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Abstract In this paper, singular perturbation theory
is exploited to obtain a reduced-order model of a slow–
fast piecewise linear 2-DOF oscillator subjected to
harmonic excitation. The nonsmooth nonlinearity of
piecewise linear nature is studied in the case of bilinear
damping as well as with bilinear stiffness characteris-
tics. We propose a continuous matching of the locally
invariant slow manifolds obtained in each subregion of
the state space, which yields a reduced-order model of
the same nature as the full dynamics. The frequency-
response curves obtained from the full system and the
reduced-order models suggest that the proposed reduc-
tion method can capture nonlinear behaviors such as
super- and subharmonic resonances.
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1 Introduction

Piecewise linear (PWL) systems constitute an impor-
tant class of nonsmooth dynamical systems and are
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commonly used to model complex physical phenom-
ena. Typical applications are found in a wide range of
fields, such as control systems [1], neuroscience [2]
and mechanical engineering. For instance, the pres-
ence of effects such as dry friction [3], intermittent
contact or bilinear stiffness characteristics [4] yields
PWL mechanical models consisting of multiple linear
subsystems. A typical example is the quarter carmodel,
which is widely used to study the vertical dynamics of
the suspension of a single wheel under road excita-
tion [5]. A variation of this simplified low-dimensional
example including bilinear damping is investigated in
the current work.

The dynamics of PWL systems can exhibit very
interesting dynamical effects, which are impossible to
observe in smooth systems. A prominent example of
this rich dynamic behavior was reported in [6], where
the continuous matching of two stable linear subsys-
tems can result in an unstable dynamics. The regu-
larization of PWL nonsmoothness using smooth func-
tions is often used to circumvent the typical problems
emanating from the nonsmooth nature of the models.
However, these smooth representationsmay not bewell
suited for the study of general PWL systems and are not
always able to capture their typical nonlinear behaviors,
as pointed out in [7] and [8]. Therefore, PWL systems
cannot directly be studied with classical methods from
the theory of smooth nonlinear systems. Instead, these
methods need to be extended to take the nonsmoothness
into account.
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In the past three decades, a number of researchers
have sought to determine the qualitative behavior of
PWL mechanical systems. Shaw et al. [9] provide
a detailed analysis of a periodically forced single-
degree-of-freedom PWL oscillator, where the limiting
case of an infinite stiffness slope represents a rigid
impact oscillator. Wang et al. [10] proposed an ana-
lytical method to determine the amplitude frequency
and phase frequency characteristics for single-degree-
of-freedom forced oscillators with nonlinear restor-
ing forces, which can be smooth or of PWL nature.
More recently, Stefani et al. [11] carried out a numeri-
cal bifurcation analysis of a symmetrically constrained
single-degree-of-freedom vibro-impact oscillator, tak-
ing effects into account such as impact, clearance and
unilaterality of the constraints. Path-following tech-
niques were used by Chavez et al. [12] to study the
dynamics of a PWL capsule system. A semi-analytical
method to study a single-degree-of-freedom impact
oscillator with PWL stiffness and damping under har-
monic excitation was proposed by Hernández Rocha
et al. [13]. This approach is based on a mapping tech-
nique using the closed-form solutions available in each
region of the PWL system and allows to describe any
periodic motion and study its stability and bifurcations.
For autonomous PWL multi-degree-of-freedom sys-
tems, which model cracked rotating shafts and cracked
beams, Zuo et al. [14] were the first to investigate the
nonlinear modal behavior in the gyroscopic and non-
gyroscopic case. Chen et al. [15] introduced a method
to construct the nonlinear normal modes (NNMs) for a
more general class of undamped autonomous PWLsys-
tems using the concepts of Poincaré maps and invariant
manifolds. An extension of this study was proposed by
Jiang et al. [16] using Galerkin projections to account
for large vibration amplitudes. Chati et al. [17] used
perturbation methods to obtain the nonlinear normal
modes of an autonomous conservative two-degree-of-
freedom PWL oscillator. The NNMs are based on the
bilinear frequency formula and are accurate only when
the difference between the linear subsystems is small.
Similarly, Butcher [4] investigated the effects of a clear-
ance on the normal mode frequencies of undamped n-
dimensional systems with bilinear stiffness. For sys-
tems in which the linear part of the model dominates in
the dynamics, Butcher et al. [18] proposed an approach
for model order reduction in the presence of PWL stiff-
ness. An analytical approach was proposed by Bellizi
et al. [19] to predict the periodic and quasiperiodic

response regimes of a two-degree-of-freedom system
with piecewise nonlinear damping and time delay.

From the above review, it becomes clear that most of
the existing techniques to study PWLsystems are either
restricted to low-dimensional systems or do not include
effects such as damping and external forcing. However,
the analysis of real-world applications requires high-
dimensional multibody mechanical models, which in
turn present an additional challenge to the study of the
PWL dynamics. Hence, adequate model order reduc-
tion tools are needed to investigate the dynamics effi-
ciently, aiming at reducing the computational efforts
while also providing an insight into the main features
of the global dynamics.

For smooth mechanical systems, perturbation meth-
ods have been used to derive reduced-order models by
assuming a global slow–fast decomposition of the coor-
dinates, such as in [20,21] and [22]. A more recent
order reduction methodology is provided by the local
theory of spectral submanifolds [23], which presents
a unified mathematical approach to NNMs of general
non-autonomous dissipative systems. This technique
relies on a slow–fast decomposition of the state vari-
ables that results in a lower-dimensional manifold, on
which the slow dynamics of the full system can be
investigated. This allows to obtain a global reduced
model capturing the key characteristics of the steady-
state system behavior. However, this approach relies
on smoothness properties of the system and its start-
ing point consists in the study of the underlying linear
dynamics. In the case of PWL systems, a proper lin-
earization does not exist, in the sense that an equilib-
rium located on a switching manifold does not admit a
neighborhood around which the dynamics can be lin-
earized. Nonetheless, a slow–fast decomposition anal-
ogous to smooth systems may provide a promising first
step toward a reduction to lower-dimensional invariant
manifolds (or their nonsmooth generalizations). There-
fore, the investigation of slow–fast PWL systems using
perturbative approximations could pave the way for the
development of novel reduction methods accounting
for PWL nonlinearities. In the smooth case, slow–fast
systems have been studied extensively in the context
of bistable oscillators and mixed-mode bursting and
relaxation oscillations, which occur in mechanical sys-
tems among other applications, such as in the work by
Kovacic [24] and Rakaric [25]. In this study, the focus
lies rather on exploiting the slow–fast decomposition
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of the state variables for the purpose of model order
reduction of PWL mechanical systems.

In this paper, the original approach of the authors
proposed first in [26] for the use of singular per-
turbation theory on slow–fast continuous PWL sys-
tems is extended from the autonomous configuration
in R

3 to non-autonomous slow–fast oscillators with
two degrees of freedom. In the three-dimensional state
space as described in [26], the reduction method con-
sisted in coupling only one fast variable to two slow
variables. However, the addition of a second fast vari-
able introduces an additional complexity since the
interplay between the two fast variables at the switch-
ing manifold affects the proposed continuous match-
ing procedure. Furthermore, in the autonomous case
studied in [26], the trajectories of the full and reduced
systems converge toward the equilibrium along time-
independent half-manifolds. Extending the analysis to
the non-autonomous setting results, however, in explic-
itly time-dependent linear half-manifolds, which are
continuously matched to approximate a periodic solu-
tion. The novelty of our proposed continuous matching
technique is that the resulting reduced model inher-
its the continuity property of the original system. This
feature is important for two reasons. First, a general
PWL reduced model can exhibit the complex dynamic
behaviors mentioned above. Therefore, determining its
stability properties is more complex than that of the
underlying original continuous system. Furthermore,
the continuity property ensures that trajectories cross
the switchingmanifold fromone subregion to the other,
thus excluding sliding along the switching hyperplane
asmay occur in Filippov systems [27]. A discontinuous
reduced model may, however, exhibit sliding solutions,
which are not present in the original continuous sys-
tem. Moreover, the presence of sliding behavior in the
reducedmodel can cause numerical problems (it neces-
sitates the numerical solution of a differential inclu-
sion) and increases the computational effort, which is
not desirable from a reduction point of view.

Motivated by the quarter car model with bilinear
damping characteristics, two examples of slow–fast
oscillators subjected to a harmonic excitation are used
to illustrate the reduction.

The remainder of this paper is organized as follows.
In Sect. 2, we carry out the direct singular perturbation
reduction on the quarter car model with bilinear damp-
ing characteristic to illustrate the emerging challenges
ofmatching the slowdynamics of each subsystemat the

switching manifold, motivating the need for a contin-
uous matching procedure of the slow half-manifolds.
In Sect. 3, such a continuous matching approach is
proposed in a general setting aiming to obtain a con-
tinuous reduced-order model. In Sects. 4 and 5, the
reduction using the continuous matching approach is
applied to two continuous PWL systems with bilin-
ear damping and stiffness characteristics, respectively.
Reduced-order models are obtained and the resulting
frequency-response curves are compared to the dynam-
ics of the full systems. Finally, conclusions are drawn
in Sect. 6.

2 Motivating example for singular perturbation
theory on continuous PWL systems

In order to enhance the driving comfort and vehicle
safety, various suspensionmodels have been developed
with the aim of preventing up-swings of the vehicle
and providing a good road grip. A widely used model
to investigate the dynamics of suspension systems is
the quarter car model with two degrees of freedom.
Variations of this systemwith nonlinear elements, such
as bilinear dampers and unilateral springs, have been
studied extensively. For instance, Silveira et al. [5] ana-
lyzed a 2-DOFmodel with bilinear damping under har-
monic excitation using the harmonic balance method.
A numerical stability analysis of a similar 2-DOF sys-
tem has been conducted by Szabó [31]. Moreover, the
incremental harmonic balancemethodhas beenutilized
by Wang et al. [32] to study a suspension model with
piecewise linear stiffness and damping.

A 2-DOF quarter car model with bilinear damping
is illustrated in Fig. 1a and consists of two masses,
describing the car body and the wheel, respectively,
while the tire of the wheel is simplified by a linear
spring. In a typical car, the natural frequency of the
tire is much larger than the natural frequency of the
car body, which leads to the introduction of a small
parameter responsible for a time-scale separation in
the behavior of the system variables [33]. Motivated by
this effect and in order to simplify the embedding of the
model in a singularly perturbed framework, we choose
to model the system with the set of scaled parame-
ters as shown in Fig. 1a. The car body has the mass m
and its displacement is described by the absolute coor-
dinate x , whereas the vertical position of the wheel
of small mass εm is denoted by z. Both masses are
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connected by a suspension of stiffness k and a bilin-
ear damping element with switching positive damp-
ing coefficients c+ and c−. The characteristic of the
damping force is illustrated in Fig. 1b, to account for
a varying damping depending on the relative velocity.
The road profile is modeled as a small harmonic exci-
tation εr(t) of the form r(t) = R sin(�t).
The equations of motion of the system read as

mẍ + k(x − z) + c±(ẋ − ż) = 0 (1)

εmz̈ − k(x − z) − c±(ẋ − ż) = −k

ε
(z − εr(t)), (2)

where the damping coefficient is defined as

c± =
{
c+ for ẋ − ż ≥ 0

c− for ẋ − ż < 0.
(3)

By introducing a set of new coordinates

x1 = x, x2 = ẋ, εy1 = z, and y2 = ẋ − ż, (4)

the system equations can be rewritten in the singularly
perturbed first-order form

ẋ =
{

f+(x, y, t; ε) for h(x, y) ≥ 0

f−(x, y, t; ε) for h(x, y) < 0

εẏ =
{

g+(x, y, t; ε) for h(x, y) ≥ 0

g−(x, y, t; ε) for h(x, y) < 0

(5)

with the slowand fast variables definedbyx = (
x1 x2

)T
and y = (

y1 y2
)T, respectively, the switching function

defined as h(x, y) = y2 and the continuous linear func-
tions f± = f±(x, y, t; ε) and g± = g±(x, y, t; ε) given
by

f± =
(

x2
− k

m (x1 − εy1) − c±
m y2

)

g± =
(

x2 − y2
− k

m (x1 − εy1)(1 + ε) − c±
m (1 + ε)y2 + k

m (y1 − r(t))

)
.

(6)

The switching hyperplane is denoted by

� = {x̃ ∈ R
4 : h(x, y) = y2 = 0}, (7)

with state vector x̃ = (
x1 x2 y1 y2

)T. The motivating
goal for the current work is to obtain a singular per-
turbation reduction for continuous PWL (hereafter,
CPWL) systems similar to smooth systems, also taking
external harmonic forcing into account.

Before we embark on the application of the reduc-
tion method to the quarter car model with bilinear
damping, we recall the main idea of singular pertur-
bation theory.

For an n-dimensional smooth system having s slow
variables and a small perturbation parameter ε, which
is responsible for a time-scale separation, classical
geometric singular perturbation theory can be used to
obtain a reduced-order model [28]. The limiting case
ε = 0 gives an s-dimensional critical manifold Mc.
According to Fenichel’s theorem [28], if Mc is nor-
mally hyperbolic, then there exists an s-dimensional
slow invariant manifold Ms , on which the dynam-
ics is a regular perturbation of the dynamics on Mc.
This theorem can be applied to slow–fast CPWL sys-
tems only on the subsets of the state space that do
not include the switching manifold. This yields two
linear locally invariant slow half-manifolds M±

s for
the linear subsystems. Furthermore, a forward invariant
neighborhood enveloping the linear critical manifold,
which is continuous at the switching hyperplane, has
been shown to exist under suitable conditions [29]. For
this, the linear critical manifoldsM±

c , meeting contin-
uously at �, need to have an attracting fast dynamics
(for ε > 0) within their respective linear subsystems.
The next section presents a proof and discussion of the
continuity property of the critical manifolds within the
scope of CPWL systems.

Setting the small parameter ε = 0 in (5) yields the
critical dynamics

ẋ = f±(x, y, t; 0) (8a)

0 = g±(x, y, t; 0) (8b)

where the ± switch is governed by h(x, y) ≷ 0. The
algebraic constraints (8b) admit one isolated solution
y = h±

c (x, t) each, which describe the behavior of the
fast variables as linear functions of the slow variables x
along the critical manifolds of each linear subsystem.
In the following,we define the critical “half-manifolds”
as M±

c (t) = {x̃ ∈ R
n : y = h±

c (x, t), h(x, h+
c ) ≷ 0}.

For the quarter car model governed by the slow and
fast dynamics given in (6), solving the algebraic equa-
tions for y on each subregion yields the expressions

h±
c (x, t) =

(
x1 + c±

k x2 + r(t)
x2

)
:=

(
h±
c,1(x, t)

h±
c,2(x, t)

)
, (9)

where the external forcing is only present in the approx-
imation of the first fast variable y1. The critical man-
ifold is therefore defined as Mc(t)={x̃ ∈ R

4 : y=
hc(x, t)} with

hc(x, t) =
{

h+
c (x, t) for x2 ≥ 0

h−
c (x, t) for x2 < 0

. (10)
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Fig. 1 Quarter car model of automotive suspension with bilinear damping

It is important to note at this stage that the original
switching condition y2 ≷ 0 simplifies to x2 ≷ 0 in view
of the second line in (9). The continuity of Mc(t) at
the switchingmanifold� easily follows fromh+

c = h−
c

for y2 = x2 = 0 and is treated in the next section for
general CPWL systems. The reduced dynamics on the
critical manifold reads as

ẋ =
{

f+(x, h+
c (x, t), t; 0) for x2 ≥ 0

f−(x, h−
c (x, t), t; 0) for x2 < 0

. (11)

The critical manifold gives a zero-order approximation
of the slow manifold, where the fast variables are cou-
pled to the slow variables by the expressions h±

c (x, t).
The stability of the critical manifold can be obtained
by the Jacobians of the fast dynamics which are given
by

B± := ∂g±

∂y
(x, t)

∣∣∣∣y=h±
c

ε=0

=
(
0 −1
k
m − c±

m

)
. (12)

Therefore, evaluating the trace and the determinant of
B± yields the stability of the fast dynamics for pos-
itive parameter values k,m, c± > 0. From this point,
the existence of two locally invariant slow manifolds
for the + and − subsystems is established. As shown
in [26], the zeroth-order approximation may result in
conservative dynamics for specific parameter values,
which does not reflect the dissipative nature of the orig-
inal systemand therefore cannot be used as a qualitative
approximation of the full dynamics. In the present case

of the CPWL quarter car model, setting ε = 0 and sub-
stituting y2 = h±

c,2(x, t) = x2 in the critical dynamics
(11) yields an autonomous oscillator since all time-
dependent forcing terms only appear in h±

c,1, which is
canceled out by ε = 0. Thus, the reduced dynamics
along the critical manifold cannot be used to approx-
imate the full system and first-order terms have to
be included in order to approximate the slow locally
invariant manifolds from each subsystem and obtain a
suitable reduced-order model.

The two-dimensional, locally invariant slow half-
manifolds are defined in the corresponding regions of
the state space as M±

s (t) = {x̃ ∈ R
4 : y = h±

s (x, t),
h(x, h±

s ) ≷ 0}. Since the state space is decomposed
into two linear parts, the invariance property ofM±

s (t)
must be understood in a local way. Inserting y =
h±
s and ẏ = ∂h±

s
∂x ẋ + ∂h±

s
∂t into the fast dynamics

εẏ = g±(x, y, t; ε) yields

ε
∂h±

s

∂t
+ ε

∂h±
s

∂x
f±(x, h±

s , t; ε) = g±(x, h±
s , t; ε). (13)

Within the linear regions h(x, y) ≥ 0 and h(x, y) < 0,
the asymptotic expansions given by

h±
s (x, t) = h±

0 (x, t) + εh±
1 (x, t) + O(ε2) (14)

are substituted into their corresponding invariance Eq.
(13). By equating the coefficients of powers of ε, it
follows that h±

c (x, t) = h±
0 (x, t), which means that

in each linear region the critical manifold is the zero-
order approximation of the slow manifold. Moreover,
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the dynamics on the slow manifold is a regular pertur-
bation of the critical dynamics. Furthermore, the first-
order terms h±

1 (x, t) are obtained as

h±
1 (x, t)=

[( ∂g±
∂y

)−1( ∂h±
0

∂t + ∂h±
0

∂x f±− ∂g±
∂ε

)]
0±

,

(15)

where [·]0± denotes evaluation at y = h±
0 (x, t) and

ε = 0.
By applying this procedure on both subsystems

of the bilinear quarter car model, one can obtain an
approximation up to order O(ε2) of the two linear
locally invariant slow manifolds. From Eq. (15), the
first-order terms of the slow manifolds read as

h±
1 (x, t) = (

h±
1,1(x, t) h±

1,2(x, t)
)T

, (16)

with

h±
1,1 =

(
(c±)2

km
− 1

)
x1 − c±

k

(
2 − (c±)2

km

)
x2

− c±R�

k
cos(�t) − R sin(�t),

h±
1,2 =c±

m
x1 +

(
(c±)2

km
− 1

)
x2 − R� cos(�t).

(17)

Using Eq. (14), the approximation of the linear locally
invariant slow half-manifolds up to O(ε2) is obtained
as

hs(x, t) =
{

h+
s (x, t) for h+

s,2(x, t) ≥ 0

h−
s (x, t) for h−

s,2(x, t) < 0,
(18)

where

hs(x, t)± = h±
c (x, t) + εh±

1 (x, t)

= (
h±
s,1(x, t) h±

s,2(x, t)
)T

.
(19)

The switching condition in this case is not triv-
ial anymore, since the choice of the damping coef-
ficients c± depends on hs(x, t) itself. As shown in
[26], this dependency leads to regions in the state
space, where either none or both of the switching con-
ditions are valid. This may lead to numerical prob-
lems while evaluating the reduced dynamics on the
slow manifolds at the crossing region. To circumvent
this problem of switching between h±

s , one could take
x2 = 0 as a switching hyperplane, which corresponds
to the switching condition on the critical manifold
(see Eq. (10)). At this modified switching hyperplane,
the linear slow manifolds, obtained as two half-planes
M±

s (t) = {x̃ ∈ R
4 | y = h±

s (x), x2 ≷ 0}, are askew
and meet only at the equilibrium point. This leads to

a reduced system containing a jump at x2 = 0 given
as follows:

ẋ= fdisc(x, t; ε)=
{

f+(x, h+
s (x, t), t; ε) for x2≥0

f−(x, h−
s (x, t), t; ε) for x2<0.

(20)

This discontinuous reduced-order model (hereafter,
ROM) is a Filippov system characterized by a vector
fieldwhich is bounded but discontinuous on the switch-
ingmanifold�, definedhere as� = {x ∈ R

2 : x2 = 0}.
The state space is therefore split into two regions in each
of which the system is determined by a smooth vector
field.

At the switching manifold, the Filippov system can
exhibit slidingmotions, as opposed to a CPWL system,
in which only direct crossing behavior can occur. For a
general PWL Filippov system, the switching manifold
� is subdivided into different regions, depending on the
interaction between the neighboring vector fields. For a
pointx∗ ∈ � on the switchingmanifold at a time instant
t∗, the projections of the vector fields on the normal
vector to � pointing into the region x2 > 0 are given
by eT2 f+

disc(x
∗, t∗; ε) and eT2 f−

disc(x
∗, t∗; ε), respectively.

Thedirect crossing set is the set of all points of�,where
both vector fields have nontrivial projections on � in
the same direction and is hence defined as

�c := {x∗(t∗) ∈ � : ρ(x∗, t∗; ε) > 0} (21)

with

ρ(x∗, t∗; ε) := (eT2 f+
disc) · (eT2 f−

disc), (22)

where f±
disc = f±

disc(x
∗, t∗; ε). The sliding set, where

both vector fields are pointing toward or away from �,
reads as

�s := {x∗(t∗) ∈ � : ρ(x∗, t∗; ε) < 0}. (23)

On the sliding set, the solution concept needs to be
extended to Filippov’s solution concept [34], i.e., the
discontinuous differential equation is replaced by a dif-
ferential inclusion. The sliding set may be decomposed
into the attractive sliding mode, for which the vector
fields point toward each other, and the repulsive slid-
ing mode, for which the vector fields point away. On
the attractive sliding mode, the solution of the differ-
ential inclusion is uniquely given by a sliding solution
along �. On the repulsive sliding mode, the solution
is non-unique as it may slide along � or leave � on
either side. Various types of numerical methods exist to
simulate Filippov systems (or differential inclusions).
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Fig. 2 Time histories showing the sliding behavior in the dis-
continuous ROM for � = 0.94, c+ = 0.01, c− = 1.8,
ε = 0.01,m = k = R = 1. The time history of the discontinu-
ous ROM, shown in yellow, does not accurately approximate the

full model (black dotted line). The far more accurate time histo-
ries obtained from the continuous ROMs using min and max are
shown in blue and orange, respectively

Time-stepping methods [27,35] directly discretize the
differential inclusion using an implicit scheme. Event-
driven methods integrate an ODE up to the switching
manifold, detect a possible slidingmode and then solve
a differential algebraic equation on the sliding mode.

In the case of a CPWL system, it can easily be shown
that trajectories can only cross� and that therefore slid-
ing behavior is excluded. However, for a discontinuous
PWL system such as the reduced dynamics obtained
in (20), sliding motion can occur, which presents a
dynamical behavior that cannot be encountered in the
original CPWL full system (5). In order to simulate the
discontinuous system (20) numerically, a specialized
event-driven simulation method capable of accurately
localizing the switching points and handling sliding
solutions is needed. In this work, the MATLAB pack-
age DISODE45, developed by Calvo et. al [36] based
on an adaptive Runge–Kutta scheme to solve Filippov
systems is used. In order to show that sliding motion
can indeed occur in the discontinuous reduced system,
as opposed to the original full system, the time histo-
ries of the slow variables are compared in Fig. 2 for the
parameter set m = k = R = 1, c+ = 1.8, c− = 0.01
and ε = 0.01 under an external excitation with the fre-
quency � = 0.94. The dotted black line representing
the solution of the full system is not matched by the
solution of the discontinuous reduced system shown in
yellow. In Fig. 2b, the sliding behavior in the discon-
tinuous system is apparent at the time instants where

x2 = 0 and the solution slides along the switching
manifold � for a finite time interval, before leaving it
and crossing to the other linear region. The blue and
orange lines obtained by the continuous reduced mod-
els, which are derived in Sect. 4, capture the behavior of
the full system accurately, avoiding the sliding behav-
ior. Obviously, for other parameter values, the discon-
tinuous reduced system can also exhibit direct crossing
behavior such as the CPWL full system. However, slid-
ing cannot a priori be excluded without ensuring the
continuity of the reduced model. Hence, this motivates
the construction of a reduced system which retains the
continuity property of the full system.

3 Model reduction by a continuous matching
approach

This section presents a general treatment of the criti-
cal and slow manifolds of CPWL systems with regard
to their continuity properties. First, the critical mani-
fold obtained as a concatenation of two critical “half-
manifolds” is shown to be continuous at the switching
manifold for arbitraryCPWL systems. Then, a continu-
ous matching approach is proposed in order to circum-
vent the discontinuity problem arising in the approxi-
mation of the slow locally invariant half-manifolds.

Without loss of generality, we consider non-
autonomous slow–fast CPWL systems with a single
switching hyperplane described by Eq. (5), where

123



19710 A. Y. Karoui, R. I. Leine

0 < ε � 1 is the small perturbation parameter,
˙(·) := d(·)

dt denotes the derivative with respect to the
slow time scale t and h is a linear scalar switching
function given by h(x, y) = ẽTj x̃, with∇h nonzero and
h(0, 0) = 0 where x̃ ∈ R

n is the state vector and ẽ j

is the j th basis vector of Rn . Since we assume that the
system is CPWL, the functions f± and g± are linear
with respect to x and y and continuous at the switching
manifold. The state vector x̃ ∈ R

n contains all state
variables, which can be divided into a set of slow vari-
ables x = (

x1 · · · xs
)T ∈ R

s and a set of fast variables

y = (
y1 · · · y f

)T ∈ R
f , such that x̃ = (

xT yT
)T ∈ R

n

and n = s + f . We note that such a decomposition of
the state variables into fast and slow states requires a
special choice of coordinates and is therefore not nec-
essarily at hand for a general slow–fast system. For
the interested reader, the book by Wechselberger [30]
provides a comprehensive review of geometric singular
perturbation theory in themore general coordinate-free
setup.

3.1 Continuity property of the critical manifold

In the following, we assume that the switching mani-
fold is not tangent to all fast directions, that is, ∇h is
nonzero in at least one of its last f components. This
yields a more general switching condition compared
to the case where the switching does not involve the
fast variables. By reordering the components of y, one
can assume that ∂h

∂y1
�= 0. Following [29], to rewrite

system (5) in a simpler form, an invertible transforma-
tion (x, y) → (x̌, y̌) is introduced, with the same slow
coordinates x̌ = x and a new set of fast coordinates
y̌ = (

y̌1 · · · y̌ f
)T, defined as

y̌1 = h(x, y), y̌i = yi , for i = 2 . . . f . (24)

To check that the new state variable y̌1 is indeed fast,
its dynamics can be easily obtained as

ε ˙̌y1 = ε
∂h

∂x
f±(x, y, t; ε) + ∂h

∂y
g±(x, y, t; ε), (25)

with ∂h
∂y1

�= 0. Therefore, system (5) can be rewritten
using the new set of coordinates and by replacing the
switching condition h(x, y) ≷ 0 simply by y1 ≷ 0 as

ẋ =
{

f+(x, y, t; ε) for y1 ≥ 0

f−(x, y, t; ε) for y1 < 0

εẏ =
{

g+(x, y, t; ε) for y1 ≥ 0

g−(x, y, t; ε) for y1 < 0,

(26)

where the ˇ(·) are dropped for simplicity and g repre-
sents the fast dynamics in the new coordinates. For a
CPWL system of the form (26), the linear functions f±
and g± read as

f±(x, y, t; ε) = Ax + B±y + r1(t),

g±(x, y, t; ε) = Cx + D±y + r2(t)
(27)

with A∈R
s×s, B± ∈R

s× f , C∈R
f ×s and D± ∈ R

f × f

constant matrices depending on ε, with D± assumed to
have full rank. The vectors r1(t) and r2(t) contain the
time-dependent forcing terms.

Proposition 1 Consider a slow–fast CPWL system in
the form (26) governed by the slow and fast dynamics
given in (27), with the matrices D± being full rank. Let

M+
c (t) = {x̃ ∈ R

n : y = h+
c (x, t) ∈ R

f ; eT1 y ≥ 0}
M−

c (t) = {x̃ ∈ R
n : y = h−

c (x, t) ∈ R
f ; eT1 y ≤ 0}

(28)

be the critical half-manifolds obtained for the limit
ε = 0 from the ± subsystems, with e1 being the first
vector of the standard basis of R f . Then, the critical
manifold Mc defined as the union of the critical half-
manifoldsMc(t) = M+

c (t) ∪ M−
c (t) is continuous at

the switching manifold � = {x̃ ∈ R
n : y1 = 0}.

The formal proof of this proposition is given in
Appendix A. From an intuitive point of view, this result
is not surprising. For a CPWL system written in matrix
formas ˙̃x = Ã±x̃+r(t), the systemmatrices describing
both subsystems are identical with the exception of the
column that contains the coefficients of the variable y1,
which in turn dictates the switching condition. At the
switching manifold, y1 = 0 holds and the vector fields
of both subsystems evaluated at the switchingmanifold
are equal. Henceforth, the dynamics of system (26) for
the limit ε = 0 takes place on a critical “manifold” con-
sisting of two linear parts meeting continuously along a
kink on the switchingmanifold. In Fig. 3a, the continu-
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Fig. 3 Sketches of the
critical manifold Mc and
the slow half-planes M±

s

ous criticalmanifoldwith a kink is depicted graphically
in a three-dimensional space. Assuming the attractiv-
ity of the critical half-manifolds in their corresponding
subregions, it follows that the dynamics of each subsys-
tem can be reduced to a slow locally invariantmanifold.
This yields two slow half-manifolds for each region of
the system, similar to the critical half-manifolds. How-
ever, the continuity property characterizing the critical
manifold is automatically lost for approximations of
order O(ε) and higher, as shown in the example of
the CPWL quarter car model. The resulting slow half-
manifolds intersect the switching manifold along dif-
ferent hypersurfaces and only meet at the origin. This
is shown in Fig. 3b. Therefore, reducing the dynam-
ics of each subsystem to an approximation of the slow
manifold without a proper matching procedure at the
discontinuitywould yield a reducedmodel containing a
jump in the vector field at the switching manifold (i.e.,
a Filippov system). This, in return, results in a general
PWL reduced dynamics, capable of exhibiting more
complex dynamical behavior than the original CPWL
system, such as sliding behavior as was shown for the
example in the previous section. Hence, the aim is to
circumvent the discontinuity at the switching by con-
tinuously matching the slow half-manifolds up to their
intersection, in order to obtain a slow “manifold” with
a kink analog to the critical manifold. The resulting
reduced dynamics must be continuous to avoid the pos-
sibility of slidingmotion along the switchingmanifold,
thereby preserving the nature of the original system. In
the next subsection, the continuous matching approach
is developed for arbitrary problems.

3.2 Continuous reduced slow dynamics

For a non-autonomous CPWL system of the form (5)
with a single switching manifold �, the state space
can be divided into two subregions, which we refer
to by the + and − region, where h(x, y) ≥ 0 and
h(x, y) < 0 hold, respectively. In each of these regions,
we expect the trajectories to converge toward the cor-
responding slow locally invariant manifold. In order
to obtain a continuous reduced system, the two linear
locally invariant slow manifoldsM±

s (t) can be contin-
ued up to their intersectionM+

s (t) ∩ M−
s (t). By con-

struction, these manifolds are the graphs of the vector-
valued linear functions

h±
s (x, t) : R

s × R → R
f , (29)

which can be obtained in closed form from Eqs. (14)
and (15) following the same procedure described in
Sect. 2. For simplicity, we assume s = 2, i.e., there
are two slow variables x1 and x2, as was the case for
the quarter car model with bilinear damping, whereby
a generalization for arbitrary s is straightforward. For
the purpose of illustrating the continuation approach,
it is helpful to consider a single fast variable yi and
its approximation on the slow half-manifolds given by
the scalar functions h±

s,i (x, t), which allows to han-

dle planes in R
3, which we denote by M±

s,i (t). The

manifolds are planes since ∇h±
s,i are constants, i.e.,

h±
s,i (x, t) = (n±

s,i )
Tx + ν±(t), where ν±(t) are time-

dependent terms shifting the planes in time and n±
s,i are

the corresponding normal vectors. The planesM±
s,i (t)

cross the (x1, x2)-plane along two zero contour lines
given by
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Fig. 4 Manifold continuationup to the intersection line�Cs,i (t).
Projection to the (x1, x2)-plane showing the different regions
obtained by the inequality signs of h±

s,i

C±
s,i (t) = {x ∈ R

2|h±
s,i (x, t) = 0}. (30)

The aim is to obtain a rule defining the approximation
of yi using the expressions h

+
s,i and h

−
s,i , which is con-

tinuous in the slow coordinates x. For an arbitrary pair
of linear functions h±

s,i that map the slow variables x to
the fast variable yi , the space of slow coordinates can
be divided into the following six regions, as depicted
in Fig. 4, depending on the inequality signs

(i) : 0 < h+
s,i < h−

s,i

(ii) : 0 < h−
s,i < h+

s,i

(iii) : h−
s,i < 0 < h+

s,i

(iv) : h−
s,i < h+

s,i < 0

(v) : h+
s,i < h−

s,i < 0

(vi) : h+
s,i < 0 < h−

s,i

(31)

Each edge between these regions corresponds to an
equality: The edge between regions (i) and (ii) as well
as between (iv) and (v) is given by h+

s,i = h−
s,i and

is denoted by �Cs,i , depicted in red. The zero-level
h+
s,i = 0 corresponds to the edge between (i) and (vi)

as well as between (iii) and (iv), denoted by C+
s,i and

depicted in green. Lastly, the zero-level h−
s,i = 0 gives

the edge C−
s,i shown as an orange line between regions

(ii) and (iii) as well as (v) and (vi). A continuous rule
defining the approximation of yi using the expressions
h±
s,i must be given as a quantity that remains unchanged

across an edge or one that can only change continuously

between these expressions. Therefore, a switch from
the expression h+

s,i to h
−
s,i or vice versa is only allowed

across the edge �Cs,i where the equality h+
s,i = h−

s,i
holds, which presents the projection of the intersec-
tion line M+

s,i (t) ∩ M−
s,i (t) on the (x1, x2)-plane and

is used as a new switching condition in the reduced
slow dynamics. As a consequence, the choice of h+/−

s,i

in region (i) forces the same choice h+/−
s,i in regions

(vi) and (v). The same holds on the other side of �Cs,i .
Thus, the only possible continuous rules defining yi
using h±

s,i are given as follows:

1. Choose yi = h+
s,i everywhere.

2. Choose yi = h−
s,i everywhere.

3. Choose yi = h+
s,i in regions (i), (vi) and (v) and

choose yi = h−
s,i in regions (ii), (iii) and (iv). This

rule can be expressed by

yi = min(h+
s,i , h

−
s,i ). (32)

4. Choose yi = h−
s,i in regions (i), (vi) and (v) and

choose yi = h+
s,i in regions (ii), (iii) and (iv). This

rule can be expressed by

yi = max(h+
s,i , h

−
s,i ). (33)

Obviously, the first two options correspond to a reduc-
tion to the slow invariant manifold obtained from
one subsystem and ignore the piecewise nature of the
CPWL system. Therefore, and in order to account for
the switching, one is left with options 3 and 4 using
the min and max functions, respectively. Graphically,
options 3 and 4 can be regarded as extending the slow
half-plane M+

s,i (t) across the switching plane � to

continuously meetM−
s,i (t) and vice versa. The result-

ing continuous approximations of the fast variables are
then substituted in the slow dynamics f±, thus yield-
ing a continuous ROM without jump at the switching
manifold. In the following two sections, we apply the
continuous matching approach to two examples of har-
monically forced CPWL systems. The first example
is the quarter car model with bilinear damping from
Sect. 2, where the switching manifold is given in terms
of a fast variable. In the second example, the case of
bilinear stiffness is investigated with a simpler switch-
ing manifold given in terms of a slow variable. The
derivation of continuous ROMs as well as the obtained
numerical results including frequency-response curves
are discussed.
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4 Application: quarter car model with bilinear
damping

As illustrated in Sect. 2, the reduced-order model
obtained from the critical dynamics of the quarter car
model is continuous but does not include the explicit
time dependence, and hence fails to capture the non-
autonomous character of the original system.Consider-
ing an ε order approximation of the slowhalf-manifolds
results in a discontinuous ROM which may exhibit
sliding behavior. Aiming to avoid this sliding scenario
and obtain a CPWL ROM, the continuous matching
approach proposed in Sect. 3 is applied to the quarter
car model with bilinear damping.

4.1 Continuous ROM with bilinear damping

Going back to the approximations of the slow locally
invariant half-manifolds given in (18) and (19), a
continuous rule for the fast variables following the
approach from Sect. 3 can be obtained using the min
and max functions. In order to estimate which of those
two optionswould yield the better approximation of the
fast variables, one could investigate the far field behav-
ior by considering the expressions of h±

s obtained from
the critical manifold (9) and the first-order terms from
(17). In the following andwithout loss of generality, we
assume that the damping coefficients fulfill the condi-
tion c+ < c−. Since the switchingmanifold is given by
y2 = 0, we first consider the continuous matching of
the approximations h±

s,2. For ε �= 0, the min and max
functions yield

min(h+
s,2, h

−
s,2) =

{
h+
s,2, for x2 ≥ −k

c++c− x1
h−
s,2, for x2 < −k

c++c− x1

max(h+
s,2, h

−
s,2) =

{
h−
s,2, for x2 ≥ −k

c++c− x1
h+
s,2, for x2 < −k

c++c− x1,

(34)

where the full expressions of h±
s,2 = h±

c,2 + εh±
1,2

are obtained directly using Eqs. (9) and (17). In view
of these full expressions and for finite x1, small but
nonzero ε and sufficiently large-in-magnitude and pos-
itive y2, both h+

s,2 and h−
s,2 imply that x2 is large in

magnitude and positive, such that x2 ≥ −k
c++c− x1. In

this case, Eqs. (34) yield

min(h+
s,2, h

−
s,2) = h+

s,2

max(h+
s,2, h

−
s,2) = h−

s,2.
(35)

Note that these expressions are based on the assump-
tion that y2 is large and positive. In this region of the
state space, the trajectories are attracted to the slow
manifold of the + subsystem and therefore h+

s,2 should
be the better approximation, which is given by the min
function. Analogously, a large-in-magnitude and nega-
tive y2 implies also a large-in-magnitude and negative
x2, and thus, one obtains

min(h+
s,2, h

−
s,2) = h−

s,2

max(h+
s,2, h

−
s,2) = h+

s,2,
(36)

of which only the expression obtained from the min
function agrees with the expected far field behavior.
Regarding the remaining fast variable y1, similar argu-
ments can be used to a priori determine which of the
approximations is more suitable for the reconstruction
of y1. For simplicity, taking the limit ε = 0 in h±

s,1 leads
to

h+
s,1(x, t) − h−

s,1(x, t) = c− − c+

k
x2. (37)

Therefore, one obtains

min(h+
s,1, h

−
s,1) =

{
h+
s,1, for x2 ≥ 0

h−
s,1, for x2 < 0

max(h+
s,1, h

−
s,1) =

{
h−
s,1, for x2 ≥ 0

h+
s,1, for x2 < 0.

(38)

Since for y2 > 0 and thus x2 > 0 the trajectories are
attracted to the manifold M+

s (t) from the + subsys-
tem, one can expect the approximation using min to be
a more suitable choice than max, also for the recon-
struction of the fast variable y1.

In summary, the resulting continuous reduceddynam-
ics can be obtained in an explicit form, which reads as

ẋ = fcont(x, t; ε)

:=
(

x2
− k

m (x1 − εhs,1(x, t)) − c(hs,2(x,t))
m hs,2(x, t)

)
,

(39)

with

hs,i (x, t) = min(h+
s,i (x, t), h−

s,i (x, t))

or hs,i (x, t) = max(h+
s,i (x, t), h−

s,i (x, t)),
(40)

for i = 1, 2 and thevaryingdamping coefficient defined
by

c(hs,2(x, t)) =
{
c+ for hs,2(x, t) ≥ 0

c− for hs,2(x, t) < 0
. (41)
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Table 1 Choice combinations for hs,i = min(h+
s,i , h

−
s,i ) with

i = 1, 2 and c(hs,2) = c±

y2 y1

h−
s,1 < h+

s,1 h+
s,1 < h−

s,1

h+
s,2 < h−

s,2 h+
s,2 > 0 h−

s,1, c
+, h+

s,2 h+
s,1, c

+, h+
s,2

h+
s,2 < 0 h−

s,1, c
−, h+

s,2 h+
s,1, c

−, h+
s,2

h−
s,2 < h+

s,2 h−
s,2 > 0 h−

s,1, c
+, h−

s,2 h+
s,1, c

+, h−
s,2

h−
s,2 < 0 h−

s,1, c
−, h−

s,2 h+
s,1, c

−, h−
s,2

Table 2 Choice combinations for hs,i = max(h+
s,i , h

−
s,i ) with

i = 1, 2 and c(hs,2) = c±

y2 y1

h−
s,1 < h+

s,1 h+
s,1 < h−

s,1

h+
s,2 < h−

s,2 h−
s,2 > 0 h+

s,1, c
+, h−

s,2 h−
s,1, c

+, h−
s,2

h−
s,2 < 0 h+

s,1, c
−, h−

s,2 h−
s,1, c

−, h−
s,2

h−
s,2 < h+

s,2 h+
s,2 > 0 h+

s,1, c
+, h+

s,2 h−
s,1, c

+, h+
s,2

h+
s,2 < 0 h+

s,1, c
−, h+

s,2 h−
s,1, c

−, h+
s,2

In view of Eqs. (39), (40) and (41), the continuous
reduced model is a CPWL system with eight linear
subsystems. The continuous matching of M±

s,1(t) and

M±
s,2(t) yields two different possibilities each, depend-

ing on the use of max or min. For instance, in the case
of a reduction using the max operator, one would sub-
stitute h+

s,1 in the reduced dynamics (39) as long as

h+
s,1 > h−

s,1 holds, and correspondingly, h−
s,1 is used

wherever h−
s,1 > h+

s,1 holds. This works analogously
for hs,2.However, a sign change in the term hs,2 implies
automatically an additional switch in the damping coef-
ficient c(hs,2). Therefore, one ends up with eight dif-
ferent subsystems, which are linear due to the linearity
of the approximations h±

s,1 and h±
s,2. The various sign

combinations and the corresponding choices for hs1,2
and for the damping coefficient c(hs,2) to be substi-
tuted in (39) are summarized in Tables 1 and 2 for the
cases where the approximation of both fast variables is
obtained using themin andmax operators, respectively.

4.2 Numerical results

To illustrate the accuracy of our continuous matching
approach in approximating the steady-state response
of the quarter car model with bilinear damping, we

Fig. 5 Instantaneous projection of the four-dimensional dynam-
ics in the three-dimensional space (x1, x2, y1) of the computed
PWL time-dependent manifolds (here depicted for t = t∗) for
ε = 0.01 and the excitation frequency � = 0.94

consider the numerical integration of the full CPWL
model (5) and the CPWL reducedmodels given by Eqs.
(39) and (40) using the following values of the system
parameters

c+ = 0.1, c− = 0.5, m = k = R = 1. (42)

First, the small parameter is chosen as ε = 0.01.
As illustrated in Fig. 5, a trajectory of the full system
initialized on a random point of the state space con-
verges toward the computed PWL manifolds with a
kink. Shown is the complete history of the trajectory as
dashed line in the three-dimensional space (x1, x2, y1),
as well as the solution at a particular time instant t∗ as
a black dot. The instantaneous projections of the PWL
manifolds obtained at t∗ are shown in pink and sky
blue for the reductions using the max and min oper-
ators, respectively. These projections are obviously
time-dependent and the steady-state solution of the full
system lies in their immediate vicinity at every time
instant. The dynamics of the CPWL ROM obtained by
(39) converges to a periodic solution (red line) which
approximates the steady state of the full system very
accurately. The difference between the periodic orbits
obtained using max andmin was found to be negligible
and only one solution is illustrated for clarity (red line).
This can be explained as follows. For ε small enough,
the orientations of the different slow half-manifolds
M±

s,2(t) become very similar and their relative angle
vanishes for ε = 0, which can be easily seen by eval-
uating their normal vectors. Since the approximation
hs,1 is multiplied by ε in the slow dynamics, the kink
observed in M±

s,2(t) is the determining factor in the
vanishing difference between the reductions usingmax
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Fig. 6 Fast convergence of
the fast coordinates y1 and
y2 along the full trajectory
toward the same coordinates
along the continuous PWL
reduced systems with
ε = 0.01, � = 0.94

Fig. 7 Frequency-response
curves of the quarter car
model with bilinear
damping for ε = 0.1. a
Maximal car displacement.
b Maximal car velocity

and min. Concerning the fast variables y1 and y2, the
exponentially fast convergence of the solution of the
full system toward the reduced dynamics is shown in
Fig. 6.

Next, a higher value of the small parameter ε = 0.1
is investigated, for which the forced-response curves
(FRC) around the harmonic resonance frequency using
the full model and the continuous reduced models have
been obtained. The results are shown in Fig. 7a and 7b,
where the maximal displacement and velocity are plot-
ted against the excitation frequency, respectively.

Figures 7a and 7b show that the reduced models
are able to capture the forced response of the full sys-
tem with a great accuracy, even with a significant non-
linearity caused by the difference between the values
of the damping coefficients c+ = 0.1 and c− = 0.5
and a relatively high perturbation parameter ε = 0.1.
The continuous slow reduced dynamics, both using the
functions min (blue) and max (orange), show a good
agreement with the full system. Looking at the peak
amplitudes in the FRCs and the time histories at the
resonance in Fig. 8a and 8b, it is apparent that the con-

tinuous reduced model using the max function gives a
slightly better agreementwith the full system in approx-
imating the slow variables around the main resonance
frequency. The inverse holds for the approximation of
the fast variables, where min gives the better overall
reconstruction of y1 and y2, as expected from the dis-
cussion in the previous subsection. As of yet, there is
no a priori criterion for the difference in the accuracy
between max and min depending on whether the slow
or fast variables are approximated. However, it should
be noted that this trend appears only if the perturbation
parameter ε is rather high, which automatically contra-
dicts the assumed slow–fast nature of the system. By
taking a closer look at the error dynamics between the
twoROMsand the full dynamics, this inverse trendmay
be linked to a resonance behavior in the error dynamics.
Nevertheless, the error dynamics has to be investigated
closely in an effort to determine a priori the more suit-
able choice for the ROM, which remains to be done in
a future work.

Another feature that stands out from Fig. 7a and 7b
is that the system with a bilinear positive damping dis-
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Fig. 8 Time histories of the
slow variables for � = 0.94
and ε = 0.1 (the same
legend as in Fig. 7)

plays a similar frequency response as a linear system.
This fact can be explained by the convergence property
of the system. In the work of Pavlov et al. [37], it was
shown that for a CPWL system with a time-dependent
input, the existence of a common quadratic Lyapunov
function is equivalent to a quadratic convergence of the
system. The convergence property means that all solu-
tions of the system converge to a unique steady-state
which is period-1, i.e., the system exhibits the same
period time as the input r(t). Therefore, this property
implies the absence of coexistence of periodic solutions
or other limit sets, which in turn excludes any nonlinear
sub- or superharmonic resonance.

By applying the results from [37], a linear matrix
inequality can be solved to obtain a common quadratic
Lyapunov function, which was found for every combi-
nation of positive damping coefficients.

Thus far, it has been shown that the proposed con-
tinuous matching of the linear locally invariant mani-
folds captures the periodic behavior of the full CPWL
system. Two admissible possibilities to continuously
match the linear locally invariant slow manifolds have
been compared. The results suggest that for ε small
enough (0.01), the continuousmatching approach gives
a good approximation of the full system behavior. For
a high value of the perturbation parameter ε = 0.1 and
for the chosen parameter set, the CPWL ROM using
the max function results in a slightly better approxima-
tion of the full system with respect to the peak ampli-
tudes of the slowvariables comparedwith the reduction
using the min function, which in turn yields a better
reconstruction of the fast variables. Further research is
therefore required to better understand themechanisms

behind this effect and determine a priori which slow
subspaces should be chosen in the different subregions
of the state space in order to obtain the best reduced
CPWL model with respect to the slow variables.

5 Application: forced oscillator with bilinear
stiffness

In this section, another variation of the quarter car
model with a piecewise linear stiffness is studied.

In contrast to the case with bilinear damping, the
convergence property is lost when dealing with a PWL
stiffness, since one cannot find a common quadratic
Lyapunov functionwhich holds for both subsystems for
all possible parameter values [37]. Hence, by introduc-
ing this type of static PWL nonlinearity in the system,
bifurcation scenarios become possible, leading to the
appearance of more complex nonlinear phenomena in
the system response, such as super- and subharmonic
resonances. To illustrate the ability of our reduction
approach to capture such nonlinear behaviors, the sys-
tem shown in Fig. 10 is investigated by means of sin-
gular perturbation theory.
The system consists of two masses m and εm, con-
nected by a linear spring damper element with stiff-
ness k and damping coefficient c, as well as a unilateral
spring with stiffness k, which becomes active only if
the relative displacement x − z is negative. The lower
mass is connected to the road by a linear spring with
the stiffness k

ε
and the road profile is assumed as a har-

monic excitation r(t) = R sin(�t). By using the set of
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Fig. 9 Time histories of the
fast variables for � = 0.94
and ε = 0.1 (the same
legend as in Fig. 7)

Fig. 10 Mechanical model of a forced oscillator with PWL stiff-
ness

coordinates

x1 = x − z, x2 = ẋ, εy1 = z − r, and y2 = ż,

(43)

the equations of motion can be given in a singularly
perturbed form as

ẋ =
{

f+(x, y, t; ε) for x1 ≥ 0

f−(x, y, t; ε) for x1 < 0

εẏ =
{

g+(x, y, t; ε) for x1 ≥ 0

g−(x, y, t; ε) for x1 < 0,

(44)

with the slowand fast variables definedbyx = (
x1 x2

)T
and y = (

y1 y2
)T, respectively, and the continuous lin-

ear functions f± and g± given by

f±(x, y, t; ε) =
(

x2 − y2
− k±

m x1 − c
m (x2 − y2)

)

g±(x, y, t; ε) =
(

y2 − R� cos(�t)
k±
m x1 + c

m (x2 − y2) − k
m y1

)
.

(45)

For consistency with Sect. 2, we keep the notation
f±(x, y, t; ε) and g±(x, y, t; ε) even though the func-
tions do not have to depend on all the variables. The
switching stiffness coefficient k± is defined as

k± =
{
k+ = k for x1 ≥ 0

k− = 2k for x1 < 0.
(46)

The switchingmanifold is denoted by� = {x̃∈R
4 :

x1 = 0} with x̃ = (
x1 x2 y1 y2

)T. Analogous to the
previous section, applying the procedure described in
Sect. 2 yields the critical manifold Mc = {x̃ ∈ R

4 :
y = h±

c (x, t)} with the expressions

h±
c (x, t)=

(
k±
k x1+ c

k x2 − cR�
k cos(�t)

R� cos(�t)

)

:=
(
h±
c,1(x, t)

h±
c,2(x, t)

)
.

(47)

In this case, the switching condition is explicitly given
in terms of the slow variable x1, which simplifies the
following analysis. Again, the continuity and stability
of the critical manifold can be easily checked and the
reduced dynamics on Mc is described by

ẋ = fcrit(x, t; 0) =
{

f+(x, h+
c (x, t), t; 0) for x1 ≥ 0

f−(x, h−
c (x, t), t; 0) for x1 < 0.

(48)

Using Eq. (15), one can obtain an explicit expression
for the first-order terms of the slow manifolds for both
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the + and − subsystems, which read as

h±
1 (x, t) = (

h±
1,1(x, t) h±

1,2(x, t)
)T

, (49)

with

h±
1,1 =c2k±

mk2
x1 − c

k

(
k±

k
− c2

mk

)
x2

− cR�

k

(
c2

mk
− k±

k

)
cos(�t)

+ R�2
(
m

k
− c2

k2

)
sin(�t),

(50)

h±
1,2 =−ck±

mk
x1 +

(
k±

k
− c2

km

)
x2

+ R�

(
c2

mk
− k±

k

)
cos(�t)

+ cR�2

k
sin(�t).

(51)

The approximation of the slow manifolds is then
obtained by

hs(x, t) =
{

h+
c (x, t) + εh+

1 (x, t) for x1 ≥ 0

h−
c (x, t) + εh−

1 (x, t) for x1 < 0.
(52)

Here, the switching condition depends explicitly on x1.
Hence, the problem with regions where both valid-
ity conditions are simultaneously valid or invalid, as
described in Sect. 2, does not occur. The state space can
directly be split into two subregions given by x1 ≥ 0
and x1 < 0 and the expressions h±

s are substituted
correspondingly to obtain the following discontinuous
reduced model

ẋ = fdisc(x, t; ε) =
{

f+(x, h+
s (x, t), t; ε) for x1 ≥ 0

f−(x, h−
s (x, t), t; ε) for x1 < 0.

(53)

For the purpose of obtaining a continuous reduced
model, the procedure described in Sect. 3 can be
applied. Note that the slow dynamics f± does not
depend on the fast variable y1. Therefore, only h±

s,2

are needed for the reduced model and h±
s,1 are only

used to reconstruct y1. To determine a priori which of
the alternatives is better suited for the approximations
of the fast variables, the desired far field behavior can
be investigated similarly to Sect. 4. Since we assume
k− = 2k+, the limit ε = 0 implies that

min(h+
s,1, h

−
s,1) =

{
h+
s,1, for x1 ≥ 0

h−
s,1, for x1 < 0

max(h+
s,1, h

−
s,1) =

{
h−
s,1, for x1 ≥ 0

h+
s,1, for x1 < 0,

(54)

of which only the min function is consistent with the
trajectories being attracted to the slow locally invariant
manifolds of the corresponding ± subsystems. There-
fore, the min function is expected to deliver a better
reconstruction of y1 than max. However, for nonzero
ε, the difference between the approximations h±

s,2 reads

h+
s,2(x, t) − h−

s,2(x, t) = ε k−−k+
mk (−cx1 + m(x2 − R� cos(�t))).

(55)

Therefore, for a large-in-magnitude and positive x1, it
follows that

min(h+
s,2, h

−
s,2) = h−

s,2

max(h+
s,2, h

−
s,2) = h+

s,2.
(56)

The opposite results for a large-in-magnitude and neg-
ative x1. In both cases, the approximation using max
agrees with the desired far field behavior and is there-
fore expected to yield the better reconstruction of the
fast variable y2. In summary, the resulting continuous
reduced dynamics can be obtained in an explicit form,
which reads as

ẋ = fcont(x, t; ε)

:=
(

x2 − hs,2(x, t)

− k±
m x1 − c

m (x2 − hs,2(x, t))

)
,

(57)

with

hs,2(x, t) = min(h+
s,2(x, t), h−

s,2(x, t))

or hs,2(x, t) = max(h+
s,2(x, t), h−

s,2(x, t)),
(58)

and the varying stiffness coefficient given in (46).
For a numerical illustration of the accuracy of the dif-
ferent reducedmodels, we choose the parameter values

k+ = k, k− = 2k, ε = 0.01,

m = k = R = 1, and c = 0.1.
(59)

A brute force frequency sweep-up was performed
to obtain the FRC shown in Fig. 11a corresponding to
themaximumamplitude of the relative displacement x1
during one period of oscillation. Figure11b shows the
errors in the approximation of the maximal amplitudes
which are measured for every excitation frequency in
the sweep-up as follows:

E(�) = u(�) − ũ(�)

u(�)
, (60)

where u(�) and ũ(�) are the maximal x1 ampli-
tudes over one period obtained from the full system
and the ROM, respectively, under the harmonic exci-
tation of frequency �. The FRC of the full system
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Fig. 11 Frequency-response curve of the harmonically forced 2-DOF oscillator with bilinear stiffness with the parameter setting (59)

is shown as a black line. Overall, for ε = 0.01,
which can be considered as small enough, both CPWL
ROMs capture the nonlinear behavior of the full sys-
tem. As shown in Fig. 11b, the reduction using the
slow half-manifolds yields a more accurate approxi-
mation than the reduction along the critical manifold,
which is not surprising. The main harmonic resonance
(around � = 1.09 [rad/s]) and the super- and sub-
harmonic resonance peaks around � = 0.58 [rad/s]
and � = 2.31 [rad/s], respectively, are approximated
accurately by the CPWL ROMs using max and min.
The small peaks in the errors shown in Fig. 11b at
� = 2.11 [rad/s] are due to a slightly shifted onset of
the subharmonic solution branch in the ROMs com-
pared with the full system. Otherwise, the errors from
the CPWL ROMs are at least of magnitude around
O(ε). Additionally, the time histories at the peak of the
subharmonic resonance are shown in Fig. 12, where the
harmonic excitation is illustrated for comparison.

6 Conclusions

In this paper, a class of slow–fast harmonically forced
oscillators with piecewise linear nonlinearities was
studied using singular perturbation theory. It was
observed that the proposed continuous matching of the
linear locally invariant slow manifolds of both sub-
systems is able to approximate the behavior of the
full system with high accuracy for a frequency range

Fig. 12 Time histories at the peak of the subharmonic resonance
at � = 2.31

around the main harmonic if the perturbation parame-
ter is small enough. Regarding the forced system with
bilinear damping, the proposed technique captures the
behavior of the full system accurately and circum-
vents the numerical challenges, which may arise if one
takes a switching condition that changes the continuous
nature of the original system and yields a discontinu-
ous reduced model. Due to the convergence property,
it was shown that the PWL system with positive bilin-
ear damping admits frequency-response curves similar
to a linear system. These curves were well approxi-
mated by the proposed approach, even for a relatively
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high nonlinearity resulting froma significant difference
between the damping coefficients. For a similar har-
monically forced slow–fast oscillator with static PWL
nonlinearity instead of the bilinear damping, the sys-
tem behavior becomes more complex due to the loss of
the convergence property and the existence of nonlin-
ear phenomena, such as super- and subharmonic reso-
nances, becomes possible. These nonlinear resonances
were accurately captured by the proposed reduction
approach for the frequency range around the main res-
onance.

This study provides insights for the extension of
the singular perturbation theory to nonsmooth systems
with PWL nonlinearities. The continuous matching of
the slow manifolds can be achieved by coupling the
fast variables to the slow variables using the min and
max functions. A future study is therefore required to
establish an a priori criterion as to which continuous
matching procedure is better suited for the purpose
of model reduction. Moreover, the proposed reduction
was shown to give a good approximation of the system
behavior around the main resonance frequency. Higher
excitation frequencies would therefore interfere with
the slow–fast decomposition of the system variables,
which could be investigated in future studies. Further
work may also focus on extending the proposed reduc-
tion method to systems described by (partial) differen-
tial inclusions and to compare our approach with exist-
ing results such as in [38] and in [39].
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Appendix A

Proof of Proposition 1: Since the switching manifold
� is defined by the condition y1 = 0, the continuity
property implies that the matrices B± differ only in
their first column and the same holds for the matrices
D±. The critical half-manifoldsM±

c defined in (28) are
obtained from the isolated solutions of the algebraicEq.
(8b), which read as

h+
c (x, t) = −(D+)−1(Cx + r2(t))

h−
c (x, t) = −(D−)−1(Cx + r2(t))

(61)

with e1 ∈ R
f . The half-manifold M+

c intersects �

along the hyperplane

C+
c = M+

c ∩ �

={(x, y) ∈ R
s+ f :y=h+

c (x, t), eT1h+
c (x, t)=0}

(62)

Let h±
c (x, t) =

(
h±
c,1 h±

c,2 · · · h±
c, f

)T
, where the

dependence on x and the time t is omitted. The hyper-
plane C+

c is therefore determined by the equation

− Cx − r2(t) = D+ (
0 h+

c,2 · · · h+
c, f

)T
(63)

Analogously, the hyperplane C−
c describes the intersec-

tion of the half-manifold M−
c with � and is obtained

by the equation

− Cx − r2(t) = D− (
0 h−

c,2 · · · h−
c, f

)T
. (64)

We introduce the matrix

W =
(

0( f −1)×1
I( f−1)×( f−1)

)
∈ R

f ×( f−1) (65)

with full column rank, rank(W) = f − 1. Since D±
only differ in their first columns, one obtains

D+W = D−W =: D̂ ∈ R
f ×( f−1) (66)
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with rank(D̂) ≤ min(rank(D±), rank(W)) = f − 1.
UsingSylvester’s rank inequality theorem, it is straight-
forward that rank(D̂) ≥ f −1, and therefore, we obtain

rank(D̂) = f − 1. (67)

This yields the following equations describing the inter-
sections of the critical half-manifolds with the switch-
ing manifold

− Cx − r2(t) = D̂ĥ+ for
(
0 (ĥ+)T

)T ∈ M+
c ∩ �

−Cx − r2(t) = D̂ĥ− for
(
0 (ĥ−)T

)T ∈ M−
c ∩ �

(68)

with ĥ± =
(
h±
c,2 · · · h±

c, f

)T ∈ R
f −1. Subtraction

yields

D̂(ĥ+ − ĥ−) = 0. (69)

Since D̂ is a f ×( f −1)matrix, the rank nullity theorem
yields null(D̂) = 0. This leads to the equivalence

D̂(ĥ+ − ĥ−) = 0 ⇐⇒ ĥ+ = ĥ− (70)

which proves that the intersections M±
c ∩ � are iden-

tical and therefore Mc = M+
c ∪ M−

c is continuous.
��
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