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Abstract Delay embedding is a commonly employed
technique in a wide range of data-driven model reduc-
tion methods for dynamical systems, including the
dynamic mode decomposition, the Hankel alterna-
tive view of the Koopman decomposition (HAVOK),
nearest-neighbor predictions and the reduction to spec-
tral submanifolds (SSMs). In developing these applica-
tions,multiple authors have observed that delay embed-
ding appears to separate the data into modes, whose
orientations depend only on the spectrum of the sam-
pled system. In this work, we make this observation
precise by proving that the eigenvectors of the delay-
embedded linearized system at a fixed point are deter-
mined solely by the corresponding eigenvalues, even
for multi-dimensional observables. This implies that
the tangent space of a delay-embedded invariant man-
ifold can be predicted a priori using an estimate of the
eigenvalues. We apply our results to three datasets to
identify multimodal SSMs and analyse their nonlinear
modal interactions. While SSMs are the focus of our
study, these results generalize to any delay-embedded
invariant manifold tangent to a set of eigenvectors at
a fixed point. Therefore, we expect this theory to be
applicable to a number of data-driven model reduction
methods.
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1 Background

Much recent effort in nonlinear dynamics has focused
on data-driven model reduction methods. Such algo-
rithms return a simplified model of the system dynam-
ics based on sampled trajectories from experiments or
simulations. Commonly pursued objectives for devel-
oping these methods include dimensionality reduc-
tion, sparsity, and interpretability. Prevalent methods
include the proper orthogonal decomposition (POD)
[4,51] and the dynamic mode decomposition (DMD)
[46,66,67], which fit models to data under various lin-
earity assumptions.

Linear models cannot, however, capture characteris-
tically nonlinear (or nonlinearizable) phenomena. Such
phenomena include the coexistence of, and the transi-
tion between, isolated and compact stationary states,
such as fixed points, limit cycles, and invariant tori
[55]. To address this shortcoming, the Sparse identi-
fication of nonlinear dynamics (SINDy) algorithm fits
a sparse nonlinear model to training data using a library
of nonlinear functions [12]. However, the choice of this
library depends on the user [7] and the coordinate sys-
tem used. Additionally, the size of the library scales up
quickly with the problem dimensionality [45]. While
neural networks can pattern-match nonlinear phenom-
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ena [19,21,64], the models they return are often diffi-
cult to interpret and generalize poorly outside the range
of training data [50].

In the last few years, spectral submanifolds (SSMs)
have appeared as an alternative for model reduction in
intrinsically nonlinear systems. An SSM is the unique
smoothest invariant manifold tangent to a nonresonant
spectral subspace emanating from a fixed point [14]
or a periodic or quasiperiodic orbit [33]. Therefore,
an attracting SSM is the ideal candidate for a low-
dimensionalmodel of a nonlinear system [32,60]. Con-
cepts related to SSMs include nonlinear normal modes
(NNMs) defined either as sets of periodic motions in
conservative systems [43,62,74] or invariantmanifolds
[68,69] and invariant spectral foliations [71]. Here, we
will apply SSMs, as they are unique, exist under well-
defined conditions in dissipative systems, can have
arbitrary dimensions, and can include internally res-
onant modes.

After the computation of an SSM, we can project
either equations or data onto it to reduce the system
to a high-fidelity low-dimensional model. Automated
model reduction to SSMs from equations [37] can suc-
cessfully predict responses to small harmonic forcing
[36,59,61] and bifurcations of those responses [47,48],
and has also been extended to constrained mechani-
cal systems [49]. Recently, Ref. [16] developed a data-
driven method which identifies the SSM geometry and
its reduced dynamics from trajectories in an observable
space [18]. This approach also transforms the SSM-
reduced dynamics to a normal form, which describes
the dynamics as sparsely as possible while maintaining
essential nonlinearities [31]. SSM-based model reduc-
tion has since been applied to both numerical and
experimental datasets in fluid and structural dynam-
ics [17,41] and control [3]. Reference [5] shows how
to improve the computational efficiency of data-driven
SSM identification through a simplified formulation of
the algorithm.

Delay embedding is the method of reconstructing
invariant sets by viewing a select number of measure-
ments separated by a timelag as independent observ-
ables. This method is routinely used to aid data-
drivenmodel identification in nonlinear dynamical sys-
tems. Examples of model reduction methods based on
delay embedding include the extended dynamic mode
decomposition (DMD) [25,75], the Hankel alternative
view of the Koopman decomposition (HAVOK) [11],
the eigensystem realization algorithm (ERA) [39], clo-

sure modeling [56], and nearest-neighbor prediction
[58,70]. In addition, delay embedding has been exten-
sively employed in SSM-based model reduction from
data [16,17]. For SSMs, a closer understanding of the
delay embedding map improves fits to data and pro-
duces more accurate reduced-order models [5]. This
has motivated our present study on how invariant man-
ifolds can be efficiently and accurately reconstructed
in delay coordinates.

The main driver behind the introduction of delay
embedding as a tool in dynamical systems was the
discovery that it could reconstruct strange attractors
from scalar measurements of chaotic systems [20,54].
Floris Takens’s celebrated embedding theorem [72] and
its later extension [65] show that, in principle, delay
embedding recovers invariant sets from the full state
space in a suitable observable space under generic
assumptions. In practice, however, the choice of the
timelag and embedding dimension is critical to obtain
robust models [10,15,76]. The many methods for
choosing delay parameters for chaotic attractor recon-
struction include minimization of the mutual informa-
tion between subsequent samples [30], minimization
of false nearest neighbors [1,42], and a Monte Carlo
decision tree search formulation [44].

Recent work has also explored the geometric struc-
ture of delay embedded invariant sets in an effort
to improve model order reduction. For periodic data,
singular value decomposition (SVD) on the delay-
embedded snapshot matrix has been shown to con-
verge to a Fourier analysis [8]. The number of delays
required to recover such periodic orbits equals the num-
ber of coefficients of the Fourier spectrum [57]. Fitting
a linear map between subsequent snapshots of such a
delay-embedded periodic orbit produces a companion
matrix, whose eigenvectors are given by the inverse
Vandermonde matrix [24,63].

Furthermore, connections to convolutional coordi-
nates [40] and the Frenet-Serret frame [35] have been
made, and an interpretation of SVD modes in delay
coordinates as principal component trajectories has
been proposed [26]. For the special case of an observed
signal composed of oscillating sinusoidal functions, the
observable space contains invariant spaces determined
by the signal frequencies [5]. Recently, it was shown
that subsequent components of the DMD modes of
delay-embedded linear systems are related by a multi-
plication of the corresponding eigenvalue [9].
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In this work, we explore the local dynamics close
to a fixed point of a differentiable nonlinear delay-
embedded system. We show that the linear part of the
delay-embedded dynamics depends solely on the corre-
sponding eigenvalues, and not on the observable func-
tion or the full state space eigenvectors. In particular,
the eigenvectors in the observable space are given by
the columns of the Vandermonde matrix of the expo-
nential of the eigenvalues multiplied by the timelag.
Unlike available previouswork,we do not attempt a lin-
earization of the nonlinear dynamics, nor do we restrict
our attention to periodic orbits. Instead, our results
imply that the nonlinear delay-embedded system has
an SSM whose tangent space coincides with the col-
umn space of this Vandermondematrix.We exploit this
structure to aid the data-driven identification of SSMs
in three mechanical examples. We believe that these
results enhance the understanding of delay embedding
in reduced-order modeling and also reveal new oppor-
tunities for SSM-based model reduction.

The structure of this paper is the following. First,
Sect. 2 briefly introduces SSM theory and summarizes
a method for fast SSM-based data-driven modeling.
Section 3 outlines a new theory for delay-embedding
tangent spaces of invariant manifolds and discusses
their application to SSM-based model reduction. In
Sect. 4, we use these results to identify SSMs in exam-
ples of a 2-degree-of-freedom oscillator, simulations
of multimodal vibrations in a von Kármán beam, and
experiments of complex behavior in a sloshing tank.
In Sect. 5, we draw conclusions from these examples
and discuss possible further extensions of our theory.
Finally, Appendix 1 contains the proofs of the results
presented in Sect. 3.

2 Model reduction to spectral submanifolds

Here, we outline previous results on rigorous model
order reduction to SSMs in smooth nonlinear systems.
We also summarize fastSSM, the algorithm we use
here to identify SSMs from data.

2.1 Spectral submanifold theory

Consider a nonlinear, autonomous dynamical systemof
class Cl , l ∈ {N+, ∞, a}, where a denotes analyticity,
in the form

ẋ = Ax + g(x), x ∈ R
n, g ∼ O(|x|2),

g : Rn → R
n . (1)

Let us denote the flow map of the system by
Ft (x0) := x(t, x0), with x(t, x0) denoting the trajec-
tory of (1) starting from x0 at time 0. We assume that
A ∈ R

n×n is diagonalizable and that the real parts of its
eigenvalues are either all strictly negative or all strictly
positive. We take d eigenvectors of A and denote their
span by E , i.e., a d-dimensional spectral subspace of
R
n . In this step, we often choose the d slowest eigendi-

rections.
Provided that the d eigenvalues corresponding to E

are non-resonant with the remaining n−d eigenvalues
of A, the nonlinear system has a unique smoothest,
invariant manifold M tangent to E at the origin, i.e.,
T0M = E [14]. Following [32], we call M a spectral
submanifold (SSM). In case of a resonance between E
and the rest of the spectrum of A, the d-dimensional
SSMdoes not exist in general, andwemust then include
the resonant modal subspace into E to obtain a higher-
dimensional SSM. If all eigenvalues of A are stable, the
slowest SSM attracts nearby trajectories, which makes
it suitable for model order reduction.

Theopen-sourcenumerical packageSSMTool com-
putes SSMs from arbitrary finite-dimensional nonlin-
ear systems [36,37]. More recently, the SSMLearn
package was developed to find SSMs in data from non-
linear dynamical systems [16,17]. Here, we will apply
the simplified data-driven SSM algorithm fastSSM
introduced by Ref. [5].

2.2 Fast data-driven model order reduction to spectral
submanifolds

The objective of dynamics-based machine learning is
to reconstruct SSMs from data, and then use SSM-
reduced models for predictions of the full system
response [16]. Here, we use fastSSM [6] to identify
the SSM from snaphots of trajectories in an observable
space. The procedure consists of two steps: manifold
geometry detection and normal form computation. The
summary below follows Ref. [5], to which we refer for
further details. Whereas that reference differentiates
between the algorithm for cubic polynomial approx-
imations of two-dimensional SSMs and its extension
to arbitrary order and dimension, here, we will simply
refer to both algorithms as fastSSM.
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The SSM is parametrized in the graph style, that
is, we construct M as a graph over the spectral sub-
space E . The data consists of snapshots y(ti ) ∈ R

p in
a p-dimensional observable space. For each trajectory
we construct the snapshot matrix Y ∈ R

p×N from N
snapshots as

Y =
⎡
⎣

| | |
y(t1) y(t2) . . . y(tN )

| | |

⎤
⎦ (2)

Let T ∈ R
p×d be a matrix whose columns approxi-

mately span the SSM tangent space. In fastSSM, the
standard procedure is to obtain T through SVD on the
snapshot matrix Y . However, T can also be prescribed
if the tangent space is known a priori. Denoting by
(·)† theMoore–Penrose pseudoinverse,we project each
snapshot yi onto this subspace to obtain d-dimensional
reduced coordinates ξ as

ξ = T† y. (3)

We write Ξ ∈ C
d×N for the projection of the snapshot

matrix onto the tangent space.
Next, we seek to approximate the embedding ofM

as the graph of a multivariate polynomial of order m
from the data:

y(ξ) = Mξ1:m,

M = [M1, M2, . . . , Mm], M i ∈ R
p×di ,

(4)

where di is the number of d-variate monomials at order
i and the superscript in (·)1:l denotes a vector of all
monomials from order 1 up to l. We obtain the man-
ifold parametrization coefficients M ∈ R

p×d1:m by a
polynomial regression, which yields the solution

M = Y(Ξ1:m)†. (5)

The reduced dynamics are approximated by anO(r)
polynomial regression, with a coefficient matrix G ∈
C
d×d1:r , in the form

ξ̇ ≈ Gξ1:r , G = Ξ̇(Ξ1:r )†. (6)

Finally, we compute the normal form [31] of the
SSM-reduced dynamics up to order h. This amounts to
a near-identity polynomial transformation with coeffi-
cients H ∈ C

d×d1:h from the new coordinates ζ ∈ C
d

such that

ξ = Hζ 1:h = ζ + H2:hζ 2:h,
ζ̇ = Nζ 1:h = Λζ + N2:hζ 2:h .

(7)

The normal form and the reduced dynamics are con-
jugate dynamical systems. Therefore, we substitute (7)

into (6) to obtain

Dζ (Hζ 1:h)Nζ 1:h = G(Hζ 1:h)1:r . (8)

The matrices H and N are computed by solving (8)
recursively at increasing orders with SSMTool [36].

This procedure requires that the training data lies
sufficiently close to the SSM, which can be achieved
by removing initial transients from the input signal, as
identified by a spectral analysis on the training data
[17]. Since the SSM built over the slowest d modes
is unique and attracting, this method ensures relevant
training data.

3 Delay-embedding the tangent spaces of invariant
manifolds

Here, we show how tangent spaces of invariant man-
ifolds at a fixed point can be analytically recovered
when the observable space arises from delay embed-
ding of a signal. We also describe how the recovered
tangent spaces facilitate the reconstruction of spectral
submanifolds in such observable spaces.

3.1 Theoretical results

For the dynamical system (1),wedefine a scalar observ-
able μ(x(t)), where μ : Rn → R is a differentiable
function that returns a measured feature of system (1),
such as a displacement coordinate. In order to recon-
struct features of the full phase space from the observ-
able, we use delay embedding. We stack p consecutive
measurements separated by a timelag τ > 0 to create
an observable space of dimension p. This yields a tra-
jectory in the form y(t) = S(x(t)) ∈ R

p, where we
define the sampling map

S : Rn → R
p, x �→

⎡
⎢⎢⎢⎢⎢⎣

μ(x)

μ(Fτ (x))

μ(F2τ (x))
...

μ(F(p−1)τ (x))

⎤
⎥⎥⎥⎥⎥⎦

. (9)

An important question is how invariant sets of sys-
tem (1) in R

n are reproduced in the observable space
R

p. In particular, when the full state space trajectory
x(t) resides on a d-dimensional invariant manifoldM,
will y(t) also do so?Takens’s embedding theoremgives
an affirmative answer. It states that if μ is generic and
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no small integer multiple of τ coincides with the period
of any possible periodic orbit of (1) lying in M, then
for

p ≥ 2d + 1, (10)

the manifoldM will have a diffeomorphic copy M̃
in Rp via the mapping (9) [72]. Whereas Takens’s the-
orem was formulated only for scalar observable func-
tions, this result has since been extended to multi-
dimensional μ as long as the total observable space
dimension exceeds 2d [22].

Both the nonlinear geometry and dynamics of M
and the observable function influence the geometry of
M̃. It is therefore difficult to predict its geometry for a
general flow map. Around the fixed point q = S(0) ∈
R

p, however, theO(1) expansion ofM̃, i.e., its tangent
space TqM̃, can be directly determined, as we will
show next. Note that since the flow map is the identity
at the origin, q lies on the diagonal in the observable
space, with each of its identical components given by
μ(0).

We start by rewriting (1) in modal coordinates:

ż = f (z) = Λz + E−1g(Ez), (11)

where E = [e1, . . . , en] contains the eigenvectors of A
andΛ = diag(λ1, . . . , λn) the corresponding eigenval-
ues, which we assume to be distinct. We define modal
coordinates z ∈ C

n by letting z = E−1x. Whereas the
observable function is defined as a function of x, it is
notationally convenient to instead define it as a function
of z, as μ(x) = μ(Ez).

LetM be a d-dimensional invariant manifold of (1)
intersecting the origin 0 ∈ R

n , where it is tangent to
a set of d eigenvectors e1, e2, . . . , ed of A with corre-
sponding eigenvalues λ1, . . . , λd . We define the Van-
dermonde matrix V ∈ C

p×d of the d eigenvalues gov-
erning the linearized dynamics on M as Vjk = eλk jτ ,
i.e.,

V =

⎡
⎢⎢⎢⎢⎢⎣

1 1 . . . 1
eλ1τ eλ2τ . . . eλdτ

e2λ1τ e2λ2τ . . . e2λdτ

...
...

. . .
...

e(p−1)λ1τ e(p−1)λ2τ . . . e(p−1)λdτ

⎤
⎥⎥⎥⎥⎥⎦

.

(12)

Theorem 1 Under theassumptions of ageneric observ-
able function μ : R

n → R and distinct eigenvalues
λ1 	= · · · 	= λd , the tangent space of the observable

manifold M̃ at the fixed point can be written

TqM̃ = range V . (13)

Proof See Appendix A.1. 
�
This result is illustrated in Fig. 1. Note that the

observable function must have full rank, as spelled out
in the following remark.

Remark 1 For (13) to hold, we must have ∂μ
∂zk

|0 	= 0
∀k ∈ {1, . . . , d}, which defines the genericity of μ. If
the gradient of the observable function is orthogonal to
any of the eigenvectors e1, . . . , ed , the sampling map
S will not be an embedding of M.

This should be kept in mind particularly when dealing
with symmetries of engineering structures, as we will
show in our examples below.

Theorem 2 The columns of V are eigenvectors of the
linearized delay-embedded system at the fixed point.
Indeed, the dynamics in the observable space can be
written

ẏ = VΛV †( y − q) + o(| y − q|) (14)

Proof See Appendix A.2. 
�
Corollary 1 In the observable space Rp, the timelag
τ and the eigenvalues λk fully determine the tangent
space and the linear part of the dynamics. In particular,
the linear dynamics are independent of both the full
eigenvectors and the observable function.

In the following,wewill demonstrate how this struc-
ture can be exploited for parametrizing spectral sub-
manifolds from data, when the corresponding eigen-
values are approximately known.

Finally, we treat the case of a multi-dimensional
observable function. Then, the tangent space is influ-
enced by the relative dependency of each component
μ� of the observable function on eachmodal coordinate
zk .

Theorem 3 For a multi-dimensional observable μ :
R
n → R

q with components μ1, . . . , μq , the tangent
space TqM̃ ⊂ R

pq at the fixedpoint q canbe expressed
as

TqM̃ = range

⎡
⎢⎢⎢⎣

V diag
(

∂μ1
∂ z

∣∣∣
0

)

...

V diag
(

∂μq
∂ z

∣∣∣
0

)

⎤
⎥⎥⎥⎦ . (15)
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Fig. 1 Delay embedding of the tangent space T0M of an invari-
ant manifoldM. The full state spacemanifoldM (left) has a dif-
feomorphic copy M̃ in the observable space (right) by Takens’s
theorem. The shape of the reconstructed manifold M̃ depends

on the flow map, but its tangent space, TqM̃, is directly given by
the eigenvalues at the fixed point, independent of the geometry
of M and the observable function μ

Proof See Appendix A.3. 
�

When the observable function is a set of displace-
ments, the linearized multi-dimensional observable
function ∂μ

∂ z

∣∣∣
0
corresponds to the mode shapes of the

system in terms of those displacements. Therefore, if
the mode shapes and eigenvalues of the observed sys-
tem are known, we can directly compute the tangent
space of M̃. In the special case of a scalar observable,
the tangent space is independent of the observable func-
tion andwedonot need any information about themode
shapes.

3.2 Delay-embedded spectral submanifold
reconstruction

These theoretical results can be exploited as a con-
straint to aid SSM identification from data. In the case
of a scalar signal and with the eigenvalues of interest
λ1, . . . , λd approximately known, we select the matrix
representation of the tangent space T appearing in (3)
as the Vandermonde matrix (12), i.e.,

T := V . (16)

Wehave seen that the gradient of amulti-dimensional
observable functionμ enters the expression for the tan-
gent space (15). While an expression for this gradient
is typically not available in experiments, mode shapes
Ê = [ê1, . . . , êd ] ∈ R

q×d are often known from the-
ory or obtained experimentally. Here, each mode shape
êk ∈ R

q describes how the eigenvector ek ∈ R
n is

observed. Specifically, they are related by

êk = ck
∂μ

∂x

∣∣∣∣
0
ek, (17)

where ck ∈ C is a nonzero constant that only rescales
the eigenvectors. We select T as the columnwise Kro-
necker product of the Vandermonde matrix and the
observable mode shapes, i.e.,

T :=
⎡
⎢⎣
V diag

(
ê1

)
...

V diag
(
êd

)

⎤
⎥⎦ . (18)

A sketch of the geometry is shown in Fig. 2. In the case
of unknown mode shapes, it may be possible to first
project low-amplitude data onto the delay-embedded
eigenvectors and then extract the observable mode
shapes via SVD, although we do not explore this idea
further in this work.
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Fig. 2 Schematic illustration of a delay-embedded invariant
manifold M̃ in the case of a q-dimensional observable function
μ. The tangent space TqM̃ is the range of thematrix T , defined as
the columnwise Kronecker product of the Vandermonde matrix
V and the mode shapes Ê in terms of the observable

Prescribing T and projecting the data onto its
columns yields modal reduced coordinates. This diag-
onalization of the system simplifies the learning of the
geometry and the reduced dynamics of the SSM via the
algorithm outlined in Sect. 2.2.

Choosing proper delay-embedding parameters to
reconstruct nonlinear systems can be a challenge. For
the linear part of the system, however, our results
suggest picking the timelag τ and embedding dimen-
sionality p so as to obtain numerically favorable
reduced coordinates along the SSM. We ideally want
the columns of the Vandermonde matrix (12) to be
orthogonal in order to maximize the signal-to-noise
ratio in each of the observed modes. To this end, we
formulate a minimization problem,

(κ�, p�) = argmin
κ,p∈N+

∥∥∥V (κΔt, p)�V (κΔt, p) − I
∥∥∥
F
,(19)

in which the columns of V are normalized and ‖ · ‖F
denotes the Frobenius norm. Since the timelag is an
integer multiple of the sampling timestep, τ = κΔt ,
(19) defines an optimization over a set of discrete vari-
ables which can be solved simply by brute force.

Bearing in mind the nonlinear part of the system,
however, anoptimal choice of delayparameters is not as
straightforward. Increasing the timelag and embedding
dimension tends to curve the SSM, requiring higher
orders of approximation and in extreme cases folding
the manifold, so that it can no longer be parametrized
as a graph. Taking into account the nonlinear part of the
SSM reconstruction, therefore, we typically want the

total delay embedding to be as small as possible. While
solving (19) gives some guidance, a suitable choice of τ
and pwill also depend on the nonlinearity of the system
in the data range and the amount of signal noise.

4 Applications

We now apply our method to three datasets: two from
simulations andone fromexperiments. The eigenvalues
in these examples are known either from theory or sim-
ulations. We infer the delay-embedded tangent space
accordingly before parametrizing the SSM. The exam-
ples include an oscillator chain, a clamped-clamped
beam and tank sloshing.

4.1 Two-degree-of-freedom oscillator with nonlinear
springs

Our first example is a simple 4-dimensional mechan-
ical system, in which we will construct the slow 2-
dimensional SSM in a delay-embedded space. This
examples serves as a simple illustration of the invari-
ance of the SSM tangent space, themeaning of generic-
ity in a specific case, and the handling of mode shapes
for multi-dimensional observable functions.

We consider an oscillator chain of two masses, both
attached with linear springs to each other and to the
ground. In addition, the spring connecting the left mass
to the ground has a quadratic softening nonlinearity and
the spring connecting the masses is of cubic hardening
type. The masses and linear spring stiffnesses are set
to 1, the softening parameter is −2 and the hardening
parameter is 1. Each of the springs also has a linear
damping coefficient of 0.03. Figure 3a shows the con-
figuration. The sampling time is Δt = 0.1 s.

We compute an initial condition on the slow2DSSM
for the single training trajectory using SSMTool. The
trajectory in the full phase space and theSSMare shown
in Fig. 3b. The first two eigenvectors span the tangent
space of the SSM.

Next, we delay embed the trajectory with a time-
lag τ = 15Δt and embedding dimension p = 5.
Our observable function is the first mass displacement,
μ(x) = x1. We obtain reduced coordinates by projec-
tion of the trajectory data onto the columns of the Van-
dermonde matrix V as predicted by our theory. Next,
we seek the 2D SSM geometry in this observable space
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Fig. 3 a Setup for the two-degree-of-freedomoscillator example
with two nonlinear springs. b The slow 2D SSM (gray) in the
full state space, along with its tangent space (red). c The delay-
embedded SSM in the observable space. (Color figure online)

as a 5th order polynomial in the projected coordinates
using fastSSM. Figure 3c shows the SSM in the first
three coordinates of the observable space. Indeed, the
tangent space of this observable space is identical to
the column space of V .

Corollary 1 predicts that this tangent space will
be independent of the observable function, provided
that it is generic. To illustrate this, we plot the

delay-embedded SSM for various observable func-
tions, μ(x) = x1 (Fig. 3c), μ(x) = x2 (Fig. 4a), and
μ(x) = ẋ1 + ẋ2 (Fig. 4b). These different observable
functions clearly produce different SSM geometries,
but the eigenvectors and tangent spaces of the mani-
folds all agree.

One exception is when we observe the distance
between the masses, μ(x) = x2 − x1 (Fig. 4c). In this
case, the delay-embedded trajectory no longer lies on
an invariant manifold, as is evident by the nonsmooth
cusp in the data at the origin. The reason is that this
observable is non-generic precisely in the sense of our
theory; it coincides with the mode shape of the sec-
ond, fast mode of the full system. This means that the
observable function acts orthogonally to the slow SSM
at the fixed point and thus the delay mapping is not an
embedding, by Remark 1. In practical terms, the slow
SSM is the nonlinear continuation of the first vibra-
tion mode, which in this example corresponds to both
masses moving in unison. During such a movement,
the distance between the masses is constant, and so if
we only observe x2 − x1, we do not obtain any infor-
mation about the ongoing dynamics, and thus cannot
reproduce the geometry of the SSM.

Next, we pick μ(x) = x2 and use fastSSM to
obtain a model of the SSM dynamics. We approximate
the reduced dynamics as a cubic order polynomial and
compute its normal form as[

ρ̇1
θ̇1

]
=

[−0.0014 ρ1
3 − 0.0148 ρ1

1.0025 − 0.0919 ρ1
2

]
. (20)

The trajectory projected onto the columns of V is
shown in Fig. 5a. Integrating the obtained normal form
andmapping back to the observable space yields a good
reconstruction of the training data, as shown in Fig. 5b.

Finally, following Theorem 3, we demonstrate how
to determine the tangent space of the SSM at the fixed
point when the observable is a vector. When we choose
μ(x) = [x1, x2]�, unlike for a scalar observable func-
tion, the tangent space orientation is influenced not only
by the eigenvalues, but also by the shape of the first
mode. Recall that the first mode shape corresponds to
the masses moving in unison, i.e.,

ê1 = ê2 =
[
1
1

]
. (21)

Then, by (18), we obtain vectors spanning the tangent
space as the columns of the matrix

T =
[
V diag(ê1)
V diag(ê2)

]
=

[
V
V

]
, (22)
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Fig. 4 a, b Changing the observable function leads to different
SSM geometries, but the tangent space remains the same as in
Fig. 3c. c A nongeneric observable function however, observing
only the second mode, does not embed the manifold

Fig. 5 a Projection of the data onto the delay-embedded tangent
space predicted by our theory. b fastSSM predicts a model that
successfully reconstructs the decay of the trajectory. c A view of
the SSM in a delay-embedded space from a multi-dimensional
observable, with the tangent space predicted by our theory
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where V is the Vandermonde matrix (12). A view of
the SSM and its tangent space in this 10-dimensional
observable space is shown in Fig. 5c.

The relation of this mode shape to the observable
function is given by (17). In particular, we can compute
the derivative of the observable function with respect
to the modal coordinates as
[

∂μ1
∂z1

(0)
∂μ1
∂z2

(0)
∂μ2
∂z1

(0)
∂μ2
∂z2

(0)

]
=

[
c1 c2
c1 c2

]
, (23)

where c1, c2 ∈ C are nonzero constants depending on
the scaling of the eigenvectors. For simplicity, in (21)
we chose c1 = c2 = 1, such that T is the Vandermonde
matrix vertically stacked twice.

4.2 6D SSM in a nonlinear finite-element model of a
beam

We train an SSM-reducedmodelwith data fromnumer-
ical simulations of a finite-element (FE) representation
of a clamped-clamped von Kármán nonlinear beam
[38]. This example was previously studied in Refs.
[5,16], which identified the slowest 2D SSM in the
delay-embeddedobservable space, predicted the forced
response and analyzed the radius of convergence of the
analytical normal form. Here, thanks to our results on
the tangent spaces of delay-embedded SSMs, we can
extend the analysis to the six-dimensional SSM ema-
nating from the three slowest modes of the linear part
of the system.

Each node in the FE model has three degrees of
freedom: axial deformation u, transverse deflection w,
and rotation w′. The von Kármán axial strain is given
by

ε11 = u′(x) + 1

2

(
w′(x)

)2 − zw′′(x). (24)

The axial stress is given by

σ = Eε11 + cε̇11, (25)

where E = 70 GPa denotes the Young’s modulus
and c = 1.0 × 106 Pa · s the material rate of vis-
cous damping. Based on a convergence analysis, we set
the number of elements to 12, resulting in a 33-degree
of freedom mechanical system, i.e., a 66-dimensional
phase space.We set the beam length to 1000mm,width

Fig. 6 von Kármán beam: schematic first, second, and third
mode shapes. The scalar observable must be generic in the sense
that it must have contributions from all modes of interest. For
instance, the midpoint displacement is not excited by the second
mode. Instead, we choose the shown transverse displacement at
1/4 of the beam length

50mm, and thickness 20mm. The sampling time is
Δt = 0.0955 s.

In order for the sampling map to be an embedding,
the observable function must be generic. By Remark
1, for our purposes this implies that the observable
function μmust have significant contributions from all
modes zk that we wish to model. In this example, our
theory allows us to define the genericity and therefore
suitability of a particular observable. For example, the
midpoint displacement chosen as observable function
in Refs. [5,16] was sufficient to model the 2D SSM,
but cannot be employed for higher-dimensional SSMs.
This is because the antisymmetric shape of the sec-
ond mode has zero displacement at the midpoint (see
Fig. 6), i.e.,

∂μ

∂z3
(0) = ∂μ

∂z4
(0) = 0. (26)

Instead, we choose the transverse displacement of the
beam at one fourth of the total length, μ = w(l/4), as
this degree of freedom has nonzero contributions from
all three mode shapes.

For our data-driven modeling objectives, we need
training data containing the first threemodes. To gener-
ate initial conditions for such trajectories, we use linear
combinations of the mode shapes of the system com-
puted from its linear part. Since the SSM is normally
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attracting, these trajectories will quickly approach it
and we can use them to train our reduced-order model.
With thismethod, we produce three trajectories close to
the 6D SSM with different initial conditions, of which
we use two as training data and one as test data. For
validation purposes, we also pick the individual mode
shapes as initial conditions and use as test data. The
individual modal contributions in these initial condi-
tions were chosen as follows:

Initial Mode Type
Condition 1 2 3

1 1 0 0 Test
2 0 1 0 Test
3 0 0 1 Test
4 0.8 −0.8 0.8 Train
5 −0.1 0.8 0.8 Train
6 −0.6 −0.2 −0.8 Test

We choose the delay embedding parameters guided
by the observations in Sect. 3.2. Setting κ = 1 such
that the timelag τ = Δt and the embedding dimension
to p = 50 gives a local optimum of the function (19)
with the computed eigenvalues, while still keeping the
maximal delay κp moderate to prevent folding of the
embedding.

Figure 7a shows the delay embedding of the single-
mode trajectories 1–3, corresponding to the first three
modes, in three of the 50 delay coordinates. These tra-
jectories visualize the orientations of the correspond-
ing eigenspaces in the observable space. Indeed, min-
imization of (19) corresponds to making these planes
orthogonal, simplifying their identification.

Figure 7b similarly displays the delay embedding of
the first training trajectory along with a visualization of
the columns of theVandermondematrix as vectors. Our
delay theory predicts that projection of the data onto
these vectors yields modal coordinates, as verified in
Fig. 7c. This spacewill serve as the reduced coordinates
of the SSM.

Weproject onto these eigenvectors andusefastSSM
to approximate the geometry of the 6D SSM with a
third-order polynomial. For the reduced dynamics, we
use a third-order approximation. We compute the nor-
mal form of this reduced dynamics up to seventh order
for our dynamics model. The terms up to third order in
polar form are found by fastSSM to be of the form

Fig. 7 a The trajectories with single modal contributions visual-
ize the modal subspaces in the delay-embedded space for the von
Kármán beam. The third mode data has been scaled by a factor
2 to increase visibility. b The same delay-embedded view of the
first training trajectory, alongwith the delay-embedded eigenvec-
tors. c After projection of this trajectory onto the eigenvectors,
the modal structure becomes clear
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⎛
⎜⎜⎜⎜⎜⎜⎝

ρ̇1
ρ1θ̇1
ρ̇2

ρ2θ̇2
ρ̇3

ρ3θ̇3

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0.3058 ρ1
3 + 2.088ρ1 ρ2

2 − 3.091ρ1
102.0 ρ1

3 + 82.70 ρ2
2ρ1 + 657.2ρ1

−2.705 ρ1
2ρ2 + 1.723 ρ2

3 − 23.72ρ2
95.64 ρ1

2ρ2 + 115.6 ρ2
3 + 1812ρ2

−8.968ρ3 ρ1
2 − 13.27ρ3 ρ2

2 − 88.47ρ3
115.9 ρ1

2ρ3 + 85.04 ρ2
2ρ3 + 3558ρ3

⎞
⎟⎟⎟⎟⎟⎟⎠

+O(5).

(27)

We transform the initial conditions from the observ-
able space to the normal formand integrate ourmodel to
predict signal decay. This produces a normalized mean
trajectory error (as defined in [16]) of 2.2 % on the test
data. The predictions for trajectories 5 and 6 are shown
in Fig. 8a, b, while Fig. 8c shows the trajectories in
the normal form amplitude coordinates. In this figure,
trajectories 1, 2, and 3 lie close to the axes, since their
initial conditions lie along the respective modal coor-
dinates. Similarly, for example, trajectory 6 is close to
the ρ1–ρ3 plane, having been initialized mostly with
contributions from modes 1 and 3.

We also visualize our reduced-order model (27) by
plotting the instantaneous frequency and damping as
predicted by the normal form (27) for varying ampli-
tudes of mode 1 and 2. For instance, our model predicts
hardening of the first mode with respect to both the first
and the second modal amplitudes (Fig. 9a), a decrease
in the instantaneous damping of mode 1 with respect to
mode 2 (Fig. 9b), and independence of the third instan-
taneous frequency with respect to itself (Fig. 9c). The
predictions for each of the trajectories are included for
reference.

4.3 Multimodal sloshing of water in a tank

For our final example, we apply our results to sloshing
experiments. Sloshing models have a wide range of
industrial applications, including fluid container inter-
action with shipmotion [52], road transportation of flu-
ids [29], damping devices in towers [34], and fuel tank
design in spacecraft [2,23]. A tank partially filled with
water exhibits several nonlinear phenomenaunder hori-
zontal harmonic excitation [73].On the onehand, inten-
sified fluid motion can alter the instantaneous damping
and frequency of the first sloshing mode [27]. On the
other hand, increasing the amplitude further activates
several nonlinearly coupled modes of the system and
gives rise to a range of different wave motions [28,53].

Fig. 8 a, b Predictions from fastSSM for the decaying trajec-
tories 5 and 6 for the von Kármán beam c Phase portrait of the
trajectories after transformation to the normal form
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Fig. 9 Visualization of the normal form (27) for the vonKármán
beam with the trajectories for a instantaneous frequency and b
damping of mode 1, as well as c frequency of mode 3

Fig. 10 a Experimental setup for tank sloshing (adapted from
[13]) b The first four sloshing mode shapes

Our training data comes from experiments described
in Ref. [13] with a rectangular tank of width w = 500
mm and thickness 50 mm, partially filled with water up
to a height of h = 400 mm. The tank was attached to a
horizontally moving platform harmonically excited by
a motor at different frequencies. Then, once the sys-
tem had reached a steady state, the motor was turned
off. Depending on the forcing frequency, this periodic
response exhibited planar, wave-breaking, or three-
periodic motion. The three-periodic forced state was
characterized by an increase in the response ampli-
tude every third forcing cycle, while the wave-breaking
response was defined as overturning of the water close
to the walls [13]. A camera detected the surface pro-
file h with the sampling time Δt = 0.01 s. Figure10a
displays the experimental setup.
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While previous work successfully captured the
dynamics of the main sloshing mode using a 2D SSM
for the center of mass signal [16] and the full surface
profile [5], here, we model the decay from a multi-
modal state by identifying a 6D SSM, corresponding
to the nonlinear extension of the three dominant oscilla-
tory modes. We train on three decaying measurements:
trajectories 1 and 2 start at a three-periodic state, and
trajectory 3 starts at a wave-breaking state.

The observable vector μ is the surface profile mea-
sured at 1 771 points along the tank width. Since this
function is multi-dimensional, in order to apply our
theory on delay-embedded tangent spaces, we need an
estimate of the eigenvalues and linear mode shapes in
our observable. The eigenfrequencies can be computed
from potential theory [27] as

ωk =
√
gπ

w
k tanh

(
πk

h

w

)
, (28)

which scales approximately with the square root of the
mode number k for our configuration. The first five
eigenfrequencies are [7.80, 11.1, 13.6, 15.7, 17.6] rad/s,
with an approximate 1:2 resonance between frequen-
cies 1 and 4. The mode shapes by the same theory are

êk = cos(kx/w), x ∈ [0, w], (29)

shown in Fig. 10b. For the tangent space, in principle,
we also need the linear damping of each mode. In prac-
tice, this real part of the eigenvalues has very little influ-
ence on V for limited delay embedding andwe pick the
values [−0.05,−0.07,−0.08,−0.09,−0.1] based on
previous fits of the first mode and the assumption of
increasing damping with the mode number.

Basedon (19),wedelay-embed thedatawith timelag
τ = 5Δt and dimension p = 47. A projection of the
delay-embeddeddata onto the eigenvectorsT predicted
by our theory appears to yield modal coordinates, as
indicated in Fig. 11a.

Consequently, the norm of these projections can be
used as a heuristic measure of the modal content in
the signal. This procedure should be used with caution,
since it does not take manifold curvature into account,
but it can be employed to provide an initial guess for
the SSM dimension. In Fig. 11b, we plot the absolute
value of the projection onto each modal subspace of T
over time for trajectory 2. This plot shows that the first
mode dominates, while the zoomed-in view (Fig. 11c)
indicates that the second and fourth modes appear to be
the most prevalent of the higher modes throughout the

Fig. 11 a Projecting one of the sloshing trajectories onto the
tangent space vectors unveils themodal structure.bByprojecting
the trajectory onto the eigenvectors and taking the absolute value,
we can estimate the relative modal contributions in the signal c A
zoomed-in view of b indicates that modes 1, 2, and 4 dominate
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decay. The third and fifth mode are present at first but
quickly die out. All amplitudes are decaying except for
the fourth mode, which instead initially grows. Based
on this analysis, we will identify a 6D SSM emanating
from the spectral subspace of modes 1, 2, and 4. This
choice also takes SSM theory into account, by which
the 1:2 resonance requires that the modal subspace of
the fourth mode is included in the spectral subspace
of the SSM. We choose to start our training data after
1.2 s, as the third and fifth modal amplitudes are small
thereafter andwe expect the trajectory to lie sufficiently
close to the SSM.

With an SSM parametrization orderm = 4, reduced
dynamics order r = 3, and normal form order h = 3,
we compute the SSM geometry and dynamics and inte-
grate our reduced-ordermodel to predict the decay from
the various flow states. This yields a normalized mean
trajectory error (NMTE) [16] of 2.6 %. fastSSM suc-
cessfully detects and accounts for the internal reso-
nance by adding phase-dependent terms to the com-
puted normal form, which reads
ρ̇1
ρ1

= −0.056 − 0.0069 sin(ψ − 0.26)ρ4 − 0.0015ρ24 − 0.039ρ22 + 0.023ρ21
θ̇1 = 7.78 + 0.0069 cos(ψ − 0.26)ρ4 + 0.040ρ24 + 0.016ρ22 − 0.82ρ21
ρ̇2
ρ2

= −0.13 + 0.15ρ24 − 0.89ρ22 + 0.37ρ21
θ̇2 = 11.4 + 0.57ρ24 − 0.0085ρ22 − 2.2ρ21
ρ̇4
ρ4

= −0.30 − 0.29ρ24 + 0.67ρ22 − 0.27 sin(ψ + 1.4)ρ21/ρ4 + 1.2ρ21
θ̇4 = 15.9 − 0.085ρ24 + 1.2ρ22 + 0.27 cos(ψ + 1.4)ρ21/ρ4 − 2.0ρ21

(30)

where ψ = θ4 − 2θ1 and the subscripts denote the
correspondingmodenumber. Looking at the linear part,
we see that the eigenfrequencies are well captured.

Good agreement between the experimentally mea-
sured surface profile elevation at the tank’s leftmost
point and the delay-embeddedSSM-reduced prediction
is shown for the first period-three initial state in Fig. 12a
and thewave-breaking state in Fig. 12b. Further, our 6D
reduced model can accurately predict the full surface
profile decay, with snapshots shown in Fig. 13.

Weproject the training trajectories onto theSSMand
transform them to the normal form in polar coordinates.
The development of the amplitudes in the normal form
are shown in Fig. 12c for each trajectory. This plot
suggests that (i) the wave-breaking motion (Traj. 3)
does not seem to have any significant content of the
second mode, (ii) the amplitude of the fourth mode
indeed increases after motor detachment, as indicated
by the increase in the ρ4 component of trajectories 1
and 2, (iii) there is a small oscillation in these signals
not captured by our model, which may be due to noise,

Fig. 12 Tank sloshing: the prediction on the 6D SSM for the
decay of a trajectory 1 and b trajectory 3. c Phase portrait of the
amplitudes of the normal formcoordinates on theSSMfor eachof
the trajectories shows the modal contributions and development
for different initial flow states
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Fig. 13 The experimentally measured surface profile decay agrees with our 6D SSM model prediction for trajectory 2

insufficient separation of the modal subspaces, a mode
outside our model, or some other phenomenon.

We note that the combined higher modal content in
the signal is small—only about 10%with respect to the
first mode. This is because the data is decaying from
steady states induced by forcing near the first eigenfre-
quency. Due to their symmetric shape, isolated forcing
of the second and fourthmodes is not possiblewith hor-
izontal harmonic excitation. The small activation of the
highermodes implies that their fitting is relativelymore
sensitive to noise. Nevertheless, we are able to capture
these smaller oscillations on the SSM. The key technol-
ogy allowing this enhancement is the enforcement of
the delay-embedded tangent space in our SSM recon-
struction, based on the theoretical eigenfrequencies and
mode shapes.

Our model is stable with respect to changes in start-
ing time,manifold order, anddelay parameters, butmay
have dynamical features that are structurally unstable
at a given, lower order of approximation, i.e., might
change under the addition of higher-order terms. It is
also possible to neglect the relatively minor influence
of the fourth mode and instead fit a 4D SSM tangent
to the first and second modal subspaces. Since such
a lower-dimensional model requires identification of
fewer coefficients, it is more robust with regard to noise
and parameters, at the cost of a slightly larger average
NMTE of 3.9 %. Here, however, since our objective
was modal analysis of different flow states, we chose
the more detailed 6D model, guided by the SSM res-
onance condition. In practice, this choice will depend
on the intended application of the model.

5 Conclusions

We have shown that for a scalar observation of an
invariant manifold tangent to a spectral subspace at a
fixed point, the delay-embedded reconstruction of the
tangent space is dependent only on the corresponding
eigenvalues of the full system linearized at that point.
In particular, we have proven that the columns of a
Vandermonde matrix, given by repeated multiplication
of the exponential of the eigenvalues times the timelag,
are eigenvectors for the linearized system in the observ-
able space. Therefore, the Vandermonde matrix diago-
nalizes the linear part of the delay-embedded dynam-
ics. We have also shown that when several quantities
are measured and delay-embedded simultaneously, the
tangent space can be expressed given the Vandermonde
matrix and themode shapes expressed in the observable
function components. These results hold for any invari-
ant manifold tangent to a modal subspace with distinct
eigenvalues, including, e.g., classic stable manifolds.
Here, our focus was the application of this result to
spectral submanifolds of hyperbolic fixed points.

In an attempt to exploit this uncovered structure, we
have shown that for data-driven SSMmodel reduction,
when the eigenvalues are approximately known,we can
analytically predict the tangent space of the embedded
SSM a priori to achieve local modal decomposition and
aid the reconstruction of the nonlinear reduced dynam-
ics. We have found that even for small activation of
higher modes, this trick helps modeling complex mul-
timodal nonlinear dynamics on an SSM, which in turn
allows for analysis of modal energy interchange and
instantaneous frequencies.
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Our theory assumes a generic observable function,
whichwe describe inmore detail in our first and second
example, and distinct eigenvalues. While the second
assumption is a generic one in a mathematical sense, it
is not always satisfied for engineering structures with
symmetry. Vibrations in a square plate is an example
where our theory would fail, as it has repeated eigen-
values. Using a vector-valued observable may help in
differentiating between the modes in such a case. Fur-
ther, while technically covered by the theory, possible
practical difficulties related to the conditioning of the
Vandermonde matrix include highly different or very
similar eigenvalues, or eigenvalues of different stability
type.

In our third example with data from experiments,
we also devised a new heuristic scheme for using delay
embedding to study modal contents in a signal. With
this method, that served as an initial guess, we pro-
jected the data onto the respective prescribed modal
subspaces, thereby implicitly assuming that the SSM
of each mode is nearly flat. An interesting develop-
ment of this idea would be its use as a filter, which
could remove or keep certain frequencies in a signal.
Another idea would be to use the tangent space con-
dition as a verification or for iterative adjustment of
the linear fit of the reduced dynamics. Finally, in anal-
ogy with a Fourier analysis, it would be possible to
estimate both instantaneous frequency and damping of
a signal by singular value decomposition of the tra-
jectory in delay coordinates followed by analysis of
the Vandermonde matrix columns. This ties in with
several other observations made in the literature; for
example, for a linear system, these columns agree with
the recently proposed notion of principal component
trajectories [26]. Overall, we believe that our findings
shed more light on delay-embedding invariant mani-
folds and selecting delay parameters in particular. For
that reason, we expect these results to be of use for a
wide range of data-driven methods.
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A Appendix

A.1 Proof of Theorem 1

Let M be a d-dimensional invariant manifold of (1)
containing the origin ofRn . The tangent space ofM at
the origin can be written T0M = span {ek}k∈K , where
K ⊂ {1, . . . , n} is an index set labeling the d eigenvec-
tors ek spanning the spectral subspace from which the
manifold is emanating. For example, for a stable man-
ifold, K = {k : Re λk < 0}. We also assume that the
eigenvalues in question are distinct, i 	= k ⇔ λi 	= λk ,
for i, k ∈ K .

To simplify the notation, we transform the full state
space tomodal coordinates (11).We rewrite the observ-
able function on the system x ∈ R

n as an observable on
themodal coordinate system z ∈ C

n as μ̂(z) = μ(Ez).
We denote byΦ t = E ◦ Ft ◦ E−1 the flow inCn . Con-
sider the sampling map in modal coordinates

Ŝ =

⎡
⎢⎢⎢⎢⎢⎣

μ̂

μ̂ ◦ Φτ

μ̂ ◦ Φ2τ

...

μ̂ ◦ Φ(p−1)τ

⎤
⎥⎥⎥⎥⎥⎦

: Cn → R
p, y = Ŝ(z). (31)
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Under the conditions of Takens’s embedding theorem,
the delay embedding map Ψ = Ŝ|M : M → M̃ is a
smooth embeddingwith a smooth inverseΨ −1 : M̃ →
M, and Ψ (0) = q.

In order to derive the tangent space TqM̃, we com-
pute the derivative of the embedding at 0:

DΨ (0) =

⎡
⎢⎢⎢⎣

Dμ̂(0)

Dμ̂(Φτ (0)) ◦ DΦτ (0)
...

Dμ̂(Φ(p−1)τ (0)) ◦ DΦ(p−1)τ (0)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

Dμ̂(0)

Dμ̂(0) ◦ eΛτ

...

Dμ̂(0) ◦ eΛ(p−1)τ

⎤
⎥⎥⎥⎦ .

(32)

Now note that the j th component expressed in modal
coordinates is

Dμ̂(0) ◦ eΛ jτ (z)

=
∑
k∈K

∂μ̂

∂zk

∣∣∣∣
0
eλk jτ zk, j ∈ {1, . . . , p}. (33)

We define the Vandermonde matrix V of the d eigen-
values {λk}k∈K governing the linearized dynamics on
M as Vjk = eλk jτ . We conclude that the tangent space
of the observable manifold at the fixed point in modal
coordinates can be written as
TqM̃ = {DΨ (0)z, z ∈ C

n}
= range

{
V diag

(
∂μ̂

∂ z

∣∣∣∣
0

)}
= range V ,

(34)

where the diagonal matrix acts only as a rescaling of
each component of z. Therefore, onematrix representa-
tion of the tangent space of the manifold in the observ-
able space isV , which is independent both of thematrix
E of full system eigenvectors and the observable func-
tion μ.

Note that we must have ∂μ̂
∂zk

|0 	= 0 ∀k ∈ K , which
defines the genericity of μ. In practice, this implies
that the linearized observable function must contain
contributions from all modal coordinates that we wish
to model. In addition, note that for the embedding of
the tangent space itself, i.e., the linear system, p = d
suffices.

A.2 Proof of Theorem 2

The flow on M̃ is

Φ̃
t = Ψ ◦ Φ t ◦ Ψ −1. (35)

We compute the ODE on M̃, ẏ = f̃ ( y), as

f̃ = d

dt
Φ̃

t = DΨ ◦ f ◦ Ψ −1, (36)

where f is given by (11). The derivative of f̃ at the
fixed point is, therefore,

D f̃ (q) = DΨ (0) ◦ Λ ◦ DΨ −1(q)

= V diag

(
∂μ̂

∂ z

∣∣∣∣
0

)
Λ diag

(
∂μ̂

∂ z

∣∣∣∣
0

)−1

V †

= VΛV †,

(37)

where we used the commutative property of multipli-
cation of diagonal matrices, which eliminates the lin-
earized observable function terms, and the fact that

DΨ −1(q) = diag
(

∂μ̂
∂ z

∣∣∣
0

)−1
V † is well-defined. To

see this, note that the derivative of the delay embed-
ding map composed with its inverse

DΨ (0) ◦ DΨ −1(q)

= V diag

(
∂μ̂

∂ z

∣∣∣∣
0

)
diag

(
∂μ̂

∂ z

∣∣∣∣
0

)−1

V †

= VV †,

(38)

maps all points in T0M to themselves, since V has
full rank under the assumption of distinct eigenvalues
{λk}k∈K .

Taylor-expanding the ODE on M̃ in the observable
space yields

ẏ = D f̃ (q)( y − q) + o(| y − q|) = VΛV †( y − q)

+o(| y − q|). (39)

Therefore, under the assumptions of a generic observ-
able function and distinct eigenvalues, the tangent
space TqM̃ and the linearized dynamics D f̃ (q) in the
observable space Rp are both fully determined by the
timelag τ and the eigenvalues λk , k ∈ K .

In the special case that M = R
n , if p ≥ 2n +

1, the entire phase space can be reconstructed. For a
linear system, p = n suffices, and the delay embedding
reduces to a linear operator.

A.3 Proof of Theorem 3

For a vector-valued observable, μ : R
n → R

q , the
delay embedding map reads

Ψ =
⎡
⎢⎣

Ψ μ1
...

Ψ μq

⎤
⎥⎦ : M → M̃ ⊂ R

pq ,
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DΨ (0) =
⎡
⎢⎣

DΨ μ1(0)
...

DΨ μq (0)

⎤
⎥⎦ , (40)

where Ψ μ�
is the delay embedding map corresponding

to the �th component of the observable functionμ. The
derivatives are given by

DΨ μ�
(0) = V diag

(
∂μ̂�

∂ z

∣∣∣∣
0

)
. (41)

In this case, the tangent space is not independent of the
observable function. Instead, it is affected by the rela-
tive dependency of each component μ� of the observ-
able function on eachmodal coordinate zk . The tangent
space can, however, be expressed as

TqM̃ = range

⎡
⎢⎢⎢⎣

V diag
(

∂μ̂1
∂ z

∣∣∣
0

)

...

V diag
(

∂μ̂q
∂ z

∣∣∣
0

)

⎤
⎥⎥⎥⎦ . (42)
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