
Nonlinear Dyn (2023) 111:17037–17077
https://doi.org/10.1007/s11071-023-08725-y

ORIGINAL PAPER

A deep reinforcement learning control approach
for high-performance aircraft

Agostino De Marco · Paolo Maria D’Onza ·
Sabato Manfredi

Received: 26 September 2022 / Accepted: 25 May 2023 / Published online: 2 August 2023
© The Author(s) 2023

Abstract This research introduces a flight controller
for a high-performance aircraft, able to follow ran-
domly generated sequences of waypoints, at varying
altitudes, in various types of scenarios. The study
assumes a publicly available six-degree-of-freedom
(6-DoF) rigid aeroplane flight dynamics model of a
military fighter jet. Consolidated results in artificial
intelligence and deep reinforcement learning (DRL)
research are used to demonstrate the capability to make
certain manoeuvres AI-based fully automatic for a
high-fidelity nonlinear model of a fixed-wing aircraft.
This work investigates the use of a deep determinis-
tic policy gradient (DDPG) controller agent, based on
the successful applications of the same approach to
other domains. In the particular application to flight
control presented here, the effort has been focused
on the design of a suitable reward function used to
train the agent to achieve some given navigation tasks.
The trained controller is successful on highly cou-
pled manoeuvres, including rapid sequences of turns,

A. De Marco (B) · P. M. D’Onza
Department of Industrial Engineering (DII), Università degli
Studi di Napoli Federico II, Via Claudio, 21, 80125 Naples, Italy
e-mail: agostino.demarco@unina.it

P. M. D’Onza
e-mail: p.donza@studenti.unina.it

S. Manfredi (B)
Department of Electrical Engineering and Information Technol-
ogy (DIETI), Università degli Studi di Napoli Federico II, Via
Claudio, 21, 80125 Naples, Italy
e-mail: sabato.manfredi@unina.it

at both low and high flight Mach numbers, in simu-
lations reproducing a prey–chaser dogfight scenario.
Robustness to sensor noise, atmospheric disturbances,
different initial flight conditions and varying reference
signal shapes is also demonstrated.

Keywords Deep reinforcement learning · Flight
dynamics · UCAV · Aeroplane controllability ·
Nonlinear control

1 Introduction

Within the next decade, we will witness an exponen-
tial increase in the use of artificial intelligence to sup-
port the operations of all sorts of flying machines. The
interest will range from military applications to the
growing civil aviation market, which will also include
the new category of personal flying vehicles. This
research makes use of consolidated results in artificial
intelligence and deep reinforcement learning research
to demonstrate the AI-based flight control of a high-
performance fixed-wing aircraft, taken as an example
of an aerial platform exhibiting nonlinear behaviour.

1.1 Nonlinear dynamics in fixed-wing aircraft and
established engineering approach to flight control

Many current fixed-wing aerial vehicles display some
nonlinear dynamics, such as inertial coupling, or aero-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-023-08725-y&domain=pdf
http://orcid.org/0000-0001-5985-9950

17038 A. De Marco et al.

dynamic and propulsive nonlinearities. Future aircraft
are likely to have even more significant nonlineari-
ties in their flight dynamics. For example, to enhance
their agility some unmanned aerial vehicles (UAV)
designs will feature bio-inspired morphing wings that
significantly change their shapes. High-altitude long-
endurance UAVs as well as future commercial airliner
designswill have a high aspect ratio, and highly flexible
lifting surfaces to improve their efficiency. Airbreath-
ing hypersonic vehicles (AHV) are yet another exam-
ple of plants exhibiting significant cross-coupling, non-
linearity, non-minimum phase behaviour, and model
uncertainty, even more than traditional aircraft in terms
of dynamics. All these designs make flight control a
challenging problem.

An established engineering approach to design flight
controllers is to rely on gain scheduling, to switch
between different linear controllers that were tuned for
a known set of specific operating points [1]. Because
of their dependence on linearized plant dynamics, these
gain scheduling techniques must be carefully designed
to accomplish their tasks across the whole mission
envelope. In practice, the classical linear controllers are
generally used in a conservative fashionby setting some
constraints to the flight envelopes and limiting the oper-
ability of the aerial vehicles. On the other hand, non-
linear control algorithms can be designed to attain the
advantage of using the full flight envelope, especially
for unconventional and disruptive aircraft configura-
tions. Model-free adaptive control as well as intelligent
control techniques provide the possibility to replace
the classical controller structure with a more general
approach, which turns out to be also fault-tolerant to
changes in model dynamics [2].

1.2 Intelligent control approaches

Many authors propose intelligent control approaches
that combine artificial intelligence and automatic con-
trol methodologies such as adaptive neural control [3]
and fuzzy control [4]. Examples of application to fly-
ing vehicles include adaptive neural control of AHVs,
integral sliding mode control, and stochastic adaptive
attitude control [5], as well as prescribed performance
dynamic neural network control of flexible hypersonic
vehicles [6]. Yet these methods assume a simplified
motion dynamic model that considers only the longitu-
dinal dynamics and an affine form of the control input.

An alternative adaptive neural control method has been
proposed in [7] in order to better reflect the characteris-
tics of the actual plant model ensuring the reliability of
the designed control laws, still considering a reduced
3-DoF motion model.

Reinforcement learning (RL) is a branch of machine
learning that offers an approach to intelligent control
inspired by the way biological organisms learn their
tasks. RL is quite a large subject and provides themeans
to design a wide range of control strategies. In essence,
an RL-based control task is performed by an agent—
that is, a piece of software—able to learn a control
policy through trial and error. The agent learns by inter-
acting with its environment, which includes the plant
under study [8]. In its early implementations, RL was
based on tabular methods with discrete action and state
spaces and gained quite a lot of popularity for its appli-
cations to gaming environments. One notable early
usage example of RL in the aviation domain has been
the control of glider soaring [9]. This study demon-
strated that a flight control policy to effectively gain
lift from ascending thermal plumes could be success-
fully learnt.

1.3 Deep reinforcement learning as a promising field
for nonlinear control

To address the curse of dimensionality encountered
in RL approaches when making the action and state
spaces larger, function approximators (typically neural
networks, NNs) have been used in the past decade in
various fields to enable continuous control, with agents
implemented as structures known as actor-critic. The
controller agent has a policy function and a value func-
tion to interact with its environment. By observing the
state of the environment, the agent performs an action
based on its current policy to change the environment
state, and consequently, receives a reward. Both the
policy function and the value function are represented
by neural networks that have to be made optimal by
the end of the learning process. The policy function
is updated in a gradient ascent manner according to
the estimated advantage of performing the action; the
value function is updated in a supervised fashion to
estimate the advantage based on the collected rewards.
The nonlinear activation functions in neural networks
can represent a highly nonlinear transfer from inputs
to outputs, and deep reinforcement learning (DRL) is

123

A deep reinforcement learning control approach 17039

in fact a promising field for nonlinear control. Through
the actor-critic scheme, an agent can learn to control
an aircraft model by maximizing the expected reward,
and the reward calculation function is a crucial aspect
of the agent training process. Particular forms of pos-
sible reward functions for the aircraft control scenarios
studied in this work are discussed in the article.

Several novel implementations of the actor-critic
paradigm have been recently introduced, and most of
them fall under the category of DRL approaches. Their
ability to perform end-to-end offline learning has made
it possible to design agents that surpass human per-
formance, as demonstrated with different Atari games
[10]. In this study, the agent observes an image of
the game, a high-dimensional space, and learns a pol-
icy using a deep Q-network (DQN) for its discrete
action space. DRL was extended to continuous-time
control applications with the off-policy deep determin-
istic policy gradient (DDPG) algorithm [11]. For its
actor-network policy update, the DDPG algorithm uses
a critic network that provides a value function approxi-
mator. This method also estimates the temporal differ-
ence of the action-state value function as well as the
state value function during learning and is capable of
reducing the variance of the gradient estimation.

DDPG flight control applications have been limited
to small-scale flying wings [12] and quadcopters [13].
An on-policy RL algorithm known as proximal pol-
icy optimization (PPO) [14] has been introduced in
order to reduce DDPG’s learning instability. The PPO
showed improved policy convergence when applied
to the flight control of an unmanned flying-wing air-
craft [15]. A refined algorithm was proposed in [16] to
control underwater glider attitude based on a combina-
tion of an active disturbance rejection control (ADRC)
algorithm and a natural actor-critic (NAC) algorithm.
A recently developed actor-critic agent structure for
closed-loop attitude control of a UAV is discussed in
[17], which addresses the optimal tracking problem
of continuous-time nonlinear systems with input con-
straints. The work introduces a novel tuning law for the
critic’s neural network parameters that can improve the
learning rate.

1.4 Applications to unmanned combat aerial vehicles
(UCAVs)

DRL has a distinct advantage over other approaches to
flight control in its ability to perceive information and

learn effectively. Thismakes it an idealmethod for solv-
ing complex, high-dimensional sequential decision-
making problems, such as those encountered in air
combat [18]. In modern aerial combat with unmanned
combat aerial vehicles (UCAVs), short-range aerial
combat (dogfight) is still considered an important topic
[19,20]. The USA has planned a roadmap by 2030 for
the formation flight of UCAVs [21]. In the roadmap,
such aUAVmission is expected to be complex andmul-
tifaceted, requiring precise waypoint-line tracking and
advanced formation flight algorithms to enable UCAVs
to execute it effectively. In complex formation flights
such as aerial combat situations, the ability of a UCAV
to quickly adjust its flight attitude and path is crucial.
This ability is often referred to as flight agility, which
involves the rapid and seamless transition between dif-
ferent flight states.

To simulate aerial combat scenarios involving un
manned vehicles, Wang et al. [22] extended their
basic manoeuvre library to account for the enhanced
manoeuvring capabilities of UCAVs. They also pro-
posed a robust decision-making method for manoeu-
vring under incomplete target information. Addition-
ally, reinforcement learning [19,23] was explored as a
machine learning approach to generate strategies, and
McGrew [24] utilized the approximate dynamic pro-
gramming (ADP) approach to solve a two-dimensional
aerial combat problem involving a single UCAV acting
as an agent and learning near-optimal actions through
interaction with the combat environment.

Researchers have been exploring as well the poten-
tial of combining DRL with UCAVs’ air combat
decision-making [18,20,25]. For instance, Li [20] pro-
posed a model for UCAV autonomous manoeuvre
decision-making in short-range air combat, based on
the multi-step double deep Q-network (MS-DDQN)
algorithm. To address the limitations of traditional
methods such as poor flexibility and weak decision-
making ability, some researchers have proposed the use
of deep learning for manoeuvring [18]. Liu et al. [25]
proposed a multi-UCAV cooperative decision-making
method based on a multi-agent proximal policy opti-
mization (MAPPO) algorithm. DRL has been used by
Hu et al. [26] to plan beyond-visual-range air combat
tactics and by Wang et al. [27] to quantify the relation-
ship between the flight agility of a UCAV and its short-
range aerial combat effectiveness. A similar approach
has been also presented by Yang et al. [28].

123

17040 A. De Marco et al.

While the aforementioned approaches have demon-
strated some success in simulating aerial combat sce-
narios, they have primarily focused on generating
action strategies, and only a few have applied a six-
degree-of-freedom (6-DoF) nonlinear aircraft model
to the simulations. The mass point model that was
used in some studies fails to accurately represent the
flight performance of a high-order UCAV. Addition-
ally, directly applying these complex algorithms to
a 6-DoF nonlinear model has been often discarded
because of its demanding computational requirements.
To address this limitation, Shin et al. [29] proposed
a basic flight manoeuvre (BFM)-based approach to
guide the attacker and simulate a 6-DoF nonlinear
UCAV model in an aerial combat environment. These
approaches combine a 3Dpointmassmodelwith a con-
trol law design based on nonlinear dynamic inversion
(NDI) to control the three-dimensional flight path of a
6-DoF nonlinear UCAV model [22].

1.5 Research contribution

This research introduces an effective nonlinear control
application based on theDDPGactor-critic approach to
the full-blown nonlinear, high-fidelity flight dynamics
model (FDM) of a fighter jet. The use of this type of
controller has been documented only for small-scale
UAVs, and the present article addresses the applica-
tion to the three-dimensional navigation of a high-
performance UCAV. For this kind of application, the
research does not assume a reduced ordermodel to train
the agent—such as the methods presented in [22] and
[29]. In addition, unlike the BFM-based approaches,
the proposed AI-based strategy generates the pilot-
ing commands to control directly the nonlinear 6-DoF
UCAV model. Finally, extensive validation is carried
out by a well-known realistic simulator. A high-fidelity
FDM of the General Dynamics F-16 Fighting Fal-
con has been used, paving the way for future applica-
tions to other similar aircraft. The chosen FDM is pub-
licly available and implemented for the JSBSim flight
dynamics software library [30]. The simulation results
presented in this work were obtained using JSBSim
within theMATLAB/Simulink computational environ-
ment.

Moreover, the present effort deals with some mod-
elling aspects in the aircraft state equations that are not
commonly found in the literature (whenDRL is applied

to flight control). The underlying mathematical formu-
lation to the 6-DoF aircraft-controlled dynamics pre-
sented here is based on the attitude quaternion; hence,
it is general and suitable for all kinds of flight task sim-
ulations.

This work validates an AI-based flight control
approach in a complex and high-performance require-
ment scenario, such as that of the target following. The
control is accomplished by an agent trainedwith aDRL
algorithm, whose applications have been documented
in literature so far only for simpler models and less
dynamic operative scenarios. In fact, the FDM imple-
mentation of the chosen aeroplane is highly nonlin-
ear and realistic. The application examples shown at
the end of the article demonstrate simulation scenarios
where significant variations occur in the state space (for
instance, altitude and flightMach number changes) and
multiple nonlinear effects come into play.

Finally, an additional contribution to theworks avail-
able in the literature is the use of an established engi-
neering simulation environment to validate the pro-
posed approach. This, combined with the fact that the
FDM includes realistic aerodynamics, propulsion, and
FCSmodels, makes the agent validation closer to those
learning applications occurring in experimental envi-
ronments.

1.6 Article organization

The next section summarizes themain concepts regard-
ing deep reinforcement learning and discusses how this
approach has been employed to control an aircraft in
atmospheric flight.

The mathematical background of the article is sum-
marized in Sect. 2. The foundations of DRL applied
to flight control and the chosen control approach are
explained in Sect. 3, where the details about the reward
shaping are also presented. Simulation test scenarios
that validate the proposed control strategy are presented
in Sect. 4. A discussion of the presented results is given
in Sect. 5. Finally, the conclusions are presented in
Sect. 6. The article includes also three appendices A, B,
and C with further details on the aerodynamic, propul-
sive, and flight control system models of the F-16 air-
craft.

123

A deep reinforcement learning control approach 17041

Fig. 1 Earth-based NED
frame FE and aircraft
body-fixed frame FB.
Velocity vector V of aircraft
gravity centre G with
respect to the inertial
observer. Ground track
point PGT of the
instantaneous gravity centre
position (xE,G , yE,G , xE,G).
Standard definitions of
aircraft Euler angles
(ψ, θ, φ) and flight path
angles (γ, χ)

2 Mathematical background

2.1 Rigid aeroplane nonlinear 6-DoF flight dynamics
model

The 6-DoF atmospheric motion of a rigid aeroplane
is governed by a set of nonlinear ordinary differen-
tial equations. These equations are standard; there-
fore, the complete derivation is herein omitted for
sake of brevity—deferring the interested reader to the
related references [1]. The derivation of such a system
assumes a clear identification of a ground-based ref-
erence frame and an aircraft-based reference frame.
The former is treated as an inertial frame, neglect-
ing the effects of the rotational velocity of the Earth,
which is a good approximation when describing the
motion of aeroplanes in the lower regions of the Earth’s
atmosphere. This approximation is acceptable for sub-
sonic as well as supersonic flight and fits the fighter
jet control example considered in this research. These
two main reference frames, besides other auxiliary
frames, are shown in Fig. 1. The Earth-based inertial
frame is named here FE = {OE; xE, yE, zE}, hav-
ing its origin fixed to a convenient point OE on the
ground and its plane xEyE tangent to the assumed Earth

geometric model; the axis xE points towards the geo-
graphic North, the axis yE points towards the East;
the axis zE points downwards, towards the centre of
the Earth. For this reason, the frame FE is also called
tangent NED frame (North-East-Down). The aircraft
body-fixed frame FB = {G; xB, yB, zB}, has its ori-
gin located at the centre of gravity G of the aircraft;
the roll axis xB runs along the fuselage and points out
of the nose; the pitch axis yB points towards the right
wing tip; the yaw axis zB points towards the belly of
the fuselage.

The motion equations are derived from Newton’s
second lawapplied to theflight of an air vehicle, leading
to six core scalar equations (the conservation lawsof the
linear and angular momentum projected onto the mov-
ing frame FB), followed by the flight path equations
(used for navigation purposes, for tracking the aircraft
flight in terms of centre-of-gravity positionwith respect
to the Earth-based frame FE), and by the rigid-body
motion kinematic equations (providing a relationship
for the aircraft attitude quaternion, used for express-
ing the orientation of the body axes with respect to the
inertial ground frame).

The full set of equations in closed form is introduced
in this section. The JSBSim flight dynamics library

123

17042 A. De Marco et al.

implements them in a more general form, which is
beyond the scope of this article. However, the following
presentation serves to highlight the intricacies and the
nonlinearities inherent to the control problem explored
by the present research.

2.1.1 Conservation of the linear momentum equations
(CLMEs)

The conservation of the linear momentum equation
(CLMEs) for a rigid aeroplane of constant mass pro-
vides the following three core scalar equations [1]:

u̇ = r v − q w + 1

m

(
Wx + F (A)

x + F (T)
x

)
(1a)

v̇ = − r u + pw + 1

m

(
Wy + F (A)

y + F (T)
y

)
(1b)

ẇ = q u − p v + 1

m

(
Wz + F (A)

z + F (T)
z

)
(1c)

where the W is the aircraft weight force, F(A) is the
resultant aerodynamic force, and F(T) is the resultant
thrust force. Their components in the body frame FB

are conveniently expressed to obtain a closed form of
Eqs. (1a)–(1b)–(1c).

The aircraftweight is a vertical force vector, i.e. always
aligned to the inertial axis zE, of constant magnitude
mg, that is expressed in terms of its components in body
axes as follows:⎧⎨
⎩
Wx

Wy

Wz

⎫⎬
⎭= [TBE]

⎧⎨
⎩

0
0
mg

⎫⎬
⎭=

⎧⎨
⎩

2
(
qz qx−q0 qy

)
2
(
qy qz+q0 qx

)
q20−q2x−q2y+q2z

⎫⎬
⎭mg

(2)

where [TBE] is the direction cosine matrix representing
the instantaneous attitude of frame FB with respect to
frame FE. The entries of [TBE] are functions of the
aircraft attitude quaternion components (q0, qx , qy, qz)
[1]:

[TBE]=
⎡
⎣
q20+q2x−q2y−q2z 2

(
qx qy+q0 qz

)
2
(
qz qx−q0 qy

)
2
(
qx qy−q0 qz

)
q20−q2x+q2y−q2z 2

(
qy qz+q0 qx

)
2
(
qz qx+q0 qy

)
2
(
qy qz−q0 qx

)
q20−q2x−q2y+q2z

⎤
⎦

(3)

The instantaneous resultant aerodynamic force F(A)

acting on the air vehicle, when projected onto FB, is
commonly expressed as follows [1]:⎧
⎪⎨
⎪⎩

F (A)
x

F (A)
y

F (A)
z

⎫
⎪⎬
⎪⎭

= [TBW]

⎧
⎨
⎩

−D
−C
−L

⎫
⎬
⎭

=
⎧
⎨
⎩

−D cosα cosβ+L sin α+C cosα sin β

−C cosβ−D sin β

−D sin α cosβ−L cosα+C sin α sin β

⎫
⎬
⎭ (4)

where the aerodynamic drag D, the aerodynamic cross
forceC and the aerodynamic lift L are involved to con-
veniently model the effect of the external airflow, and
where

[TBW] =
⎡
⎣

cosα 0 − sin α

0 1 0
sin α 0 cosα

⎤
⎦
⎡
⎣

cosβ sin(−β) 0
− sin(−β) cosβ 0

0 0 1

⎤
⎦

(5)

is the coordinate transformation matrix from the stan-
dard wind frame FW = {G; xW, yW, zW}, commonly
used by aerodynamicists (see Fig. 2), to FB.

Equations (1a)–(1b)–(1c) are actually set in closed
form because the aerodynamic angles (α, β) and the
aerodynamic force components (D,C, L) appearing
in expressions (4) are modelled as functions of air-
craft state variables and of external inputs. According
to Fig. 2, the state variables (u, v, w), being defined as
components inFB of the aircraft gravity centre velocity
vector V , are expressed in terms of (α, β) as follows:

u = V cosβ cosα, v = V sin β,

w = V cosβ sin α (6)

with

V =
√
u2 + v2 + w2 (7)

Consequently, the instantaneous angles of attack and
of sideslip are given by

α = tan−1 w

u
, β = sin−1

v√
u2 + v2 + w2

(8)

The aerodynamic force components are expressed
in terms of their aerodynamic coefficients according to
the conventional formulas:

D = 1

2
ρV 2 S CD, C = 1

2
ρV 2 S CC ,

L = 1

2
ρV 2 S CL (9)

where the external air density ρ is a known function
of the flight altitude h = −zE,G (along with other gas
properties, such as the sound speed a) [31], S is a con-
stant reference area, and coefficients (CD,CC ,CL) are
modelled as functions of aircraft state variables and
external inputs. Appendix A presents the details of a
nonlinear aerodynamic model for the F-16 fighter jet.

Finally, according to Fig. 3, the resultant thrust
force F(T), which is a vector of magnitude T , can be
expressed in terms of its body-frame components, in

123

A deep reinforcement learning control approach 17043

Fig. 2 (Left) Aerodynamic angles, aerodynamic (or stability) frame FA. (Right) Wind frame FW and aerodynamic forces (D,C, L)

Fig. 3 Thrust vector, thrust magnitude T , thrust line angle μT ,
thrust line eccentricity eT

the case of symmetric propulsion (zero y-component),
as follows:⎧⎪⎨
⎪⎩

F (T)
x

F (T)
y

F (T)
z

⎫⎪⎬
⎪⎭

= δT Tmax(h, M)

⎧⎨
⎩
cosμT

0
sinμT

⎫⎬
⎭ (10)

where μT is a known constant angle formed by the
thrust line in the aircraft symmetry plane with the refer-
ence axis xB, T = δT Tmax(h, M), δT is the throttle set-
ting (an external input to the system), and Tmax(h, M)

is the maximum available thrust, i.e. a known func-
tion of altitude and flight Mach number M = V/a.
Appendix B presents the details of a nonlinear thrust
model for the F-16 fighter jet.

2.1.2 Conservation of the angular momentum
equations (CAMEs)

The conservation of the angular momentum equations
(CAMEs) for a rigid aeroplane of constant mass are the
following [1]:

ṗ = (
C1 r + C2 p

)
q + C3 L + C4N (11a)

q̇ = C5 p r − C6
(
p2 − r2

)+ C7M (11b)

ṙ = (
C8 p − C2 r

)
q + C4 L + C9N (11c)

where

C1 = 1

�

[
(Iyy − Izz)Izz − I 2xz

]
,

C2 = 1

�

[
(Ixx − Iyy + Izz)Ixz

]
(12a)

C3 = Izz
�

, C4 = Ixz
�

, C5 = Izz − Ixx
Iyy

(12b)

C6 = Ixz
Iyy

, C7 = 1

Iyy
,

C8 = 1

�

[
(Ixx − Iyy)Ixx + I 2xz

]
, C9 = Ixx

�
(12c)

and� = Ixx Izz− I 2xz are constants of the model known
from the rigid aeroplane inertia matrix calculated with
respect to the axes of FB.

The instantaneous resultant external moment M
about the pole G acting on the air vehicle is the sum

123

17044 A. De Marco et al.

of the resultant aerodynamic moment M(A) and of the
resultant moment M(T) due to thrust line eccentricity
with respect to G. When M is projected onto FB, it is
commonly expressed as:⎧⎨
⎩

L
M
N

⎫⎬
⎭ =

⎧⎨
⎩

L(A)

M(A)

N (A)

⎫⎬
⎭+

⎧⎨
⎩

0
M(T)

0

⎫⎬
⎭ (13)

in the case of symmetric propulsion (thrust line in the
aircraft symmetry plane).

Equations (11) are actually set in closed form
because the aerodynamic moments about the roll, pitch
and yaw axes (L(A),M(A),N (A)) are modelled as
functions of aircraft state variables and of external
inputs. The same applies to the pitchingmomentM(T).

The body-axis components of M(A) are commonly
expressed in terms of their coefficients according to the
conventional formulas:⎧⎨
⎩

L(A)

M(A)

N (A)

⎫⎬
⎭ = 1

2
ρV 2 S

⎧⎨
⎩

b CL
c̄ CM
b CN

⎫⎬
⎭ (14)

where b and c̄ are reference lengths known from the
aeroplane’s geometry. Appendix A presents a high-
fidelity nonlinearmodel of the aerodynamic roll-, pitch-
, and yaw-moment coefficients (CL,CM,CN) for the
F-16 fighter jet.

The pitching moment due to thrustM(T) is given by
the direct action of the thrust vector:

M(T) = T eT (15)

where the eccentricity eT is a known parameter, posi-
tive when the thrust line is located beneath the centre
of gravity (eT < 0 as shown in Fig. 3).

2.1.3 Flight path equations (FPEs)

Systems (1a)–(1b)–(1b)–(11a)–(11b)–(11c) ofCLMEs
and CAMEs projected onto the moving frameFB must
be necessarily augmented with two additional systems
of equations to solve the aircraft dynamics and prop-
agate its state in time. One such system is needed for
expressing the trajectory of the aircraft with respect to
the Earth-based inertial frame. The flight path equa-
tions (FPEs) are specifically used for this purpose. The
outputs of this system of differential equations form
the instantaneous position {xE,G(t), yE,G(t), zE,G(t)}
of the aircraft centre of gravity G in the space FE. The
reduced 2D version {xE,G(t), yE,G(t)} of the FPEs pro-
vides the so-called ground track relative to the aircraft
flight.

The FPEs are simply derived from the component
transformation of vector V from frameFB to frameFE⎧⎨
⎩
ẋE,G

ẏE,G

żE,G

⎫⎬
⎭ = [TEB]

⎧⎨
⎩

u
v

w

⎫⎬
⎭ (16)

knowing that [TEB] = [TBE]T and accounting for defi-
nition (3). The FPEs are then written in matrix format
as follows:
⎧
⎨
⎩

ẋE,G

ẏE,G

żE,G

⎫
⎬
⎭ =

⎡
⎣

q20+q2x−q2y−q2z 2
(
qx qy−q0 qz

)
2
(
qz qx+q0 qy

)
2
(
qx qy+q0 qz

)
q20−q2x+q2y−q2z 2

(
qy qz−q0 qx

)
2
(
qz qx − q0 qy

)
2
(
qy qz + q0 qx

)
q20−q2x−q2y+q2z

⎤
⎦

⎧⎨
⎩

u
v

w

⎫⎬
⎭ (17)

The inputs for the FPEs are the aircraft attitude
quaternion components along with the components
(u, v, w), which are provided by the solution of the
combined (CLMEs)-(CAMEs) system.

Thequaternion components instead are derived from
the body-frame components (p, q, r) of the aircraft
angular velocity vector � through the solution of
another set of equations to be introduced next.

2.1.4 Kinematic equations (KEs)

The rigid-body kinematic equations (KEs) based on the
aircraft attitude quaternion components [1] are written
in matrix format as follows:⎧⎪⎪⎨
⎪⎪⎩

q̇0
q̇x
q̇y
q̇z

⎫⎪⎪⎬
⎪⎪⎭

= 1

2

⎡
⎢⎢⎣

0 −p −q −r
p 0 r −q
q −r 0 p
r q −p 0

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

q0
qx
qy
qz

⎫⎪⎪⎬
⎪⎪⎭

(18)

The inputs to the KEs are the angular velocity com-
ponents (p, q, r) in FB. Their solution provides the
numerical values of the kinematic state variables
(q0, qx , qy, qz).

The above system is the set of differential equations
of choice, nowadays, in large-scale simulations because
it prevents the singularity known as ‘gimbal lock’ asso-
ciated with the alternative formulation based on air-
craft Euler angles. However, at each instant t when
a quadruplet of quaternion components is known, the
Euler angles (ψ, θ, φ), shown in Fig. 4, are calculated
according to a standard algorithm [32].

2.1.5 Summary of the equations and of system inputs

The system of (CLMEs)-(CAMEs)-(FPEs)-(KEs), that
is, (1)–(11)–(17)–(18), is the full set of 13 coupled

123

A deep reinforcement learning control approach 17045

Fig. 4 Aircraft Euler angles and attitudewith respect to theEarth
frame

nonlinear differential equations governing the 6-DoF,
rigid-body dynamics of atmospheric flight. They are
in a closed form once the aerodynamic as well as the
propulsive external forces andmoments are completely
modelled as functions of 13 state variables

x = [
u, v, w, p, q, r, xE,G , yE,G , zE,G , q0, qx , qy, qz

]T
(19)

i.e. of a state vector x, and of a number of external
inputs grouped into an input vector, commonly known
as vector u.

The F-16 public domainmodel used for this research
features a quite articulated and high-fidelity flight con-
trol system (FCS), whose simplified scheme is depicted
in Fig. 5. The FCS, which receives state feedback from

the aircraft dynamics block, includes the following
channels: (i) Roll command δ̃a (acting on right aileron
deflection angle δa and on the antisymmetric left aileron
deflection), (ii) Pitch command δ̃e (acting on elevon
deflection angle δe), (iii) Yaw command δ̃r (acting on
rudder deflection angle δr), (iv)Throttle lever command
δ̃T (acting on throttle setting δT , with the possibility to
trigger the jet engine afterburner), (v) Speed brake com-
mand δ̃sb (acting on speed break deflection angle δsb),
(vi)Wing trailing-edge flaps command δ̃f,TE (acting on
trailing-edge flap deflection angle δf,TE) and (vii)Wing
leading-edge flap command δ̃f,LE (acting on leading-
edge flap deflection angle δf,LE).

Some of these channels are associated with actual
pilot’s input command signals, such as the primary
flight controls δ̃a, δ̃e, δ̃r, δ̃T . Some other signals
are mainly actuated and controlled by the FCS, for
instance, δ̃f,TE, δ̃f,LE and δ̃b. Additional details on the
FCS including a summary of the control logic are
reported in Appendix C.

A selected number of the above inputs form the vec-
tor ũagt of normalized commands used by the agent to
interact with the system in all training sessions:

ũagt = [
δ̃a, δ̃e, δ̃r, δ̃T

]T (20)

The full input vector to the nonlinear aircraft flight
dynamics model during all simulations performed in
this work—resulting from the action of the agent in
combination with the FCS logics—is then the follow-
ing:

u = [
δa, δe, δr, δT , δf,TE, δf,LE, δsb

]T (21)

Fig. 5 Simplified scheme
of a General Dynamics F-16
flight control system. See
Appendixes B and C for
more details on the flight
controller and engine
controller

123

17046 A. De Marco et al.

Fig. 6 General Dynamics
F-16 Fighting Falcon.
Aerodynamic control
surface deflections

The deflection angles of the F-16 aerodynamic control
surfaces are depicted in Fig. 6.

3 Deep reinforcement learning approach applied
to flight control

There is a growing interest, nowadays, inAI-based pilot
models, which are going to augment themanned legacy
fighters’ capabilities and might bring them to compete
with the next-generation air dominance systems. This is
the main motivation for the present research. A related
motivation lies in the possibility of implementing more
effective AI-assisted pilot training procedures for high-
precision tasks, such as dogfights and formation flights
[20,25–27].

DRL is a promising approach to be combined with
established flight control design techniques, and it
provides the following advantages: (i) it can make a
flight control system learn optimal policies, by inter-
acting with the environment, when the aircraft non-
linear dynamics are not completely known or difficult
to model; (ii) it can deal with changing situations in
uncertain and strongly dynamic environments. In this
section, we recall the basic concepts to explain how
DRL, in particular the DDPG idea, is applicable to the
chosen flight control scenarios presented later in the
article.

3.1 The reinforcement learning framework

RL is a significant branch of machine learning that is
concerned with how to learn control laws and poli-
cies from experience, which make a dynamical sys-

tem interact with a complex environment according to
a given task. Both control theory and machine learn-
ing fundamentally rely on optimization, and likewise,
RL involves a set of optimization techniques within an
observational framework for learning how to interact
with the environment. In this sense, RL stands at the
intersection of control theory and machine learning.
This is explained rigorously in a well-known introduc-
tory book by Sutton andBarto [8]. On the other hand, in
their recent textbook on data-driven science and engi-
neering Brunton and Kutz [33] use a modern and uni-
fied notation to present an overview of state-of-the-art
RL techniques applied to various fields, including a
mathematical formulation for DRL. The reader may
refer to these bibliographical references for a compre-
hensive explanation of the theory behind all variants of
RL approaches.

RLmethods apply to problemswhere an agent inter-
acts with its environment in discrete time steps [8,33],
as depicted in Fig. 7. At time step k, the agent senses
the state sk of its environment and decides to perform
an action ak that brings to a new state sk+1 at the next
time step, obtaining a reward rk . The scheme is reiter-
ated with advancing time steps, k ← k + 1, and the
RL agent learns to take appropriate actions to achieve
optimal immediate or delayed rewards.

The agent’s behaviour over time is given by the finite
sequence of states and actions e = [

(s0, a0), (s1, a1),
. . . , (sT , aT)

]
, also called an episode (or trajectory),

where T is the episode’s final time step. An episode
may end when a target terminal state is reached, or
else when T becomes the maximum allowed number
of time steps.

123

A deep reinforcement learning control approach 17047

Fig. 7 Schematic of
reinforcement learning, in
the particular case of an
agent’s policy π represented
by a deep neural network
(adapted from [33]). In the
case of flight control, the
action a is the input vector
ũagt defined by Eq. (20); the
observed state is the vector
s = [x, ẋ, u, u̇]T, where x
and u are defined by
Eqs. (19) and (21),
respectively

In RL, the environment and the agent are dynamic.
The goal of learning is to find an optimal policy, i.e. a
control law (or behaviour) that generates an action
sequence able to obtain the best possible outcome. A
behaviour is optimal when it collects the highest cumu-
lated reward. This is accomplished by allowing a piece
of software—that is, the agent—to explore the envi-
ronment, interact with it, and learn by observing how it
evolves over time. Whenever the agent takes an action,
it affects the environment, which transitions to a new
state, or even when the agent takes no action the envi-
ronment still might change. Within an entire episode,
the evolutionary environment produces a sequence of
rewards, and using this information, the agent can
adjust its future behaviour and learn from the process.
In the particular scheme of Fig. 7, for the sake of exam-
ple, the agent is a deep neural network that receives
a large number of input signals and then adjusts its
parameters ϑ during training so that it can control the
environment as requested. In the specific environment
of an aeroplane in controlled flight, the action a is the
control input vector ũagt defined by Eq. (20), while the
observed state s = [x, ẋ, u, u̇]T incorporates vectors x
and u (Eqs. (19) and (21), respectively), and their time
derivatives. More details are given in Sect. 3.7 and in
Fig. 9.

An important point to observe is that in RL the
environment is everything that exists outside of the
agent. Practically speaking, it is where the agent sends
actions and what generates rewards and observations.
In this context, the environment is different fromwhat is
accepted by control engineers, who tend to think of the
environment as everything outside of the controller and
the plant. In classical flight control approaches things
like wind gusts and other disturbances that impact the

system represent the environment. In RL, the environ-
ment is everything outside the controller as shown in
Fig. 5, and this includes the plant dynamics as well.
The agent is just a bit of software that is generating the
actions and updating the control laws through learning.
In the present case study, the agent acts like the ‘brain’
of the pilot that learns to control the aircraft.

The state s is a collection of variables observed by
the agentwhile interactingwith the environment,which
is taken from the list (x, u) defined by (19) and (21).
For the agent that controls the F-16 flight dynamics, the
action a is given by the inputs ũagt defined by (20).

An important characteristic of reinforcement learn-
ing is that the agent is not required to know in advance
the environment’s dynamics. It will learn on its own
only by observation, provided that it has access to the
states and that rewards are appropriately calculated.
This makes RL a powerful approach that can lead to
an effective model-free control design. In flight con-
trol, for instance, the learning agent does not need to
initially know anything about a flying vehicle. It will
still figure out how to collect rewards without know-
ing the aircraft weight, how the aerosurfaces move,
or how effective they are. The training technique used
in this research applies a method designed originally
for model-free applications to a problem of flight con-
trol where a high-fidelity model of the environment is
known.

An RL framework can be applied to a simulated
environment, that requires to be modelled, or even to a
physical environment. In the present study, the agent is
trainedwithin a high-fidelitymodel of the environment;
hence, the learning experience is carried out with flight
simulations. Learning is a process that often requires
millions or tens of millions of samples, which means

123

17048 A. De Marco et al.

a huge number of trial simulations, error calculations
and corrections. The obvious advantage of a simulated
environment is that the learning process can be run at
faster than real time and that simulations may be exe-
cuted in parallel on multiprocessor machines or GPU
clusters.

An important step in RL-based control design work-
flows is the deployment of the control algorithm on the
target hardware or within a chosen simulation environ-
ment.When learning ends successfully, the agent’s pol-
icy can be considered optimal and frozen, and a static
instance of the policy can be deployed onto the tar-
get as any other form of control law. Examples of use
of an optimized agent deployed in different simulation
environments are presented in Sect. 4.

3.2 Rewards

Given the environment, the RL has to be based on how
the agent should behave and how it will be rewarded
for doing what an assigned task prescribes. The reward
can be earned at every time step (immediate), or be
sparse (delayed), or can only come at the very end of
an episode after long periods of time. In the F-16 flight
simulations, an immediate reward is available at each
environment transition from time tk to tk+1 as a function
r(sk, ak, sk+1) of the two consecutive states and of the
action that causes the transition.

In RL, there is no restriction on creating a reward
function, unlike LQR in the theory of optimal control
where the cost function is quadratic. The reward can be
calculated fromanonlinear function or using thousands
of parameters. It completely depends onwhat it takes to
effectively train the agent. For instance, if a flight atti-
tude is requested, with a prescribed heading ψc, then
one should intuitively tend to give more rewards to the
agent as the heading angle ψ gets closer to the com-
manded direction. If one wants to take controller effort
into account, then rewards should be subtracted as actu-
ator use increases.

A reward function can really be any function one
can think of. But making an effective reward function,
on the other hand, requires ingenuity. Unfortunately,
there is no straightforward way of crafting a reward
to guarantee the agent will converge on the desired
control. The definition of a reward calculation func-
tion, appropriate to a prescribed control task, is called
reward shaping and is one of the most difficult tasks in

RL. Section3.11 introduces a convenient reward cal-
culation function, which can be adopted in a flight con-
trol task where a target altitude and heading are com-
manded.

3.3 Policy function

Besides the environment that provides the rewards, an
RL-based controlmust have awell-designed agent. The
agent is comprised of its policy and of the learning
algorithm, two things that are closely interlaced. Many
learning algorithms require a specific policy structure
and choosing an algorithm depends on the nature of the
environment.

A policy π(s, a) defines the behaviour of the agent,
in order to determine which action should be taken
in each state. Formally speaking, it is a function π :
(s, a) �→ [0, 1] that maps a state–action pair to a scalar
value between 0 and 1, regarded as a conditional prob-
ability density function of taking the action a while
observing the state s (random policy). But a policy
function can also be deterministic, in that case, given a
state s the action a is nonrandom, i.e. π : s �→ a.

The term ‘policy’ means that the agent has to make
a decision based on the current state. Training an agent
to accomplish a given task in the simulated environ-
ment means generating several simulations and updat-
ing the policy parameters while episodes are gener-
ated by maximizing the policy performance. The pol-
icy function tells the agent what to do, and learning
a policy function is the most important part of an RL
algorithm.

As shown in Fig. 7, the policy is a function that
takes in state observations and outputs actions; there-
fore, any function with that input and output relation-
ship can work. Environments with a continuous state–
action space have a continuous policy function, and
it makes sense to represent π with a general-purpose
function approximator, i.e. something that can handle
a continuous state s(t) and a continuous action a(t),
without having to set the nonlinear function structure
ahead of time. This is accomplished with deep neural
networks, a function approximation approach which
forms the basis ofDRL.The training algorithm selected
for this research, known as DDPG and available in
MATLAB/SimulinkReinforcement LearningToolbox,
adopts a deterministic policy, i.e. a function πϑ (s) that
is parameterized by a finite vector ϑ . With this struc-

123

A deep reinforcement learning control approach 17049

ture, hundreds of time samples of the environment state
are used, gathering several multi-dimensional observa-
tions of the F-16 in simulated flight as the input into
πϑ , which outputs the actuator commands that drive
the aerosurface movements and the thrust lever. Even
though the function might be extremely complex, there
will be a neural network of some kind that can achieve
it.

3.4 Value function

The policy is used to explore the environment to gen-
erate episodes and calculate rewards. A performance
index Rk of the policy at time step k is also called dis-
counted return, i.e. theweighted sumof all rewards that
the agent is expected to receive from time tk onwards:

Rk =
T∑
i=0

γ i rk+i (22)

where γ ∈]0, 1] is called as the discount rate. The
discount rate is a hyperparameter tuned by the user, and
it represents how much future events lose their value
in terms of policy performance according to how far
away in time they are. Future rewards are discounted,
reflecting the economic principle that current rewards
are more valuable than future rewards. In general, Rk

is a random variable resulting from future states and
actions that are unknown at time tk during learning.

Given a policy π , a value function is defined as the
function that quantifies the desirability of being in a
given state:

Vπ (s) = Eπ

(
Rk | sk = s

)
(23)

where Eπ indicates the expected reward over the time
steps from k to T , when the state at time step k is s.
When the subscript π is omitted from the notation Vπ ,
one refers to the value function for the best possible
policy:

V (s) = max
π

Vπ (s) (24)

One of the most important properties of the value
function is that the value V (sk) at a time step k—also
called V-value—is given by an elegant recursive for-
mula known as Bellman equation for V :

V (s) = max
π

Eπ

[
r0 + γ V (s′)

]
(25)

where s′ = sk+1 is the next state after s = sk given
the action ak rewarded with r0 = rk , and the expecta-
tion is over actions selected by the optimal policy π.

The value function V is the unique solution to its Bell-
man equation, which forms the basis of a number of
ways to compute, approximate, and learn V . This for-
mula, besides its implications to modern RL methods,
is derived and extensively explained in [8].

Learning the value function V and jointly the opti-
mal policy:

π = argmax
π

Eπ

[
r0 + γ V (s′)

]
(26)

is the central challenge in RL. All methods in RL that
find an optimal value function V and the correspond-
ing optimal policy π in a two-step procedure based on
(25) and (26), are called policy iteration learning algo-
rithms. In some cases, a large number of trials must
often be evaluated in order to determine an optimal pol-
icy by iteration and, in practice, reinforcement learn-
ing may become very expensive to train. Yet, RL is
well suited for the flight control problem stated in this
research, where there is a known model for the envi-
ronment, and where evaluating a policy is relatively
affordable as there are sufficient resources to perform
a near brute-force optimization.

In the present research, the agent learns through a
hybrid technique that mixes policy-iteration learning
with a strategy known as Q-learning (see Sect. 3.6).
Moreover, all complexities in prediction functions are
delegated to function approximators basedondeepneu-
ral networks, to learn the policy π, the value function
V , and the quality function Q. The latter is introduced
in the next subsection.

3.5 Quality function

The quality function, or Q-value, of a state–action pair
(s, a) is defined as the expected value

Q(s, a) = E
[
r(s, a, s′) + γ V (s′)

]
(27)

when at time step k the state is s, the agent is assumed
to follow the optimal policy, and the generic action a
is taken. This brings to the next state s′, resulting in the
immediate reward r(s, a, s′) and a discounted future
cumulated reward γ V (s′).

While the value function V tells what is the value of
being in a current state s, the function Q—also called
action-value function—is a joint quality or value of
taking an action a given a current state s. The quality
function is somehow richer and it contains more infor-
mation aboutwhat is the quality of being in a given state

123

17050 A. De Marco et al.

for any action it might take. For this reason, sometimes
Q is also called ‘critic’ because it can look at the possi-
ble actions and be used to criticize the agent’s choices.
This function can be approximated by a deep neural
network, as well.

The optimal policy π(s, a) and the optimal value
function V (s) contain redundant information, as one
can be determined from the other via the quality func-
tion Q(s, a):

π(s, a) = argmax
a

Q(s, a), V (s) = max
a

Q(s, a)

(28)

This formulation is used to define the Q-learning strat-
egy, which is recalled in the next subsection.

3.6 Temporal difference and Q-learning

In an approach to learning from trial-and-error expe-
rience, the value function V or quality function Q is
learned through a repeated evaluation of many poli-
cies [8,33]. In this work, the chosen learning process
is not episodic (does not wait for the end of a control
trajectory to update the policy), but instead, it is imple-
mented in such a way as to learn continuously by boot-
strapping. This technique is based on current estimates
of V or Q, which are then repeatedly updated by scan-
ning the successive states in the same control trajectory.
In the simplest case, at each iteration of this learning
technique, the value function is updated by means of a
one-step look ahead, namely a value prediction for the
next state s′ given the current state s and action a. This
approach relies on Bellman’s principle of optimality,
which states that a large multi-step control policy must
also be locally optimal in every subsequence of steps
[33].

The temporal difference learning method known as
TD(0) method simply approximates the expected dis-
counted return with an estimation based on the reward
immediately received summed to the value of the next
state. Given a control trajectory generated through an
optimal policy π, for the Bellman’s optimality condi-
tion the V-value of state sk is given by:

V (sk) = Eπ

[
rk + γ V (sk+1)

]
(29)

where rk +γ V (sk+1) acts as an unbiased estimator for
V (sk), in the language of Bayesian statistics. For non-
optimal policies π , this same idea is used to update
the value function based on the value function one step

ahead in the future, thus approximating the expected
return as:

Rk ≈ r(sk, ak, sk+1) + γ Vπ (sk+1) (30)

or, using the Q-value, as:

Rk ≈ r(sk, ak, sk+1) + γ Qπ (sk+1, ak+1) (31)

These approximations bring to the following defini-
tions of the learning rules or update equations:

Vπ (sk) ← Vπ (sk) + η δRPE(sk, ak, sk+1)

Qπ (sk, ak) ← Qπ (sk, ak) + η δTDE(sk, ak, sk+1)
(32)

where η is a learning rate between 0 and 1, and the
quantities:

δRPE = r(sk, ak, sk+1) + γ Vπ (sk+1) − Vπ (sk)

δTDE = r(sk, ak, sk+1) + γ Qπ (sk+1, ak+1)

− Qπ (sk, ak)

(33)

are called reward-prediction error (RPE) and tempo-
ral difference error (TDE), respectively. If the error
is positive, the transition was positively surprising:
one obtains more reward or lands in a better state
than expected: the initial state or action was actually
underrated, so its estimated value must be increased.
Similarly, if the error is negative, the transition was
negatively surprising: the initial state or action was
overrated, and its value must be decreased. All meth-
ods based on update equations (32) are called value-
iteration learning algorithms.

TD-based learning offers the advantage that after
each state transition, the V-value or Q-value updates
can be immediately applied, that is, there is no need to
wait until an entire episode is completed. This process
allows very fast learning and is called online learning.
The policy updates may be applied at every single tran-
sition (TD(0) or 1-step look ahead) or the learning may
proceed from batches of consecutive state transitions
(TD(n) or n-step look ahead).

Q-learning is a technique that derives from TD
learning and is particularly suitable for model-free
RL. In Q-learning, the Q function is learned directly
only by observing the evolutionary environment, in an
approach that post-processes the generated control tra-
jectories. It can be seen as a generalization of the many
availablemodel-based learning strategies, applicable to
all those control scenarios that are difficult or impossi-
ble to model. As seen from (27), the Q function incor-
porates in its definition the very concept of a one-step
look ahead, and does not need an environment’s model.

123

A deep reinforcement learning control approach 17051

Fig. 8 The Q-learning
algorithm for estimating the
optimal policy π

Therefore, the learned Q function, the optimal policy,
and the value function may be extracted as in (28).

In Q-learning, the Q function update equation is [8,
33]:

Q(sk, ak) ← Q(sk, ak) + η δ̂TDE(sk, ak, sk+1) (34)

where

δ̂TDE(sk, ak, sk+1) = r(sk, ak, sk+1)

+γ max
a

Q(sk+1, a)

−Q(sk, ak) (35)

is called the off-policy TDE. Due to the fact that the
optimal a is used in (35) to determine the correction
δ̂TDE based on the current estimate for Q, while taking
a different action ak+1 based on a different behaviour
policy for the next state transition, Q-learning is called
an off-policy technique. Thus, Q-learning takes sub-
optimal actions to explore future states but uses the
optimal action a to improve the Q function at each state
transition. The Q-learning algorithm for estimating the
optimal policy π is summarized in Fig. 8. In practice,
rather than finding the true Q-value of the state–action
pair in one go at each time step tk , through the Bellman
equation the agent improves the approximation of the
function Q over time.

Q-learning was formalized for solving problems
with discrete action and state spaces governed by a
finite Markov decision process. Yet, when the action
and state spaces are continuous, as occurs in the flight
control problems, time is discretized with an appropri-
ate frequency and Q-learning becomes equally appli-
cable. Its off-policy character hasmadeQ-learning par-
ticularly well suited to many real-world applications,
enabling the RL agent to improve when its policy is
sub-optimal. In deepQ-learning, the Q function is con-
veniently represented as a neural network.

In all RL approaches, the concept of learning rate is
very important: it determines to what extend, for each
episode during agent training, newly acquired infor-
mation overrides old information. A sufficient level of
exploration has to be ensured in order to make sure
that the estimates converge to the optimal values: this
is known as the exploration-exploitation problem. At
successive time steps within the generic episode, if
the agent selects always the same action policy from
the beginning (exploitation), it will never discover bet-
ter (or worse) alternatives. On the other hand, if the
policy is updated in such a way that it picks random
actions (exploration), this random sub-optimal policy
might have a chance to bring new information to the
learning process. A trade-off between exploitation and
exploration is ensured by the available Q-learning tech-
niques: usually, a lot of exploration happens at the
beginning of the training to accumulate knowledge
about the environment and the control task, less towards
the end to actually use the acquired knowledge and per-
form optimally. Generally, Q-learningwill learn amore
optimal solution faster than alternative techniques.

3.7 The actor-critic architecture

In RL, an actor-critic method consists in simultane-
ously learning a policy function and a value function by
conveniently mixing value-iteration as well as policy-
iteration learning. As shown in Fig. 9, in this agent
architecture there is an actor-network, which is policy-
based, and a critic network, which is value-based. The
temporal difference signal from the critic is used to
update the actor’s policy parameters. In this particular
case, the actor tries to take what it considers is the best
action according to the current state (just as in a simpler

123

17052 A. De Marco et al.

Fig. 9 Actor-critic
architecture scheme

policy function method, Fig. 7); the critic estimates the
Q-value associated to the state and to the action that the
actor just took (as in Q-learning methods).

The actor-critic scheme works for continuous action
spaces because the critic—which is supposedly the
optimal Q function evaluator in the current condition—
only needs to consider a single action, the one that
the actor just took. In fact, when the actor selects an
action, it is applied to the environment, the critic esti-
mates the value of that state–action pair, and then it
uses the reward from the environment as a metric to
determine how good its Q-value prediction was. The
error is the difference between the new estimated value
of the previous state and the old value of the previous
state from the critic network. The critic uses the error
to update itself so that it has a less sub-optimal predic-
tion the next time it is in that state. The actor-network
also updates its parameters with the response from the
critic and the error term so that it can improve its future
behaviour. This research uses the DDPG training algo-
rithm which is based on the actor-critic architecture
[12]. The algorithm can learn from environments with
continuous state and action spaces, and since it esti-
mates a deterministic policy, it learns much faster than
those techniques based on stochastic policies.

To compute the prediction errors, usually, many suc-
cessive samples (single transitions) are gathered and
concatenated in mini-batches, so that the critic’s neural
network could learn to minimize the prediction error
from these chunks of data. Yet, the successive transi-
tions concatenated inside a mini-batch are not indepen-
dent of each other but correlated: (sk, ak, rk+1, sk+1)

will be followed by (sk+1, ak+1, rk+2, sk+2), and so
on, which is not a distribution of random samples. This

is a major problem that promotes the tendency of the
involved neural networks to overfit and fall into local
minima.

Another major problem occurs with the actor and
critic implemented as neural networks because their
loss functions have non-steady targets. As opposed to
classification or regression problems where the desired
values are fixed throughout the network update iter-
ations, in Q-learning, the target r(sk, ak, sk+1) + γ

maxa Qϑ (sk+1, a) will change because the function
approximator Qϑ depends on the weights ϑ . This cir-
cumstance can make the actor-critic pair particularly
inefficient, especially if they are implemented as feed-
forward networks and the control task features a mov-
ing reference.

3.8 Deep Q-networks

The problem in DRL caused by correlated samples
within mini-batches has been solved by introducing a
learning technique called deepQ-network (DQN) algo-
rithm [34]. The approach relies on data structures called
experience replay memory (ERM), or replay buffers,
which are huge buffers where hundreds of thousands
of successive transitions are stored. The agent is trained
by randomically samplingmini-batches from theERM,
which is cyclically emptied and refilled with new sam-
ples.

On the other hand, to fix the problem related to
the loss function target inherent unsteadiness, a DQN
algorithm uses a cyclically frozen version of the agent
called target network, which computes the transitions
intended to feed the ERM. Only every few thousand

123

A deep reinforcement learning control approach 17053

iterations the target network is updated so that the loss
function targets remain stationary.

The learning rate of DQNs is known to be lower
than those of other available approaches. This is due
to the sample complexity, i.e. to the fact that the agent
must inevitably enact a huge number, in the order of
millions, of transitions to obtain a satisfying policy.

The functionof theDQNwithin the agent’s behaviour
is depicted in the left part of Fig. 9 showing how the
DQN trains the critic network to estimate the future
rewards and to update the actor’s policy (see also
Fig. 8). In the case of flight control, the updated policy
determines the action on aerosurfaces and engine throt-
tle that maximizes the expected reward. The reward
shaping approach for the control problem introduced
by this work is presented in Sect. 3.11.

3.9 Policy gradient methods

In policy-based function approximation—which is the
part of the actor-critic scheme that updates the actor—
when the policy π is parameterized by ϑ , it is pos-
sible to use gradient optimization on the parameters
to improve the policy much faster than other iterative
methods.

The objective is to learn a policy that maximizes the
expected return of each transition. The goal of the neu-
ral network is to maximize an objective function given
by the return (22) calculated over a set of trajectories
E selected by the policy:

J (ϑ) = EE
[
Rk
] = EE

⎡
⎣

T∑
i=0

γ i rk+i

⎤
⎦ (36)

The algorithm known as policy gradient method
applies a gradient ascent technique to the weights in
order to maximize J in the space of ϑ’s. All it is
actually necessary with this technique is the gradient
of the objective function with respect to the weights
∇ϑJ = ∂J /∂ϑ . As a suitable estimation of this pol-
icy gradient is obtained, the gradient ascent formula is
straightforward:

ϑ ← ϑ + η ∇ϑJ
(
ϑ
)

(37)

The reader is referred to the article by Peters and Schaal
[35] for an overview of policy gradient methods, with
details on how to estimate the policy gradient and how
to improve the sample complexity.

3.10 Deep deterministic policy gradient

In the application presented here, the DRL agent learns
a deterministic policy. Deterministic policy gradient
(DPG) algorithms form a family of methods devel-
oped to approximate the gradient of the objective func-
tion when the policy is deterministic [36]. The DPG
approach has been improved in order to work with
nonlinear function approximators [11] resulting in the
method known as deep deterministic policy gradient.
DDPG combines concepts fromDQNandDPGobtain-
ing an algorithm able to effectively solve continuous
control problems with an off-policy method. As in
DQN, an ERM (to store the past transitions and then
learn off-policy) and target networks (to stabilize the
learning) are used. However, in DQN the target net-
works are updated only every couple of thousands of
steps: they change significantly between two updates,
but not very often. Anyway, during the DDPG devel-
opment, it turned out to be more efficient to make the
target networks slowly track the trained networks. For
this reason, both the target networks and the trained
networks are updated together, by using the following
update rule:

ϑk+1 ← τ ϑk + (1 − τ)ϑk+1 with τ ≤ 1 (38)

where τ is a smoothing factor (usually much less than
1) that defines how much delay exists between target
networks and trained networks. The above update strat-
egy improves the stability in the Q function learning
process.

The key idea taken from DPG is the policy gradient
for the actor. The critic is learned by using regular Q-
learning. Anyway, as the policy is deterministic, it can
quickly produce always the same actions: this is an
exploration problem. Some environments are naturally
noisy, improving the exploration, but this cannot be
assumed in the general case. To deal with that, DDPG
perturbs the deterministic action with an additive noise
ξ generated with a stochastic noise model, such that
ak ← ak + ξ k , in order to force the exploration of the
environment.

3.11 Reward function shaping

Finally, we define a basic reward calculation function r
that determines the agent’s reward rk at time tk . Gener-
ally speaking, the reward is based on current values of

123

17054 A. De Marco et al.

Fig. 10 Penalty functions tested in this research. (Left) Logarithmic barrier function. See Eq. (39), with xmin = −2, xmax = 2,
rmin = −5, C = 1. (Right) Hyperbolic function. See Eq. (40), with xmin = −2, xmax = 2, λ = 1, τ = 0.5

the aircraft state and observable variables and is defined
for specific control tasks. The formulation proposed
here, which might appear limited to a given particular
control scenario, in practice has proven to be flexible
and widely applicable.

The reward signal is the way of communicating to
the agent what has to be achieved, not how it has to be
achieved. Therefore, the reward function is constructed
in such a way as to properly guide the agent to the
desired state, making sure not to impart a priori knowl-
edge about how to achieve what the agent is supposed
to accomplish. Moreover, a reward should not be set to
be able to achieve subgoals and prefer them to the ulti-
mate control aim. A properly rewarded agent does not
find ways to reach a subgoal without achieving the real
end target. The reward calculation is therefore accom-
plished by evaluating some properly designed simple
functions of one or more scalar variables. These have
the role of penalty functions because their output is usu-
ally much higher when their independent variables lie
in given ranges.

A logarithmic barrier penalty reward function was
first used in this work to test the default settings of
the MATLAB Reinforcement Learning Toolbox. This
function is defined as follows:

r(x)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max

{
rmin, C

[
log

(1
4 (xmax − xmin)

2)

− log
(
(x−xmin)(xmax−xmin)

)]}
if x ∈ [xmin, xmax]

rmin if x /∈ [xmin, xmax]
(39)

where rmin < 0 is the minimum allowed reward, C
is a nonnegative curvature parameter, and [xmin, xmax]
is the range where the reward cannot be as low as rmin.

After some investigation, a second basic reward cal-
culation method, named hyperbolic penalty function,
turned out to give better results, in terms of flight con-
trol, as opposed to the logarithmic barrier penalty. The
hyperbolic penalty evaluates to nearly constant values
inside a given range of the independent variable and
exhibits a nearly linear varying behaviour outside that
range. It is defined as follows:

r(x) =λ(x − xmin) −
√

λ2(x − xmin)2 + τ 2

+ λ(xmax − x) −
√

λ2(xmax − x)2 + τ 2
(40)

where τ and λ are nonnegative shape parameters. In
particular,±λ are the slopes of the linear segments out-
side of the interval [xmin, xmax]. Two examples of log-
arithmic and hyperbolic penalty functions are shown in
Fig. 10.

The above-defined functions are used to construct
a reward rk in terms of all or a subset of variables in
the triplet (sk, ak, sk+1). Care is taken when linking a
higher reward to good behaviour because for a poorly
defined rk the agent may prefer to maximize its reward
at the cost of not reaching the desired state. For instance,
for a waypoint following task assigned to an aircraft
controller, the agent might approach the target point
in space and fly around the given waypoint in order to
accumulate as much reward as possible instead of pass-
ing through the target and then finishing the episode
(which will of course result in a lower total reward).
For this reason, the maximum of the chosen function
r(x) will not be positive.

Therefore, assuming we have an array χ = (χ1,

χ2, . . . , χn) of n scalars, where each χi is a function of
variables in (sk, ak, sk+1), the total reward of a transi-
tion from time step k to k + 1 will be:

123

A deep reinforcement learning control approach 17055

rk =
n∑

i=1

r
(
χi
)

(41)

where r can be the logarithmic (39) or the hyperbolic
barrier penalty function (40). The numbernwill depend
on the type of control task under study.

Section 4 introduces the flight dynamics model used
in all simulations and then presents the main learning
experiment, with its set of hyperparameters, that trains
an agent to follow a given combination of heading and
altitude. Successively, some additional test cases are
also reported that validate thisDRL-based control strat-
egy.

4 Control strategy validation

The flight dynamics model used for this research is
provided by the JSBSim software library. JSBSim is a
multi-platform, general-purpose, object-oriented FDM
written in C++. The FDM is essentially the physics/-
math model that defines the 6-DoF movement of a fly-
ing vehicle, subject to the interaction with its natural
environment, under the forces and moments applied
to it using the various control mechanisms. The math-
ematical engine of JSBSim solves the nonlinear sys-
tem (1)–(11)–(17)–(18) of differential equations start-
ing from a given set of initial conditions, with pre-
scribed input laws or determined by a pilot-in-the-loop
operating mode. The FDM implements fully customiz-
able, data-driven flight control systems, aerodynamic
models, propulsive models, and landing gear arrange-
ment through a set of configuration text files in XML
format.

The software can be run as an engineering flight
simulator in a standalone batch mode (no graph-
ical displays), or it can be integrated with other
simulation environments. JSBSim includes a MAT-
LAB S-function that makes it usable as a simulation
block in Simulink. This feature, besides the MAT-
LAB/Simulink Reinforcement Learning Toolbox, has
made possible all simulations and learning strategies
performed in this research.

A validation of JSBSim as a flight dynamics soft-
ware library has been reported by several authors
[30,37].

4.1 Agent training

Several learning experiments were carried out with var-
ious control goals, in order to assess the appropriate tun-

ing of hyperparameters related to the DDPG algorithm
and to the reward calculation function. A representa-
tive example of agent training is presented here, whose
Simulink overall scheme is reported in Fig. 11, while
a selection of successful control examples in different
scenarios is presented in the next section.

The agent training process was tuned for a flight
control task where a reference F-16 FDM was: (i)
set in flight at 30,000ft of altitude and at an assigned
speed, with a randomly generated initial heading, and
(ii) required to reach a target commanded heading
ψc = 0 deg and a target commanded altitude hc =
27,000 ft within a time tT = 30 s, (iii) with a final
wings level and horizontal fuselage attitude—that is,
following zero commanded roll and elevation angles
φc = θc = 0 deg. The target flight condition is a
translational flight, i.e. a motion with zero commanded
angular speeds pc = qc = rc = 0 deg/s.

Thousands of simulations were performed to train
the agent within the MATLAB/Simulink environment
and to reach a fine-tuned control for the assigned task.
In the initial trials, the agent was trained with the
two different types of reward functions presented in
Sect. 3.11, and finally, it was determined that the hyper-
bolic penalty function (40) was the one that gave the
best results.

By defining the error variables:

εh = hc − h, εφ = φc − φ, εθ = θc − θ,

εψ = ψc − ψ, εp = pc − p, εq = qc − q (42)

the observation vector χ in this scenario is defined as
follows:

χ = [
εh, εφ, εθ , εψ , εp, εq , α, β, δ̃T , δ̃a, δ̃e, δ̃r, δ̃f

]

(43)

All simulations reaching a terminal state at the final
time tT with an altitude error |εh | > 2000 ft were
marked with a final cumulative reward RT = −1000
(control target unattained).

Table 1 summarizes the initial conditions of all simu-
lations required to train the agent to followagivenhead-
ing and altitude. The main hyperparameters of the fine-
tuned training process with the DDPG algorithm are
reported in Table 2, while the reward function hyperpa-
rameters are listed in Table 3. The major training setup
options are reported in Table 4. The computational cost
to run the simulations on a personal computer equipped
with an Intel i7-9750h CPU, a DDR4 RAM of 32GB

123

17056 A. De Marco et al.

Fig. 11 Simulation scheme in Simulink

Table 1 Initial conditions for the heading and altitude control
training

Parameter Symbol Value

Altitude h 30, 000.0 ft (9144.0 m)

First aircraft velocity
component

u 750.0 ft/s (228.6 m/s)

Second aircraft velocity
component

v 0.0 ft/s (0.0 m/s)

Third aircraft velocity
component

w 0.0 ft/s (0.0 m/s)

Latitude μ 47.0 deg

Longitude l 122.0 deg

Roll angle φ 0.0 deg

Pitch angle θ 0.0 deg

Heading angle ψ Random ∈ (0, 360) deg

and anNvidiaGPURTX2060 is summarized inTable 5.
Finally, the cumulative reward history, Re as a function
of the number of episodes, is plotted in Fig. 12.

4.2 Simulation scenarios

This sectionpresents the results of various test case sim-
ulations where different control tasks are successfully
accomplished by the same agent presented in Sect. 4.1.

With reference to the scheme of Fig. 5, the pilot’s
commanded inputs are essentially replaced by the
agent’s action on the primary controls—i.e. stick and

Table 2 Agent hyperparameters for the heading and altitude
control training

Parameter Value

Sample time 0.2

Batch size 256

Noise standard deviation decay 1 × 10−5

Actor learning rate 1 × 10−3

Actor gradient threshold 1

Critic learning rate 1 × 10−3

Critic gradient threshold 1

Table 5 Statistics for the heading and altitude control agent
training scenario (hardware: Intel i7-9750h CPU, DDR4 32GB
of RAM, Nvidia RTX2060 GPU)

Performed episodes 2889

Maximum obtained reward −24.60

Elapsed time 6 h 51 min

pedals (δ̃a, δ̃e, δ̃r) and the throttle lever, δ̃T—forming
the four-dimensional input vector ũagt defined in (20).
These signals are filtered by the FCS, whose output
is then converted in aerosurface deflections and actual
throttle setting, and passed to the aircraft dynamics sim-
ulation block (directly interfaced to JSBSim) besides
other control effector signals produced by the FCS log-
ics. These form the full input vector u defined in (21).

123

A deep reinforcement learning control approach 17057

Table 3 Hyperbolic
penalty parameters for the
heading and altitude control
scenario

Parameter Lower bound (xmin) Upper bound (xmax) λ τ

Altitude error (εh) −5 5 1/398 0

Roll rate (εp) −0.1 0.1 125/78 0

Pitch rate (εq) −0.1 0.1 125/78 0

Roll angle error (εφ) −0.02 0.02 125/78 0

Pitch angle error (εθ) −0.02 0.02 125/78 0

Heading angle error (εψ) −0.02 0.02 125/78 0

Table 4 Training options
for the heading and altitude
control scenario

Parameter Value

Maximum number of episodes 5000

Maximum number of steps per episode 150

Stop training criteria Average reward (of five successive episodes) ≥ −50

4.2.1 Heading and altitude following

The heading and altitude following scenario is the one
thatwas actually set up to train the agent and introduced
in Sect. 4.1. The details of a representative simulation
with control inputs provided by the trained agent are
presented here.

The task of achieving a zero heading angle and an
assigned new flight attitude is accomplished within the
prescribed 30s. The agent’s inputs as well as the FCS
outputs are plotted as normalized flight commands time
histories in Fig. 13, where the throttle setting values
above 1 mean that the jet engine afterburner is being
used. The time histories of the primary aerosurface
deflections, as actual inputs to the aircraft dynamics
model, are shown in Fig. 14. Time histories of aircraft
state variables, such as attitude angles and aerodynamic
angles, velocity components, normal load factor, Mach

number and angular velocity components, are reported
in Figs. 16 and 17.

4.2.2 Waypoint following

This test case generalizes the previous scenario by
introducing a number of sequentially generated ran-
dom waypoints during the simulation, that the aircraft
is required to reach under the agent’s control. As shown
inFig. 18, the sameagent thatwas trained to accomplish
the simpler task presented in the previous example, is
now deployed in a new simulation scenario where the
reference valuesψc and hc change over time. The addi-
tional logic with respect to the previous case receives a
multi-dimensional reference signal, calculates the error
terms, and injects them into a reward calculation block.
This reward thus calculated directs the agent to follow
a given flight path marked by multiple waypoints.

Fig. 12 Episode reward
history during the training
for the heading and altitude
control scenario

123

17058 A. De Marco et al.

Fig. 13 F-16
agent-controlled heading
and altitude following
simulation scenario.
Normalized flight
commands histories, as
provided by the agent and
filtered by the FCS

123

A deep reinforcement learning control approach 17059

Fig. 14 F-16
agent-controlled heading
and altitude following
simulation scenario. Actual
primary aerosurface
deflections correspond to
the command inputs coming
from the FCS. See also
Fig. 5

Fig. 15 F-16
agent-controlled heading
and altitude following
simulation scenario.
Aerosurface deflections
δf,TE and δf,LE generated by
the FCS logics. See also
Fig. 5

The waypoints form a discrete sequence
{
(lc

, μc, hc)i | i = 1, 2, . . . , n
}
of n locations in space of

geographic coordinates (l, μ) and altitude h generated
at subsequent time instants t1, t2, . . . , tn . In the exam-
ple presented here, a sequence of n = 10 waypoints
has been considered.

Starting from a random initial flight condition, with
casual heading, speed and altitude, the goal is to reach
the next random waypoint, and successively one by
one all the other waypoints as they reveal themselves
to the agent along the way. For 0 = t0 ≤ t < t1 the
aircraft points to waypoint (lc, μc, hc)1 until at t = t1
the vehicle is labelled as sufficiently close to the first
target, the waypoint (lc, μc, hc)2 is generated and pur-
sued for t1 ≤ t < t2; the scheme repeats itself until the
last waypoint is reached after time tn . The geographic
coordinates and the general aeroplane position tracking
are handled through the JSBSim internal Earth model.

In the generic instant t of the simulation, with the
aircraft gravity centre having geographic longitude l(t)
and latitudeμ(t), once the vehicle is commanded to fly
towards the next i th waypoint, the headingψc,i that the

agent is required to follow after time ti−1 is calculated
as:

ψc,i (t) = atan2
{
sin
[
lc,i − l(t)

]
cosμ(t),

cosμ(t) sinμc,i − sinμ(t) cosμc,i

cos
[
lc,i − l(t)

]}
(44)

for ti−1 ≤ t < ti . Therefore, the altitude and head-
ing error considered in the reward calculation function
become:

εh(t) = hc,i − h(t), εψ(t) = ψc,i − ψ(t) (45)

for ti−1 ≤ t < ti and i = 1, . . . , n. The above formulas
represent the time-varying references provided to the
control agent.

The agent looks at one waypoint at a time in this par-
ticular test case. When the aircraft reaches an assigned
threshold distance from the current pointed waypoint,
the next one is generated and passed to the agent. The
instantaneous distance from the aircraft gravity centre
to the current waypoint is calculatedwith theHaversine
formula [38].

The behaviour of the agent in themultiplewaypoints
following task can be figured out by the simulation

123

17060 A. De Marco et al.

Fig. 16 F-16
agent-controlled heading
and altitude following
simulation scenario. Time
histories of altitude, attitude
angles and aerodynamic
angles

results presented below. The agent’s inputs as well as
the FCS outputs are plotted as normalized flight com-
mands time histories in Fig. 19. The time histories of
the primary aerosurface deflections, as actual inputs
to the aircraft dynamics model, are shown in Fig. 20.
Time histories of aircraft state variables, such as atti-
tude angles and aerodynamic angles, velocity compo-
nents, normal load factor, Mach number and angular
velocity components, are reported in Figs. 21 and 22.

Figure 23 reports the actual and commanded values
of heading ψ , longitude l and latitude μ. This scenario
is also represented on the map of Fig. 24 reporting the
ground track of the aircraft trajectory, the sequence of

10 waypoints and the commanded waypoint altitudes.
Finally, the three-dimensional flight path and aircraft
body attitude evolution are shown in Fig. 25.

4.2.3 Varying target with sensor noise

This test case is set up to investigate the agent’s
behaviour when external disturbances are injected into
the environment. The simulation scenario is similar to
the heading and altitude following example presented
in Sect. 4.2.1, but in this case the commanded altitude
hc and heading ψc do change in time according to
assigned stepwise constant functions. In addition, the

123

A deep reinforcement learning control approach 17061

Fig. 17 F-16 agent-controlled heading and altitude following
simulation scenario. Time histories of velocity components, nor-
mal load factor, Mach number and angular velocity components

state signals that define the agent’s observation vector
(43) and that are sent also as feedback to the FCS are
perturbed with prescribed noisy disturbances.

In particular, a set of random (Gaussian) normally
distributed noise signals are generated and then added
to some state variables in order to simulate an uncer-
tainty on data available to the controllers. The results
of a simulation case with zero-mean perturbations—
assuming an accurately calibrated set of sensors, which
is typically expected from the class of aircraft consid-
ered in this study—are reported in Fig. 26. Table 6 lists
the main parameters of the additive noisy signals.

The results of this simulation case are similar to
those reported in previous examples. The outcome of
the agent’s control actions is represented by the time
histories plotted in Fig. 26, which shows the instanta-
neous aircraft altitude and heading beside their cor-
responding commanded values. The same figure also
reports the aerosurface deflection angles as provided to
the aircraft FDM.

4.2.4 Prey–chaser scenario

This test case evolves from thewaypoint following sce-
nario presented in Sect. 4.2.2 and provides a basis for
possible applications of the present agent-based con-
trol approach to the field of military fighter pilot train-
ing (to dogfight and formation flight, for instance). In
a prey–chaser scenario, two aeroplane models coexist
and share the same flight environment where the first
aircraft acts as the prey, being chased by the second
one, i.e. the chaser.

Fig. 18 Control scheme of
a waypoint following
scenario. The reference
given by successive
waypoints and altitudes are
injected into the reward
calculation

123

17062 A. De Marco et al.

Fig. 19 F-16
agent-controlled waypoint
following simulation
scenario. Normalized flight
commands histories, as
provided by the agent and
filtered by the FCS

123

A deep reinforcement learning control approach 17063

Fig. 20 F-16
agent-controlled waypoint
following simulation
scenario. Actual primary
aerosurface deflections
corresponding to the
command inputs coming
from the FCS

In the particular test case presented here, both the
chaser and the prey are piloted by an RL-based agent.
In the simulation environment, there are two replicas
of the same F-16 model, both of them piloted by two
identical trained agents (Agent vs. Agent, the same pre-
sented in Sect. 4.1). The first agent controls the prey
aircraft to follow a given sequence of random way-
points, much as the previous multiple waypoints fol-
lowing example. The second agent controls the chaser
aircraft by acquiring the successive positions of the prey
with a given frequency and follows them as if theywere
virtual waypoints.

The prey–chaser interaction within the waypoint
subsequence 1 to 8 is shown in detail by the maps of
Fig. 27. The full picture for the full waypoint sequence
1 to 10 is shown in Fig. 28,where also the random initial
positions of the two aeroplanes are marked.

This particular simulation demonstrates the ability
of the chaser agent to tighten its trajectory when appro-
priate, for instance, when the prey passes from way-
point 5 to waypoint 6. Another interesting behaviour
is observed when the chaser aircraft overtakes the prey
when the waypoint 8 is reached and surpassed. In this
case, the agent-controlled chaser aircraft performs a
complete turn to position itself behind the prey and
continue the target following task.

5 Discussion

All simulation examples introduced in the previous sec-
tion demonstrate the validity of the trained agent when
it is directed to execute different control tasks with a
progressive level of difficulty.

5.1 Path control with fixed reference

The simplest example showing a case of path control
with a fixed reference is presented in Sect. 4.2.1. The
assigned control task is precisely what the agent was
trained for, i.e. a case of exploitation. The aircraft is
able to reach a target heading angle and an assigned
new flight altitude, starting from a randomly generated
initial flight condition (random heading, altitude, and
speed), within a flight time of 30s. The agent achieves
this result by providing the input actions—normalized
flight commands—shown in time histories of Fig. 13.
The agent inputs are filtered by the FCS, whose out-
put signals are also plotted in the same figure. In par-
ticular, it is seen that to reach the assigned goal as
quickly as possible the agent demands a high thrust
level, thus requiring the use of the jet engine afterburner
(see the topmost plot of Fig. 13, where the output δ̃T
from the FCS, for 12 s ≤ t ≤ 22 s, becomes higher
than 1). Time histories of the other primary and sec-
ondary controls as well as of the aircraft state variables
clearly show an initial left turn, combined with a dive,
to reach a prescribed lower altitude, North-pointing
flight path. A typical FCS behaviour for this type of
high-performance fighter jet is observed in the plot
at the bottom of Fig. 13: the output δ̃r from the FCS
for 12 s ≤ t ≤ 22 s exhibits severe filtering of the
agent’s rudder command in order to keep the sideslip
angle as low as possible (see β within the same time
interval in Fig. 16). The manoeuvre is confirmed by
the time histories of primary aerosurface deflections
shown in Fig. 14 and of wing leading-edge/trailing-
edge flap deflections reported in Fig. 15. The left turn
results from the negative (right) aileron deflection δa

123

17064 A. De Marco et al.

Fig. 21 F-16
agent-controlled waypoint
following simulation
scenario. Time histories of
altitude, attitude angles and
aerodynamic angles

(right aileron down, left aileron up), for 1 s ≤ t ≤ 6 s).
The initial dive results from the combined action of tail
and wing leading-edge flap deflections, δe and δf,LE,
respectively, for 0 s ≤ t ≤ 6 s, leading to a pitch-
down manoeuvre (see negative θ within the same time
interval in Fig. 16). Figure15 reveals an inherent com-
plexity of such a controlled flight example, showing
time-varying deflections of leading-edge and trailing-
edge flaps mounted on the main wing. These deflec-
tions are due to the high-fidelity implementation of FCS
control logics that can trigger the actuation of high-

lift devices when some aircraft state variables do fall
within prescribed ranges (see Appendix C). Time his-
tories of aircraft state variables—such as altitude, atti-
tude angles, aerodynamic angles reported in Fig. 16,
velocity components, normal load factor, flight Mach
number and angular velocity components reported in
Fig. 17—confirm the left turn/dive manoeuvre to reach
the prescribed terminal state. From Fig. 16, in partic-
ular, the errors εh = hc − h, εψ = −ψ , εθ = −θ ,
εφ = −φ and their vanishing behaviour with time are
easily deduced and confirm the effectiveness of the

123

A deep reinforcement learning control approach 17065

Fig. 22 F-16
agent-controlled waypoint
following simulation
scenario. Time histories of
velocity components,
normal load factor, Mach
number and angular
velocity components

123

17066 A. De Marco et al.

Fig. 23 F-16
agent-controlled waypoint
following simulation
scenario. Actual and
commanded values of
heading ψ , longitude l and
latitude μ. See also Eq. (44)

agent’s control actions. This test case clearly shows
a valid AI-based control in the presence of nonlinear
effects. For instance, the significant variations of alti-
tude, flight Mach number and angle of attack do trigger
all those nonlinearities accurately modelled in the air-
craft FDM (see Appendices A, and B).

5.2 Path control with varying reference

A case ofmultiple waypoints following task is intro-
duced in Sect. 4.2.2. This scenario provides an inter-
esting example of controlled flight with a moving

reference. The simulation is performed by using the
same control agent that was trained for the simpler
one-reference heading/altitude following task. Interest-
ingly, the simulation results presented in Figs. 19 to 23,
demonstrate that also the multiple waypoints follow-
ing exercise is successfully achieved. The agent reacts
appropriately to each randomly generated new refer-
ence and effectively enacts its policy to control the plant
dynamics. The ground track reported in Fig. 24 and the
three-dimensional trajectory presented in Fig. 25 show
the sequence of turns, dives and climbs that are flown
to accomplish the assigned task.

123

A deep reinforcement learning control approach 17067

Fig. 24 F-16 agent-controlled waypoint following simulation
scenario. Ground track of the aircraft trajectory, sequence of
assigned waypoints and commanded waypoint altitudes

5.3 Control validation in the presence of noise

Section4.2.3 reports an example of how the trained
agent behaves when the state observations are per-
turbed by additive noisy signals. This test case, with
the simulation results shown in Fig. 26, proves the
robustness of the agent’s control actions with respect to
external disturbances, within the assumption of well-
calibrated sensors.

5.4 Simulation of a prey–chaser scenario

Finally, Sect. 4.2.4 presents an interesting prey–chaser
simulation scenario, demonstrated by the ground tracks
reported in Figs. 27 and 28. Two instances of the same
trained agent direct two instances, respectively, of the
same model of flying vehicle simulating an air engage-
ment. A virtual simulation environment based on the
FlightGear flight simulation software1 has been set up
as a means to visualize the air combat in a proper
scenery. The scheme of Fig. 29 depicts how the two

1 www.flightgear.org.

Fig. 25 F-16 agent-controlled waypoint following simulation
scenario. Three-dimensional flight path and aircraft body attitude
evolution. Aircraft geometry not in scale (magnified 1250 times
for clarity)

Table 6 Aircraft states variables affected by additive zero-mean
noisy disturbances in the test case of Sect. 4.2.3

Perturbed states Unit Variance (σ 2)

p, q, r rad/s 0.01

h m 1.0

ψ, θ, φ rad 0.01

α, β rad 0.01

aircraft instances and their states are represented in
the chosen airspace. Four successive screen captures
of the virtual simulation environment are represented
in Fig. 30, while the prey aircraft, after having reached
waypoint 3, is pursuing waypoint 4. The figure shows
two camera views on the left, taken following the prey
and the chaser aircraft at fixed distances, respectively.
The views are synchronized to the evolving ground
tracks shown on the right. As seen in this excerpt of
simulation, the chasing fighter enters into the field of
view of the first camera as it flies at a higherMach num-
ber, while the leading aircraft is still pursuing waypoint
4. Eventually, the chaser reaches its target arriving at
the prey’s tail. This test case is one example of sev-
eral other interesting simulation possibilities. In fact,
assuming, for example, that the chaser is piloted by
the agent discussed here, the prey can be piloted by
a completely different agent instructed to accomplish
a prescribed manoeuvre or, as an alternative, the prey
can be a human-in-the-loop piloted model. These are
possible applications of the flight control approach pre-
sented in this study that have the potential to enhance
pilot training procedures by means of AI-augmented
simulation environments.

123

www.flightgear.org

17068 A. De Marco et al.

Fig. 26 F-16
agent-controlled simulation
scenario with varying
commanded heading and
altitude, and zero-mean
sensor noise. Time histories
of altitude, heading and
aerosurface deflection
angles

6 Conclusion

This research presents a high-performance aircraft
flight control technique based on reinforcement learn-
ing and provides an example of how AI can generate
a valid controller. The proposed approach is validated
by using a reference simulation environment where the
nonlinear, high-fidelity flight dynamics model of a mil-
itary fighter jet is used to train an agent for a selected set
of controlled flight tasks. The simulation results show
the control effectiveness to make certain manoeuvres

fully automatic in highly dynamic scenarios, even in the
presence of sensor noise and atmospheric disturbances.

A future research direction that should evolve from
this study is the comparison of the proposed AI-based
controller to other standard types of flight control.

Supplementary information

This article has no accompanying supplementary file.

123

A deep reinforcement learning control approach 17069

Fig. 27 Details of the waypoint sequence 1–8, and of the two ground tracks in the prey–chaser simulation scenario

Fig. 28 Map projection of aircraft trajectory, and assigned way-
points, by a prey–chaser scenario simulation

Fig. 29 Virtual simulation environment basedon JSBSim,MAT-
LAB/Simulink and FlightGear

123

17070 A. De Marco et al.

Fig. 30 Screen captures at
four successive instants of
the one-to-one air combat
virtual simulation (times 1
and 2) and (times 3 and 4)

123

A deep reinforcement learning control approach 17071

Fig. 30 continued

Acknowledgements The authors would like to thank the edi-
tors and reviewers of Nonlinear Dynamics for their valuable
efforts in the review of this paper.

Funding Open access funding provided by UniversitÃ degli
Studi di Napoli Federico II within the CRUI-CARE Agreement.
No funding was received for conducting this study.

Data availability The data that support the findings of this study
are available from the corresponding authors, ADM or SM, upon
reasonable request.

Declarations

Conflict of interest The authors declare that they have no con-
flict of interest.

Consent for publication The authors grant the Journal of Non-
linear Dynamics the authority to publish this work.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in anymedium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third partymaterial in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to thematerial. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

17072 A. De Marco et al.

Appendix A: Aerodynamic model of the General
Dynamics F-16 Fighting Falcon

The high-performance aircraft FDM selected for this
research incorporates the nonlinear JSBSim aero-
dynamic model [30], which we summarize in this
appendix. With reference to the definitions given by
Eqs. (4), (9), (13) and (14), the aerodynamic coef-
ficients are implemented as functions of the aircraft
state and input variables, x and u. Each coefficient
is expressed as a sum of nonlinear terms, commonly
known as the aerodynamic build-up formula. The
detailed build-up formulas for the F-16 fighter are
reported below, where all angles are in radians.

Lift coefficient

CL = kCL ,ge

(
h

b

){
Cbas
L (α, δe) + CLδf,LE

(α) δf,LE

+CLδf,TE
δf,TE + CLδsb

(α) δsb

+ [
CLq(α) + kδsb(α) δsb

] qc

2V

}
(A1)

where the functions kCL ,ge(h/b),Cbas
L (α, δe),CLδf,LE

(α),
CLδsb

(α), CLq (α), kδsb(α) are reported, for the sake of
example, in Figs. 31 and 32.

Drag coefficient

CD = Cbas
D (α, δe) + �CD(M) + CDδf,LE

(α) δf,LE

+CDδf,TE
δf,TE

+CDδsb
(α) δsb + CD

δ̃gear
δ̃gear

+ [
CDq(α) + kδf,LE(α) δf,LE

] qc

2V
(A2)

δ̃gear: normalized gear position (0: retracted; 1: fully
deployed)

Cross force coefficient

The cross force coefficientCC that appears in Eq. (9) is
also called CY by many authors. For the F-16, the side
force coefficient is modelled as follows:

CY = [
CYβ + �CYβ (M)

]
β + CYδa

δa + CYδr
δr

+ [
CYp(α) p + CYr(α) r

] b

2V
(A3)

Roll moment coefficient

CL = Cbas
Lβ

(α, β) + �CLβ
(M) β

+ [
CLp(α) p + CLr(α) r

] b

2V
+ [

CLδa
(α, β) + �CLδa

(M) α
]
δa

+ [
CLδr

(α, β) + �CLδr
(M) α

]
δr (A4)

Pitch moment coefficient

CM = Cbas
M(α, δe) + �CMα

(M) α

+CMδsb
(α) δsb + CMq(α)

qc

2V
(A5)

Yaw moment coefficient

CN = Cbas
N (α, β) + �CNβ

(M)β

Fig. 31 Mapped lift
coefficient terms of General
Dynamic F-16 JSBSim
model

123

A deep reinforcement learning control approach 17073

Fig. 32 Mapped lift coefficient terms of General Dynamic F-16 JSBSim model

+ [
CNp(α) p + CNr(α) r

] b

2V
+ [

CNδa
(α, β) + �CNδa

(M)
]
δa

+ [
CNδr

(α, β) + �CNδr
(M) α

]
δr (A6)

For a complete description of the F-16 aerody-
namics model, the reader can refer to the official
JSBSim repository https://github.com/JSBSim-Team/
jsbsim exploring the folder aircraft/f16 and the
<aerodynamics/> block in the configuration file
aircraft/f16/f16.xml.

Appendix B: Thrust model of the General Dynamics
F-16 Fighting Falcon

With reference to definitions (10), (13) and (15), the
instantaneous thrust is modelled in JSBSim [30,39] as
follows:

T = δT Tmax,SL T̃max
(
hDA, M

)
(B7)

where the normalized thrust T̃max is a function of den-
sity altitude hDA and flight Mach number M (see also
Table 7). The density altitude hDA is one of the quanti-

123

https://github.com/JSBSim-Team/jsbsim
https://github.com/JSBSim-Team/jsbsim

17074 A. De Marco et al.

Table 7 Pratt and Whitney F100-PW-229 JSBSim model property

Property Symbol Value

Maximum static thrust at sea level Tmax,SL 17,800.0 lbf (79,178.3 N)

Maximum static thrust, with afterburner, at sea level Tmax,ab,SL 29,000.0 lbf (128,998 N)

Bypass ratio BPR 0.4

Thrust-specific fuel consumption at cruise TSFC 0.74 lb
lbf h

(
0.075 kg

Nh

)

Thrust-specific fuel consumption at cruise, with afterburner ATSFC 2.05 lb
lbf h

(
0.209 kg

Nh

)

Angle of incidence of the thrust axis μT 0.0 deg

Thrust line eccentricity eT 0.0m

ties defined by the ICAO International Standard Atmo-
sphere (ISA) model as functions of the altitude h (m)
above the mean sea level (MSL) [31].

For known values of altitude h and airspeed V ,
the density altitude hDA and the flight Mach number
M = V/a(h) allow the calculation of a normalized
maximum available thrust in various engine conditions
by interpolating the data points shown in Fig. 33.

For a complete description of the F-16 propulsive
model, the reader can refer to the official JSBSim repos-
itory https://github.com/JSBSim-Team/jsbsim explor-
ing the folderaircraft/f16, the<propulsion/>
block in the configurationfileaircraft/f16/f16.
xml, and the engine configuration file engine/F
100-PW-229.xml.

Appendix C: Flight control system of the General
Dynamics F-16 Fighting Falcon (an excerpt)

The FCS within the JSBSim FDM [30,39] of the F-16
implements several ideal/parallel PID controllers act-
ing on different input channels (see Fig. 5). Each con-
troller attempts to minimize a given error function e(t)
over time by adjusting a control variable u(t) to a new
value determined by the following weighted sum:

u(t) = Kp e(t) + Ki

∫ t

0
e(τ) dτ + Kd

de(t)

dt
(C8)

For the roll channel, the FCS features a PID con-
troller that minimizes the following nondimensional
error function:

eroll(t) = δ̃a(t) − p̂(t) (C9)

where δ̃a is the aileron normalized command input (in
the interval [−1, 1]), and p̂ = Gp p is a nondimen-
sional roll rate, with Gp a constant gain (in s/rad).

The error (C9) is a difference between the commanded
roll rate and the actual roll rate, which is named
fcs/roll-trim-error in JSBSim input/configu-
ration meta-language and implemented by the follow-
ing XML fragment:

Listing 1 F-16 roll channel FCS logic, PID error function.

<pure_gain name="fcs/roll -rate -norm">
→ p̂(t) := . . .

<input >velocities/p-aero -rad_sec </input >
→ p(t)

<gain>0.31821 </gain> → Gp (s/rad)
</pure_gain >

<summer name="fcs/roll -trim -error">
→ eroll(t) := . . .

<input >fcs/aileron -cmd -norm</input > → δ̃a(t)
<input >-fcs/roll -rate -norm</input > → − p̂(t)

</summer>

This roll channel controller is named fcs/roll-
rate-pid in Listing 2 and becomes active in flight
whenever the calibrated airspeed VCAS ≥ 20 kts
(fcs/aileron
-pid-trigger set to 1).

Listing 2 F-16 roll channel FCS logic, as defined in JSBSim
input/configuration meta-language in XML format.

<switch name="fcs/aileron -pid -trigger">
<default value="1"/>
<test value="0">

velocities/vc -kts lt 20.0
</test>

</switch>

<pid name="fcs/roll -rate -pid"> → uroll(t) := . . .

<trigger >fcs/aileron -pid -trigger </trigger >
0 or 1

<input >fcs/roll -trim -error </input >
<kp> 3.00000 </kp> → Kp

<ki> 0.00050 </ki> → Ki

<kd> -0.00125 </kd> → Kd

</pid>

Finally, for the roll channel, the closed-loop input com-
mand δ̃′

a is defined and then converted into an aerosur-
face deflection angle δa(t) ∈ [δa,min, δa,max], named

123

https://github.com/JSBSim-Team/jsbsim

A deep reinforcement learning control approach 17075

Fig. 33 Mapped normalized thrust of General Dynamic F-16 JSBSim model

fcs/aileron-pos-rad as shown by the follow-
ing XML input fragment:

Listing 3 F-16 roll channel FCS logic, as defined in JSBSim
input/configuration meta-language in XML format.

<summer name="fcs/roll -rate -command">
→ δ̃′

a := δ̃a + uroll
<input >fcs/roll -rate -pid</input >
<input >fcs/aileron -cmd -norm</input >
<clipto>

<min>-1</min>
<max>1</max>

</clipto>
</summer >

<aerosurface_scale
name="fcs/aileron -control">

<input >fcs/roll -rate -command </input >
→ δ̃′

a ∈ [−1, 1]
<range >

<min> -0.375</min> → δa,min

<max> 0.375 </max> → δa,max

</range >
<output>fcs/aileron -pos -rad</output >

→ δa(t) ∈ [δa,min, δa,max]
</aerosurface_scale >

The FCS control laws for the remaining input chan-
nels are defined in a similar manner. For the pitch chan-
nel, the FCS control logic features a cascade of inter-
connected blocks. The high-level control logic is given
by a PID controller assuming the following error func-
tion:

epitch(t) = q̂0 − Gδe(t) − q̂(t) − nzB(t) (C10)

that is, the difference between a commanded normal-
ized pitch rate q̂0, a nondimensional elevator scheduler
gain Gδe (as a function of the instantaneous angle of

123

17076 A. De Marco et al.

attack α), the instantaneous aircraft normalized pitch
rate q̂(t), and the normal load factor nzB = (gzB −
azB)/g, also known as g-load. The pitch channel PID
controller is active whenever VCAS ≥ 5 kts.

A low-level FCS logic for the pitch channel defines a
limiter on the elevator command. The F-16, in fact, has
a maximum g-load allowable limit of nzB,max = 9, and
a minimum limit of nzB,min = −4. Moreover, the pitch
control logic defines a particular behaviour of the ele-
vator according to the instantaneous value of the angle
of attack α(t). If α approaches 30 deg, the FCS will
command full down elevator deflection, overriding the
pilot’s commanded deflection, to prevent stalling. This
articulated behaviour determines the elevator scheduler
gain Gδe(t) in definition (C10).

For the yaw channel, the FCS features a PID con-
troller that minimizes the following error function:

eyaw(t) = δ̃r(t) + r̂(t) + 1

4
nyB(t) (C11)

where δ̃r is the rudder normalized command input (in
the interval [−1, 1]), r̂ = Gr (t) r is a nondimensional
yaw rate, Gr (t) is a variable gain (in s/rad, and func-
tion of the instantaneous airspeed), and nyB = (gyB −
ayB)/g is the lateral load factor. The PID controller is
active whenever the aircraft calibrated VCAS ≥ 10 kts.

For the throttle input channel, the FCS simply maps
the normalized throttle command δ̃T ∈ [0, 1] into a sig-
nal δT ∈ [0, 2] assuming that when δT ≥ 1 the jet
engine afterburner becomes active.

The speed brake channel is used by the FCS to pre-
vent deep stall. This control commands speed brake
deflections at high angles of attack and low speeds.
This will provide just enough pitch-down moment to
keep the aircraft under control. Moreover, speed brake
maximum deflection is of δsb,max = 60 deg and is lim-
ited to 43 deg when the gear is extended to prevent
physical speed brake damage on touchdown.

For a complete description of the F-16 flight dynam-
ics model and its FCS, including control laws for the
wing trailing-edge and leading-edge flap deflections,
the reader can refer to the official JSBSim reposi-
tory https://github.com/JSBSim-Team/jsbsim explor-
ing the folder aircraft/f16, the <flight_
control/>block in the configurationfileaircraft
/f16/f16. xml and the folder systems.

References

1. Stevens, B.L., Lewis, F.L.: Aircraft Control and Simulation.
Wiley-Interscience, Hoboken (2003)

2. Dally, K., Kampen, E.-J.V.: Soft actor-critic deep reinforce-
ment learning for fault tolerant flight control. In: AIAA
SCITECH 2022 Forum. American Institute of Aeronautics
and Astronautics, Reston, VA, USA (2022). https://doi.org/
10.2514/6.2022-2078

3. Wang, H., Liu, S., Yang, X.: Adaptive neural control for
non-strict-feedback nonlinear systems with input delay. Inf.
Sci. 514, 605–616 (2020)

4. Huo,X.,Ma,L., Zhao,X.,Niu,B., Zong,G.:Observer-based
adaptive fuzzy tracking control of mimo switched nonlinear
systems preceded by unknown backlash-like hysteresis. Inf.
Sci. 490, 369–386 (2019)

5. Xia, R., Chen, M., Wu, Q., Wang, Y.: Neural network based
integral sliding mode optimal flight control of near space
hypersonic vehicle. Neurocomputing 379, 41–52 (2020)

6. Zhao, H.-W., Liang, Y.: Prescribed performance dynamic
neural network control for a flexible hypersonic vehicle
with unknown control directions. Adv. Mech. Eng. 11(4),
1687814019841489 (2019)

7. Luo, C., Lei, H., Li, J., Zhou, C.: A new adaptive neural
control scheme for hypersonic vehicle with actuators multi-
ple constraints. Nonlinear Dyn. 100(4), 3529–3553 (2020).
https://doi.org/10.1007/s11071-020-05707-2

8. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An
Introduction, 2nd edn. MIT Press, Cambridge (2018)

9. Reddy, G., Wong-Ng, J., Celani, A., Sejnowski, T.J., Ver-
gassola, M.: Glider soaring via reinforcement learning in
the field. Nature 562(7726), 236–239 (2018)

10. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing atari
with deep reinforcement learning. In: Neural Information
Processing SystemsDeepLearningWorkshop (2013). arXiv
https://doi.org/10.48550/ARXIV.1312.5602

11. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., Wierstra, D.: Continuous control with
deep reinforcement learning. In: International Conference
on Learning Representations (2015). arXiv https://doi.org/
10.48550/ARXIV.1509.02971

12. Tsourdos, A., Dharma Permana, I.A., Budiarti, D.H., Shin,
H.-S., Lee, C.-H.: Developing flight control policy using
deep deterministic policy gradient. In: 2019 IEEE Interna-
tional Conference on Aerospace Electronics and Remote
Sensing Technology (ICARES), pp. 1–7 (2019). https://doi.
org/10.1109/ICARES.2019.8914343

13. Koch, W., Mancuso, R., West, R., Bestavros, A.: Reinforce-
ment learning for UAV attitude control. ACM Trans. Cyber-
Phys. Syst. 3(2), 3301273 (2019). https://doi.org/10.1145/
3301273

14. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov,
O.: Proximal Policy Optimization Algorithms (2017). arXiv
https://doi.org/10.48550/ARXIV.1707.06347

15. Bøhn, E., Coates, E.M., Moe, S., Johansen, T.A.: Deep
reinforcement learning attitude control of fixed-wing UAVs
using proximal policy optimization. In: 2019 International
ConferenceonUnmannedAircraft Systems (ICUAS). IEEE,

123

https://github.com/JSBSim-Team/jsbsim
https://doi.org/10.2514/6.2022-2078
https://doi.org/10.2514/6.2022-2078
https://doi.org/10.1007/s11071-020-05707-2
https://doi.org/10.48550/ARXIV.1312.5602
https://doi.org/10.48550/ARXIV.1509.02971
https://doi.org/10.48550/ARXIV.1509.02971
https://doi.org/10.1109/ICARES.2019.8914343
https://doi.org/10.1109/ICARES.2019.8914343
https://doi.org/10.1145/3301273
https://doi.org/10.1145/3301273
https://doi.org/10.48550/ARXIV.1707.06347

A deep reinforcement learning control approach 17077

Atlanta, GA, USA (2019). https://doi.org/10.1109/icuas.
2019.8798254

16. Su, Z.-q, Zhou, M., Han, F.-f, Zhu, Y.-w, Song, D.-l, Guo,
T.-t: Attitude control of underwater glider combined rein-
forcement learningwith active disturbance rejection control.
J. Mar. Sci. Technol. 24(3), 686–704 (2019). https://doi.org/
10.1007/s00773-018-0582-y

17. Mishra, A., Ghosh, S.: Variable gain gradient descent-based
reinforcement learning for robust optimal tracking control
of uncertain nonlinear system with input constraints. Non-
linear Dyn. 107(3), 2195–2214 (2022). https://doi.org/10.
1007/s11071-021-06908-z

18. Zhang, H., Huang, C.: Maneuver decision-making of deep
learning for UCAV thorough azimuth angles. IEEE Access
8, 12976–12987 (2020)

19. Lee, D., Kim, S., Suk, J.: Formation flight of unmanned
aerial vehicles using track guidance. Aerosp. Sci. Technol.
76, 412–420 (2018). https://doi.org/10.1016/j.ast.2018.01.
026

20. Li, Y.-f, Shi, J.-p, Jiang, W., Zhang, W.-g, Lyu, Y.-x:
Autonomous maneuver decision-making for a UCAV in
short-range aerial combat based on an MS-DDQN algo-
rithm. Def. Technol. 18(9), 1697–1714 (2022)

21. Cambone, S.A., Krieg, K., Pace, P., Linton, W.: Unmanned
aircraft systems roadmap 2005–2030.Off. Secr.Def. 8, 4–15
(2005)

22. Wang, H., Liu, P.X., Bao, J., Xie, X.-J., Li, S.: Adaptive
neural output-feedback decentralized control for large-scale
nonlinear systemswith stochastic disturbances. IEEETrans.
Neural Netw. Learn. Syst. 31(3), 972–983 (2019)

23. Yuksek, B., Inalhan, G.: Reinforcement learning based
closed-loop reference model adaptive flight control system
design. Int. J. Adapt. Control Signal Process. 35(3), 420–440
(2021). https://doi.org/10.1002/acs.3181

24. McGrew, J.S., How, J.P., Williams, B., Roy, N.: Air-combat
strategy using approximate dynamic programming. J. Guid.
Control. Dyn. 33(5), 1641–1654 (2010). https://doi.org/10.
2514/1.46815

25. Liu,X.,Yin,Y., Su,Y.,Ming,R.:Amulti-UCAVcooperative
decision-making method based on an MAPPO algorithm
for beyond-visual-range air combat. Aerospace 9(10), 563
(2022). https://doi.org/10.3390/aerospace9100563

26. Hu,D., Yang, R., Zuo, J., Zhang, Z.,Wu, J.,Wang,Y.: Appli-
cation of deep reinforcement learning in maneuver planning
of beyond-visual-range air combat. IEEE Access 9, 32282–
32297 (2021)

27. Wang,M.,Wang, L., Yue, T., Liu,H.: Influence of unmanned
combat aerial vehicle agility on short-range aerial com-
bat effectiveness. Aerosp. Sci. Technol. 96, 105534 (2020).
https://doi.org/10.1016/j.ast.2019.105534

28. Yang, Q., Zhu, Y., Zhang, J., Qiao, S., Liu, J.: UAV air com-
bat autonomous maneuver decision based on DDPG algo-
rithm. In: 2019 IEEE 15th International Conference on Con-
trol and Automation (ICCA), pp. 37–42 (2019). IEEE

29. Shin, H., Lee, J., Kim, H., Hyunchul Shim, D.: An
autonomous aerial combat framework for two-on-two
engagements based on basic fighter maneuvers. Aerosp. Sci.
Technol. 72, 305–315 (2018). https://doi.org/10.1016/j.ast.
2017.11.014

30. Berndt, J., De Marco, A.: Progress on and usage of the open
source flight dynamics model software library, JSBSim. In:

AIAA Modeling and Simulation Technologies Conference,
10–13 August 2009, Chicago, Illinois. American Institute
of Aeronautics and Astronautics, Reston, VA, USA (2009).
https://doi.org/10.2514/6.2009-5699

31. United States Committee on Extension to the Standard
Atmosphere, National Aeronautics and Space Administra-
tion, National Oceanic and Atmospheric Administration,
U.S. Air Force: U.S. Standard Atmosphere, 1976. NOAA-
SIT 76-1562. National Oceanic and Amospheric Adminis-
tration, Washington, DC, USA (1976)

32. Janota, A., Šimák, V., Nemec, D., Hrbček, J.: Improving the
precision and speed of Euler angles computation from low-
cost rotation sensor data. Sensors 15(3), 7016–7039 (2015).
https://doi.org/10.3390/s150307016

33. Brunton, S.L., Kutz, J.N.: Data-Driven Science and Engi-
neering: Machine Learning, Dynamical Systems, and Con-
trol, 2nd edn. Cambridge University Press, Cambridge
(2022). https://doi.org/10.1017/9781009089517

34. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness,
J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidje-
land, A.K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D.,
Legg, S., Hassabis, D.: Human-level control through deep
reinforcement learning. Nature 518(7540), 529–533 (2015).
https://doi.org/10.1038/nature14236

35. Peters, J., Schaal, S.: Reinforcement learning of motor
skills with policy gradients. Neural Networks 21(4), 682–
697 (2008). https://doi.org/10.1016/j.neunet.2008.02.003.
(Robotics and Neuroscience)

36. Hafner, R., Riedmiller, M.: Reinforcement learning in feed-
back control. Mach. Learn. 84, 137–169 (2011). https://doi.
org/10.1007/s10994-011-5235-x

37. Nicolosi, F., De Marco, A., Sabetta, V., Della Vecchia, P.:
Roll performance assessment of a light aircraft: flight sim-
ulations and flight tests. Aerosp. Sci. Technol. 76, 471–483
(2018). https://doi.org/10.1016/j.ast.2018.01.041

38. The Cosine-Haversine formula: American Mathematical
Monthly 64(1), 38 (1957). https://doi.org/10.2307/2309088

39. Snell, S., Enns, D., Garrard, W., Jr.: Nonlinear control of
a supermaneuverable aircraft. J. Guid. Control. Dyn. 15(4),
976–984 (1992). https://doi.org/10.2514/6.1989-3486

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123

https://doi.org/10.1109/icuas.2019.8798254
https://doi.org/10.1109/icuas.2019.8798254
https://doi.org/10.1007/s00773-018-0582-y
https://doi.org/10.1007/s00773-018-0582-y
https://doi.org/10.1007/s11071-021-06908-z
https://doi.org/10.1007/s11071-021-06908-z
https://doi.org/10.1016/j.ast.2018.01.026
https://doi.org/10.1016/j.ast.2018.01.026
https://doi.org/10.1002/acs.3181
https://doi.org/10.2514/1.46815
https://doi.org/10.2514/1.46815
https://doi.org/10.3390/aerospace9100563
https://doi.org/10.1016/j.ast.2019.105534
https://doi.org/10.1016/j.ast.2017.11.014
https://doi.org/10.1016/j.ast.2017.11.014
https://doi.org/10.2514/6.2009-5699
https://doi.org/10.3390/s150307016
https://doi.org/10.1017/9781009089517
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/j.neunet.2008.02.003
https://doi.org/10.1007/s10994-011-5235-x
https://doi.org/10.1007/s10994-011-5235-x
https://doi.org/10.1016/j.ast.2018.01.041
https://doi.org/10.2307/2309088
https://doi.org/10.2514/6.1989-3486

	A deep reinforcement learning control approach for high-performance aircraft
	Abstract
	1 Introduction
	1.1 Nonlinear dynamics in fixed-wing aircraft and established engineering approach to flight control
	1.2 Intelligent control approaches
	1.3 Deep reinforcement learning as a promising field for nonlinear control
	1.4 Applications to unmanned combat aerial vehicles (UCAVs)
	1.5 Research contribution
	1.6 Article organization

	2 Mathematical background
	2.1 Rigid aeroplane nonlinear 6-DoF flight dynamics model
	2.1.1 Conservation of the linear momentum equations (CLMEs)
	2.1.2 Conservation of the angular momentum equations (CAMEs)
	2.1.3 Flight path equations (FPEs)
	2.1.4 Kinematic equations (KEs)
	2.1.5 Summary of the equations and of system inputs

	3 Deep reinforcement learning approach applied to flight control
	3.1 The reinforcement learning framework
	3.2 Rewards
	3.3 Policy function
	3.4 Value function
	3.5 Quality function
	3.6 Temporal difference and Q-learning
	3.7 The actor-critic architecture
	3.8 Deep Q-networks
	3.9 Policy gradient methods
	3.10 Deep deterministic policy gradient
	3.11 Reward function shaping

	4 Control strategy validation
	4.1 Agent training
	4.2 Simulation scenarios
	4.2.1 Heading and altitude following
	4.2.2 Waypoint following
	4.2.3 Varying target with sensor noise
	4.2.4 Prey–chaser scenario

	5 Discussion
	5.1 Path control with fixed reference
	5.2 Path control with varying reference
	5.3 Control validation in the presence of noise
	5.4 Simulation of a prey–chaser scenario

	6 Conclusion
	Supplementary information
	Acknowledgements
	Appendix A: Aerodynamic model of the General Dynamics F-16 Fighting Falcon
	Lift coefficient
	Drag coefficient
	Cross force coefficient
	Roll moment coefficient
	Pitch moment coefficient
	Yaw moment coefficient

	Appendix B: Thrust model of the General Dynamics F-16 Fighting Falcon
	Appendix C: Flight control system of the General Dynamics F-16 Fighting Falcon (an excerpt)
	References

