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Abstract Chaotic motion in a fluttering wind turbine

blade is investigated by the development of an

efficient analytical predictive model that is then used

to suppress the phenomenon. Flutter is a dynamic

instability of an elastic structure in a fluid, such as an

airfoil section of a wind turbine blade. It is presently

modelled using generalised two degree of freedom

coupled modes of a blade airfoil section (pitch and

plunge) combined with local unsteady aerodynamics,

based on flutter derivatives and a continuous bilinear

lift curve under damping. The mode coupling causes

instability and limit cycle flutter due to a Hopf

bifurcation. Following the critical flutter speed, the

response can transition to chaos through successive

other bifurcations like period doubling. New closed-

form conservative analytical conditions for chaos

following blade flutter are identified and discussed for

the wind turbine section taking into account the blade

geometry and optimal design of the wind turbine.

These predictions are numerically verified for a range

of conditions including stall slope and damping. The

results confirm that chaos following blade flutter can

occur due to nonlinearities in the aerodynamics, i.e.

due to a bilinear lift law. This phenomenon is then

suppressed to unrealistically high wind speeds and/or

eliminated by quantified variation of system parame-

ters using the predictive model. The results show that

small changes in tip speed ratio (-15%), and stall

slope factor (-17%) can eliminate or suppress chaos

following flutter, while, in general, larger magnitude

changes in dynamic parameters (i.e. mass, iner-

tia[ 81%, stiffness[ 97%, damping[ 100%) are

required to achieve the same, by detuning the coupled

plunge and pitch natural frequencies or damping out

overlapping parametric resonances. These results also

highlight that the analytical predictions can remark-

ably be generalized to any parameter set and provide

almost instantaneous calculations representing many

thousands of numerical simulations from many bifur-

cation diagrams (computational acceleration factor of

107 times). General insight is also provided into the

occurrence and suppression of airfoil chaos following

flutter in aeroelastic structures like wind turbines.

Keywords Aeroelastic flutter � Limit cycle

oscillations � Chaos prediction � Bilinear oscillator

1 Introduction

Flutter is a vibration instability of an elastic structure

interacting with a fluid, such as an airfoil section of a

wind turbine blade. Its onset is characterized by a

lower critical rotor or wind speed, while its amplitude

is determined by the aerodynamic and/or structural

nonlinearities. Since its identification in World War

One aircraft, flutter remains an important design issue
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for aircraft and wind engineering industries such as to

avoid wind turbine blade fatigue failure. Although not

of great design importance in the past, flutter in wind

turbines is more likely to occur as their size continues

to increase with desired power output. This is because

the local wind velocity on rotating blade airfoil

sections is more likely to exceed critical limits, as

blade lengths increase. Hence, presently, flutter is an

important problem to solve as the world’s use of wind

energy exponentially grows to avoid excessive

impacts of climate change.

The investigation of flutter in many structures

continues to grow since Theodorsen developed gen-

eral theory for modelling and experiments of the

instability in an airfoil, under unsteady subsonic

conditions [1, 2]. Classical flutter (without structural

damping in [3]), was shown to occur via an unsta-

ble aerodynamic coupling of the airfoil pitching and

plunging dynamics [1, 2], such as for a wind turbine

blade section. An immense body of other flutter

research has been performed since then as compre-

hensively reviewed in [4], but here there is a necessary

focus on reviewing wind turbine and nonlinear flutter

behavior.

Generic analysis of airfoil flutter cannot be applied

directly (without adaption) to wind turbines due to the

added complexities of rotational effects, varying blade

geometry and real optimal wind turbine design

constraints. There has been much concentrated

research on flutter in wind turbines in recent years as

blades are becoming longer and slenderer. For

instance, the effect of compressibility on wind turbine

flutter was determined in [52] using the full blade

geometry. Their numerical analysis showed that

compressibility decreased the classical flutter speed

by around 5%. An investigation of flutter performance

of bend–twist coupled large-scale wind turbine blades

was performed due to nonuniform material laminates

and showed that they may also decrease the flutter

speed by 5%, although this was still well above the

local tip wind speed [54]. More recent analysis on this

has been performed in [57]. A detailed investigation of

the effects of experimental error on the aerodynamic

properties of wind turbine blades also showed they

may result in approximately ± 5% variation in the

classical flutter speed due to mainly variations in the

lift slope [56], which in turn are much larger around

stall. A detailed finite element (FE) model for a large

wind turbine system has been developed with elastic

coupling between blade, tower and drivetrain oscilla-

tions, which found the critical rotor flutter speed was

60% higher than the nominal rotational speed. An

internal torsional viscous blade damper was simulated

and shown to increase this speed to 3.6 9 the nominal

[43], which exceeds the previous optimal performance

in [58]. Recently, modelling and blade structural force

measurements were used to forecast the critical flutter

speed of a large wind turbine blade [59]. Due to the

complexity of the blade geometry and associated

models, this previous research has been necessarily

restricted to numerical results, only pertaining to

specific cases, i.e. flutter results, and parameter

investigations pertaining to optimal wind turbine

blade design (rather than specified blade geometries)

appears to be lacking.

Research on the nonlinear dynamics of flutter has

understandably focused on the generic wing airfoil

initially. The onset of flutter requires an instability, but

the amplitudes of flutter limit cycle oscillations are

bounded by aerodynamic and/or structural nonlinear-

ities. These include boundary layer separation and

transitions, stall flutter and shock wave aerodynamics

requiring computational fluid dynamics (CFD)

[4, 7, 8] and integrated finite element analysis (FEA)

depending on structure/shape complexity [9, 10].

Flutter instability types and limit cycles of a wing

with quadratic and cubic pitching structural nonlin-

earities were predicted using unsteady aerodynamics

in [11]. Similarly, structural geometric nonlinear

coupling in a cantilevered wing caused limit cycle

oscillations to grow after flutter onset [12]. A small

amount of this research has been focused on wind

turbines, i.e. the nonlinear dynamic response of a wind

turbine blade revealed sustained limit cycle flutter

below the classical flutter speed for large disturbances

[55]. Much more recently, large deflection effects of

geometrical nonlinearities on a rotating wind turbine

blade has been investigated in [53] and showed

nonlinear coupling between the torsion and bending

deformations, and a decrease in the flutter frequency

of up to 20%.

Nonlinearity can also lead to chaos and was first

numerically found in an airfoil with cubic pitching

stiffness [15] and then coupled cubic stiffnesses [16]

under incompressible flow. This chaos following

flutter (termed throughout this paper) is characterized

by a transition to chaos following the instability of a

Hopf bifurcation to self-sustained flutter limit cycle
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oscillations. Chaos following flutter has also been

identified in a piezo-aeroelastic airfoil energy har-

vester supported by nonlinear springs [60] as well as

nonlinear motion coupling, inertial and aerodynamic

nonlinearity [62] and in panel flutter under thermal

loads, supersonic flow [18] and experimental turbulent

flow [19]. Nonlinear flutter of variable stiffness

composite plates in supersonic flow has also shown

limit cycle oscillations, quasi-periodic or chaotic

solutions depending on fibre path orientation [61].

Chaos following stall flutter has been shown to occur

under aerodynamic, structural and kinematic nonlin-

earities [20, 21]. Similarly, fin vibration chaos has

been shown to occur under aerodynamic, thermal and

structural nonlinearities in hypersonic flow [22].

Recent numerical simulation research on the transi-

tions to chaos in general aeroelastic systems include

[62–64]. This includes numerical work on freeplay in

the pitch degree of freedom [65] and a flapping

aerofoil [66]. Also, recently, chaos following flutter

was identified in an airfoil without the need for

structural or thermal nonlinearity [42]. This was

identified based on interesting analogies between

bilinear lift aerodynamics and friction under mode

coupled structural dynamics causing chaos in railway

wheel squeal and brake squeal [23–26, 33]. No

research could be found on chaos following flutter or

its control in wind turbines.

Although much has been contributed in the area of

nonlinear phenomena in aeroelastic systems and

flutter in wind turbines, there are some gaps in the

literature. In particular, although classical coupled

mode flutter has been identified in wind turbines, there

is a gap in the literature on the investigation of chaos

following blade flutter and its control. The previous

research has also ultimately relied upon numerical

simulation to predict chaos in general aeroelastic

systems, which is necessarily restricted to parameter

conditions and is computational expensive compared

to closed-form solutions. In particular, the closed-form

analytical prediction of chaos following flutter in a

wind turbine has not been investigated previously.

Also, the effect of constraining nonlinear dynamic

investigations to real optimal wind turbine design

conditions has not been performed. The present

research aims to contribute to these gaps by identify-

ing and controlling chaos following flutter in opti-

mally designed wind turbines by developing closed-

form analytical criteria for flutter onset and chaos and

using them for suppression. In achieving this, the

major contributions include:

1. Development and verification of analytical

closed-form predictions of chaos following flutter,

in optimally designed wind turbines, under gen-

eral unsteady aerodynamic conditions and an

approximate bilinear lift law, providing computa-

tional acceleration in the order of 107 times

compared to nonlinear numerical simulation.

2. Identification of, and insight into, the conditions

under which classical flutter and chaos following

flutter occur in optimal wind turbine blades, such

as size, blade tip speed, structural damping and

blade section stall behaviour.

3. Identification and efficient quantification of a

range of parametric methods to eliminate or

suppress chaos following flutter.

The optimal design of a wind turbine blade is first

described to maximise energy generation. Then, a

binary mode mathematical model for wind turbine

blade flutter is detailed, including approximate bilin-

ear lift aerodynamics. Closed-form solutions for flutter

onset are described and corresponding new conserva-

tive analytical criteria for the occurrence of chaos

following flutter are then derived. These predictions

are then verified using full numerical simulations of

the equations of motion for an optimally designed

wind turbine and nonlinear dynamics analysis tools.

The verified criteria are then used to efficiently

investigate a range of typical wind turbine parameters

under which chaos following flutter can be eliminated

or suppressed.

2 Methodology

An optimally designed wind turbine blade flutter

model is first described in Sect. 2.1, representing two

degrees of freedom and generalized unsteady aerody-

namics. The modelling is first based on the optimal

design of a wind turbine to maximise energy effi-

ciency. The binary airfoil model, for each local blade

section, includes generalized flutter derivatives and an

optimal offset angle of attack. The method for

determining the onset and growth of flutter is then

detailed in Sect. 2.2. In Sect. 2.3, analytical conser-

vative criteria for predicting the onset of chaos
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following blade flutter are provided based on nonlin-

ear dynamics theory.

Figure 1 describes a conceptual nonlinear model

for wind turbine blade flutter, due to an unstable inter-

action between the aerodynamics and coupled pitch-

ing and plunging dynamics for a blade section.

The wind turbine blades are designed from airfoil

sections that change in size and twist along the blade

length for optimal aerodynamic performance [44]. The

lift forces and pitching moments on each blade section

are from aerodynamics simplified to flutter derivative

components,H1-4 and A1-4, and also determined by the

local wind velocity, W, at an optimal offset angle of

attack, ao. The dynamic response of the coupled

pitching and plunging dynamics of each blade section

is determined by the effective system modal damping

and natural frequency, ceffi and xi. If unstable, a flutter

limit cycle grows, which may break up into chaos

depending on nonlinearities and local phase space

expansion. The following methodology has been

summarised to contain only the necessary theory to

repeat the results while being self-contained.

2.1 Optimal wind turbine flutter modelling

It is important to summarise the optimal wind turbine

parameter theory as this enables airfoil sectional

theory to be incorporated as part of solving the

aerodynamic complexities of the wind turbine blade

rotation and varying geometry and hence forms one of

the main contributions of the analysis and results. The

geometry of a wind turbine blade depicted in Fig. 1a)

needs to be optimally designed to maximise the power

that can be harnessed from the wind. This is

determined by how much the free stream wind speed

slows as it passes through the blades and is detailed in

many publications such as [44]. In particular, Lanch-

ester—Betz used mass flow and momentum theory

over a control volume of air, passing through the

blades, to show that maximum efficiency is achieved

when the velocity at the blades is two thirds of the

freestream entry velocity infinitely far away, U1. A

variable speed turbine can maintain a constant tip

speed ratio k (between the blade tip rotation speed and

the free stream wind velocity) required to achieve this

maximum power output regardless of wind speed.

This means the local wind speed W along the blade

varies, due to its rotation under these optimal condi-

tions, according to,

W=U1 ¼ 2

3

� �2

þk2r 1þ 2

9k2r

 !2
2
4

3
5

1
2

; kr ¼ kr=R

ð1Þ

where U1 is the freestream wind velocity entering the

wind turbine infinitely far away, kr is the local speed
ratio between the blade rotation and the local wind

speed at a radius, r and R is the blade length. To

achieve optimal conditions, the blade geometry must

also vary along its radius so that the torque generated

at each blade section is maximised according to the

blade geometry parameter [44],

rrkrClh i ¼ 8

9

2

3

� �2

þk2r 1þ 2

9k2r

 !2
2
4

3
5
�1

2

ð2Þ

where rr is the chord solidity defined as the total blade

chord length, nBB, divided by the circumferential

length at a given radius, r, as,

Fig. 1 a Wind turbine blade airfoil section and b conceptual model of flutter vibrations based on [42, 44]
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rr ¼ nBBð Þ=2pr ð3Þ

and Cl is the optimum lift coefficient to minimize drag.

To achieve this the blade must be twisted by angle b
along its length, r, so each section has the same

optimal (or offset) angle of attack, ao, according to,

b ¼ /� a0 ¼ a tan
2

3kr

,
1þ 2

9k2r

 !" #
ð4Þ

where, /, is the local blade section inflow angle. By

solving Eqs. (2) and (3), the optimal blade geometry

parameter dictates how the blade section size varies

along the length according to,

B=R ¼ 2p rrkrClh i= nBkClð Þ ð5Þ

Hence Eqs. (2), (4) and (5) analytically define the

optimal geometry of a wind turbine blade determined

by the optimal airfoil lift, Cl, ao, number of blades, nB
and tip speed ratio, k. The geometry and material

properties of the blade determine its bending and

torsional natural frequencies and modes shapes, which

are required to model binary mode flutter of each blade

section. For a tapered, twisted, NACA airfoil blade the

fundamental (flap) bending natural frequency, xb1,

may be approximated analytically as [45],

xb1 ¼ k2b1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E Ixc= qbAð Þ

p
=R2; kb1 ¼ kb1tafb1tw; ð6Þ

where E, qb, Ixc and A are the (axial) Young’s modulus

and density, the second moment of area about the

centroid and area of the airfoil cross section of the

blade. The effect of a truncated taper on the blade,

kb1ta, and formulae for Ixc and A for a NACA airfoil 4-

digit profile are also conveniently available in [45].

The effect of blade twist on the fundamental bending

frequency, fb1tw, has been shown to be very small

[67, 68] such that it is assumed to be * 1 for the

present analysis. This is most likely because the

effects of shear deformation and rotary inertia are

small for relatively small twist (typical for wind

turbine blades) for the first mode shape. The funda-

mental bending mode shape of the blade, /b1, has also

been assumed to be approximately that of a truncated

cantilever plate,

/b1 ¼ r=Rð Þ2 ð7Þ

Similarly, the fundamental torsional natural fre-

quency of the blade, xt1, can be approximated as [45],

xt1 ¼ kt1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G C= qbIpc

� �q
=R, kt1 ¼ kt1taft1tw ð8Þ

where G, Ipc and C are the (axial) shear modulus, the

polar moment of area about the centroid and torsion

constant of the airfoil cross section of the blade. The

effect of a truncated taper on the blade kt1ta and

formulae for Ipc, and C for an airfoil are also

conveniently available analytically in [45]. The effect

of blade twist on the fundamental torsional frequency

ft1tw can be significant. The fundamental torsion mode

shape of the blade, /t1, has also been assumed to be

approximately that of a uniform rod,

/t1 ¼ sinðpr= 2Rð Þ ð9Þ

The modal characteristics of the blade described by

(6)-(9) may also be simply modified with a mode

factor, to approximate higher modes than the funda-

mental [45], however, the effect of taper and twist are

more difficult to predict. Also, it is important to

highlight that they are approximate due to the real

complex geometry, internal support structure and

typically composite material behaviour of the turbine

blade and can alternatively be more accurately deter-

mined using experimental measurements and/or com-

plex finite element analysis. However, in the spirit of

determining approximate blade flutter characteristics

without complex numerical analysis, they are pro-

vided here in analytical form.

Blade element theory (i.e. assuming the flow may

be described in 2D airfoil sections) may now be used

to determine the aerodynamics and coupled modal

dynamics of the wind turbine blade in Fig. 1b. In

particular, Fig. 2, describes the pitching (with angle of

attack), a, and plunging, h, of a wind turbine blade

section with total chord length, B = 2b. These are

caused by a moment, M and lift, L,(defined according

to [27]) due to local aerodynamic flow speed, W (that

includes a blade rotational velocity component). The

wind turbine blade section has effective structural

vertical and torsional stiffnesses, kh and ka, determined

by the natural frequencies and sectional mass, m. The

pitching and plunging occurs about the elastic support

centre O at distance, ba, from the midchord and is

coupled by, Sx, which is dependent upon the displace-

ment, Sx/m, of the centre of gravity from CG to O.

Mass balancing or no coupling occurs when Sx = 0.
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The equations of motion of the wind turbine blade

section described in Fig. 2, may be determined as

[4, 5],

m €h tð Þ þ ch _h tð Þ þ Sx€a tð Þ þ khh tð Þ
¼ L; Ja€a tð Þ þ ca _a tð Þ þ Sx €h tð Þ þ ka a tð Þ � aoð Þ
¼ M

ð10Þ

where, J, m, k, c, are the mass moment of inertia, mass,

stiffnesses and damping constants with reference to

the elastic centre, O, and the subscripts, h and a refer to
the degrees of freedom. In this case, we can approx-

imate them analytically using the results of the optimal

blade geometry analysis of Eqs. (1) to (9), applied to

each section of the blade, as,

m ¼ qbA; ch ¼ 2fbxb1m; kh ¼ x2
b1m; J ¼ qbIpc; ca

¼ 2ftxt1Ja; ka ¼ x2
t1Ja

ð11Þ

where fb and ft are the damping ratios with respect to

the bending (plunging) and torsional (pitching)

degrees of freedom. Alternatively, experimental mea-

surements [2] and/or finite element and modal analysis

can be used. The aerodynamics acting at the centre of

pressure, CP, are shifted and expressed as a modal

plunging force and pitching moment at O, determined

by the blade section shape flutter derivatives [27] and

mode shape at the position of the blade section r/R, as,

L ¼ 1

2
qW2B/2

b1

KH�
1

_h

W
þ KH�

2

B a
W

þ K2 H�
3aðaÞ � H�

3a aoð Þ
� �

þ K2H�
4

h

B

� �

M ¼ 1

2
qW2B2/2

t1

KA�
1

_h

W
þ KA�

2

B _a
W

þ K2A�
3 a� aoð Þ þ K2A�

4

h

B

� �

ð12Þ

where q is the air density and K = Bx/W is a reduced

frequency, varying with,x, the frequency of vibration.
Appendix A [1, 27] details the flutter derivatives,H�

1�4

and A�
1�4, for a thin airfoil (flat plate flow). Note they

are general in that they can be obtained numerically or

experimentally, e.g. [28, 29] for any section shape.

The optimal (or offset) angle of attack ao is defined by
the optimal wind turbine design in (4) and is where the

steady structural and aerodynamic forces are in

equilibrium. The lift coefficient function, H�
3aðaÞ,

dominates the flutter limit cycle and can be conve-

niently defined as a continuous approximate bilinear

function as [42],

H�
3aðaÞ ¼ H�

3

að�kstall þ ð1þ kstall � ac 1þ kstallð Þ= aj jÞð
ð1� tanhðbð aj j � acÞÞÞ= 2Þ þ sgnðaÞac 1þ kstallð ÞÞ

ð13Þ

In Eq. (13), kstall is the absolute stall slope factor,

i.e. the lift coefficient used in H�
3aða) becomes

negatively sloped to -kstallH
�
3 if the critical angle of

attack at stall, ac, is exceeded. Also, a smoothing

factor, b, can be tuned between the pre- and post-stall

conditions. A plot of the continuous bilinear lift

coefficient curve of (13) for an airfoil, based on

measurements in [30] and Appendix A, is provided

subsequently in Fig. 3. In summary, the details of the

Fig. 2 Binary (two degree of freedom) coupled wind turbine blade section under local aerodynamic flow
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aerodynamic load calculation are provided by

Eqs. (12), (13) and (A.1–3). The structural elements

and lift and moment components are all linear except

for the approximate bilinear lift function (13), there-

fore, there is no coupling of nonlinear effects.

The full nonlinear equations of motion for a wind

turbine blade section (10)-(13) can be solved by

numerical integration to verify flutter onset and chaos

predictions as shown in Sect. 3. Prior to this, they can

be solved analytically under appropriate approxima-

tions to predict flutter onset, efficiently, as follows.

2.2 Predicting flutter onset in a wind turbine

A summary of the closed-form analytical predictions

for flutter is provided as these also form part of the new

closed-form criteria for predicting chaos following

flutter in a wind turbine, provided in 2.3. Typically the

critical flutter speed at which the onset of flutter (local

instability) occurs needs to be determined numerically

using complex eigenvalue analysis (or other stability

methods) on the coupled equations of motion (10)-

(13), i.e. [1, 2]. However, recently in [42] an approx-

imate analytical solution with damping was provided,

assuming small non-proportional damping [23, 42].

The main results are summarised here with the

inclusion of the effect of blade mode shapes for

convenience. First, the equations of motion (10)-(13)

in mass decoupled form are,

M €Xþ C _XþKX ¼ 0;
X ¼ xh ¼ h xa ¼ a Sx=m½ �T ð14Þ

where xa is the displacement at CG due to the angle of

attack, a, as part of the degrees of freedom vector, X.

The mass, damping and stiffness matricesM, C andK

of the equations of motion may be determined as,

M ¼ mh 0

0 ma

� �

¼ mþ mae � S2x=Ja 0

0 ðJa þ JaeÞ m=Sxð Þ2�m

� �

C ¼
c11 c12

c21 c22

� �
¼

ch �
1

2
qWKB /2

b1H
�
1 � /2

t1A
�
1BSx=Ja

� �

�ch þ
1

2
qWKB /2

b1H
�
1 � /2

t1A
�
1Bm=Sx

� �
2
64

�cam=Ja �
1

2
qWKB2 /2

b1H
�
2 � /2

t1A
�
2BSx=Ja

� �
m=Sx

ca m=Sxð Þ2þ 1

2
qWKB2 /2

b1H
�
2 � /2

t1A
�
2Bm=Sx

� �
m=Sx

3
75

2
α

α

Fig. 3 The approximate bilinear lift (nonlinear) coefficient

curve for NACA 4412 section of a wind turbine blade; simulated

using Eq. (13) (-) with smoothing factor b = 9, kstall = 0.81 and

offset of 1 and experimentally measured in wind tunnel for

Re = 1.2 9 106(Blue shade sqaure) and Re = 2.3 9 106 (Red round)

[30]. The exact bilinear curve is also shown for comparison (- -)
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K ¼
k11 k12

k21 k22

� �
¼

kh �
1

2
qW2K2 /2

b1H
�
4 � /2

t1A
�
4BSx=Ja

� �

�kh þ
1

2
qW2K2 /2

b1H
�
4 � /2

t1A
�
4Bm=Sx

� �
2
64

�kam=Ja �
1

2
qW2K2B /2

b1H
�
3 � /2

t1A
�
3BSx=Ja

� �
m=Sx

ka m=Sxð Þ2þ 1

2
qW2K2B /2

b1H
�
3 � /2

t1A
�
3Bm=Sx

� �
m=Sx

3
75

ð15Þ

here, mh and ma are decoupled masses at the centre

of mass and can include aerodynamic inertia and mass

terms, Jae and mae. Note the blade section position

affects the local wind velocity W, the chord B and the

modal aerodynamic force and moment through the

mode shapes, /b1 and /t1. The fluid structure coupling

effects may be identified directly in the components of

the mass decoupled mass, damping and stiffness

matrices M, C and K. Flutter onset may be inferred

more easily due to the mass decoupling by inspection

of the sign of the components in matrices, C and K in

(15). In particular, the mode coupling flutter mecha-

nism occurs when the aerodynamic lift overcomes the

reaction force due to the coupled structural torsional

stiffness causing k12 to change sign compared to k21.

This mechanism driving binary flutter was identified

as dynamic divergence in [42] but also requires the

effective system modal damping to be negative as

determined by fully decoupling the equations of

motion (14) and (15) into modal form as,

pTLMp €Yþ pTLCp
_Yþ pTLKpY ¼ 0;

Y ¼ p�1 xh xa½ �T ð16Þ

where xh and xa define the modal displacement vector,

Y, based on the undamped eigenvectors pL (left) and p

(right),

pL ¼ 1 pL2
pL1 1

� �
;where pTLK ¼ k2pTLM; p

¼ 1 p2
p1 1

� �
;where Kp ¼ k2Mp ð17Þ

A closed-form solution for these eigenvectors has

been obtained assuming non-proportional damping is

small, as [23],

p1 ¼ x2
h � x2

a þ
ffiffiffiffi
D

ph i
= �2k12=mh½ �; p2 ¼ 1=�p1; pL1

¼ �mh=�p1ma; pL2 ¼ �ma=�p2mh

therefore pLpi ¼ 4 k12k21=m
2
j

	 

= x2

h � x2
a �

ffiffiffiffi
D

ph i2
.

where

x2
h ¼ k11=mh; x

2
a ¼ k22=ma; D

¼ x2
h � x2

a

� �2þ4k12k21= mhmað Þ ð18Þ

where - is the conjugate, i is the mode number and

j = a, h. The type of mode coupling is determined by

the discriminant D, which is a measure of how close

the uncoupled modes, xh;xa; are. In particular, if it is

positive then real eigenmodes occur associated with

viscous mode coupling. Alternatively, if negative,

complex eigenmodes occur associated with stiffness

mode coupling see [23, 42] and Sect. 2.3. Equa-

tion (18) allows closed-form solutions for the effec-

tive system damping for each mode, ceffi, expressed as,

mi €yi tð Þ þ ceffi _yi tð Þ þ kiyi tð Þ
¼ 0; where ceffi H�

3 j
a
ao;[ ac

	 

; ð19Þ

where ceffi can be evaluated under pre-stall or post-stall

conditions according to the bilinear flutter derivative

H�
3 at a ¼ ao or at a[ ac. The modal parameters can

be calculated in closed form,

mi ¼ pTLMpi;i; ki ¼ pTLKpi;i; ci ¼ pTLCpi;i ð20Þ

Hence according to (19 and (20), the effective

system damping is dependent on the complexity of the

stability solution as,

ceffi¼
ci ifpi;pLi¼ReðpiÞ;ReðpLiÞ

Re ci= 2mið Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i =ð2miÞ2�ki=mi

q� �
2mi ifpi;

pLi 6¼ReðpiÞ;ReðpLi

8>>>><
>>>>:

9>>>>=
>>>>;
ð21Þ

Equations (18)–(21) are closed-form solutions for

localised flutter vibrations and its type (viscous or

stiffness) for an airfoil section of a wind turbine blade.

Note flutter will initially grow exponentially until the
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angle of attack oscillations encroach on the negative

stall slope (stabilising effective positive stiffness)

above ac. This periodic limit cycle amplitude can be

approximated using an energy balance over one flutter

oscillation, as described in [42]. Presently, it is noted

that Eqs. (18)–(21) are closed-form analytical solu-

tions to flutter onset and initial growth for a wind

turbine blade section under unsteady aerodynamics.

In the following, a summary of the conditions for

flutter onset are provided, which have been adapted

from [42], which confirms a supercritical Hopf

bifurcation to flutter, i.e. transition to a stable limit

cycle from a stable equilibrium point. These results are

then partly used as one of the necessary criteria for

chaos following flutter as described subsequently in

Sect. 2.3. Following the previous results in this

section, the onset of flutter is governed by the effective

system modal damping ceffi and stiffness matrix

according to the necessary conditions [42]:

flutter if ceffi\0 when k12k21 � 0 ð22Þ

where the second criterion of (22) represents dynamic

divergence conditions more explicitly as,

k12k21 � 0 ) ka

þ 1

2
qW2K2B /2

b1H
�
3Ja=Sx � /2

t1A
�
3B

� �
� 0 xor kh

� 1

2
qW2K2 /2

b1H
�
4 � /2

t1A
�
4Bm=Sx

� �
� 0

ð23Þ

The first criterion of k12 in (23) typically causes

dynamic divergence for an airfoil because the aero-

dynamic component increases with the speed squared

and H�
3 is relatively, large and negative. Hence,

aerodynamic energy input, via this mechanism, drives

flutter (if it causes negative system damping, i.e.

ceffi\ 0). The complexity of the eigenvectors (real or

complex) [23] determines the mode coupling type as

described subsequently.

Viscous mode coupled flutter

When the discriminant is positive, D[ 0, (18) the

eigenvector solutions are real and therefore the

effective system modal damping reduces to ceffi = ci
(first line of (21)). This is known as viscous mode

coupling and will cause flutter amplification (or decay)

when the modal damping ratio, ci, is less (or more)

than the diagonal damping components, cii, which is

dependent upon the dynamic divergence criterion, as

Viscous mode coupling amplification ci\cii

when k12k21 � 0; D� 0;

Viscous mode coupling decay ci � cii

when k12k21 [ 0; D� 0:

ð24Þ

Hence (24), predicts viscous mode flutter amplifi-

cation due to energy input via dynamic divergence

conditions and sufficiently separated uncoupled modal

frequencies, xh;xa; such that D C 0. Under viscous

mode coupling, the phasing of the aerodynamic forces

compared to velocity cause system power input due to

dynamic divergence meaning increasing damping

may surprisingly cause flutter under some conditions.

In previous research [42], it was found that viscous

mode coupling can occur at lower speeds than

classical stiffness mode coupled flutter, described

subsequently.

Stiffness mode coupled flutter

When the discriminant D\ 0 (18) under dynamic

divergent conditions then stiffness mode coupling

occurs causing complex undamped eigenmodes and

complex stiffness, leading to negative system damp-

ing. This is the classical binary flutter mechanism

[1, 4] that occurs due to mode coupling when the

coupled modal frequencies become close, according

to:

Stiffness mode coupling amplification

when k12k21 � 0; D \ 0
ð25Þ

Hence (25) predicts stiffness mode flutter amplifi-

cation due to energy input via dynamic divergence

conditions and close uncoupled modal frequencies,

xh;xa; such that D\ 0. In this case, the system

negative damping is determined primarily by the

modal stiffness ki and will likely cause larger phase

space expansion than viscous mode coupling, assum-

ing the modes are not over critically damped. Also

flutter growth tends to increase with speed as there is a

W2 effect. It is possible to solve for the critical speed

for the onset of classical (stiffness mode coupled)

flutter onset, Wf , assuming no damping and dominant

angle of attack flutter derivatives as [42],
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W2
f ¼ ma

1
2
qK2B �/2

b1H
�
3 þ /2

t1A
�
3Bm=Sx

� �
m=Sxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kh 1� Dpð Þ
mh

s
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ka m=Sxð Þ2

ma

s0
@

1
A

2

	2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
khka m=Sxð Þ2

mhma

s2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� S2x

mJa
� DU

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Dp

p !#

where Dp ¼ 1� S2x= mJað Þ
1� /2

b1H
�
3=ð/2

t1A
�
3

� �
Þ Sx=Bmð Þ

;

DU ¼ Dp
2

1þ 1� Dp
2

� �
khma

ka m=Sxð Þ2mh

" #

ð26Þ

and Dp and DU are normalised factors, i.e. 0 �Dp� 1

assuming the elastic centre and centre of pressure are

aft of the centre of gravity and elastic centre,

respectively. The closed-form solution (26) predicts

that the classical critical flutter speed increases with

increases in rotational inertia, spacing between uncou-

pled plunging (bending) and pitching (torsional)

natural frequencies and decreases in air density.

Added damping will tend to increase the critical

flutter speed as well. Finally, it is noted that stiffness

mode coupling instability realistically has a higher

instability growth rate than viscous mode coupling, in

accordance with the system damping predictions of

(19) and (21), as the damping ratio is below unity for a

wind turbine blade (and other vibrating structures

[42]). This is important when considering criteria for

chaos following flutter that requires high local phase

space expansion as described subsequently.

2.3 Predicting chaos following flutter in a wind

turbine

As shown in Sect. 2.2, flutter is a local instability that

can reach a stable limit cycle, which is caused by the

balance of energy between pre- and post-stall bilinear

conditions, as detailed further in [42]. When this

instability is combined with significant nonlinearities,

it can lead to chaos following flutter, characterized by

bounded motion that has local phase space expansion.

This section is focussed on predicting the onset of

chaos following flutter in wind turbines, which are

based on a local phase space expansion and new

sufficient nonlinearity criteria. Specifically, in [42] a

well-known expansion test for chaos was used; the

Lyapunov exponent, denoted by k, as described in

[35],

Chaos possible if k [ 0: where d ¼ do2
k t�toð Þ

ð27Þ

where do and d represent the initial and final spherical

diameters at times, to, and t. It is important to note that

k only measures sensitivity to initial conditions so is

measured locally using partial derivatives or using

small time increments t � to and averaged over a

longer period. In [36], it was shown that the maximal

Lyapunov exponent is an average of the real part of the

maximum dynamic eigenvalue integrated over a

sufficiently long period of time. Therefore, chaos is

most likely to occur under stiffness mode coupled

flutter conditions due to a larger maximum dynamic

eigenvalue from the complex stiffness negative damp-

ing compared to damping under viscous mode

coupling (assuming realistic damping values less than

critical). This leads to the first necessary condition for

wind turbine chaos following blade flutter as [35]:

Chaos possible if W[Wf ;D Wf

� �
¼ 0 ð28Þ

whereWf is the critical flutter speed obtained in closed

form as (26) under no damping. Equation (28) is a

conservative criterion as it has accounted for contin-

uous averaging of the local trajectory expansion in

phase space, and it is only necessary as it only

measures sensitivity to initial conditions. In the flutter

case, nonlinearity arises due to the bilinear lift curve.

In particular, it was proposed and tested [42] that an

offset in the angle of attack causes non-symmetry in

the bilinear lift curve behavior and hence necessary

nonlinearity, according to,

ao 6¼ 0 ð29Þ

Again the necessary criterion (29) is rather conser-

vative as it only provides a discrete measure of the

nonlinear conditions. To address this, presently it is

noted that this non-symmetrical bilinear lift curve

behaviour (see Fig. 3) acts as a parametric bilinear

stiffness excitation. It is well known that this causes

subharmonic and higher harmonic excitation instabil-

ities that grow into interacting limit cycles on the

phase plane if damping is insufficient. In particular,

the instability zones of the resonances may overlap if
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the excitation level is sufficiently high and this can

result in bifurcations and chaotic behaviour of the

system [47]. This behaviour is primarily determined

by the magnitude of the change in stiffness and the

damping. Therefore, less conservative conditions for

chaos following flutter are additionally proposed

presently, according to the criteria for all the para-

metric harmonic instability regions to exist, [49] as,

fti\ftic1 ¼ fcrit2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Kf =Mf

q
= 1þ 1=

ffiffiffiffiffiffiffiffiffi
kstall

p	 

ð30Þ

where

log kstallð Þ ¼ 4fcritU
�1 atan �U= 2fcritð Þð Þ þ p½ �

þ 4fcritV
�1atan �V= 2fcritð Þð Þ

U2 ¼ 1þ
ffiffiffiffiffiffiffiffiffi
kstall

p	 
2
�4f2crit; V

2

¼ 1þ 1=
ffiffiffiffiffiffiffiffiffiffi
kstall

p	 
2
�4f2crit

Kf ¼ 1� k22 Sx=mð Þ2=ka
	 


; Mf

¼ ma Sx=mð Þ2=ðJa þ JaeÞ ð31Þ

and ftic1 is the critical damping (with respect to the

torsional degree of freedom) above which the first

subharmonic instability region disappears andU and V

are nondimensional intermediate parameters. The

derivation of Eqs. (30) and (31) based on [49] involves

modification from the critical damping fcrit using

factors Mf and Kf of the mass moment of inertia and

stiffness terms, to represent the mass decoupled flutter

Eq. (13) and (14) for angle of attack (parametrically

excited by the bilinear lift law) neglecting the cross-

coupling terms with vertical displacement. The addi-

tional constraint that,

0\fcrit\ 1þ 1=
ffiffiffiffiffiffiffiffiffiffi
kstall

p	 

=2 ð32Þ

is always satisfied if kstall [ 1. Finally, we can then

propose the least conservative condition that there

needs to be at least the first two instability regions for

overlap and bifurcational chaos to occur. According to

[48], the damping criteria is 1/3 smaller for the second

instability region to exist so the least conservative

criterion for chaos becomes,

fti\ftic1=3 ð33Þ

Equations (28), (29) and ((30) or (33)), are conser-

vative and necessary for wind turbine chaos following

flutter from large local sensitivity to initial conditions

and sufficient bounding nonlinearities causing overlap

of parametric instability regions. If damping and non-

angle of attack flutter derivatives are small, they can be

evaluated in closed form using the critical flutter speed

solution (26). Alternatively, the analytical solutions

for ceffi in (18)–(21) can be used. The criteria highlight

that chaos following flutter is driven by local expan-

sion due to: 1) High dynamic divergence caused by

flutter instability from stiffness mode coupling fol-

lowing a Hopf bifurcation (28) and 2) nonlinear

parametric excitation due to the bilinear lift aerody-

namics causing interacting limit cycles if damping is

insufficient according to (29), (30) or (33). It should be

noted that the generality of the flutter model and

analysis of (22) to (33) suggest that the criteria for

chaos following flutter, in a wind turbine blade

section, could also be applied to other structures.

Subsequently, the chaos following flutter criteria

((28), (29) and ((30) or (33) of an optimised wind

turbine blade are compared with full numerical

solutions of the nonlinear equations of motion (1)–

(13).

3 Results

Section 3 describes the utilization of the nonlinear

numerical and analytical models to investigate the

onset and chaotic behaviour of flutter in an optimised

wind turbine blade. The numerical time domain

solutions were obtained through the use of the fourth

and fifth order Runge–Kutta routine in DYNAMICS

by Nusse and Yorke and the Radua method in

MathCad 15.0, with a minimum sampling rate of 20

times the nominal vibration frequency. The frequency

of vibration was approximately adjusted to the sim-

ulated modal response frequency to minimize errors in

the frequency-dependent aerodynamic loading.

Appropriate dynamical system tools were used to

characterize the chaotic state including phase space,

Poincare Map and bifurcation diagrams and the

Lyapunov spectrum of exponents [37] and pre-iterated

at least 1000 flutter oscillation periods. Due to the

continuous nature of the bilinear lift aerodynamics

(13), there were no issues with exponent convergence

for the parameters examined, in contrast to discontin-

uous systems [38]. The accuracy of the analytical
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predictions was verified through an optimal wind

turbine case study, using full nonlinear numerical

solutions and experimental measurements of the

aerodynamics from the literature. For clarity, realistic

system parameters were chosen in dimensional form,

based on optimal conditions for a large 3 composite

blade wind turbine, based on NACA4412 airfoil blade

sections with optimal lift coefficient and offset angle

of attack held constant at 3� and operating at a constant
tip speed ratio of 6, as described in [44] and Table 1.

The effect of varying these parameters is investigated

in Sect. 3.4.

Experimental measurements in a wind tunnel were

used to first tune the approximate bilinear lift model

(13) for the wind turbine blade section of a NACA

4412 nonsymmetric airfoil [30] as shown in Fig. 3.

The critical angle of attack was first tuned to, ac = 16�
and then the stall slope to kstall = 0.81 along with

smoothing factor b = 9 between the bilinear slopes.

In Fig. 3, the approximate bilinear lift (nonlinear)

coefficient curve displays a region of increasing lift

coefficient of negative stiffness, prior to the critical

angle of attack, followed by a declining slope of

positive stiffness. The nonlinear estimate falls within a

5% range of the experimental measurements for the

range of flow conditions (Reynolds numbers) [2, 30].

The small aerodynamic nonlinearities in the experi-

mental measurement compared with the exact bilinear

Table 1 Parameters used for wind turbine blade flutter simulations

Description Optimized blade [44]

General wind turbine parameters

Number of blades 3

Blade section NACA4412

Tip speed ratio (k) 6

Blade Young’s modulus axial (E) 13.23 GPa

Blade Shear modulus axial (G) 4.79 GPa

Blade Density (q b) 1820 kg/m3

Optimal static angle of attack: (ao) 3�
Optimal lift coefficient (Cl) 0.7

Blade length (R) 86.4 m

Nominal (max) wind speed (U?) 25 m/s

Structural vibration parameters at blade tip (per span length)

Mass, mass moment of inertia: (m, Ja) 14.58 tonne/m, 48.09 tonne m

Stiffness: (kh, ka) 18.57 kN/m2, 574.3 kN

Damping: (ch, ca) at 1% 329 Ns/m2, 3324 Ns

Coupled inertia term (Sx) 11.49 tonne

Chord length (B = 2b) 6.305 m

Aerodynamic parameters

Density of air (q) 1.226 kg/m3

Normalised position of centre of gravity from elastic centre (Sx/(mb)) 0.25

Normalised position of elastic centre aft of midchord (a) -0.4

Flutter derivatives for aerodynamic lift (H�
1;H

�
2;H

�
3;H

�
4) Appendix A

Flutter derivatives for aerodynamic moment (A�
1;A

�
2;A

�
3;A

�
4) Appendix A

Critical angle of attack (ac) 16� [30]
Nominal stall slope factor of H�

3 (kstall) 0.81 [30]

Flutter nominal conditions

Nominal vibration frequency (x) 2p0.33 rad/s

Initial angle of attack disturbance from static condition 10–3 rad
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curve are also well represented by the simulated

continuous curve of (13). The two Reynold’s numbers

were selected as they are typical values representing

the realistic wind turbine conditions investigated. At

other Reynold’s numbers, the approximate bilinear lift

curve may also be tuned using the parameters of (13).

Note that the rising part of the lift coefficient curve, for

low positive angles of attack, represents a negative

stiffness contribution to the system stiffness (15)

because increases in angle of attack are increasing the

upwards aerodynamic lift, rather than retarding it like

the structural torsional stiffness. Aerodynamic stall

occurs for larger angles of attacks past a critical stall

angle where upwards lift decreases. Hence, the

opposite behaviour occurs (positive stiffness contri-

bution) for angle of attacks greater than the stall angle

of 16 degrees, causing an approximate bilinear nature.

The wind turbine blade section aerodynamic proper-

ties of Fig. 3 can now be used with the other

parameters of Table 1 to determine the optimum wind

turbine blade design before investigating both classi-

cal flutter and chaos phenomena following flutter and

potential methods of control.

3.1 Optimal wind turbine blade design

Based on the general parameters shown in Table 1, the

optimal blade for a large variable speed wind turbine

(to maintain a constant blade tip velocity ratio) can be

designed according to Eqs. (1) - (9) In particular, the

optimal local wind velocity, blade chord (width) and

twist along its length to provide the maximum turbine

output are plotted in Fig. 4.

Figure 4 shows that the optimum blade geometry

has a chord (or width), which tapers and twists towards

its tip due to the local wind velocity increasing for

larger radius due to the blade (and turbine) rotation.

This ensures each section of the blade (past the root

below 10% of its length) is operating at the ideal lift

conditions at the same optimal angle of attack for the

airfoil. Based on the blade geometry of Fig. 4 and the

material properties in Table 1, the fundamental

flapwise bending and torsional natural frequencies

may be analytically approximated according to

Eqs. (6) and (8) as 0.18 Hz and 0.55 Hz, respectively.

For the bending fundamental frequency calculation,

kb1=2.5 based on the effect of the taper past 10% of the

blade length and the tip section moment and cross-

sectional areas were approximated to Ixc ¼ 0.075 m4

/ B 4, Ipc ¼ 26.4 m4/ B 4 and A= 8 m2/ B 2 based on

a hollow NACA4412 airfoil [45] with additional

internal structural support. Note, these tip properties

can be extrapolated to any blade section radial position

using the proportionalities (/) with chord size B

stated. Similarly for the fundamental torsional fre-

quency, the frequency constant was approximated as

Fig. 4 The optimal wind

turbine blade geometry

using a NACA 4412 airfoil;

local angle of attack/lift

coefficient = 3 deg/0.7,

blade tip speed ratio = 6,

number of blades = 3, blade

length R = 86.4 m,

aeroelastic axis position

a = -0.4, centre of gravity

position Sx/mb = 0.25,

fundamental natural

frequencies:

pitching = 0.55 Hz,

plunging 0.18 Hz, damping

ratios = 1%
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kt1=1.1 p/2 based on the effects of the taper and twist

and boundary conditions [45, 50, 51] and the tip

torsional constant, approximated for an airfoil [45], to

be C ¼ 0.3 m4 / B 4. These blade geometric and

dynamic parameters can now be used to determine the

occurrence of flutter.

3.2 Flutter occurrence investigation.

Complex eigenvalue analysis of the equations of

motion was performed for a range of wind velocities

using the closed-form solutions (18)–(21) and numer-

ical solution of the full system model matrices (15)

based on the optimised system parameters and Table.

1. The real and imaginary parts versus local wind

speed are shown in Fig. 5, for the case of the blade tip

section.

Figure 5a) shows the modal frequencies approach

each other as local wind speed increases towards the

critical flutter speed shown in Fig. 5 b) when the

system damping is zero. Above this critical speed,

stiffness mode coupled flutter occurs as D\ 0

according to the criterion (25) and the modal frequen-

cies come close (Fig. 5a) with approximately opposite

damping levels (Fig. 5b) that are increased and offset

by the structural and aerodynamic damping. The

numerical flutter critical speed (that accounts for the

effects of damping) occurs at 115.5 m/s when the real

part of the eigenvalue first becomes greater than or

equal to zero and is slightly less than the undamped

analytical prediction of (26) and [3] at 116.5 m/s. This

error is small for this case, as the effect of structural

damping is counterbalanced by that of the other flutter

derivatives. Figure 5 confirms that the closed-form

analytical solution is an effective approximation to the

complex eigenvalue analysis for the wind turbine

blade flutter model of Fig. 2.

The critical flutter speed was investigated further by

determining how it varies along the wind turbine blade

(26) in Fig. 6 along with the local wind speed. In

particular, Fig. 6 predicts flutter will occur when the

local wind speed exceeds the critical flutter speed in

the shaded region. This is shown to occur in the last

7.5% of the blade length at the tip end. The numerical

result by direct integration of the equations of motion

for the tip is also shown confirming the flutter

predictions. Note the model flutter predictions for a

Fig. 5 Local stability solutions of the optimised wind turbine

blade, numerical (-),(Blue hypen) and analytical (18)-(21),

(Blue round) (Black sqaure), as a function of local tip wind speed,

W; a frequency Im(k) and b negative damping Re(k) in Hz. The
thin black lines (-) show the numerical solution under undamped

and angle of attack flutter derivatives only and the vertical

marking (Ref double hypen) shows the critical flutter speed

(116.5 m/s) using (26) and [3] under the same conditions.

Assumed constant nominal vibration frequency as wind speed

changes
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fundamental airfoil section have already been exper-

imentally verified in [42] using [2].

In Fig. 6, the trend of the critical flutter speed of the

wind turbine blade, decreasing with blade radius

position, may be directly predicted from the analytical

expression of (26). In particular, the optimal blade

chord decreases towards the tip as shown in Fig. 4,

causing the decoupled rotational inertiama to decrease

in a similar manner, while the natural frequencies and

elastic centre position relative to the centre of gravity

Sx/(mb), remain constant. Therefore Eq. (26) predicts

the critical flutter speed reduces towards the blade tip,

due to decreased rotational inertia of smaller airfoil

sections to achieve optimal performance. In addition,

the fundamental mode shapes cause higher aerody-

namic excitation towards the tip antinodes and there-

fore also lower the critical flutter speed. Note the mode

shapes will be different for higher modes (although

they will still have antinodes at the tip) causing this

effect to be more complicated if they are instead

causing the mode coupled flutter. In any case, as

shown in Fig. 6, it is predicted that the optimal design

of the wind turbine blades, along with the higher local

wind velocity due to rotation, will most likely cause

flutter to first occur towards the wind turbine blade tip.

These predictions, along with the occurrence of

nonlinear behaviour, are investigated further,

subsequently.

3.3 Investigation of the occurrence of chaos

following flutter

The time history of the full nonlinear equations of

motion showing the angle of attack oscillations of the

blade tip section are shown in Fig. 7a) and b), using

nominal conditions of Table 1 with a freestream wind

speed of U1=19.3 m/s (local tip wind speed 117.2 m/

s) and those modified with a sharper stall slope. The

corresponding lift curve oscillations were plotted

below in Fig. 7c) and d). Note that this variation in

stall slope is still consistent with measured experi-

mental variations at high angles of attack near or in the

stall region [56].

Figure 7a) shows a periodic stable limit cycle at a

speed, higher than the stable equilibrium point at the

critical flutter speed, i.e. after a supercritical Hopf

bifurcation transition [42]. Comparing Fig. 7a) and b),

it is seen that the limit cycle oscillation amplitudes

become irregular with the sharper stall slope of the lift

curve in b), indicating non-periodic motion. Fig-

ure 7c) and d) supports the occurrence of this possible

chaotic behavior under a steeper slope as consistent

with the analytical predictions in Sect. 2. In addition,

they show the irregular behavior range is restricted to a

bilinear lift curve due to the angle of attack offset and

wind speed. The effect of wind speed on the nonlinear

behavior was investigated further using a bifurcation

and phase space analysis, as shown in Fig. 8. Note the

solutions were determined after initial transients had

decayed and the Poincare plane of a = 0.0 was chosen

for convenience.

Figure 8a) shows a bifurcation diagramwith a well-

recognised period doubling route to chaos as local tip

wind speed increases passed the critical flutter speed

and then decreases after a region of chaos between

approximately 116.6 and 118.8 m/s, similar to what

was found for a fundamental airfoil [42]. Figure 8b)-

d) confirms this behaviour, depicting a two-loop limit

cycle at 116.2 m/s in Fig. 8b), i.e. a closed set of 4

points in the bifurcation diagram due to crossing of the

Poincare plane of a = 0.0 twice per loop. This

bifurcates to more complex nonlinear behaviour as

the local tip wind speed is increased. In particular,

Fig. 8c) shows as the wind speed is increased to

Fig. 6 Local Wind (Blue round shade) and critical flutter speed (Red hypen) along the blade length for a large wind turbine from analytical

predictions and direct numerical integration of equations of motion (o). The shaded region predicts where flutter occurs
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W = 116.4 m/s the limit cycle bifurcates into four-

loop motion that bifurcates again as the local wind

speed reaches W = 116.5 m/s (Fig. 8d). Further

increases in wind speed results in increasingly com-

pressed bifurcations to a strange attractor depicted in

Fig. 9 at W = 117.2 m/s. The phase space of Fig. 9a)

shows a wandering orbit that remains unclosed that is

confirmed by the fractal arrangement of non-repeating

points in the Poincare map of Fig. 9b).

In particular, the chaotic state is confirmed in

Fig. 9b) as it shows a strange attractor fractal quan-

tified by a non-integer Lyapunov dimension of 2.16

and a Lyapunov spectrum of [0.084 0.000 -0.392 -

0.710]. Here, the first (maximum) Lyapunov exponent

is greater than zero meaning; there is exponential

sensitivity to initial conditions. The lowest local tip

wind speed that chaos occurs in the time domain

numerical simulations isW = 116.6 m/s (see Fig. 8a),

which compares very closely to Wf = 116.5 m/s from

(26) as part of the analytical criteria for chaos

following flutter of (22) to (33). In agreement with

the bilinear nonsymmetric criterion (29), bifurcation

chaos were also found for offset angles of attack of

1�,4� and 6�. A deeper parametric investigation and

comparison of the numerical and analytical

predictions of the onset of chaos, was also performed

for two wind turbine cases as shown in Fig. 10

The numerical simulation results were obtained in a

similar manner to Fig. 8 whereby the bifurcation

diagram was used to identify the onset of bifurcation

chaos several times for each stall slope factor to

determine the critical onset values of chaos. The

computational time for numerical simulations was

approximately 4 h for 9 points compared to 50 ms for

400 points using the analytical predictions, giving a

computational acceleration of approximately 107

times. The nominal case of Table 1 was used as well

as a significantly lighter blade case with wall thickness

in the blade section reduced to 20% of the nominal

value (i.e. m = 2.92 tonne/m, Ja = 9.62 tonne m,

kh, = 3.71 kN/m2, ka = 114.9 kN, Sx = 2.30 tonne) to

lower the local critical flutter speed (by 1/H5 accord-

ing to modal mass reduction in (26)) to 52.1 m/s.

Figure 10 shows a very good comparison between the

(conservative) analytically predicted onset of chaos

and the numerical bifurcation diagram simulations for

both cases for critical torsional damping levels over a

range of stall slope factors, kstall. In particular, the

critical torsional damping at chaos onset is predicted

by the no overlapping harmonics criterion to within

1% damping error for both wind turbine blade cases

2
α

Fig. 7 Simulated time histories of flutter at wind speed 19.3 m/s (local tip wind speed 117.2 m/s) for blade tip section with: a nominal

lift curve (Fig. 3) and for b sharper stall slope (smoothing factor b = 20, kstall = 1.5)
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(note mostly overlapping case results). The more

conservative criterion of no parametric excitation has

much larger errors for this case but shows a similar

trend. This trend shows that chaos following flutter is

more likely to occur for low damping and high stall

slope conditions. In any case, the criteria based on

stiffness mode coupling flutter provide a useful

conservative analytical prediction of chaos following

blade flutter onset as found in [42] but the added

contribution based on overlapping parametric reso-

nances contributes additional refinement to quantify

the effects of damping and stall on the onset of chaos

following flutter. Hence, the results confirm that chaos

following flutter is characterized by conventional

(stiffness mode coupled) flutter combined with para-

metric excitation nonlinearities associated with lower

damping and sharper stall slope. These results also

highlight that the analytical predictions can remark-

ably be generalized to any parameter set and provide

almost instantaneous calculations representing many

thousands of numerical simulations from many bifur-

cation diagrams almost instantaneously

Fig. 8 Bifurcation diagram a and phase spaces of flutter oscillations under increasing local wind speed; b W = 116.2 m/s

c W = 116.4 m/s and d W = 116.5 m/s
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(computational acceleration factor of 107 times).

These verified predictive analytical criteria can sub-

sequently be used to provide quantified insight into

suppression of the chaotic instability in a wind turbine

blade.

3.4 Chaos suppression

Methods to avoid or suppress the chaos following

blade flutter onset, in a wind turbine, were investigated

quantitatively in Table 2 with the nominal conditions

of Table 1 modified to the chaos following flutter

conditions of Fig. 7, i.e. sharper stall slope (smoothing

factor b = 20, kstall = 1.5). Specifically, the % change

in nominal parameter value required to eliminate or

suppress chaos following flutter to wind speeds above

the very unlikely value of 30 m/s was calculated using

the verified analytical criterion for no overlapping

parametric resonances (33). Note, in this suppression

investigation, the damping ratio is assumed to be

constant (unless directly changed) irrespective of

natural frequency changes. For Table 2, the dimen-

sional parameters have been non-dimensionalised by

their nominal values of Table 1.

Table 2 illuminates various ways of controlling

wind turbine parameters to eliminate chaotic instabil-

ity in blade flutter. Overall, the findings suggest that

the occurrence of chaotic instability is influenced

mainly by stiffness mode coupling or classical flutter,

which in turn depends on the proximity of the

uncoupled mode frequencies. However, the avoidance

of overlapping parametric resonances is more impor-

tant for control using damping and stall conditions.

The following discussion of the Table 2 results, for

Fig. 9 Phase space a and Poincare map b of wind turbine flutter oscillations for flow speed 117.2 m/s

Fig. 10 Critical torsional damping vs stall slope factor for

chaos onset; conservative analytical criteria; no parametric

excitation (Blue single hypen) (30) less conservative analytical

criteria; no overlapping harmonics (Blue double hyprn) (33) and

numerically simulated results for; nominal case (red round

shade), thinner wall blade section case (Red round)
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elimination or suppression of chaos following blade

flutter, are provided:

• The tip speed ratio has a strong effect on chaos

following flutter via its effect on the onset of

stiffness mode coupled flutter. In particular, low-

ering the tip speed ratio, directly lowers the local

wind speed at the tip to below the onset of flutter.

Lowering the tip speed ratio also increases the tip

chord via optimal design which in turn increases

the critical flutter speed.

• The blade length has no effect on the critical flutter

speed under optimal design conditions. This is

because increases in blade length causes increases

in tip modal masses and corresponding decreases

in the fundamental natural frequencies while the

modal stiffnesses remain constant. These effects

on the critical flutter speed cancel each other

resulting in the surprising prediction that under

optimal wind turbine design, the blade length has

no effect on the critical flutter speed and hence the

onset of chaos following flutter (if the damping

ratios remain unaffected). Note, alternatively

chaos following flutter is more likely to occur if

the damping is held constant as blade length

increases, since the damping ratio will be lowered.

• Wind turbine blade flutter and chaos can be

suppressed by changes in modal mass or stiffness

by separating (detuning) the plunging and pitching

natural frequencies or lowering the modal mass

according to (26) to increase the critical flutter

speed due to stiffness mode coupling.

• A reasonable increase in the pitch modal damping

([? 1x) damps out any chaotic overlapping

harmonic resonances from parametric excitation,

caused by the bilinear lift curve. Note unrealisti-

cally large increases in damping would be needed

Table 2 Parameter change required to suppress chaos following flutter of a wind turbine blade to excessive wind speeds,

U?[ 30 m/s

Parameter Description Change required for chaos elimination

(U?[ 30 m/s)

Example practical suppression method(Control/

Change in)

General wind turbine blade

parameters

Tip speed ratio (k) -15% Turbine speed control setting

Blade length(R) NP Wind turbine size

Structural vibration parameters

Mass, mass moment of inertia:

(m, Ja)
-81% or ? 174%, -81% or ? 2805% Blade section design, i.e. member thickness,

weighting or material

Stiffness: (kh, ka) ? 2382%, -97% or ? 100% Blade section design, i.e. member thickness,

stiffening or material

Damping: (ch, ca) NP, ? 100%* Structural / material damping. Added vibration

damping

Coupled inertia term (Sx) -78% or ? 131% Blade section design to shift elastic centre rel. to

centre of gravity

Chord length (B = 2b) ? 51% Wind turbine size/blade section design

Bending mode shape amplitude

(/b1)

-48% Design (mode) coupling higher modes

Torsional mode shape

amplitude (/t1)

NP Design (mode) coupling higher modes

Aerodynamic parameters

Normalised position of elastic

centre (a)
? 65% Blade section design to shift elastic centre

Nominal stall slope factor of H�
3

(kstall)
-17%* Blade section outer shape design

*Denotes a case where chaos is eliminated but not flutter
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to eliminate wind turbine flutter due to stiffness

mode coupling.

• Changes in the coupled inertia term dictates the

position of the centre of gravity with respect to the

elastic centre. This in turn directly effects the

dynamic divergence, which is a necessary driving

mechanism for wind turbine flutter [42].

• Increases in chord length changes the airfoil

section size, which changes several dynamic

parameters. If the natural frequencies are held

constant, this will mainly cause the modal mass to

increase which in turn will increase the critical

stiffness mode coupled flutter speed and hence

suppress chaos following flutter.

• The bending mode shape amplitude determines

how much unstable aerodynamic force is trans-

mitted to the mode. Hence decreases in this

amplitude via the coupling of a higher mode may

be possible to increase the flutter critical

velocity.

Wind turbine chaos suppression via aerodynamic

parameter control is generally easier to achieve if the

blade airfoil section can be redesigned according to:

• The position of the elastic centre is another critical

parameter associated with dynamic divergence

mechanism of airfoil flutter [42]. Moving the

elastic centre further away from the midchord

reduces the dynamic divergence criteria via the

flutter derivatives, which will increase the critical

stiffness mode coupled flutter speed.

• Only small decreases (-17%) in the stall slope

factor are required to eliminate harmonics over-

lapping due to parametric excitation via the

criterion for chaos following flutter. This is well

within measured experimental variations at high

angles of attack near or in the stall region [56] so

larger decreases may be required to reduce the

experimental uncertainty.

These results show the conservative analytical

criteria can very efficiently investigate and evaluate

several suppression techniques for chaos following

flutter, without the need for lengthy and extensive

multiple numerical integrations of the nonlinear

equations of motion. Note that Table 2 summarises

results for directly eliminating chaotic instability, not

necessarily wind turbine flutter. By inspection of

Fig. 8, it may be deduced that suppressing chaos

following flutter to limit cycles can substantially

reduce vibration velocity amplitudes by approxi-

mately 20%. Therefore, although the * cases of

increasing damping and decreasing stall slope

required generally smaller changes, it may be more

desirable to eliminate flutter and chaos using the other

means in Table 2. The frequency content of the flutter

limit cycle will be necessarily more tonal than the

chaos following flutter (as found in [25]).

The results highlight that the analytical closed-form

solutions can be used to very efficiently predict and

investigate the occurrence of conventional flutter and

chaos following flutter in the blade of an optimally

tuned wind turbine under aerodynamic, incompress-

ible, unsteady flow conditions.

4 Conclusions

A pitching and plunging (binary) mathematical model

for flutter of an optimally designed wind turbine blade,

is used to predict the occurrence of classical and

chaotic blade flutter in closed form. An optimal

analysis of the wind turbine is first performed analyt-

ically to determine the blade section parameters to

maximise energy generation. Numerical simulations

of the nonlinear equations of motion including an

approximate bilinear lift law, show wind turbine blade

chaotic instability occurs under an increased (sharper)

stall slope (consistent with measured experimental

variations [56]), via a period doubling route as the

wind speed was changed. Stiffness mode coupling,

dynamic divergence and parametric excitation are

shown to provide the necessary (phase space) expan-

sion (or positive Lyapunov exponent) and nonlinearity

for chaos via aerodynamics. Hence, wind turbine

blade flutter is characterized by limit cycle behaviour

via a supercritical Hopf bifurcation that can then

bifurcate into chaotic motion. For the first time,

conservative analytical criteria for wind turbine chaos

following blade flutter are derived and numerically

verified over a range of optimal wind turbine struc-

tural, dynamic and aerodynamic parameters. The

predictive criteria are based on high local phase space

expansion due to the occurrence of stiffness mode

coupling and asymmetric bilinear aerodynamic stiff-

ness causing parametric excitation and overlapping

harmonics. They are found to efficiently (almost

instantaneously) and conservatively predict the

123

22172 P. A. Meehan



critical torsional damping levels at onset of chaos over

a range of stall slope ratios to within 1% wind speed

and critical damping error. The results provide

important predictive insight into conditions under

which wind turbine blade chaos following flutter

occurs and its suppression. In particular, the efficient

criteria are subsequently used to perform a parametric

control investigation to eliminate chaos following

flutter or suppress it to unrealistic wind speeds greater

than 30 m/s. The results show small changes in tip

speed ratio (-15%) and stall slope factor (-17%) can

eliminate or suppress chaos following flutter while, in

general, larger changes in dynamic parameters (i.e.

mass, stiffness, damping) are required to achieve the

same by detuning the coupled plunge and pitch natural

frequencies or damping out overlapping parametric

resonances. The positions of the elastic centre and

centre of mass are found to effect and suppress chaos

following flutter as found for conventional flutter.

Interestingly, it is shown that the occurrences of

conventional flutter and chaos following flutter is

unaffected by the blade length when the wind turbine

is optimally tuned, i.e. to a given tip speed ratio. This

suggests that chaos following blade flutter could occur

in any sized wind turbine if the local tip wind speed

exceeds the relatively constant critical flutter speed

(under the same optimal design conditions).

The results provide predictive insight into wind

turbine blade classical flutter and chaos following

flutter under optimal design conditions and its sup-

pression. In particular, the main contributions of the

analytical approach are that it provides a necessary

condition for chaos following flutter to be very

efficiently predicted (computational acceleration fac-

tor of 107 times) and used to avoid its occurrence in

optimal design to maximise power generation. It may

also be used to verify more complex geometrical and

numerical analyses using CFD and/or FEA modelling.

The present closed-form results are necessarily limited

to two dimensional aerodynamic incompressible flow

on airfoil sections and approximations of the 3D blade

geometry. In addition, the present analysis neglected

dynamic interactions between multiple blades and

turbine dynamics [69], which may affect some of the

modes through coupling, but may complicate the

closed solutions and insight gained from the present

analysis. Hence, further research beyond the scope of

the present paper is recommended to compare predic-

tions with integrated 3D computation fluid dynamics

and finite element analysis and/or wind tunnel test

results if possible. Due to the generalised nature of the

model, these results may provide insight into other

types of mode coupled chaos.

Acknowledgements The author acknowledges Andrew

Leslie’s assistance with discussions on mode coupling and

review.

Funding Open Access funding enabled and organized by

CAUL and its Member Institutions. No funding was received to

assist with the preparation of this manuscript.

Data Availability All data generated or analysed during this

study are included in this published article.

Declarations

Conflict of interest The authors declare that they have no

conflict of interest.

Open Access This article is licensed under a Creative Com-

mons Attribution 4.0 International License, which permits use,

sharing, adaptation, distribution and reproduction in any med-

ium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative

Commons licence, and indicate if changes were made. The

images or other third party material in this article are included in

the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds

the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this licence, visit

http://creativecommons.org/licenses/by/4.0/.

Appendix A – Wind turbine blade airfoil flutter

derivatives.

The flutter derivatives for a wind turbine blade section

are the same as for a flat plate airfoil as derived in

[1, 27]. For aerodynamic lift L they can be expressed

as, H�
1 ¼ �2pF=K,

H�
2 ¼ �p 1þ 4G=K þ 2F 1=2� að Þð Þ= 2Kð Þ,

H�
3 ¼ �p 2F � GK 1=2� að Þ þ aK2=4

� �
=K2; H�

4

¼ p 1þ 4G=Kð Þ=2
ðA:1Þ

and for the aerodynamic moment, M, as,
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A�
1 ¼ pF 1=2þ að Þ=K; A�

2 ¼ �p K 1=2� að Þ=2� 2G 1=2þ að Þð
þKF a2 � 1=4

� ��
= 2K2
� �

A�
3 ¼ p K2 a2 þ 1=8

� �
=4þ 2F 1=2þ að Þ þ KG a2 � 1=4

� �� �
= 2K2
� �

A�
4 ¼ �p aK2=2þ 2KG 1=2þ að Þ

� �
= 2K2
� �

ðA:2Þ

here F and G are the real and imaginary compo-

nents of Theodorsen’s circulation function, efficiently

approximated as,

F kð Þ ¼ 1� 0:165= 1þ 0:0455=kð Þ2
	 


� 0:335= 1þ 0:3=kð Þ2
	 


;

G kð Þ ¼ �0:165 � 0:0455=k= 1þ 0:0455=kð Þ2
	 


� 0:335 � 0:3=k= 1þ 0:3=kð Þ2
	 


;

ðA:3Þ

where k = K/2. A comparison of (A.3) with those of a

fourth order over fourth-order approximation of the

Theodorsen circulation function [39, 40] show errors

of complex modulus and phase angle of C(k) to within

0.3 percent and 0.25 degrees, respectively [42].
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