
Nonlinear Dyn (2023) 111:22137–22151
https://doi.org/10.1007/s11071-023-08739-6

ORIGINAL PAPER

Machine learning-based state maps for complex dynamical
systems: applications to friction-excited brake system
vibrations

Charlotte Geier · Saïd Hamdi ·
Thierry Chancelier · Philippe Dufrénoy ·
Norbert Hoffmann · Merten Stender

Received: 3 November 2022 / Accepted: 9 July 2023 / Published online: 21 July 2023
© The Author(s) 2023

Abstract In this work, a purely data-driven approach
to mapping out the state of a dynamical system over
a set of chosen parameters is presented and demon-
strated along a case study using real-world experimen-
tal data from a friction brake system. Complex engi-
neering systems often exhibit a rich bifurcation behav-
ior with respect to one or several parameters, which
is difficult to grasp using experimental approaches or
numerical simulations. At the same time, the grow-
ing need for energy-efficient machines that can oper-
ate under varying or extreme environmental conditions
also calls for a better understanding of these systems to
avoid critical transitions. The proposed method com-
bines machine learning techniques with synthetic data
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augmentation to create a complete state map for a
dynamical system. First, a machine learning model is
trained on experimental data, picking up hidden mech-
anisms and complex parametric relations of the under-
lying dynamical system. The model is then exploited
to assess the state of the system for a set of synthet-
ically generated data to obtain a state map over the
complete space spanned by the chosen parameters. In
addition, an extension of the concept to a probability
state map is introduced. The results indicate that the
proposed method can uncover hidden variables which
drive dynamical transitions between different states of
a system that were previously inaccessible.

Keywords Bifurcations · Data-driven models · Com-
plex vibrations · Nonlinear dynamics · Convolutional
neural network

1 Introduction

Real-world engineering systems typically consist of
many components accompanied by a large number of
parameters and degrees of freedom, which give rise
to complex emergent dynamical behavior. The anal-
ysis of structural vibrations remains challenging in
many fields of engineering today, not only because
large-scale numerical methods exhaust the computa-
tional resources but also because nonlinear and damp-
ing phenomena [1] pose difficulties to our modeling
and prediction capabilities [2,3]. The dynamics of these
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machines often depend on a large number of parameters
[4,5], such as loading conditions or uncertain compo-
nents [6], whose change during the operation or the
lifetime of the system can cause bifurcations or critical
regime shifts [3,7]. It is crucial for the safe operation of
complexmachines to analyze andunderstand themech-
anisms behind parametrically driven regime changes to
prevent critical transitions into unwanted or even dan-
gerous points of operation. In the following, we refer
to parameters when reasoning about different external
loads imposed by the operation and secondary changes
to system component properties, such as reduced stiff-
ness values resulting from higher temperatures caused
by heavy loading conditions. Our approach is gener-
ically applicable to many high-dimensional nonlinear
dynamical systems. In this paper, automotive disk brake
systems and their rich friction-induced vibrations are
taken as illustrative exemplary application case.

Today, the main approaches to understanding the
rich nonlinear dynamics of machines are either of
experimental nature or rooted in simulations based
on first principles of physics [5]. Some engineer-
ing domains rely primarily on experimental tests for
research anddesignpurposes [3],which are often costly
and time-consuming [8]. Since only a limited num-
ber of tests can be performed for some characteristic
points of operation, the information on the state of the
dynamical system in the high-dimensional parameter
space is only available at specific points. This sparse
experimental sampling of the parameter space could
lead to unobserved phenomena in the system dynam-
ics for unseen parameters. An example of this aspect
is depicted in Fig. 1: The dynamical system under con-
sideration exhibits unstable behavior for a given set
of parameters that is not covered by experimental data.
The second common approach to analyzing the dynam-
ics of a sizable dynamical system is rooted in numer-
ical simulation. High-dimensional numerical models
and complexmulti-scale,multi-physics simulations are
often necessary to represent the dynamics. Large-scale
multi-physics simulations of a system are computa-
tionally expensive and have a significant climate foot-
print. Because experimental tests are time-consuming
and expensive, and numerical models are often compu-
tationally very costly, obtaining a finely-grained state
map for a dynamical system is complex with current
methods. Our research aims at providing a time- and
cost-efficient way of generating a high-resolution state
map as a post-processing technique for either experi-

mental or numerical results. On the example of auto-
motive disk brake systems, a detailed description of
state-of-the-art methods, and our contribution, is given
in the following.

Friction-induced vibrations (FIV) of vehicles, for
example, automotive or aircraft braking systems, rep-
resent a family of complex dynamical systems [6,9,10]
whose dynamics depend on many parameters and
parameter inter-dependencies [9,11,12], as well as
being sensitive to parameter variations [10,13]. Several
mechanisms for explaining FIV have been proposed in
[9,11,14,15], as friction brake systems have seen a rich
research history in the last decades [9–12,15–17]. A
detailed review of these can be found in [9] and [18].
However, FIV are notoriously difficult to grasp experi-
mentally, because of the limited repeatability of results
[9,13], which is likely due to the sensitive dependence
of the system on small-scale parameter variations [7].
Still, expensive experiments [9,12] remain a crucial
pillar in the analysis of brake systems and validation
of simulation models. Because simplified models that
neglect the effects of time-varying, uncertain parame-
ters are often not accurate enough in their predictions
[7,13,16,19], the brake system models often involve
large-scale finite elementmodels and elaborate compu-
tational schemes such as complex eigenvalue analysis
[9,10,12,17] and transient analysis [10,11,14,17,20].
As complex eigenvalue analysis misses the effects of
nonlinearities [9,10], a nonlinear transient analysis is
often required to study the impact of parameter varia-
tions on the stability of the system [9,11,14,17,20]. In
all these methods, considerable computational times
remain an issue [9,11,14,16,17,20,21], which poses
a challenge to performing extensive parameter stud-
ies [16] for realistic loading conditions seen during
customer driving. Therefore, current research efforts
focus on advancing methods to deal with uncertainties
and nonlinear effects, increasing model accuracy and
decreasing computation time, see [9–11,16,17,20].

As both experimental analysis and modeling of
brake system remain challenging, obtaining a detailed
state map for a brake systemwith state-of-the-art meth-
ods, for example, from measured data or numerical
simulation alone, is currently very expensive. There-
fore, the system state, in the simplest form given by the
binary indication of the occurrence of high-amplitude
vibrations, is only known for a few points of operation
and unknown in most of the high-dimensional (load-
ing) parameter space. In this work, we propose a purely
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Fig. 1 Illustration of a data-based state map. A data-based state
map for a complex dynamical system illustrates the system states
within a space spanned by two predefined parameters. Each point
on the map represents one data sample and is color-coded to the
state of the system for a given sample. Darker colored dots mark

the sparse information available from experiments; lighter col-
ors represent a possible fill-in of the white spaces that will be
obtained with the method proposed in this work. It is possible
that “islands of instability” exist, which are not captured by the
data gained from experiments

data-based approach to obtaining a fine-grained map,
which is computationally less expensive and requires
only a limited number of experimental results. Data-
driven methods have recently evolved to complement
conventional modeling methods [22]. Neural network
models trained on large data sets do not rely on suitable
reduced order modeling [23] or quasi-static dynamic
observations and can interpolate within the input value
range they have been trained in, making these models
ideal candidates for the computation of statemaps from
sparse measurements.

In thiswork,wepropose anew, data-driven approach
for approximating the functional behavior of real-
world machines using input–response relationships
from experimental observations to generate a machine
learning-based statemap. First, a neural networkmodel
is trained with real-world measurement data to predict
the system state in a specific loading and parameter
configuration. If this data-driven modeling is success-
ful, the neural network model has picked up complex
parametric relations and hidden mechanisms that were
activated during testing, but are not necessarily dis-
cernible to a human or accessible via classical system
identification. The trained model can then be queried
for the system state for new conditions and parameters

beyond those tested experimentally. A set of synthetic
input data is generated to fill the white spots in the
parameter space and fed into the neural networkmodel.
The predictions of the model for these new points can
be used to build a data-based state map over the “com-
plete parameter space” in a very cost- and time-efficient
manner, even if the parameter spacewas originally only
sparsely sampled through measurement data, as illus-
trated in Fig. 1. The method is demonstrated with real-
world experimental data from a friction brake obtained
atHitachiAstemo inDrancy, France. This complex sys-
tem contains rich dynamical behavior that has not been
fully understood until today [7,10,11,13,24], making
it an interesting case study for the proposed method.

2 Methods

A novel and universal way of obtaining a state map
illustrating the state of a dynamical system over a space
spanned by a chosen set of parameters in a purely data-
based fashion is proposed in this work. This section
gives a schematic overview of the process, followed
by more detailed presentations of the underlying real-
world measurement data, the involved machine learn-
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ing process, necessary data preparation, and the data
augmentation procedure.

2.1 Schematic overview

The method proposed in this work can be split into
two stages, namely a machine learning model training
phase and a state map computation phase, as illustrated
in Fig. 2. In the first phase, a neural network model
is trained and validated using real-world experimen-
tal data from brake testing to predict the system state
for a given set of input data. In the second phase, the
model is queried for the system state using syntheti-
cally generated data to fill up the parameter space that is
only sparsely sampled through the experimental data.
Physics-consistent augmentation of the measurement
data is the essential piece to this undertaking. This way,
the model can be used to predict the state of the system
over the entire range of parameter combinations, ulti-
mately yielding a state map of the complete parameter
space.

During the first phase, a neural network model is
trained with experimental data obtained from a test
rig at Hitachi Astemo France to represent complex
input–output relationships between a set of measured
quantities and a system state, here encoded in form
of a binary squeal/no-squeal label. In preparation for
the machine learning application, the raw data is pro-
cessed using a sliding window method and split into
a training and validation set for neural network model
training and validation, as described in Sect. 2.2. Dur-
ing the data processing, binary squeal/no-squeal labels
are assigned to each data sample from machine learn-
ing input/output data. A neural network model is then
trained and validated with the processed real-world
data, see Sect. 2.3. When the training is successful, the
neural network model has learned complex parametric
relations in terms of a mapping from input to output
data that is based on features of the high-dimensional
input data. These features can be any property of the
input data or a combination thereof, and as these are
not directly discernible to the user, they are referred to
as “hidden.” The model can predict whether or not a
section of a braking is noisy for a given set of input
parameters. Then, the obtained model can be deployed
to predict the system state for parameter sets it has not
seen before.

In the second phase, the trainedmodel is exploited to
compute state maps based on physics-consistent vari-
ations of the experimental data. The two-dimensional
state map requires a featurization of the input samples
with two basis parameters that form the two axes of the
state map. As the parameter space spanned by the two
chosen parameters is sampled only sparsely through the
available measurement data, additional data has to be
generated. The sparse measurement data is augmented
in a physics-consistent manner to fill the parameter
space, as described in Sect. 2.4. This synthetic data is
fed into the machine learning model that outputs the
system state in a binary label form, namely silent or
noisy, for each new, synthetically generated data sam-
ple. These predicted labels are recorded in the two-
dimensional parameter space, forming a purely data-
based state map. The following sections are dedicated
to describing the process in more detail.

2.2 Data acquisition

The data used in this work is real-world measurement
data obtained from a dynamometer test rig at Hitachi
Astemo. A standard disk brake system with prototype-
material brake pads is tested. The test setup is depicted
in Fig. 3, including the microphone location for record-
ing the brake noise 50cm away from the axle. Themea-
surements are taken in a temperature- and humidity-
controlled environment. The load on the brake system
originating from the vehicle chassis is simulated by the
surrounding structure.

The brake testing is performed according to the
industry standardnoise, vibration, andharshness (NVH)
test procedure SAE-J2521 [25], which consists of a set
of initial break-in and burnishing tests, after which sev-
eral drag and stop brakings are carried out. The brake
system is subjected to a series of temperature and veloc-
ity ramps to cover a wide range of braking scenarios.
Figure4 shows an overview of the SAE-J2521 data
channels used in this work, namely brake pressure p,
rotational velocity vrot, brake torque M , friction coef-
ficient µ, rotor temperature Trot, ambient temperature
Tamb, relative ambient humidity Hrel, and noise level.
The friction coefficient µ is a derived quantity that is
computed by the test bench directly using a Coulomb-
type frictionmodel assumption, i.e., the linear relation-
ship between normal force and resulting friction force
via the friction value. A total of 2498 brakings with
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Fig. 2 Generation of a machine learning-based state map. A
schematic overview of the method proposed in this paper, in
which a two-dimensional state map representing the state of a
dynamical system over a chosen set of features is computed in a

purely data-driven way. The process can be split into two phases,
a neural network model training phase, and a state map compu-
tation phase

Fig. 3 Test rig. The dynamometer test rig at Hitachi Astemo
France, which was used to record the data used in this work. A
disk brake system consisting of disk, caliper, bracket, and brake
pads is tested in a controlled environment, where the impact of

the vehicle chassis is simulated by the surrounding structure. A
microphone is located close to the disk for recording the brake
noise. Additional verification of the noise is given by accelerom-
eters located on the caliper

36% noise occurrence are available. An overview of
the measurement channels and value ranges is given
in Table 1. The first seven measurement channels are
recorded with a frequency of 100Hz, while the sound
pressure for the brake noise detection is recorded with
a microphone and accelerometer at 51.2kHz.

During the brake tests, noise detection is carried out
with the microphone signal using a dBA threshold on
the peak value of the sound pressure level (SPL) and the
average spectrum. Tonal noises in the frequency range
of 1 to 12kHz and more than 70dBA are labeled brake
noises. The detected noise is validated using an addi-
tional accelerometer which measures the vibrations on
the brake directly. Only if a noise is found in both sig-

nals, it is considered valid. For the purpose of this work,
the noise start time and duration were recorded addi-
tionally to the standard time of maximum SPL for each
braking. This procedure allows for more precise local-
ization of the noise occurrence within a given braking
and facilitates a straightforward label generation.

The recorded raw data is submitted to some prepro-
cessing for the machine learning application, as illus-
trated in Fig. 5, for one exemplary braking with eight
measurement channels. For each time instance, the sys-
tem state is labeled either squealing or non-squealing,
generating a time series of binary labels encoding the
system state as 0—silent, or 1—noisy, which replaces
the sound pressure level of the raw data. Additionally,
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Fig. 4 Available data. Overview of the measurement data from
2498 brakings recorded with the industry standard SAE-J2521
[25] test procedure. The test protocol consists of a series of tem-
perature ramps combined with different load cases, i.e., various
velocity and brake pressure conditions. The recorded noise lev-

els are also indicated. For clarity, maximum values are reported
for the first five channels, and mean values for ambient temper-
ature and relative humidity, while the noise-level information is
limited to the number of available frequencies

Table 1 Summary of experimental data channels and value ranges

Data channel Symbol Unit Min. value Max. value

Maximum brake pressure per braking p [bar] 2.6 51.4

Rotational velocity at start of braking vrot [1/min] 23.0 624.5

Maximum brake torque in braking M [Nm] 33.0 1317.0

Maximum friction coefficient in braking µ [-] 0.0 1.5

Maximum rotor temperature in braking Trot [◦C] 52.0 303.2

Mean ambient temperature in braking Tamb [◦C] 18.5 19.5

Mean relative humidity in braking Hrel [%] 46 63
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Fig. 5 Data processing. The data-processing procedure consists
of generating a binary label classifying the system state as either
“0” or “1” for silent or squealing, respectively, and a sliding win-
dow approach for generating equal-sized samples. The process

is illustrated for one exemplary braking. The final input–output
data for our machine learning models consists of 9896 samples,
each of which is 4 s long and has a binary label denoting the
system state as either squealing or non-squealing

the data is split into equally-sizedwindows using a slid-
ingwindow approachwith awindow length of 400 time
steps, or 4 s and an overlap of 50%. To determine an
optimal sliding window size, different variants in the
range of 2 to 10s were tested. The chosen option of 4-s
samples was found to yield the best predictions results,
balancing the number of generated samples,which here
increases with a smaller sample size, with the time his-
tory included in each sample, which increases with a
larger sample size. To avoid data leakage between the
training and test set and a clean training procedure, the
original set is split into five folds of training and test
(validation) data at an 80–20 split before the sliding
window is performed. A stratified split is implemented
to ensure an equal class distribution between training
and test data. The entire processed data consists of 9896
samples in total. In the final preparation step, the chan-
nel containing the time-distributed labels is condensed
from 400 time steps down to one value. A sample is
given the label “1” for noisy if a squeal is indicated
within a given sample, that is, if there is a noisy sec-

tion within the 4-s interval, or “0” otherwise. The final
input/output data consist thus of sets of 4-s samples,
seven channel samples input with a binary label out-
put. The noise occurrence of 20% in the processed data
set of smaller samples differs from the original noise
occurrence due to the sliding window processing.

An overview of the experimental data before and
after the processing is given in Table 2, indicating the
value range for each data channel. The fivefold 80:20
data split for the neural network modeling results in
five training–test data pairs, where each training split
contains 7975 samples and each test split consists of
1921 samples, each with a noise ratio of 20%±1%,
respectively.

2.3 Neural network modeling

The neural network modeling task at hand is a binary
classification task, where the neural network model
classifies the system state in terms of a binary label of
“0” or “1” for silent or noisy for a given input sample.
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Table 2 Summary of processed data characteristics. The ratio
of noisy samples varies from raw data to processed samples due
to the slicing during the sliding window processing routine

Raw data Processed data

Total number of samples 2498 9896

Noise ratio 36% 20%

One input sample consists of 4 s or 400 time steps of a
multi-variate time series with seven channels given by
the recorded measurement channels brake pressure p,
rotational velocity vrot, brake torque M , friction coef-
ficient µ, rotor temperature Trot, ambient temperature
Tamb, and relative ambient humidity Hrel. A convolu-
tional neural network (CNN) is trained with the exper-
imental data using a binary cross-entropy loss func-
tion. The neural network modeling is implemented in
Python using the machine learning framework Tensor-
Flow. Several hyperparameter studies are performed
to obtain a suitable model for the given prediction
task, for example, testing different numbers of hidden
layers. Additionally, k-fold cross-validation with five
folds is carried out for each set of hyperparameters to
ensure model performance does not depend on a lucky
training–test data split. It is also possible to retain a
certain amount of data from the training for indepen-
dent model evaluation, but since the experimental data
set is already relatively small, k-fold cross-validation is
deemed amore suitablemethod in this case. A 1DCNN
with two hidden layers, 64 filters per layer, and a ker-
nel size of 3 is found to attain the highest classification
scores.

After the training is completed, the model is evalu-
ated using the Matthews correlation coefficient (MCC)
[26] to obtain a more tangible measure of model per-
formance. The MCC is defined as

MCC= T P · T N−FP · FN√
(T P+FP)(T P+FN )(T N+FP)(T N+FN )

∈ [−1, 1], (1)

where TP, TN, FP, and FN denote true positives, true
negatives, false positives, and false negatives, respec-
tively. This performancemeasure accounts for the class
imbalance between silent and noisy samples and ranges
from −1 to 1, indicating a perfect negative and perfect
positive correlation between the true and the predicted

Fig. 6 Model training performance. The performance of the
trained CNN, which is used for further computations, is illus-
trated by the confusion matrix on the test data set. The labels
predicted by the CNN are shown against the ground-truth labels;
values are given in % of the total number of samples in the
test set. The model achieves a MCC = 0.73±0.02 (accuracy
of 90.6%±0.01) for the test data set

labels, respectively. Due to its value range, the MCC is
not usable directly as a loss function.

Theneural networkmodel deployed for computation
of the state map in the following achieves an MCC =
0.73±0.02 (accuracy of 90.6%±0.01) on the test data
set. The confusion matrix obtained with the said model
on the test data set is shown in Fig. 6, where the labels
predicted by theCNNare plotted against the true labels.
For better readability, the values are given in percent of
the total number of samples in the test set.

2.4 Physics-consistent data augmentation

This work aims at generating a complete 2D state map
that represents the system state over a space spanned
by two chosen parameters to obtain a high measure of
abstraction. The first step in the data augmentation pro-
cess is thus the choice of an appropriate featurization of
the data samples from a seven-dimensional time series
into two parameters. This step is necessary to visual-
ize the high-dimensional data set in a two-dimensional
space. Here, the maximum rotational velocity vrot,max

and maximum brake pressure pmax per 4-s sample time
series are chosen, which represent two characteristics
of the macroscopic load conditions on the brake sys-
tem. Any other measure of the samples, such as mean
values, derivatives of the measurement time series, or
values from the remaining measurement channels, for
example, the temperatures, would be conceivable, as
well as an extension to more than three dimensions.
A purely measurement data-based state map results
from this featurization. Figure7 shows the result of the
featurization of the test data set, illustrating that the
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parameter space spanned by vrot,max and pmax is only
sparsely sampled by experimental data. Blue squares
denote non-squealing samples, and red dotsmark noisy
samples.

To fill in thewhite spaces in this initial, very sparsely
populated state map obtained from the measurement
data, synthetic data samples are generated that fill up
the 2D parameter space. The new data is fed into the
machine learning model for state prediction. The addi-
tional data is generated from a base sample taken from
experimental data, which is subjected to a physics-
consistent data augmentation, as depicted in Fig. 7. To
beginwith, a base sample is chosen from the test data set
of the processed experimental data, ensuring the neural
network model predicted the system state for the base
sample correctly during the model testing phase. The
time-series values of this base sample are varied sys-
tematically by adding and subtracting constant values
to the time series in the two featurized dimensions vrot
and p until the parameter space is filled up in a grid-
like fashion. To remain consistent with the physics of
the system, the brake torque M is varied along with
the brake pressure p. All other parameters such as the
friction coefficient µ, rotor temperature Trot, ambient
temperature Tamb, and relative ambient humidity Hrel

are kept as in the original sample to ensure the statemap
represents the system stability over a variation of the
chosen parameterization instead of other hidden vari-
ables.

The data augmentation process is performed care-
fully, with the laws of physics and information from
the experimental data in mind. Nonetheless, there can
be no guarantee that our newly generated data is phys-
ically meaningful, especially for points of the state
map far away from the base sample. However, there
are several points in favor of our data augmentation
method being consistent, which we will be elaborated
on in the following. First, the SAE-J2521 procedure is
parameterized to contain repeating brakings with the
same brake pressure and rotational velocity profiles,
while systematically varying the overall pressure and
velocity levels and the (initial) rotor temperature. The
imposed temperature ramps are shown in Fig. 4. As a
result, brakings with similar profiles but different value
levels for each channel exist. Second, basic physical
principles are accounted for in our data augmentation
method since the brake torque is varied along with the
brake pressure. The range of brake pressure and torque
pressure is computed over the data set, and the torque is

varied by the same relative amount as the pressure. The
main physical effect underlying our data is therefore
accounted for. Any secondary effects such as a greater
rise in rotor temperaturewith a greater energy input due
to a greater brake torque are negligible locally because
the induced changes are small. There are data samples
in our experimental data set that support this hypothe-
sis, as shown in Fig. 8. Each subfigure shows two sam-
ples taken from our experimental data set. Figure8a
shows two samples with different rotational velocities,
where all other measurement channels are very similar.
Figure8b shows two samples with different brake pres-
sure, and, respectively, different brake torque, where
all other channels remain similar. Figure8c shows two
samples for which both quantities are varied, but the
remaining channels are similar. These three data sam-
ples illustrate that variations like the ones we are per-
forming in our data augmentation process do in fact
exist in our data set and that it is reasonable to believe
that our approach is physically meaningful.

Nevertheless, it can be assumed that the augmented
data is more meaningful closer to the base sample and
that the resulting state map is more reliable the smaller
the extent of the data augmentation. Improving the data
augmentation process and including some measure of
confidence in the final state maps are interesting and
important points for further research.

A matrix of 100 by 100 augmented samples is gen-
erated using our data augmentation procedure, which
densely fills up the parameter space spanned by the two
chosen features maximum rotational velocity vrot,max

and maximum brake pressure pmax, as shown in Fig. 7.
As the system state for these newly generated data sam-
ples is not known a priori, these are marked by gray
dots. In theory, it is possible to choose an arbitrarily
high number of samples to fill up the space arbitrarily
densely; however, the computational cost involved has
to be taken into consideration.

Finally, the trained CNN obtained in Sect. 2.3 is
queried for the system state for each sample in the aug-
mented data set. If the model has picked up the hidden
underlying dynamic mechanisms correctly, it can pre-
dict the system state for these synthetically generated
data samples, filling up thewhite spaces in the statemap
given by the experimental data alone. This way, a state
map over the entire parameter space is generated, as
illustrated in Fig. 2. The state map divides the param-
eter space into squealing and non-squealing sections
according to the binary label defined in the initial pre-
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Fig. 7 Data augmentation. The physics-consistent data aug-
mentation process forms the basis for the state map computa-
tion. First, a featurization of the full-scale data samples with
two parameters is chosen. In this case, the maximum rotational
velocity vrot,max and maximum brake pressure pmax for a given
4-s sample. Plotting the system state in form of blue dots for
non-squealing measurement samples and red squares for squeal-
ing samples over these two parameters yields a sparely sampled
state map. To fill in the blank spaces, a systematic variation of

the two parameters vrot,max and pmax is performed from one base
sample by adding constant values to the respective time series
vrot and p of the base sample. The other measurement channels
are kept at their initial time series to separate out the two chosen
parameters. However, to remain consistent with the physics of
the system, the brake torque M is varied along with the brake
pressure p. The result of the data augmentation process is a new,
synthetic set of input data for which the system state is not yet
known and thus illustrated by black dots in the right image

processing routine. Theoretically, it would be possible
to validate the obtained results by comparing the pre-
dictions of the MLmodel for specific vrot,max and pmax

to the known system state for the same value range
from the experimental data set. However, the results
presented in the next section indicate that a proper val-
idation requires the samples to match not only in terms
of vrot,max and pmax, but also in terms of hidden vari-
ables, which makes finding appropriate samples hard if
they even exist in the experimental database. Develop-
ing a sophisticated validation scheme is therefore left
for future work. Exemplary results are shown in the
following section.

The entire process from generating the augmented
data set to obtaining the state map can be repeated for
different base samples, generating as many state maps
as there are samples in the measurement data. By aver-
aging the binary system state overall computed state
maps, a probability state map can be computed, which

contains not only binary 0/1 labels but probability val-
ues between 0 and 1, which approximate the probabil-
ity of the system state to be squealing for a given set
of parameters, here pmax and vrot,max. This probability
state map is also presented in the next section.

3 Results

As explained in the previous section, the content of the
synthetically generated data set depends on the chosen
base sample. From a given data set, it is thus possible to
obtain as many state maps for a given system as there
are different base samples available within this frame-
work. It is found that the shape of the squealing/non-
squealing areaswithin a binary statemapdepends heav-
ily on the underlying base sample, as will be elaborated
on in the following.
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Fig. 8 Validation of the data augmentation procedure. Samples
taken from the experimental data set underline the validity of the
data augmentation method. In each subfigure, two experimental
data samples are shown that differ only in 8amaximum rotational

velocity vrot,max, 8b maximum brake pressure pmax and torque
Mmax, and 8c all of these dimensions, while the remaining vari-
ables are very similar

Figure9 shows two state maps, 9a and 9b, which
are generated from two base samples as indicated
by black stars in each subfigure. At a first glance,
the two base samples appear to be similar since they
are located closely together on the state map with
pmax,1 = 22.5bar, pmax,2 = 22.5bar, and vrot,max,1 =
78.51/min, vrot,max,2 = 78.81/min, and the system
state for both given samples is non-squealing. How-
ever, the resulting state maps look different. While the
first state map 9a shows only a small squealing area
for high brake pressures and low rotational velocity,
accompanied by another small squealing area around
pmax = 15bar and low rotational speed, the second one
9b not only connects these two areas but expands them
to higher rotational velocities and a small, disconnected
island of the squealing state appears at about pmax =
5bar and vrot,max = 1001/min. A closer look at the
two base samples, see 9c, reveals that the qualitative
dynamics of the system within the given 4-s intervals

are different.While the brake pressure and brake torque
decrease overall in sample one (illustrated by the dark
blue line), these two parameters increase in total in the
second sample (shown by the dashed light blue line),
and the peaks of the respective channels, though reach-
ing a similar maximum, are located at different times
in each sample. Additionally, the gradients of both the
friction coefficient and the disk temperature differ from
one sample to the other. Considering the differences in
the underlying hidden parameters in the two base sam-
ples, it is not surprising that the resulting state maps
appear unalike. On the contrary, this observation indi-
cates that the machine learning model has picked up
some hidden variables and features in the training pro-
cess and predicts the system state for a given sam-
ple based on a system understanding beyond a sim-
ple threshold on brake pressure and rotational velocity.
Otherwise, the state maps would be the same for the
same value range of pmax and vrot,max, independently
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Fig. 9 State maps from base samples with similar pmax and
vrot,max. Exemplary state maps (a) and b computed using two
different base samples c in the data augmentation process. The
location of the base sample in each state map is marked by a
black star. Red areas indicate the system state as “squealing,”
while blue areas indicate a non-squealing state. The two state
maps appear quite different, even though the base samples are

located closely together in the pmax and vrot,max parameter space.
Acloser look at the qualitatively very different dynamics between
sample 1 (dark blue line) and sample 2 (light blue, dashed line)
in (c) suggests that the neural network model has indeed picked
up hidden mechanisms and predicts the system state based on
a complex system understanding beyond a mere pressure and
velocity threshold

of the remaining dynamics that may be prominent in
the sample.

Following this reasoning, state maps generated with
two similar base samples, namely samples that exhibit
matching dynamics over time, should generate resem-
bling state maps for our method to be consistent. Fig-
ure10 shows that this is the case: The two base samples
in 10c not only share almost identicalmaximumparam-
eter values but also exhibit qualitatively very similar
dynamics over all measurement channels, and the cor-
responding statemaps in 10a and 10bmatchwell. It can
be concluded that our method yields congruent results,
consistently exploiting hidden features from the input
time series that are not directly accessible from the out-
side.

The results displayed in Figs. 9 and 10 illustrate that
the state maps generated from different base samples
with qualitatively different dynamics can be quite dif-
ferent. This distinctness is to be expected since it is
well known that the appearance of brake squeal does
not solely depend on a velocity or pressure threshold,

but originates from a more intricate mechanism. It is
reasonable to extend the concept of a binary state map
to a probability state map, where the probability of the
system operating in one state or the other for a given set
of features is approximated within a value range from 0
to 1. As introduced in Sect. 2.4, such a probability state
map can be obtained by computing a large set of binary
state maps and averaging across the results. To obtain
the probability state map shown in Fig. 11, N = 1223
binary state maps were calculated and combined. The
resulting probability state map represents how likely
it is that the dynamical system, here the friction brake,
assumes one of the two states, non-squealing or squeal-
ing, for a givenmaximumbrake pressure andmaximum
rotational velocity over a given time span. Since many
different base samples with different hidden variables,
such as other channels or derivative measures, underlie
each binary state map, the individual state maps used to
compute the probability state map may differ. In aver-
aging over a large number of samples, the influence of
the hidden parameters is smoothed out, and the prob-
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Fig. 10 State maps from base samples with similar pmax and
vrot,max, and similar dynamics. For two base samples that not
only match in terms of maximum values but also in terms of
qualitative dynamic behavior (see (c)), the resulting state maps
a and b appear very similar, illustrating the consistency of the

method. State map 1 in a is generated based on sample one,
shown by the dark blue line in (c), while state map 2 b is gener-
ated from sample 2, represented by the light blue dashed line in
(c)

ability of different phenomena can be estimated. For
example, it can be concluded from the probability state
map in Fig. 11 that the island of the noisy state at low
pressure and velocity visible in Fig. 9b rarely occurs
for the given pmax and vrot,max and its appearance is
therefore highly dependent on the hidden variables.

4 Conclusion

A method for obtaining fine-grained maps repre-
senting the state of a dynamical system within a
space spanned by operational conditions and high-
dimensional parameters has been proposed in this
work. Such a state map is difficult to obtain from
numerical analysis or experimental data alone due to
reasons including parameter uncertainties, numerical
costs, and time consumptionof experiments. Especially
in the case of brake systems, where the system likely
depends on small-scale parameter variations, existing
measurements represent only sparse support in the
parameter space. The presented method uses machine
learning and physics-consistent data augmentation to
generate state maps for the input samples in a time-

Fig. 11 Probability state map. A probability state map is
obtained by computing binary stability maps for N = 1223 dif-
ferent basis samples and averaging over the results. The map
thus encodes the probability of the brake system to operate in
the squealing or non-squealing state, where 1 indicates a 100%
chance of operation in the squealing regime and 0 represents a
100% chance of arriving in the non-squealing regime

and cost-efficient manner. By calculating many binary
state maps using different base samples and averag-
ing over them, probability state maps can be obtained

123



22150 C. Geier et al.

that encode the probability of the dynamical system
operating in one of two states. This way, only a lim-
ited number of real-world experiments are necessary to
generate a full-scale and highly resolved statemap. The
method is shown to yield consistent results, exploiting
the complex system representation picked up by a neu-
ral network during the training phase. The resulting
state maps indicate the influence of the chosen param-
eters on the system state, while clearly illustrating that
these are not the only relevant factors driving the sys-
tem state. On the contrary, our results indicate that the
chosen parameters, while providing an intuitive featur-
ization for visualizing the data, cannot be taken as a
single measure for reproducing the exact data labels.
Testing different featurization or higher-dimensional
state maps could yield additional insight into the driv-
ing mechanisms, which constitutes a starting point for
future work.

Even nonlinear phenomena, such as multi-stability,
become manageable through an appropriate choice of
input data, i.e., by including the relevant initial condi-
tions into the input data set. Choosing suitable param-
eters for the axes of the state map would make it pos-
sible to unfold even the hidden mechanisms driving
the system through more than two states. The many
interesting conceivable extensions to the proposed con-
cept constitute additional possibilities for future work,
including integrating a confidence interval into the
computation of a probability state map such that the
impact of each sample decreases radially around the
initial feature values. An expansion of the method to
higher-dimensional state maps by adding more param-
eters in the featurization is straightforward and might
yield detailed insight into the mechanisms underlying
dynamical regime changes.

Thiswork hopes to contribute to amachine learning-
driven system understanding beyond simple system
representation and black-box modeling. As more and
more real-world measurement data is available, data-
based methods become increasingly valuable when it
comes to analyzing dynamical systems. With a grow-
ing demand for sophisticatedmachines that can operate
even under severe and changing environmental condi-
tions, the need for a more detailed understanding of the
underlying dynamics of a given system rises as well.
The proposedmethod for data-driven statemaps consti-

tutes a significant step toward machine learning-based
system understanding.

Author contributions CG and MS were involved in conceptu-
alization, methodology, and writing—original draft preparation.
SH and Thierry Chancelier were involved in data curation. CG
was involved in formal analysis and investigation. CG, SH, TC,
PD, and NH were involved in writing—review and editing. PD,
NH, and MS were involved in funding acquisition. NH and MS
were involved in supervision.

Funding Open Access funding enabled and organized by Pro-
jekt DEAL. This research was funded by the German Bun-
desministerium für Bildung und Forschung (BMBF) and the
French Ministère de l’enseignement supérieur de la recherche
et de l’innovation (MESR) within the project “Physics-informed
artificial Intelligence for Cutting Brake Emissions from Electric
Vehicles” (Pi-Cube). Merten Stender was supported by the Ger-
man Research Foundation (Deutsche Forschungsgemeinschaft
DFG) within the Priority Program 1897 “calm, smooth, smart,”
Grant Number 314996260.

Availability of data and materials The data sets generated and
analyzed during the current study are available from the corre-
sponding author upon reasonable request.

Declarations

Conflict of interest The authors have no competing interests to
declare that are relevant to the content of this article.

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Code availability The code for reproducing the case studies can
be made available upon reasonable request.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in anymedium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third partymaterial in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to thematerial. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Machine learning-based state maps 22151

References

1. Strogatz, S.H.: Nonlinear Dynamics and Chaos: with Appli-
cations to Physics, Biology, Chemistry, and Engineering.
Westview Press, Boulder (2015)

2. Stender, M., Di Bartolomeo, M., Massi, F., Hoffmann, N.:
Revealing transitions in friction-excited vibrations by non-
linear time-series analysis. Nonlinear Dyn. 98(4), 2613–
2630 (2019). https://doi.org/10.1007/s11071-019-04987-7

3. Stender, M., Tiedemann, M., Spieler, D., Schoepflin, D.,
Hoffmann, N., Oberst, S.: Deep learning for brake squeal:
Brake noise detection, characterization and prediction.
Mech. Syst. Signal Process. 149, 107181 (2021). https://
doi.org/10.1016/j.ymssp.2020.107181

4. Kruse, S., Tiedemann, M., Zeumer, B., Reuss, P., Het-
zler, H., Hoffmann, N.: The influence of joints on friction
induced vibration in brake squeal. J. Sound Vib. 340, 239–
252 (2015). https://doi.org/10.1016/j.jsv.2014.11.016

5. Jahn, M., Stender, M., Tatzko, S., Hoffmann, N., Grolet,
A., Wallaschek, J.: The extended periodic motion concept
for fast limit cycle detection of self-excited systems. Com-
put. Struct. 227, 106139 (2020). https://doi.org/10.1016/j.
compstruc.2019.106139

6. Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The
nonlinear nature of friction. Nature 430(6999), 525–528
(2004). https://doi.org/10.1038/nature02750

7. Butlin, T., Woodhouse, J.: Sensitivity of friction-induced
vibration in idealised systems. J. Sound Vib. 319(1), 182–
198 (2009). https://doi.org/10.1016/j.jsv.2008.05.034

8. Fidlin, A.: Nonlinear Oscillations in Mechanical Engineer-
ing. Springer, Berlin (2005)

9. Ouyang, H., Nack, W., Yuan, Y., Chen, F.: Numerical anal-
ysis of automotive disc brake squeal: a review. Int. J. Veh.
NoiseVib. 1(3–4), 207–231 (2005). https://doi.org/10.1504/
IJVNV.2005.007524

10. Sinou, J.-J.: Transient non-linear dynamic analysis of auto-
motive disc brake squeal: on the need to consider both stabil-
ity and non-linear analysis.Mech. Res. Commun. 37(1), 96–
105 (2010). https://doi.org/10.1016/j.mechrescom.2009.09.
002

11. Denimal, E., Sinou, J.-J., Nacivet, S., Nechak, L.: Squeal
analysis based on the effect and determination of the most
influential contacts between the different components of an
automotive brake system. Int. J. Mech. Sci. 151, 192–213
(2019). https://doi.org/10.1016/j.ijmecsci.2018.10.054

12. Ouyang, H., Cao, Q., Mottershead, J., Treyde, T.: Vibra-
tion and squeal of a disc brake: modelling and experimen-
tal results. Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
217(10), 867–875 (2003)

13. Butlin, T., Woodhouse, J.: Friction-induced vibration: quan-
tifying sensitivity and uncertainty. J. Sound Vib. 329(5),
509–526 (2010). https://doi.org/10.1016/j.jsv.2009.09.026

14. Chevillot, F., Sinou, J.-J., Hardouin, N.: Nonlinear transient
vibrations and coexistences of multi-instabilities induced by
friction in an aircraft braking system. J. Sound Vib. 328(4–
5), 555–574 (2009)

15. Sinou, J.-J., Dereure, O., Mazet, G.-B., Thouverez, F., Jeze-
quel, L.: Friction-induced vibration for an aircraft brake
system-part 1: experimental approach and stability analy-
sis. Int. J. Mech. Sci. 48(5), 536–554 (2006)

16. Denimal, E., Sinou, J.-J., Nacivet, S.: Influence of structural
modifications of automotive brake systems for squeal events
with kriging meta-modelling method. J. Sound Vib. 463,
114938 (2019). https://doi.org/10.1016/j.jsv.2019.114938

17. Coudeyras, N., Nacivet, S., Sinou, J.-J.: Periodic and quasi-
periodic solutions for multi-instabilities involved in brake
squeal. J. Sound Vib. 328(4–5), 520–540 (2009). https://
doi.org/10.1016/j.jsv.2009.08.017

18. Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P.: Automo-
tive disc brake squeal. J. SoundVib. 267(1), 105–166 (2003).
https://doi.org/10.1016/S0022-460X(02)01573-0

19. Butlin, T., Woodhouse, J.: Sensitivity studies of friction-
induced vibration. Int. J. Veh. Des. 51(1/2), 238–257 (2009)

20. Sinou, J.-J., Thouverez, F., Jezequel, L., Dereure, O., Mazet,
G.-B.: Friction induced vibration for an aircraft brake
system-part 2: non-linear dynamics. Int. J. Mech. Sci. 48(5),
555–567 (2006)

21. Ouyang, H., Mottershead, J., Li, W.: A moving-load model
for disc-brake stability analysis. J. Vib. Acoust. 125(1), 53–
58 (2003). https://doi.org/10.1115/1.1521954

22. Brunton, S., Kutz, J.: Data-Driven Science and Engineering:
Machine Learning, Dynamical Systems, and Control. Cam-
bridge University Press, Cambridge (2019). https://doi.org/
10.1017/9781108380690

23. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature
521, 436–444 (2015). https://doi.org/10.1038/nature14539

24. Stender, M., Oberst, S., Tiedemann, M., Hoffmann, N.:
Complex machine dynamics: systematic recurrence quan-
tification analysis of disk brake vibration data. Nonlin-
ear Dyn. 97(4), 2483–2497 (2019). https://doi.org/10.1007/
s11071-019-05143-x

25. SAE International: Disc and Drum Brake Dynamometer
Squeal Noise Test Procedure J2521. https://www.sae.org/
standards/content/j2521_202210/

26. Matthews, B.W.: Comparison of the predicted and observed
secondary structure of t4 phage lysozyme. Biochimica et
Biophysica Acta (BBA) - Prot. Struct. 405(2), 442–451
(1975). https://doi.org/10.1016/0005-2795(75)90109-9

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123

https://doi.org/10.1007/s11071-019-04987-7
https://doi.org/10.1016/j.ymssp.2020.107181
https://doi.org/10.1016/j.ymssp.2020.107181
https://doi.org/10.1016/j.jsv.2014.11.016
https://doi.org/10.1016/j.compstruc.2019.106139
https://doi.org/10.1016/j.compstruc.2019.106139
https://doi.org/10.1038/nature02750
https://doi.org/10.1016/j.jsv.2008.05.034
https://doi.org/10.1504/IJVNV.2005.007524
https://doi.org/10.1504/IJVNV.2005.007524
https://doi.org/10.1016/j.mechrescom.2009.09.002
https://doi.org/10.1016/j.mechrescom.2009.09.002
https://doi.org/10.1016/j.ijmecsci.2018.10.054
https://doi.org/10.1016/j.jsv.2009.09.026
https://doi.org/10.1016/j.jsv.2019.114938
https://doi.org/10.1016/j.jsv.2009.08.017
https://doi.org/10.1016/j.jsv.2009.08.017
https://doi.org/10.1016/S0022-460X(02)01573-0
https://doi.org/10.1115/1.1521954
https://doi.org/10.1017/9781108380690
https://doi.org/10.1017/9781108380690
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s11071-019-05143-x
https://doi.org/10.1007/s11071-019-05143-x
https://www.sae.org/standards/content/j2521_202210/
https://www.sae.org/standards/content/j2521_202210/
https://doi.org/10.1016/0005-2795(75)90109-9

	Machine learning-based state maps for complex dynamical systems: applications to friction-excited brake system vibrations
	Abstract
	1 Introduction
	2 Methods
	2.1 Schematic overview
	2.2 Data acquisition
	2.3 Neural network modeling
	2.4 Physics-consistent data augmentation

	3 Results
	4 Conclusion
	References




