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Abstract In this paper, a new nonlinear discrete-time
map is presented. The map is based on a second-order
dynamics that, despite the limited number of param-
eters, is able to produce a rich dynamical behavior,
including the onset of spiking trends. This latter case
will be particularly emphasized, since it allows to con-
sider the introduced system as a novel discrete-time
model for spiking neurons. The study is performed by
using a numerical bifurcation approach. Moreover, the
possibility to obtain a spiking behavior using noise
is also shown. The implementation of the map using
advancedmicrocontroller units and the obtained exper-
imental results are discussed.
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1 Introduction

The concept of discrete-time map has a long history
in chaos studies [1]. The logistic map [2] represents
a paradigmatic example of this class of systems as it
is able to generate a wide range of dynamical behav-
ior, including bifurcations and chaos, on the basis of
a single parameter. Recently, the interest in this area
has been renewed [3,4] with the definition of novel
discrete maps for engineering applications, such as
image encryption [5,6] and image processing [7], or by
including the discrete-time counterparts of innovative
devices, such asmemristors [8].Methods for construct-
ing discrete-time memristive chaotic maps have been
recently studied in [9,10]. In the latter case, the pinched
hysteresis characteristic of a discrete-time memristor
induces, in a rather mathematically simple map, var-
ious complex behaviors, including a transition from
chaos to hyperchaos. The area of research on this topic
is appealing and new efforts are also done considering
maps that are inspired by quantum game theory [11].

Within the class of nonlinear discrete maps, a par-
ticular relevance are assuming spiking maps [12] since
they are reliablemodels of digital neurons.With respect
to neuron models in the continuous-time domain [13,
14], discrete-time neuronmodels [15] are, in fact, prone
to digital implementations and practical applications.
This topic is, therefore, of interest for several areas
of research and application, such as neurocomputing
and bioengineering. Recently, the efforts in realizing
discrete-time spiking neurons have been reviewed in
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[16], where spiking maps derived by the neuron mod-
els, with emphasis on the Hodgkin–Huxley model, are
presented. Indeed, simple models possessing a spik-
ing behavior consistentwith biological neuron observa-
tions have been introduced in [17], where an integrate-
and-fire mechanism has been discovered in a simple
map. The interest in this area of research has been
also devoted to discover discrete-time models for par-
ticular neurons, like the olivo-cerebellar system [18].
Spiking maps are further useful both in modeling [19]
and in studying networks behavior [20]. An interesting
example of discrete-time neuron model is discussed
in [19] where it is shown that a discrete-time mem-
ristor model provides the key ingredient for modeling
magnetic effects on the bursting and firing behavior of
biological neurons [21,22]. From the point of view of
studying nonlinear dynamics in discrete-time models
of spiking neurons, the work [23] emphasizes bifurca-
tions, chaos and the richness of the dynamical behavior
emerging from spiking maps and in [24] the possibil-
ity to have a transition from quasi-period spiking to an
hyperchaotic bursting is explored.

In this communication, we present a new second-
order discrete-time map that presents a rich dynam-
ical behavior. Its genesis is related to the two-cell
continuous-time system studied in [25]. Moreover, the
introduction of two novel parameters allows to sensi-
bly increase the complexity embedded in its behavior
and to propose a simple hardware implementation of
its dynamics.

The paper is organized as follows. In Sect. 2, some
preliminary details related to the two-cell continuous-
time system are reported. In Sect. 3, the new discrete-
time nonlinear map is introduced, discussing the prop-
erties of its equilibrium points, while Sect. 4 proposes
an intense numerical bifurcation analysis in order to
explain into details the emergence of the rich dynam-
ics, also in terms of firing behavior. In Sect. 5, the
spiking dynamics of the proposed system is discussed
providing a strategy based on the injection of noise to
trigger the spiking behavior in the stability regions of
the parameter space. Moreover, Sect. 6 is dedicated
to the experimental results derived from the simple
implementation of the map obtained by using a low-
cost microcontroller and Sect. 7 draws the concluding
remarks.

2 The two-cell nonlinear system

Let us consider the following set of nonlinear differen-
tial equations

ẋ1 = −x1 + (1 + μ) y1 − sy2 + i1
ẋ2 = −x2 + sy1 + (1 + μ) y2 + i2

(1)

where

yi = 1

2
(|xi + 1| − |xi − 1|) (2)

It represents a second-order continuous-time nonlin-
ear system originally introduced in [26] with the aim of
extending the paradigm of reaction–diffusion cellular
nonlinear networks (RD-CNN). It originates from the
so-called Nossek cell [27] with the inclusion of the two
external currents i1 and i2 whose effect impacts on the
existence and stability properties of the equilibria [25].
The system in Eq. (1) finds important practical appli-
cations in control as it is used as the core of central
pattern generators to control the gait of hexapod robots
[28].

The conditions under which the system in Eq. (1)
oscillates have been detailed in [25]. In particular,
the concurrent presence of virtual and real equilibria,
imposed by the external currents, ensures a limit cycle
oscillation for 0 < μ < s and |ii | < 1. Without loss of
generality, in the following we will fix the parameters
of the two-cell system according to [25,28] asμ = 0.7,
s = 1, i1 = −i2 = −0.3. For this set of parameters,
the peculiar slow-fast dynamics appears, as shown in
Fig. 1, as a consequence of the slow evolution toward
the virtual equilibrium, followed by a fast evolution
away from the virtual equilibrium, thus generating an
homoclinic orbit duringwhich the dynamic flow under-
goes sudden variations in the rate of the state-variables
change.

Let us now consider, instead of the piece-wise linear
function (2), a continuous and differentiable nonlinear-
ity such as

yi = tanh αxi (3)

This leads to the introduction of a further parameter
αwhich provides the systemwith an interesting feature.
The slow-fast dynamics in fact, yet being preserved for
α ∈ [0.65, 1.66], can be modulated by tuning α, as
shown in Fig. 2. This introduces an integrate-and-fire
like behavior, where one variable assumes the role of
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Fig. 1 Behavior of the two-cell system in Eq. (1) with nonlin-
earity (2) for μ = 0.7, s = 1, i1 = −i2 = −0.3: a temporal
evolution and b phase-portrait (circles allow to identify the slow-
fast rate of state-variables change)

action potential and the other assumes the role of a
recovery variable.

Thus, the system in Eq. (1) with nonlinearity as in
(3) can be considered a novel model for spiking behav-
ior. The analogy with the Morris–Lecar neuron model
should be noticed [29], where the same type of nonlin-
earity is considered.

3 The two-cell spiking map

Let us now consider the Euler discretization with t =
kT of the dynamics in Eq. (1) with nonlinearity (3)
as:

Fig. 2 Behavior of the two-cell system in Eq. (1) with nonlin-
earity (3) for μ = 0.7, s = 1, i1 = −i2 = −0.3: a temporal
evolution and b phase-portrait for α = 0.9 (dash-dot orange
line), α = 1 (dash red line) and α = 1.6 (continuous green line).
Circles on the green trajectory are shown to identify the slow-fast
rate of state-variables change. (Color figure online)

x1(k+1)= x1(k)+T [−x1(k)+(1+μ) y1(k)−sy2(k)+i1]

x2(k+1)= x2(k)+T [−x2(k)+sy1(k)+(1+μ) y2(k)+i2]

(4)

with

yi (k) = tanh αxi (k) (5)

The discrete-time system described in (4) maintains
the periodic spiking behavior observed in (1) for small
values of T , as shown in Fig. 3 where themap iterations
and the trajectory in the x1 − x2 plane are reported for
T = 0.1 and different values of α.
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Fig. 3 Spiking behavior of the discrete-time system in Eqs. (4)–
(5) for T = 0.1: a temporal evolution and b phase-portrait for
α = 0.9 (blue), α = 1 (red), and α = 1.6 (green). (Color figure
online)

Moreover, Eq. (4) can be considered a nonlinear
discrete-time map with T acting as a further param-

eter. Varying T , in fact, the behavior of system (4) with
nonlinearity (5) drifts from that of system (1) with non-
linearity (3), showing the birth of bifurcation scenarios
leading to a complex, yet spiking and bursting, behav-
ior.

In the following, we will keep constant the param-
eters of the original continuous-time two-cell system,
i.e.,μ = 0.7, s = 1, i1 = −0.3 and i2 = 0.3, and inves-
tigate the dynamical behavior emerging in the param-
eter space T − α.

Let us start from determining the location of the
equilibria of the discrete-time map, by imposing the
conditions x1(k + 1) = x1(k) and x2(k + 1) = x2(k).
This leads to the following system of nonlinear equa-
tions

x1(k)+T [−x1(k)+(1+μ) y1(k)−sy2(k)+i1]= x1(k)

x2(k)+T [−x2(k)+sy1(k)+(1+μ) y2(k)+i2]= x2(k)

(6)

and thus the equilibria must satisfy the equations

−x1(k) + (1 + μ) y1(k) − sy2(k) + i1 = 0

−x2(k) + sy1(k) + (1 + μ) y2(k) + i2 = 0 (7)

Thefirst consideration is that the equilibria of system
(4) are independent of T . Being the nonlinearities in (7)
transcendental functions, the solutions can be derived
more efficiently by using a graphical approach based on
plotting the nullclines (7) and detecting the intersection
points. The nullclines for α = 1, α = 1.666 and α =
1.8 are reported in Fig. 4 showing a transition from one
to three and then to five distinct equilibria. The location
of the equilibria with respect to α retrieved by adopting
this method is shown in Fig. 5.

As concerns the stability analysis, it appears evident
that this depends also on the parameter T . In fact, the
Jacobian matrix of (4) reads as

J =
[
1 − T

(
(1 + μ) α

(
tanh2 αx1 − 1

) + 1
)

Tα
(
tanh2 αx2 − 1

)
−Tα

(
tanh2 αx1 − 1

)
1 − T

(
(1 + μ) α

(
tanh2 αx2 − 1

) + 1
)
]

(8)

By inspecting the modulus of the eigenvalues of J
evaluated on each equilibria, it is possible to determine
their stability as a function of T and α. According to
this criterion, in Fig. 6 the regions in the parameter
space T − α in which the system (4) admits one, two
or no stable equilibria are reported.

123



Bifurcations in a new two-cell spiking map 20365

Fig. 4 Nullclines for different values of α: a α = 1, the single
intersection corresponds to a unique equilibrium; b α = 1.666,
three intersection corresponding to three equilibria; c α = 1.8,
five intersection corresponding to five equilibria

4 Numerical bifurcation analysis

The two-cell discrete-timemap introduced in this paper
displays a plethora of complex dynamical behavior

Fig. 5 Coordinates of the equilibria with respect to α

Fig. 6 Number of stable equilibria in the parameter space T −α.
The different colored regions indicate the transitions among one,
two or no stable equilibria

when varying the two parameters α and T . In this sec-
tion, we aim at investigating numerically the bifurca-
tion routes to chaos and the peculiar behavior of the
system.

The numerical investigation on the system behavior
is performed by inspecting the bifurcation diagrams
with respect to the two parameters and reporting the
corresponding maximal Lyapunov exponent λmax. The
Lyapunov spectrum has been calculated by considering
the Jacobian matrix in (8) and adopting the algorithm
described in [30] to avoid ill conditioning and conse-
quent numerical problems [31].

Let us investigate at first the bifurcation scenario
with respect to T . According to Fig. 6, we can focus
on three values of α for which the transition between

123



20366 A. Buscarino et al.

different stability regimes can be observed. For α =
0.5, the system moves from one stable equilibrium to
no stable equilibria when increasing T . When α = 1.2,
the system admits no stable equilibria for all T . Finally,
for α = 1.8 the system undergoes a transition between
two stable equilibria and no stable equilibria.

The bifurcation diagram and the maximal Lyapunov
exponent with respect to T when α = 0.5 is reported in
Fig. 7a. They show the birth of quasi-periodic toroidal
oscillations [32], characterized by λmax = 0, occurring
when the stable equilibrium disappears. Eventually, the
tori collapse onto periodic oscillations, also displaying
odd periodicity.

For α = 1.2, chaotic and periodic windows appear
along the considered range of T , showing the com-
plex bifurcations cascade of periodic oscillations with
increasing periodicity leading to the onset of a chaotic
regime, as reported in Fig. 7b.

The bifurcation route for α = 1.8 obtained vary-
ing T reflects in the bifurcation diagram reported in
Fig. 7c. A period-doubling route sets on giving birth to
a sustained chaotic behavior with high values of λmax.

The behavior of the systemwith respect to Fig. 6 can
be further explored by fixing T and varying α. In this
case, there are twopossible scenarios to be investigated,
since the variation of α leads to the transition from one
to none and then to two stable equilibria for T < 2,
while for T ≥ 2 the system admits one or none stable
equilibria when α varies. The two complex bifurcation
routes corresponding to these scenarios are reported
in Fig. 8. The diagram for T = 1.6 (Fig. 8a) shows
the transition between the single stable equilibrium to
a toroidal regime, with λmax = 0, which eventually
collapse onto a series of periodic oscillations with even
and odd periodicity, followed by the transition to awide
window of chaos. The presence of two stable equilibria
for α > 1.65 leads to a multistable behavior in which,
along with the two stable equilibria, a period-4 cycle
can be retrieved, depending on the initial conditions.
When T = 2.3 (see Fig. 8b), the toroidal oscillations
are soon replaced by the birth of a first chaotic attractor,
that coexists with a period-4 oscillation, as reported,
for α = 0.56, in Fig. 9. Further increase in α leads to a
novel periodic window originating a chaotic behavior,
followed by an odd periodic window creating a route
to a further chaotic window. Therefore, two different
routes to chaos appear with respect to same parameter
α.

Fig. 7 Bifurcation diagrams (upper panel) and maximal Lya-
punov exponent λmax (lower panel) with respect to T : a α = 0.5;
b α = 1.2; c α = 1.8
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Fig. 8 Bifurcation diagrams (upper panel) and maximal Lya-
punov exponent λmax (lower panel) with respect to α: a T = 1.6,
different color branches represent coexisting attractors with ini-
tial conditions: x1(0) = −1, x2(0) = −1 for the behaviors in
red; x1(0) = 4, x2(0) = −1 for the fixed-point behavior in black;
x1(0) = −4, x2(0) = −1 for the period-4 oscillation in blue; b
T = 2.3, different color branches represent coexisting attractors
with initial conditions: x1(0) = −1, x2(0) = −1 for the behav-
iors in red; x1(0) = −1, x2(0) = 4 for the period-4 oscillation
in blue. (Color figure online)

It is interesting to note that the behavior of the map
occurring for T = 2.3 and α = 1.7 is intermittent,
i.e., alternates between two different chaotic behaviors,
as reported in Fig. 10a. Intermittency is robust with
respect to the initial conditions, as shown in Fig. 10b.
The presence of intermittency, as it occurs in other
discrete-time maps [3], is linked to the odd periodic
cycles observed in the considered area of the parame-
ter space.

Fig. 9 Multistable behavior in the two-cell map for T = 2.3
and α = 0.56. Initial conditions: x1(0) = −1, x2(0) = −1 for
the behavior in red; x1(0) = −1, x2(0) = 4 for the period-4
oscillation in blue. (Color figure online)

The system in Eq. (4) with nonlinearity (5) is able
to generate a wide plethora of non-trivial dynami-
cal behavior. Interestingly, the dynamics of the sys-
tem make it suitable for modeling spiking neurons. Its
behavior, in fact, can be opportunely tuned by acting
on system parameters α and T to show different fir-
ing patterns. In Fig. 11, we report the transition from
a quasi-periodic spiking to a chaotic bursting observ-
able when T = 2.3 and increasing α. The quasi-
periodic torus obtained for α = 0.45, in fact, displays
a quasi-periodic spiking pattern that becomes periodic
forα = 0.5. Chaotic spiking occurs forα = 1.4,whose
firing behavior is modulated by further increasing α

until the emergence of an intermittent chaotic spiking
behavior for α = 1.7. Increasing α has now the effect
of passing from a spiking firing pattern to a bursting
firing pattern, either periodic or chaotic. More specif-
ically, a periodic bursting is obtained when α = 2.15,
while a chaotic bursting appears for α = 2.2.

In order to provide an insight on the system behavior
when varying both parameters T and α, the maximal
Lyapunovexponent has been evaluated in the parameter
space T −α. The diagram reported in Fig. 12 confirms
the occurrence of several regions of chaos.

5 Noise-induced spiking behavior

The spikingdynamics of neuronmodels is often charac-
terized by the so-called interspike interval (ISI), defined
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Fig. 10 Intermittency in the two-cell map for α = 1.7 and
T = 2.3: a intermittent behavior between chaotic dynamics
(left panel) and particular of the internal attractor (right panel); b
intermittency for ten different initial conditions chosen randomly
from a Gaussian distribution with variance ¯sigma = 4 and mean
value μ̄ = 0

as the time-span between two successive spikes. Since
both the continuous-time system (1) with nonlinearity
(3) and its discrete-time counterpart (4) with nonlin-
earity (5) have a spiking behavior depending on α, the
ISI has been evaluated for the latter for different values
of α, as reported in Fig. 13 where the direct effect of
the introduction of this parameter on the modulation of
the spiking dynamics is shown. The spiking behavior
disappears for α > 1.66.

Fig. 11 Firing patterns of state variable x1 for different values of
α. From top to bottom: quasi-periodic spiking (α = 0.45); peri-
odic spiking (α = 0.5); chaotic spiking (α = 1.4); intermittent
chaotic spiking (α = 1.7); periodic bursting (α = 2.15); chaotic
bursting (α = 2.2)

Fig. 12 Maximum Lyapunov exponent calculated in the param-
eter space T − α. Initial conditions: x1(0) = −1, x2(0) = −1

Since the discrete-time system (4) is the Euler dis-
cretization of the continuous-time dynamics (1), even
decreasing T the behavior of the map reaches an equi-
librium when α > 1.66, as confirmed in Fig. 14a for
α = 1.7.

In order to guarantee a spiking behavior in the sys-
tem (4) with nonlinearity (5) in a wider range of the
parameter α, we can introduce a random perturbation
in Eq. (4) as:

x1(k + 1) =x1(k) + T (−x1(k) + (1 + μ) y1(k) − sy2(k) + i1 + ηξ1(k))

x2(k + 1) =x2(k) + T (−x2(k) + sy1(k) + (1 + μ) y2(k) + i2 + ηξ2(k))
(9)
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Fig. 13 Interspike interval, in samples, for the spiking dynamics
of the system in Eq. (4) with nonlinearity (5) with respect to α,
when T = 0.1

where ξ1 and ξ2 are random processes with uniform
distribution in the range [−1, 1] and η is the noise
level. The effect is to perturb the stability of the coex-
isting equilibria, thus triggering the slow-fast dynamics
responsible for the spiking behavior. The effect of the
injected noise is shown in Fig. 14b, in which the behav-
ior of the system for T = 0.1 and α = 1.7 is perturbed
with a noise level η = 0.5.

In order to determine the effectiveness of the noise
perturbation, the ISI has been evaluated for three differ-
ent values of the noise level, varying α. In Fig. 15, the
average value of the ISI as a function of α is reported
for η = 0, η = 0.3, and η = 1. The range of α trig-
gering a spiking dynamics is larger, the higher is the
level of noise. The cost, however, is also to increase the
variability of the ISIs.

This erratic behavior of the interspike interval occur-
ring in the two-cell map when subjected to the random
process, led us to investigate the variability of the dis-
tribution of the ISIs, which is clearly affected by the
presence of the noise, as a function of η. To this aim, the
ISIs have been evaluated fixing T = 0.1 and α = 1.7,
and varying η, as shown in the diagram reported in
Fig. 16a, where the continuous line marks the aver-
age ISI for each value of the noise level. The spiking
behavior is triggered for η > 0.3, and the distribution
of ISIs becomes more regular when η increases. This
latter consideration can be further verified by giving a
measure to the variability of the ISIs. Hence, we inves-
tigated the coherence of ISIs distribution computing the
coefficient of variation (CV) for the ISIs series obtained

Fig. 14 Behavior of the two-cell map for T = 0.1 and α = 1.7:
a stable behavior when η = 0; b spiking behavior when η = 0.5

for different values of η, fixing T = 0.1 and α = 1.7,
as

CV = σISI

μISI
(10)

where σISI andμISI are, respectively, the standard devi-
ation and the mean value of the retrieved ISIs series.
The CV is reported in Fig. 16b as a function of η. The
increase of the noise level leads to a non-trivial reduc-
tion of the variability of the ISI distribution. This is
a consequence of the nature of the two-cell map for
α = 1.7 and T = 0.1, i.e., the coexistence of two sta-
ble equilibria. The noise, in fact, triggers the spiking
behavior thanks to the interplay of the two equilibria
providing an oscillation among them with an intrinsi-
cally periodic nature.
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Fig. 15 Interspike interval, in steps, for the spiking dynamics of
the system inEq. (4)with nonlinearity (5)with respect toα, when
T = 0.1, and for η = 0 (average in continuous line), η = 0.5
(average in dashed line) and η = 1 (average in dash-dotted line)

6 Experimental results

In this section, the implementation of an electronic cir-
cuit aimed at realizing the two-cell discrete-time sys-
tem introduced in this paper is presented. Discrete-time
systems can be easily implemented in digital comput-
ing devices, with the only constraint of the digit pre-
cision. However, we want to implement a hybrid dig-
ital/analog circuit which produces an output voltage
following the dynamics of the two-cell map in (4).

The circuit is based on the microcontroller board
Arduino� UNO. It is a multipurpose board equipped
with an ATMEL 32bit ARM-based processor, inter-
facedwith an analog-digital converter and a serial/USB
interface. It is fully programmable via an integrated
development environment in C/C++.

The microcontroller is programmed implementing
the iterator (4) with nonlinearity (5), and the two vari-
ables, coded as 8-bit words, are sent through the dig-
ital output of the board. These digital signals are then
converted to an analog voltage by means of a stan-
dard R − 2R digital-to-analog converter. Arduino pins
from 2 to 9 are used to produce the eight digits of the
8-bit word. The R − 2R digital-to-analog converter
is realized on a breadboard, following the schematic
reported in Fig. 17. Wires connect the output pins of
the Arduino� board with the inputs of the converter in
such a way that the most significant bit (corresponding
to pin 2) is connected to the first resistor R, and so on.
The complete experimental setup is shown in Fig. 18.

Fig. 16 Inducing spiking behavior with noise. aBifurcation dia-
gram with respect to α on the ISI for T = 0.1: three levels of
noise are considered η = 0 (in blue), η = 0.5 (in red), and η = 1
(in black). Lines indicate the average value of the ISI. b Bifur-
cation diagram with respect to η and c coefficient of variation
CV with respect to η, when α = 1.7 and T = 0.1. (Color figure
online)

The microcontroller is programmed with the code
reported in the “Appendix A.”

Thehybrid circuit reveals to be effective in reproduc-
ing the behavior of the two-cell map, even in the 8-bit
implementation. In Fig. 19a, b, the periodic behavior
of the map is reported obtaining the period-5 cycle,
for α = 0.5 and T = 2.3, and period-12 cycle, for
α = 1.2 and T = 1.4. The intermittency correspond-
ing to T = 2.3, and α = 1.7, and the chaotic behavior
produced by the circuit with T = 2.3, and α = 1.8 are
reported in Fig. 20a, b, respectively.
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Fig. 17 Digital-to-analog
converter based on the
R − 2R configuration with
output buffer: R = 10 k�,
TL-084 operational
amplifiers powered with a
dual voltage supply
Vs = ±9V

Fig. 18 Complete setup for the logistic map microcontroller
implementation with the Arduino� board and the R − 2R con-
verter implemented on the breadboard

Comparing the obtained signals with the numeri-
cal simulation, a perfect match as regards the dynamic
behavior can be observed. Differences in the signal
shape can be noticed, due to the characteristics of
the microcontroller implementation. The first macro-
scopic difference is that the values assumed by the iter-
ator, and then converted to an analog voltage, are not
instantaneous but are maintained for a finite amount of
time. This time consists in the duration of each loop
cycle that depends on the complexity of the executed
code and on the delay introduced in the main code
(see “Appendix A”). The delay is introduced in order
to ensure that the main clock of the microcontroller
completes a cycle and the digital output is correctly
updated. The second difference stands in the ampli-
tude of the analog voltage, that is constrained in the
range [0V, 5V]. This means that when producing the
digital output corresponding to the value assumed by
the state variable x1 at each step, it must be adequately
scaled (see “AppendixA”). These differences, however,
do not impact on the capability of the hybrid circuit

Fig. 19 Behavior of the hybrid circuit implementing the two-
cell map: a period-5 for α = 0.5 and T = 2.3; b period-12 for
α = 1.2 and T = 1.4
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Fig. 20 Behavior of the hybrid circuit implementing the two-
cell map: a intermittency for α = 1.7 and T = 2.3; b chaos for
α = 1.8 and T = 2.3

to reproduce the dynamical features of the introduced
discrete-time neuron model.

The circuit allows also to investigate the triggering
of the spiking behavior as a consequence of the intro-
duction of a random process. This needs a reformula-
tion of the code used to program the microcontroller,
as detailed in the “Appendix B.”

The spiking behavior obtained thanks to the injec-
tion of noise is reported in Fig. 21a when α = 1.7,
T = 0.1 and η = 0.5. Moreover, the experimental
bifurcation diagram related to the ISI with respect to η

is reported in Fig. 21b, showing a perfect match with

Fig. 21 Behavior of the hybric circuit implementing the two-
cell map: (a) spiking behavior obtained thanks to the injection
of noise when α = 1.7, T = 0.1, and η = 0.5; (b) experimental
bifurcation diagram of the ISI with respect to η

the numerical results in Fig. 16a, despite the peculiarity
of the output analog voltage outlined above.

7 Conclusions

Spiking models play a crucial role in the definition
of future paradigms for intelligent learning and arti-
ficial intelligence. In order to ensure a straightforward
implementation on smartdevices and microcontrollers,
discrete-time models with spiking and bursting behav-
ior are fundamental. The importance of discrete-time
nonlinear maps is also related to their capability of aid-
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ing in modeling identification from experimental data,
where sampled data can be directly classified.

In this paper, we proposed a second-order discrete-
timemaporiginated fromawell-established continuous-
time model with a slow-fast spiking dynamics. Rather
thanbeing amerediscretizationof a continuous dynam-
ics, the proposed system springs a non-trivial quantity
of complex dynamics and a generally richer dynamical
behavior with respect to the continuous-time counter-
part. The use of the discretization step T as a further
system parameter allows the discrete-time case to eas-
ily achieve strange behavior, including chaos, intermit-
tency, cycles with odd and even periodicity, and even
multistability in spiking dynamics. A transition from
quasi-periodic to periodic spiking, and then to chaotic
spiking, intermittency and bursting behavior can be
achieved by tuning a single parameter.

Another crucial aspect is that the introduced model
presents several regions in the T − α parameter space
in which the coexistence of different behavior occurs.
This characteristic makes the neuron model capable
of reacting differently in the presence of different ini-
tial conditions, thus performing a classification. As the
original continuous-time model has been adopted to
design robust central patter generators for bio-inspired
mobile robots [33], the discrete-time spiking neuron
model here introduced can be considered in the context
of practical applications on a robotic platform. Under
this perspective, themultistable behavior observedmay
be exploited to allow different robot reactions in the
presence of different environmental stimuli suitably
mapped onto the dynamics initial conditions.

The possibility of modulating the spiking dynamics
through a single parameter and the efficacy of noise in
triggering a spikingbehaviormake the proposed system
a realistic neuron model that can be adopted in novel
spiking neural network architectures.
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AppendixAMicrocontroller programming code for
the implementation of the proposed spiking map

In the following, we report the complete code for pro-
gramming the microcontroller board to emulate the
spiking map dynamics:

// Variables Initialization
int outPin1 = 2;
int outPin2 = 3;
int outPin3 = 4;
int outPin4 = 5;
int outPin5 = 6;
int outPin6 = 7;
int outPin7 = 8;
int outPin8 = 9;
int val;
float x1=0.1;
float x2=0.5;
float x11;
float x21;
float y1;
float y2;
float dx1;
float dx2;
float alpha =1.7;
float T=2.3;
// Setup
void setup ()
{

DDRD=B11111111;
Serial.begin (9600);

}
// Main loop
void loop()
{

while( 1 )
{

y1=tanh(alpha*x1);
y2=tanh(alpha*x2);
dx1=-x1+1.7*y1-y2 -0.3;
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dx2=-x2+1.*y1 +1.7* y2+0.3;
x11=x1+T*dx1;
x21=x2+T*dx2;
x1=x11;
x2=x21;
// Amplitude scaling to fit the

analog voltage constraint
val=(int) 255*(( x1 +3.0)/5.0);
// Digital output update
PORTD=val;
// Delay introduced to guarantee
the digital output update

delayMicroseconds (100);
}

}

The C++ code is structured in three parts. The first
part defines and initializes the input/output pins, the val-
ues of the parameters and the variables with the desired
initial conditions. The second part sets up the board,
enabling the eight output pins which will be controlled
as a single PORT, thus reducing the latency among each
digital output changes. The third part is the main loop,
repeated with a default frequency of about 420 kHz.
The clock frequency can be suitably modified with fur-
ther built-in commands [34]. At each iteration, the map
is updated and the value of the first state variable is
converted to an integer number in the range [0; 255],
whose 8-bit digital representation iswritten on the eight
output pins. The oscilloscope traces in Figs. 19 and 20
report the analog output, that is in the range [0V ; 5V ].
Each value is maintained for a clock period and then
modified according to the result of the iterator.

Appendix BMicrocontroller programming code for
the implementation of the noise-induced spiking
behavior

The random number generator for emulating the noise
inducing the spiking behavior is implemented by pro-
gramming the microcontroller as follows

#include <time.h>
// Variables Initialization
int outPin1 = 2;
int outPin2 = 3;
int outPin3 = 4;
int outPin4 = 5;
int outPin5 = 6;
int outPin6 = 7;
int outPin7 = 8;
int outPin8 = 9;
int val;
float x1=0.1;
float x2=0.5;
float x11;
float x21;
float y1;
float y2;
float dx1;
float dx2;

float alpha =1.7;
float T=0.1;
float eta =0.5;
// Setup
void setup ()
{

DDRD=B11111111;
Serial.begin (9600);
srand(time(NULL ));

}
// Main loop
void loop()
{

while( 1 )
{

y1=tanh(alpha*x1);
y2=tanh(alpha*x2);
dx1=-x1+1.7*y1-y2 -0.3+ eta*

(rand ()/ RAND_MAX -0.5);;
dx2=-x2+1.*y1+1.7* y2 +0.3+ eta*

(rand ()/ RAND_MAX -0.5);;
x11=x1+T*dx1;
x21=x2+T*dx2;
x1=x11;
x2=x21;
val=(int) 255*(( x1 +3.0)/5.0);
PORTD=val;
delayMicroseconds (100);

}
}
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