Skip to main content
Log in

Gaits generation of quadruped locomotion for the CPG controller by the delay-coupled VDP oscillators

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Generating locomotive gaits is a very important work for bioinspired robots and has received wide attentions among scientists and engineers. The central pattern generator (CPG) neural system located in spinal cord is a very important imitating object to produce rhythm patterns and control locomotion of animals. This paper proposes a theoretical method to construct a novel style CPG controller for the quadruped locomotive gait based on the delay-coupled VDP oscillators. The controller system consists of four VDP oscillators scheduled with unidirectional ring structure. By using the Hopf bifurcation analysis, we obtain parameter conditions for rhythm generation and present dynamical classification of periodic rhythm with different spatiotemporal patterns, which corresponds to the gait of the quadruped locomotion. Assisting with switching network structure, the delayed VDP-CPG controller presents six types of classical locomotive gaits, i.e., pronk, lateral-sequence (L-S) walk, diagonal-sequence (D-S) walk, bound, pace, and trot, in a wide range of parameter areas. The numerical simulations are illustrated to agree with theoretical analysis. The presented approach herein provides a frame of dynamical analysis to build the CPG controller producing rhythm controlling signals of the quadruped locomotion gaits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Grillner, S., El Manira, A.: Current principles of motor control, with special reference to vertebrate locomotion. Physiol. Rev. 100(1), 271–320 (2020)

    Google Scholar 

  2. Wang, J., Chen, W., Xiao, X., Xu, Y., Li, C., Jia, X., Meng, M.Q.-H.: A survey of the development of biomimetic intelligence and robotics. Bio. Intel. Robot. 1, 100001 (2021)

    Google Scholar 

  3. Lobato-Rios, V., Ramalingasetty, S.T., Özdil, P.G., Arreguit, J., Ijspeert, A.J., Ramdya, P.: NeuroMechFly, a neuromechanical model of adult Drosophila melanogaster. Nat. Methods 19(5), 620–627 (2022)

    Google Scholar 

  4. Yu, J., Tan, M., Chen, J., Zhang, J.: A survey on CPG-inspired control models and system implementation. IEEE Trans. Neural Netw. Learn. Syst. 25(3), 441–456 (2013)

    Google Scholar 

  5. Kinugasa, T., Sugimoto, Y.: Dynamically and biologically inspired legged locomotion: a review. J. Robot. Mechatron. 29(3), 456–470 (2017)

    Google Scholar 

  6. Ryczko, D., Simon, A., Ijspeert, A.J.: Walking with salamanders: from molecules to biorobotics. Trends Neurosci. 43(11), 916–930 (2020)

    Google Scholar 

  7. Kimura, H., Fukuoka, Y., Cohen, A.H.: Biologically inspired adaptive walking of a quadruped robot. Philos. Trans. R. Soc. A 365, 153–170 (2007)

    Google Scholar 

  8. Kimura, H., Fukuoka, Y., Cohen, A.H.: Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Int. J. Robot. Res. 26(5), 475–490 (2007)

    Google Scholar 

  9. Maufroy, C., Kimura, H., Takase, K.: Towards a general neural controller for quadrupedal locomotion. Neural Netw. 21, 667–681 (2008)

    Google Scholar 

  10. Owaki, D., Horikiri, S., Nishii, J., Ishiguro, A.: Tegotae-based control produces adaptive inter- and intra-limb coordination in bipedal walking. Front. Neurorobot. 15, 629595 (2021)

    Google Scholar 

  11. Zhu, W., Guo, X., Owaki, D., Kutsuzawa, K., Hayashibe, M.: A survey of sim-to-real transfer techniques applied to reinforcement learning for bioinspired robots. IEEE Trans. Neural Netw. Learn. Syst. 34, 9552429 (2021)

    Google Scholar 

  12. Koseki, S., Kutsuzawa, K., Owaki, D., Hayashibe, M.: Multimodal bipedal locomotion generation with passive dynamics via deep reinforcement learning. Front. Neurorobot. 16, 1054239 (2023)

    Google Scholar 

  13. Sun, T., Xiong, X., Dai, Z., Owaki, D., Manoonpong, P.: A comparative study of adaptive interlimb coordination mechanisms for self-organized robot locomotion. Front. Robot. AI 8, 638684 (2021)

    Google Scholar 

  14. Golubitsky, M., Stewart, I., Buono, P.-L., Collins, J.: A modular network for legged locomotion. Phys. D 115(1–2), 56–72 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Golubitsky, M., Stewart, I., Buono, P.-L., Collins, J.: Symmetry in locomotor central pattern generators and animal gaits. Nature 401(6754), 693–695 (1999)

    Google Scholar 

  16. Buono, P.-L., Golubitsky, M.: Models of central pattern generators for quadruped locomotion I. Primary gaits. J. Math. Biol. 42(4), 291–326 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Buono, P.-L.: Models of central pattern generators for quadruped locomotion II. Secondary gaits. J. Math. Biol. 42(4), 327–346 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Stewart, I.: Spontaneous symmetry-breaking in a network model for quadruped locomotion. Int. J. Bifurcat. Chaos 27(14), 1730049 (2017)

    MathSciNet  MATH  Google Scholar 

  19. In, V., Kho, A., Longhini, P., Neff, J.D., Palacios, A., Buono, P.-L.: Meet ANIBOT: the first biologically-inspired animal robot. Int. J. Bifurcat. Chaos 32(01), 2230001 (2022)

    MathSciNet  Google Scholar 

  20. Barrio, R., Lozano, Á., Rodríguez, M., Serrano, S.: Numerical detection of patterns in CPGs: gait patterns in insect movement. Commun. Nonlinear Sci. 82, 105047 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Dutta, S., Parihar, A., Khanna, A., Gomez, J., Chakraborty, W., Jerry, M., Grisafe, B., Raychowdhury, A., Datta, S.: Programmable coupled oscillators for synchronized locomotion. Nat. Commun. 10(1), 1–10 (2019)

    Google Scholar 

  22. Wang, Y., Xue, X., Chen, B.: Matsuoka’s CPG with desired rhythmic signals for adaptive walking of humanoid robots. IEEE Trans. Cybern. 50(2), 613–626 (2018)

    Google Scholar 

  23. Liu, G.L., Habib, M.K., Watanabe, K., Izumi, K.: Central pattern generators based on Matsuoka oscillators for the locomotion of biped robots. Artif. Life Robot. 12(1), 264–269 (2008)

    Google Scholar 

  24. Fukui, T., Matsukawa, S., Habu, Y., Fukuoka, Y.: Gait transition from pacing by a quadrupedal simulated model and robot with phase modulation by vestibular feedback. Robotics 11(1), 3 (2021)

    Google Scholar 

  25. Espinal, A., Rostro-Gonzalez, H., Carpio, M., Guerra-Hernandez, E.I., Ornelas-Rodriguez, M., Puga-Soberanes, H., Sotelo-Figueroa, M.A., Melin, P.: Quadrupedal robot locomotion: a biologically inspired approach and its hardware implementation. Comput. Intel. Neurosci. (2016). https://doi.org/10.1155/2016/5615618

    Article  Google Scholar 

  26. Zhong, G., Chen, L., Jiao, Z., Li, J., Deng, H.: Locomotion control and gait planning of a novel hexapod robot using biomimetic neurons. IEEE Trans. Control Syst. Technol. 26(2), 624–636 (2017)

    Google Scholar 

  27. Wang, B., Zhang, K., Yang, X., Cui, X.: The gait planning of hexapod robot based on CPG with feedback. Int. J. Adv. Robot. Syst. 17(3), 1729881420930503 (2020)

    Google Scholar 

  28. Liu, J., Tong, Y., Liu, J.: Review of snake robots in constrained environments. Robot. Auton. Syst. 141, 103785 (2021)

    Google Scholar 

  29. Wu, X., Ma, S.: Neurally controlled steering for collision-free behavior of a snake robot. IEEE Trans. Control Syst. Technol. 21(6), 2443–2449 (2013)

    Google Scholar 

  30. Qiao, G., Zhang, Y., Wen, X., Wei, Z., Cui, J.: Triple-layered central pattern generator-based controller for 3D locomotion control of snake-like robots. Int. J. Adv. Robot. Syst. 14(6), 1729881417738101 (2017)

    Google Scholar 

  31. Manzoor, S., Khan, U., Ullah, I.: Serpentine and rectilinear motion generation in snake robot using central pattern generator with gait transition. Iran J. Sci. Technol. Trans. Electr. Eng. 44(3), 1093–1103 (2020)

    Google Scholar 

  32. Zhu, Y., Zhou, S., Gao, D., Liu, Q.: Synchronization of non-linear oscillators for neurobiologically inspired control on a bionic parallel waist of legged robot. Front. Neurorobotics 13, 59 (2019)

    Google Scholar 

  33. Liu, X., Iwasaki, T.: Design of coupled harmonic oscillators for synchronization and coordination. IEEE Trans. Autom. Control 62(8), 3877–3889 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Zhao, J., Iwasaki, T.: Orbital stability analysis for perturbed nonlinear systems and natural entrainment via adaptive Andronov-Hopf oscillator. IEEE Trans. Autom. Control 65(1), 87–101 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Kohannim, S., Iwasaki, T.: Design of coupled Andronov-Hopf oscillators with desired strange attractors. Nonlinear Dyn. 100(2), 1659–1672 (2020)

    MATH  Google Scholar 

  36. Futakata, Y., Iwasaki, T.: Entrainment to natural oscillations via uncoupled central pattern generators. IEEE Trans. Autom. Control 56(5), 1075–1089 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Wu, A., Iwasaki, T.: Pattern formation via eigenstructure assignment: general theory and multi-agent application. IEEE Trans. Autom. Control 63(7), 1959–1972 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Rowat, P.F., Selverston, A.I.: Modeling the gastric mill central pattern generator of the lobster with a relaxation-oscillator network. J. Neurophysiol. 70(3), 1030–1053 (1993)

    Google Scholar 

  39. Tani, J., Qiu, J., Yamaguchi, E.: Emergence of the rhythmic movement of a dragonfly wing model. JSME Int. J. Ser. C 41(4), 689–694 (1998)

    Google Scholar 

  40. Dutra, M.S., de Pina Filho, A.C., Romano, V.F.: Modeling of a bipedal locomotor using coupled nonlinear oscillators of Van der Pol. Biol. Cybern. 88(4), 286–292 (2003)

    MATH  Google Scholar 

  41. Liu, C., Chen, Q., Zhang, J.: Coupled Van Der Pol oscillators utilised as central pattern generators for quadruped locomotion, pp. 3677–3682

  42. Jasni, F., Shafie, A.A.: Van Der Pol central pattern generator (VDP-CPG) model for quadruped robot, pp. 167–175

  43. Yu, H., Gao, H., Ding, L., Li, M., Deng, Z., Liu, G.: Gait generation with smooth transition using CPG-based locomotion control for hexapod walking robot. IEEE T. Ind. Electron. 63(9), 5488–5500 (2016)

    Google Scholar 

  44. Yu, H., Gao, H., Deng, Z.: Enhancing adaptability with local reactive behaviors for hexapod walking robot via sensory feedback integrated central pattern generator. Robot. Auton. Syst. 124, 103401 (2020)

    Google Scholar 

  45. Zaier, R., Eldirdiry, O.: Legged robot design and Van der Pol oscillator based control approach. Int. J. Model. Identif. 38(3–4), 282–290 (2021)

    Google Scholar 

  46. Barron-Zambrano, J.H., Torres-Huitzil, C.: Two-phase GA parameter tunning method of CPGs for quadruped gaits, pp. 1767–1774

  47. Li, W., Chen, W., Wu, X., Wang, J.: Parameter tuning of CPGs for hexapod gaits based on genetic algorithm, pp. 45–50

  48. Ausborn, J., Snyder, A.C., Shevtsova, N.A., Rybak, I.A., Rubin, J.E.: State-dependent rhythmogenesis and frequency control in a half-center locomotor CPG. J. Neurophysiol. 119(1), 96–117 (2018)

    Google Scholar 

  49. Aminzare, Z., Srivastava, V., Holmes, P.: Gait transitions in a phase oscillator model of an insect central pattern generator. SIAM J. Appl. Dyn. Syst. 17(1), 626–671 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Song, Z., Xu, J., Zhen, B.: Multitype activity coexistence in an inertial two-neuron system with multiple delays. Int. J. Bifurcat. Chaos 25(13), 1530040 (2015)

    MathSciNet  MATH  Google Scholar 

  51. Song, Z., Zhen, B., Hu, D.: Multiple bifurcations and coexistence in an inertial two-neuron system with multiple delays. Cogn. Neurodynamics 14(3), 359–374 (2020)

    Google Scholar 

  52. Yao, S., Ding, L., Song, Z., Xu, J.: Two bifurcation routes to multiple chaotic coexistence in an inertial two-neural system with time delay. Nonlinear Dyn. 95(2), 1549–1563 (2019)

    MATH  Google Scholar 

  53. Dhamala, M., Jirsa, V.K., Ding, M.: Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92(7), 074104 (2004)

    Google Scholar 

  54. Owaki, D., Kano, T., Nagasawa, K., Tero, A., Ishiguro, A.: Simple robot suggests physical interlimb communication is essential for quadruped walking. J. R. Soc. Interface 10(78), 20120669 (2013)

    Google Scholar 

  55. Owaki, D., Ishiguro, A.: A quadruped robot exhibiting spontaneous gait transitions from walking to trotting to galloping. Sci. Rep. 7(1), 1–10 (2017)

    Google Scholar 

  56. Patrick, S.K., Noah, J.A., Yang, J.F.: Interlimb coordination in human crawling reveals similarities in development and neural control with quadrupeds. J. Neurophysiol. 101(2), 603–613 (2009)

    Google Scholar 

  57. Zhang, L., Stepan, G.: Bifurcations in basic models of delayed force control. Nonlinear Dyn. 99, 99–108 (2020)

    MATH  Google Scholar 

  58. Molnar, T.G., Dombovari, Z., Insperger, T., Stepan, G.: On the analysis of the double Hopf bifurcation in machining processes via centre manifold reduction. Proc. R. Soc. A 473, 20170502 (2017)

    MathSciNet  MATH  Google Scholar 

  59. Kadar, F., Stepan, G.: Nonlinear dynamics and safety aspects of pressure relief valves. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08484-w

    Article  MATH  Google Scholar 

  60. Song, Y., Xu, J., Zhang, T.: Bifurcation, amplitude death and oscillation patterns in a system of three coupled van der Pol oscillators with diffusively delayed velocity coupling. Chaos 21(2), 023111 (2011)

    MathSciNet  MATH  Google Scholar 

  61. Zhang, S., Xu, J., Chung, K.-W.: Stability analysis of alternating wave solution in a Stuart-Landau system with time delay. Commun. Nonlinear Sci. 99, 105808 (2021)

    MathSciNet  MATH  Google Scholar 

  62. Ohgane, K., Ei, S.-I., Mahara, H.: Neuron phase shift adaptive to time delay in locomotor control. Appl. Math. Model. 33(2), 797–811 (2009)

    MathSciNet  MATH  Google Scholar 

  63. Verdaasdonk, B., Koopman, H.F., Van der Helm, F.C.: Resonance tuning in a neuro-musculo-skeletal model of the forearm. Biol. Cybern. 96(2), 165–180 (2007)

    MATH  Google Scholar 

  64. Lu, Q., Wang, X., Tian, J.: A new biological central pattern generator model and its relationship with the motor units. Cogn. Neurodynamics 16(1), 135–147 (2022)

    Google Scholar 

  65. Zhu, Y., Wu, Y., Liu, Q., Guo, T., Qin, R., Hui, J.: A backward control based on σ-Hopf oscillator with decoupled parameters for smooth locomotion of bio-inspired legged robot. Robot. Auton. Syst. 106, 165–178 (2018)

    Google Scholar 

  66. Liu, L., Zhang, C.: Dynamic properties of VDP-CPG model in rhythmic movement with delay. Math. Biosci. Eng. 17(4), 3190–3202 (2020)

    MathSciNet  MATH  Google Scholar 

  67. Song, Z., Xu, J.: Self-/mutual-symmetric rhythms and their coexistence in a delayed half-center oscillator of the CPG neural system. Nonlinear Dyn. 108(3), 2595–2609 (2022)

    Google Scholar 

  68. Song, Z., Huang, X., Xu, J.: Spatiotemporal pattern of periodic rhythms in delayed Van der Pol oscillators for the CPG-based locomotion of snake-like robot. Nonlinear Dyn. 110, 3377–3393 (2022)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China under Grant Nos. 12172212 and 11932015 and the Fundamental Research Funds for the Central Universities (No. 22120220588).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Zhu, J. & Xu, J. Gaits generation of quadruped locomotion for the CPG controller by the delay-coupled VDP oscillators. Nonlinear Dyn 111, 18461–18479 (2023). https://doi.org/10.1007/s11071-023-08783-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08783-2

Keywords

Navigation