of

the strain tensor will be:

exx ¼ u0 þ w0ð Þ2

2
þ w0

0w
0 � zw00 ð4Þ

According to Hamilton’s principle [35, 36]:

Zt2

t1

dT � dU þ dWext þ dWdamping

� �
dt ¼ 0 ð5Þ

in which T and U, respectively, show the total kinetic

and strain potential energies, Wext denotes the work

done by the electrostatic force andWdamping is the work

done by damping. By ignoring the rotational inertia,

total kinetic energy can be determined as:

T ¼ Tb þ Tp ¼
1

2
qAð Þeq

ZL

0

_u2 þ _w2
� �

dx ð6Þ

where

qAð Þeq¼ qbAb þ qpAp ¼ qbahþ 2qpahp ð7Þ

Moreover, the total strain potential energy can be

determined by the following equation:

U ¼ Ub þ Up

¼ 1

2

Z
rxxð Þbexx

� �
dVb þ

1

2

Z
rxxð Þpexx

� �
dVp ð8Þ

where

rxxð Þb¼ Ebexx;

rxxð Þp¼ Epexx � Eze31 ¼ Epexx �
Vp

hp
e31

ð9Þ

It is to be noted that since a perfect bonding is

assumed between the piezoelectric layers and the

microbeam, the strain of the piezoelectric layer is

equal to that of the microbeam at the interface. The

work done by the fringing-field electrostatic force and

damping is expressed as:

Wext ¼
ZL

0

fewdx; Wdamping ¼ �Cd

ZL

0

ow

ot
wdx ð10Þ

in which f e is the electrostatic force per unit of length

and Cd denotes the viscose damping coefficient. By

substituting the variation of the kinetic and potential

energies and works done by the electrostatic force and

damping in the Hamilton’s principle (Eq. 5), perform-

ing integration by parts and neglecting the effects of

the longitudinal inertia compared with the transverse

inertia, the governing equation of the transverse

vibrations can be determined as:

EIð Þeq
o4w

ox4
þ qAð Þeq

o2w

ot2
þCd

ow

ot

¼ Fpþ
EAð Þeq
2L

ZL

0

ow

ox

� �2

þ2
ow

ox

dw0

dx

 !
dx

2
4

3
5

o2w

ox2
þd2w0

dx2

� 	
þfe

ð11Þ

where
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EIð Þeq ¼ EbIb þ EpIp ¼ Eb
ah3

12

þ Epa hph
h

2
þ hp

� �
þ
2h3p
3

 !

EAð Þeq¼ EbAb þ EpAp ¼ Ebahþ 2Epahp

ð12Þ

Furthermore, the electrostatic force per unit of

length f eð Þ can be expressed as:

fe ¼� r sinh q w0 þ wð Þð Þ � V2

coshs q w0 þ wð Þð Þ H x� L� Le
2

� �

H Le þ
L� Le

2
� x

� �

ð13Þ

In the above equation, H xð Þ is the Heaviside step

function and V ¼ VDC þ VAC cos Xtð Þ½ �. The boundary
conditions associated with Eq. (11) are:

w 0; tð Þ ¼ 0; w L; tð Þ ¼ 0;
ow 0; tð Þ

ox
¼ 0;

ow L; tð Þ
ox

¼ 0

ð14Þ

The governing dimensionless equation and bound-

ary conditions are determined by introducing the

following nondimensional parameters:

ŵ ¼ w

h
; ŵ0 ¼

w0

h
; x̂ ¼ x

L
; L̂e ¼

Le
L
; t̂ ¼ t

~t
;

~X ¼ X~t

ð15Þ

where ~t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qAð ÞeqL4= EIð Þeq

q
. By substituting

Eq. (15) in Eq. (11), the transverse vibration equation

of the system can be obtained in the dimensionless

form. The over hat (^) is eliminated for the sake of

simplicity:

o4w

ox4
þo2w

ot2
þC

ow

ot

¼ Pþa1

Z1

0

ow

ox

� �2

þ2
ow

ox

dw0

dx

 !
dx

2
4

3
5 o2w

ox2
þd2w0

dx2

� 	

�a2
sinh q w0þwð Þð Þ
coshs q w0þwð Þð ÞH x�1�Le

2

� �
H Leþ

1�Le
2

�x

� �

ð16Þ

where

C ¼ CdL
4

~t EIð Þeq
; P ¼ FpL

2

EIð Þeq
; a1 ¼

h2 EAð Þeq
2 EIð Þeq

;

a2 ¼
rL4V2

EIð Þeqh

ð17Þ

In Eq. (17), C ¼ 2nxn where n and xn indicate the

damping ratio and the natural frequency, respectively.

The dimensionless boundary conditions for Eq. (16)

are as follows:

w 0; tð Þ ¼ 0; w 1; tð Þ ¼ 0;
ow 0; tð Þ

ox
¼ 0;

ow 1; tð Þ
ox

¼ 0

ð18Þ

3 Reduced-order model based on the Galerkin

decomposition method

In the Galerkin decomposition method, the solution of

Eq. (16) is considered as follows:

w x; tð Þ ¼
XM
i¼1

ui tð Þui xð Þ ð19Þ

In Eq. (19), ui xð Þ are admissible functions satisfy-

ing the boundary conditions in Eq. (18) and ui tð Þ are
also unknown time-dependent generalized coordi-

nates. Normalized mode shapes of the double-clamped

straight microbeams considering the effect of the axial

force due to the piezoelectric actuation, given in

Eq. (20), can be used as the admissible functions in the

Galerkin method:

u ivð Þ
i ¼ Pu00

i þ x2
i ui

ui 0ð Þ ¼ 0; ui 1ð Þ ¼ 0; u0
i 0ð Þ ¼ 0; u0

i 1ð Þ ¼ 0

ð20Þ

where xi is the i-th natural frequency of the double-

clamped straight microbeam under axial piezoelectric

actuation. By substituting Eq. (19) into Eq. (16),

multiplying both sides of the equation by ui xð Þ and

integrating the resultant over the interval x ¼ 0; 1½ �,
the reduced-order model is obtained as:
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€unþC _unþ
XM
i¼1

ui tð Þ
Z1

0

u ivð Þ
i undx

�P
XM
i¼1

ui tð Þ
Z1

0

u00
i undxþ

Z1

0

w00
0undx

0
@

1
A

�a1

XM
i¼1

XM
j¼1

XM
k¼1

uiujuk

Z1

0

u0
iu

0
jdx

Z1

0

u00
kundxþ

XM
i¼1

XM
j¼1

uiuj

Z1

0

u0
iu

0
jdx

Z1

0

w00
0undx

þ2
XM
i¼1

XM
j¼1

uiuj

Z1

0

u0
iw

0
0dx

Z1

0

u00
j undxþ2

XM
i¼1

ui

Z1

0

u0
iw

0
0dx

Z1

0

w00
0undx

0
BBBBBBBB@

1
CCCCCCCCA

¼�a2

Z1

0

sinh q w0þ
PM

i¼1uiui

� �� �
un xð Þ

coshs q w0þ
PM

i¼1uiui

� �� � H x�1�Le
2

� �
H Leþ

1�Le
2

�x

� �
dx

ð21Þ

Such that n ¼ 1; 2; 3; . . .;M. Equation (21) is the

reduced order model of the transverse vibration of the

initially curved double-clamped microbeam under

simultaneous piezoelectric and fringing-field electro-

static actuation. The reduced-order model includes the

system of nonlinear ordinary differential equations in

terms of the generalized coordinates ui tð Þ, which

requires to be integrated over the time.

4 Static and dynamic solutions

For the static analysis, the time-dependent terms in

Eq. (21) are set to be zero. Hence, the generalized

coordinates are assumed to be unknown constant

coefficients. The resultant system of algebraic equa-

tions is numerically solved for the generalized coor-

dinates based on Newton–Raphson algorithm. For the

dynamic analysis, the equations governing the

reduced-order model are numerically integrated over

time to capture the time response in a given time. The

periodic solutions in the vicinity of the primary

resonance are captured by applying the shooting

technique to the motion equations. Shooting is a

powerful numerical technique for capturing both

stable and unstable periodic solutions. However,

depending on the studied model, finding unstable pe-

riodic solutions may require numerous iterations or

multiple initial guesses. Themost important advantage

of the shooting method is that it does not require

integrating the equations over a long time to let the

response settle on the stable limit cycle. In the case of

nonautonomous systems as the model in this study is,

the integration is carried out over one entire period

T ¼ 2p=X (for primary resonance), in which X is the

frequency of the excitation. Once the periodic solution

is captured, its stability is examined by means of

determination, the so-called Floquet exponents.

5 Results and discussion

5.1 Estimation of the electrostatic force

As illustrated in Fig. 2, the potential difference

between the electrodes and the curved beam generates

fringing-field lines, and accordingly due to each

individual electrode, two forces along (z) and (y) di-

rections are applied to the microbeam. In the sym-

metric configuration, both y and z components of the

overall force are canceled out as the corresponding

components of the forces due to each of the electrodes

are in opposite directions and the samemagnitude; this

yields in zero net force applied on the microbeam;

however, in the asymmetric configuration which is the

case for the present study, though the y component of

the total force vanishes, the out-of-plane component

turns out to be nonzero.

The electrostatic force in the asymmetric excita-

tion, in contrast to the parallel-plate case, cannot be

analytically calculated in a closed form [27] and needs

to be determined numerically. To compute the elec-

trostatic force, a finite element simulation (Fig. 3) is

carried out using the geometrical and material prop-

erties of the studied model in Table 1. Figure 4 shows

the magnitude of the electrostatic force per unit of

length versus the normalized vertical offset for a 1V

electrostatic force. An appropriate fitting function

based on least-square error is also applied to represent

the electrostatic force per unit of length as follows:

fe ¼ � r sinh q d=hð Þð Þ
coshs q d=hð Þð Þ ð22Þ

where d=h is the normalized vertical offset; r, q and s

are the fitting parameters given in Table 2.

5.2 Static and dynamic analysis

To perform validation, the results of the current model

are compared with those presented in reference [28].

For this purpose, the initially curved microbeam with

geometrical and mechanical properties studied in

reference [28] is considered. The variations of the

microarch mid-point elevation with respect to the DC
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voltage for the present study, along with the results of

Tausiff et al., are shown in Fig. 5. As observed, there is

very good agreement between the results.

For static and dynamic analyses, a shallow initially

curved microbeam with geometrical and material

properties given in Table 1 is considered. Figure 6

illustrates the center deflection of the microbeam

versus the applied DC electrostatic voltage. The

computations are based on two different methods

including Newton–Raphson algorithm and continua-

tion method thanks to the Matcont Toolbox

MATLAB. As depicted, there exists a reasonable

convergency for one mode and it is confirmed by both

approaches.

Figure 7a illustrates the static deflection of the mid-

point of the microbeam for various initial curvatures in

terms of the applied DC voltage; this reveals that the

qualitative response of the microbeam strongly

depends on the initial gap and microbeams with

greater initial gaps are more likely to exhibit

bistable behavior. Figure 7b shows the effect of the

polarity of the piezoelectric actuation on the deflection

Microbeam

Electrode

fe

g g d

y

z

V
V

fyfy

fz

fz

(a) (b)

Fig. 2 Fringing-field electrostatic actuation method: (a): symmetric configuration, (b) asymmetric configuration

(a) (b)

Microbeam

fe

Fig. 3 Finite element simulation of the micro-resonator: (a) electric potential contour, (b) electric force distribution around the

microbeam
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of the midpoint of the microbeam. Positive and

negative polarities are located in either sides VP-

= 0 V, which reveals the two-side tunability offered

to the system thanks to the piezoelectric excitation.

Applying electrostatic force implicitly changes the

stiffness of the microbeam as it superimposes

additional stiffness to the structural stiffness, and

accordingly, the natural frequency of the system

varies. This is illustrated in Fig. 8.

To discuss the variation of the natural frequency

versus VDC, the linear stiffness due to the electrostatic

voltage is computed and depicted in Fig. 9.

As VDC increases, the linear stiffness due to the

electrostatic voltage slightly decreases in value and it

softens the overall stiffness, and as a result, the natural

frequency of the microbeam decreases. When the

voltage exceeds 83.9 V, the linear stiffness of the

electrostatic term becomes positive and causes the

microbeam to stiffen. However, the curvature still has

Table 1 Geometrical and

material properties of the

studied model

Geometrical and material properties Value (unit)

Microbeam length L ¼ 800(lm)

Microbeam width a ¼ 12(lm)

Microbeam thickness h ¼ 2(lm)

Initial elevation of the midpoint b0 ¼ 4(lm)

Microbeam density qb ¼ 2320 Kg=m3ð Þ
Microbeam Young’s modulus Eb ¼ 160 Gpað Þ
Microbeam Poisson’s ratio tb ¼ 0:22

Length of the electrodes Le ¼ 0:3L

Distance to electrode g = 2 (lm)

PZT layer thickness hp ¼ 0:01(lm)

PZT layer density qp ¼ 7500 Kg=m3ð Þ
PZT layer Young’s modulus Ep ¼ 76:6 Gpað Þ
PZT layer Poisson’s ratio tp ¼ 0:3

Piezoelectric voltage constant e31 ¼ �9:29 Coulomb=m2ð Þ

Fig. 4 Magnitude of the electrostatic force per unit of length

versus the normalized vertical offset

Table 2 Fitting parameters of the electrostatic force

Fitting parameters r q s

Value 2:65� 10�6 0:97 1:33

Fig. 5 Variation of midpoint elevation with DC voltage:

validation of the current model

123

20722 Z. Rashidi et al.



a softening effect. Once the voltage surpasses 90 V,

the electrostatic voltage’s hardening effect takes over

and the natural frequency begins to increase. Com-

paring the effect of VDC on the natural frequency

reveals that for the fringing-field excitation the natural

frequency would either increase or decrease with VDC,

which depends on the value of the applied electrostatic

voltage; however, in case of parallel-plate excitation,

the natural frequency has been reported to monoton-

ically decreasing with the electrostatic voltage.

Applying VP with positive polarity stiffens the

microbeam and consequently increases the natural

frequency; however, the negative polarity generates

compressive axial force and accordingly the overall

stiffness of the system reduces. Confrontation of the

softening and hardening effects of the piezoelectric

force and the electrostatic excitation brings about

bifurcation and origination of multi-response solution

regions, which is illustrated in Fig. 10.

For VP = - 0.37 V, by increasing the electrostatic

voltage the equilibrium position moves further below

the original equilibrium position. As the magnitude of

the piezoelectric voltage increases, the mid-part of the

solution curve bends backward and consequently a

multi-response solution region emerges as a result of

saddle node bifurcation, which yields in snap-through

Fig. 6 Center deflection of the microbeam by Newton–

Raphson and continuation methods

(a) (b)

Fig. 7 Center deflection of the microbeam for a Vp = 0 V and various b0 s, b b0 = 4 lm and various Vp s

Fig. 8 Variation of the natural frequency versus the applied

electrostatic voltage
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buckling. Existence of snap-through bifurcation in

MEMS switches enables switching without sticking

the structure to the substrate, which substantially

limits the functionality of pull-in-based switches in

MEMS [37, 38]. For VP = - 0.41 V and less than it,

the system exhibits two stable and one unstable equi-

librium points before the saddle node bifurcation

point. As the bifurcation point is passed, the unsta-

ble solution disappears, and the stable solutions

reduces to one which increases in amplitude as VDC

increases (Fig. 10b).

The frequency response of the microbeam exposed

to various VDC s and VP = 0 V is given in Fig. 11. As

illustrated, in the absence of VDC, the excitation

frequency is doubled [39, 40], and consequently, the

primary resonance occurs at 29.12. Applying VDC

prevents doubling of the excitation frequency, and as a

result, the primary resonance occurs at 57.28. Further

increase in the electrostatic voltage amplifies the

nonlinearity and two bifurcations emerge on the

frequency–response curve (Fig. 11c). The Floquet

multipliers here at the cyclic fold bifurcation exit the

unit circle through ? 1. The corresponding eigenval-

ues of the periodic solutions are illustrated as inset in

Fig. 11c. As the bifurcation parameter (X) increases,
the stable and unstable manifolds of the linearized

system approach each other and intersect at the

bifurcation point, beyond which both manifolds dis-

appear. It is important to observe that eigenvalues

having a magnitude larger than one represent unsta-

ble periodic solutions, whereas eigenvalues with a

magnitude smaller than one are linked to stable peri-

odic solutions. To comprehensively discuss the fre-

quency–response curves, the coefficients of the

quadratic and cubic nonlinear stiffness terms due to

electrostatic excitation are computed in terms of VDC,

as illustrated in Fig. 12. Starting from VDC = 0 V the

linear stiffness dominates and accordingly the system

exhibits a linear response (Fig. 11a). By increasing

VDC, the amplitude of the motion increases and the

nonlinear terms become strong enough to dominate

the linear terms and accordingly the system undergoes

bifurcation on the frequency–response curves
Fig. 9 Variation of the linear stiffness versus the electrostatic

voltage

(a) (b)

Fig. 10 The variation of the center deflection with versus VDC for various Vp s (SN: Saddle Node)
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(a) (b)

(c) (d)

(e)

Fig. 11 Frequency–response curves for VP = 0 V, VAC ¼ 30 V a VDC = 0 V, b VDC = 20 V, c VDC = 50 V, d VDC = 90 V,

e VDC = 180 V
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(Fig. 11c). For small enough VDCs, the quadratic term

softens; however, the cubic term confronts against and

increases the stiffness. For VDC = 50 V, the fre-

quency–response curve in the resonance region bends

leftward and accordingly exhibits softening response

which is attributed to the quadratic nonlinearity;

however, in the vicinity of the peak point, a cyclic

fold bifurcation occurs; beyond this bifurcation point,

the cubic nonlinearity gets more prominent and the

frequency response slightly returns back to the right

and an unstable branch of solution originates, which

eventually connects to the lower branch of the

stable solution through another cyclic fold bifurcation.

The slight hardening nature of the response in the

vicinity of the peak is associated with the cubic

nonlinearity of the electrostatic force. For VDC-

= 90 V, the cubic nonlinearity increases in value

and the hardening nature of the response gets more

pronounced. As illustrated in Fig. 11d, the backward

hardening loop gets larger in size and the cyclic fold

bifurcation points are symmetrically placed on either

side of the primary resonance frequency. Further

increase of the excitation frequency yields in the

generation of two more period-doubling bifurcation

points, which are represented by PD on the frequency–

response curve. The loci of the Floquet multipliers are

represented as an inset in Fig. 11 (d) where they exit

the unit circle through- 1 and a new branch of period-

doubled stable solution originates which is shown for

both of the bifurcation points. We believe the nonlin-

ear dynamics of the microbeam in this region requires

further investigation as a period doubling route to

chaos is likely to occur by increasing the amplitude of

VAC [41]. We have introduced the period-doubled

branch by carrying out a separate study to capture the

associated periodic solutions. For VDC[ 104.9, the

cubic and quadratic electrostatic terms become neg-

ative, and consequently, they both soften the

microbeam; this is depicted in Fig. 11e in which the

frequency–response curve is bent leftward indicating

the domination of softening nonlinearity.

It is important to observe that eigenvalues having a

magnitude larger than one represent unstable periodic

solutions, whereas eigenvalues with a magnitude

smaller than one are linked to stable periodic

solutions.

The results of the shooting method are compared to

those of the continuation method which for VDC ¼
50V; VAC ¼ 30 V; Vp ¼ 0:0 V; n ¼ 0:06 and vari-

ous excitation frequencies is given in Table 3.

Considering the parameters as of Fig. 11d, forward

and backward frequency sweeps are carried out to

explore the time response as the frequency passes over

the period-doubling bifurcation point. Figure 13 illus-

trates the time response as the frequency is forward

swept from X ¼ 39 up to X = 48; the period-doubling

bifurcation remains within the scanned frequency

(Fig. 11d) and the system response undergoes a period

doubling and meanwhile a quick increase in amplitude

as X passes the bifurcation point; this is qualitatively

justified by the topology of the frequency–response

curve. Here the time rate of the frequency sweep is

Fig. 12 The coefficients of nonlinear quadratic and cubic terms

Table 3 Amplitudes of the periodic solutions computed based

on shooting and continuation methods

X wmax(lm) wmax(lm)

Continuation method Shooting method

25 1.8056 1.8056

30 1.0775 1.0779

35 1.2729 1.2729

40 3.7761 3.7762

45 3.0978 3.0978

50 2.4376 2.4376

55 1.8272 1.8273

60 1.3510 1.3510

65 1.0458 1.0462

70 0.8627 0.8627

75 0.7484 0.7484
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assumed to be small enough to avoid the transient

responses due to the frequency change.

Figure 14 illustrates backward sweep with the

excitation voltages as of Fig. 13. The frequency is

swept from X ¼ 63 to X ¼ 55; the second period

doubling bifurcation point falls within the excitation

range.

Starting from the excitation frequency X ¼ 63, the

time response settles on the associated limit cycle, and

while decreasing the excitation frequency (Fig. 14a),

the amplitude of the motion gradually increases while

the frequency passes the period-doubling bifurcation

where a catastrophic jump [42–45] occurs and the

response settles into a high-amplitude period-doubled

attractor.

Assuming X ¼ 50 and the excitation voltages as of

Fig. 11d, the only stable attractor is a period-doubled

limit cycle; the time response and the corresponding

phase planes are depicted in Fig. 15.

Considering VP = 0V, VDC = 50 V, the effect of

VAC for n ¼ 0:06 and damping for VAC = 30 V on the

frequency–response curves is shown in Figs. 16 and

17, respectively.

The illustration indicates that, when VAC increases

or n decreases in value, the amplitude of the captured

limit cycles also increases. The nonlinear terms

become more significant in the response as the

amplitude of the oscillations increases. When the

VDC is set to 50 V, the system experiences both

softening and hardening effects, which are the result of

the quadratic and cubic electrostatic stiffness terms

that are superimposed on the linear and nonlinear

geometric stiffness terms; the result is a bending of the

frequency–response curve toward the left in the

resonance region, followed by a return toward the

right for higher amplitude solutions, resulting in a

backward loop at the peak of the resonance zone. This

loop gets larger as VAC increases. The frequency–

response curves display the bifurcation points, which

include cyclic fold and period-doubling bifurcations.

Figure 18 shows the effect of the initial curvature

on the frequency–response curves for two different

initial curvatures including b0 = 3 lm and b0=5 lm. It

is illustrated that as the initial curvature increases the

resonance region shifts toward right and primary

resonance increases.

The effect of the polarity of the piezoelectric

voltage on the quality of the frequency–response

curves is depicted in Fig. 19.

It is indicated that applying Vp with positive

polarity shifts the frequency–response curve rightward

along the frequency axis. Conversely piezoelectric

excitation with negative polarity shifts the frequency–

response curve toward left; this is because positive and

negative polarities generate tensile and compressive

(a) (b)

Fig. 13 Forward frequency sweep considering VP = 0 V, VAC = 30 V, VDC = 90 V, a Frequency variation, b Time response

123

Nonlinear dynamics of a piezoelectrically laminated initially curved microbeam resonator 20727



forces, respectively, which accordingly increases and

reduces the linear stiffness. When a positive polarity is

applied, not only does the frequency–response curve

shift towards the right, but the amplitude of the limit

cycles in the resonance region also decreases. This

results in a weakening of the non-linearity of the

response.

The force–response curves corresponding to three

different excitation frequencies including X ¼ 34 ,

X ¼ 37 and X ¼ 40 and for VAC ¼ 30 V; VDC ¼

50 V; n ¼ 0:06 are illustrated in Fig. 20. For

X ¼ 34, the force–response curve is a single-valued

curve (Fig. 20a), and the amplitude of the limit cycles

monotonically increases as the amplitude of the VAC

increases. For X ¼ 37 the force response curve is

depicted in Fig. 20b which exhibit a nonlinear multi-

response behavior and the system exhibits two cyclic

fold and period doubling bifurcations. Points B, C and

D are associated with the corresponding ones in

Fig. 11c. When X is set to 40, the system exhibits the

(a) (b)

Fig. 14 Backward frequency sweep considering VP = 0 V, VAC = 30V, VDC = 90V, a Frequency variation, b Time response

(a) (b)

Fig. 15 Response for VP = 0V, VAC = 30 V, VDC = 90V, X ¼ 50 a Time response, b Phase plane
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similar force response curve as of X ¼ 37 but with

lower amplitudes for the periodic solutions corre-

sponding to each individual excitation frequency.

6 Conclusion

This paper explores the nonlinear dynamics of an

initially curved microbeam subjected to an out-of-

plane fringing field effect. The microbeam is also

simultaneously excited by piezoelectric layers

attached to both the top and bottom layers along its

entire length. The equation of the motion was derived

by minimizing the Hamiltonian over the time and

reduced to a finite degree of freedom system using the

Galerkin technique. The convergency of the reduced-

order model was studied, and the reduced order model

was justified for the applied excitation parameters.

Both static and dynamic analyses were performed,

leading to the conclusion that the system exhibits bi-

stability and consequently snap-through bifurcation.

This finding holds great promise, especially in the

context of bifurcation-based MEMS switches. The

fringing field electrostatic force was numerically

(a) (b)

Fig. 16 Frequency response for VP = 0V, VDC = 50V, n ¼ 0:06, a VAC ¼ 40V, b VAC ¼ 50V

(a) (b)

Fig. 17 Frequency response for VP = 0V, VAC = 30V, VDC = 50V, a n ¼ 0:05 b n ¼ 0:04
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evaluated, and the implicit quadratic and cubic

nonlinearities were determined by means of expand-

ing the electrostatic force in Taylor series about the

static equilibrium position. It was shown that for the

values of the electrostatic force below a certain level,

the softening and hardening effects exist simultane-

ously, whereas beyond that certain level the electro-

static force becomes purely softening. It was

concluded that for the VDC below the mentioned

threshold, the system exhibits both softening and

hardening behaviors; however, for the voltages

beyond the threshold voltage the softening

nonlinearity dominates the response and the fre-

quency–response curves bent leftward on the reso-

nance region. The frequency–response curves in the

vicinity of the primary resonance were computed

based on the shooting technique and verified with the

continuation method. It was shown that when the

nonlinear terms become significant, the system bifur-

cates and having identified the bifurcation points, they

were classified based on the loci of the associated

Floquet exponents within the unit circle on the

complex plane. The branches of the frequency–

response curve emanating from the period–doubling

(a) (b)

Fig. 18 Frequency response for VP = 0V, VDC = 50V, VAC = 30V, n ¼ 0:06. a b0 ¼ 3 lm, (b): b0 ¼ 5 lm

(a) (b)

Fig. 19 Frequency response for VDC = 50 V, VAC = 30 V, n ¼ 0:06 a Vp ¼ þ0:3 V, (b): Vp ¼ �0:3 V
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bifurcation points were computed, and the transition

from period-1 limit cycle to a period-2 one as the

excitation frequency passes over the associated bifur-

cation point was investigated. The findings from the

study are encouraging for the development of high-

amplitude MEMS resonators in the future.
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