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Abstract Axle tramp is a self-sustaining vibration in
the driven axle of a vehicle with a beam axle layout,
known to occur under heavy braking or acceleration.
A 6DOF mathematical model of this phenomenon is
used to identify how the key parameters of driveline
stiffness, axle mass and fore/aft stiffness change the
system’s dynamics.A bifurcation analysis is performed
to study this nonlinear system’s dynamics. Four Hopf
bifurcations in the underlying equilibria, along with a
fold bifurcation in the outermost limit cycle branch,
are shown to bound the parameter space where tramp
occurs. The severity of tramp was found to be min-
imised by increasing drivetrain stiffness, reducing axle
mass or increasing fore/aft stiffness: the trade-off for
minimising tramp severity is that it may be easier to
excite tramp when the drivetrain stiffness is increased,
and the speed range over which tramp can occur is
increased as fore/aft stiffness is increased. A key out-
come from this work is that future electrified power-
trains may experience more tramp, albeit at a reduced
magnitude, than their combustion-powered counter-
parts.
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1 Introduction

The nonlinear phenomenon known as axle tramp is
the undesirable self-sustaining oscillation of a vehi-
cle’s wheel and axle. The phenomena has been stud-
ied for almost a century, with early examples in liter-
ature highlighting the problem of tramp to be a major
issue on vehicles with beam axles [1–4]. A beam
axle, also called a live axle or solid axle, connects
the wheels directly via a single beam, meaning any
motion acts across the entirety of the assembly. This
leads to two types of possible oscillation in the axle
and wheels; symmetric oscillations where the whole
assembly moves together in the same direction, and
asymmetric where one wheel will move in an opposite
direction to the other.

Historically, the issue of axle tramp was tackled
in both front and rear axles, often alongside shimmy,
wheelwobble and front-end shake.Over time, however,
enough differentiation between these types of vibra-
tion was identified and the literature began to break the
problems down into the more specific sub-areas. The
differences between related key vibration problems are
summarised in Table 1.

Conclusions at this time state that the tramping fre-
quency occurred at the same frequency as the rotation
of the wheel and therefore the vibration is caused by
torsional motions [4] and that tramp oscillations have
larger displacements along the longitudinal axis [3].
Vincent [1] stated that tramp occurred in every vehicle
produced, and that the problem could only be solved by

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-023-08678-2&domain=pdf
http://orcid.org/0000-0003-1912-775X


15874 S. Smith et al.

Table 1 Model parameters

Definition Alternative name(s) Description

Wheel hop Wheel bounce A predominantly vertical motion undergone by the wheel,

excited by sudden changes in acceleration/deceleration

Reduction in traction causes tyre to leave the ground.

Longitudinal shuffle Fore/aft motion A predominantly horizontal motion undergone by the wheel,

excited by sudden changes in acceleration/deceleration.

Shimmy Wheel wobble A motion where the wheel yaws from side to side,

driven by the vehicle’s speed.

Front end shake – A severe case of shimmy, causing neighbouring

components to vibrate.

Axle tramp – A motion with both vertical and horizontal components undergone

By the wheel and axle, excited by sudden changes in acceleration/deceleration

independently springing the driven wheels. The topic
regained traction in the 1960s as the problem was per-
sistent in many vehicles of the time: as an example, see
[5]. Ford had many problems with axle tramp on their
Ford Cortina Lotus model that reoccurred throughout
development. In August 1962, 1 month prior to the
planned launch of the Mark 1 model, Lotus completely
redesigned the rear axle layout, stating that the current
leaf spring layout could not control the axle adequately
and that axle tramp would be “inevitable”. The Mark
3 model suffered similar problems and following crit-
icism from public and press, the suspension geometry
was revised and redesignedwith greater damping added
for pitch on the 1974 model. Even with the improve-
ments, at low speeds the rear axle could be described as
“lively” [6]. Contemporary studies into the axle tramp
phenomena on rear axle-driven vehicles are limited;
however, when studied in detail novel approaches and
results are still being found [7,8]. Despite this, most
of the recent examples of literature include research on
the front axles of vehicles [9–11], tractors [12] and how
driving conditions effect the system [13].

Althoughmanymodernpassenger vehicles use inde-
pendent suspension setups, beam axles are still used
in commercial vehicles (such as pickup trucks) and
cheaper passenger cars (such as the Ford Fiesta). With
the move towards electrification within automotive
engineering, there is an increasing industrial interest
in how changes in the powertrain will influence the
dynamic response of the vehicle. The work presented
herein aims to address this interest by studying the
dynamics that occur in a mathematical model of axle

tramp using numerical continuation methods to iden-
tify and trace different types of dynamic features (such
as equilibria, periodic orbits and bifurcations) through
state–parameter space, under the variation of one or
more model parameters. Previous bifurcation studies
[14–17] have shown that numerical continuation is a
useful tool for studying nonlinear dynamics in indus-
trially relevant engineering systems, as it allows mod-
els developed for engineering purposes to be analysed
directly rather than having to simplify a model to make
it tractable with analytical nonlinear analysis meth-
ods. For the ordinary differential equations presented in
this work, the continuation code AUTO, integrated into
MATLAB via the Dynamical Systems Toolbox (DST)
[18–21], is used to identify bifurcations in equilibria
and periodic orbits, and trace these bifurcations to study
how they change in terms of a second parameter of
interest. This results in a preliminary analysis of the
nonlinear dynamics of axle tramp. For instructions on
how to use the toolbox, see [22]. The accuracy of the
continuation runs, as defined by convergence criteria,
was 1 × 10−6.

The rest of this paper is arranged as follows: Sect.
2 presents the mathematical model used for this work;
Sect. 3 presents a single parameter bifurcation analysis
of the model with nominal parameter values; a vari-
ety of two-parameter bifurcation diagrams expand on
this baseline result in Sects. 4; 5 finishes with some
concluding remarks.
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Fig. 1 Example live axle
suspension layout, with key
components labelled

2 Live axle suspension model

Figure 1 presents a schematic view of a live axle setup.
The live axles are connected to the vehicle’s chassis
via leaf spring suspension elements, which provide an
element of both vertical and horizontal compliance.
Because leaf springs do not possess any inherent damp-
ing, addition damper units are mounted between the
axle and the vehicle’s body. Drive from the engine
is transferred along a prop shaft, into the differential
that is mounted in the centre of the axle: torque from
the differential is then transferred to each wheel. The
engine itself is mounted to the vehicle body via engine
mounts, which provide stiffness and damping to isolate
the vehicle body from engine vibrations. The nature of
suspending the axle from the chassismeans that the live
axle is able to pitch relative to the chassis, so the prop
shaft has a plunge joint to allow the ends of the shaft
to slide relative to one another. This plunge joint has a
stiffness associated with it.

Figure 2 represents the live axle arrangement from
Fig. 1 in schematic form, with blocks used to represent
the key rigid bodies of the unsprungmass (M—wheels,
tyres and axle), sprungmass (Mb, the vehicle body) and
engine mass (Me). In the mathematical model used for
this work, these degrees of freedom are captured via
the X and Z displacements of the live axle’s centre of
gravity, and the rotation of the axle from the horizon-

tal plane (θ )—see Fig. 2 for an illustration of these
degrees of freedom. The axle is connected to the vehi-
cle’s sprungmass via spring elements k f a and k (Fig 2).
The engine is connected via the driveshaft to the differ-
ential (housed in the centre of the live axle), which pro-
vides additional resistance to the axle’s motion in the
longitudinal direction. This resistance is included via a
plunge stiffness (kp) between the live axle and engine,
and engine mount compliance between the engine and
vehicle chassis (ke, ce). This approach is the same as
existing models in literature [5].

From this point, several additions beyond those
present in existing literature were made. The sprung
mass represents the proportion of the vehicle’s mass
carried by the rear axle, and is able to move verti-
cally. Including a sprungmasswithin the vehiclemodel
allows the vertical load on the tyres to be determined
dynamically within the model, rather than set as a
parameter within the tyre model at the start of a simula-
tion. The wheel is rotated by the engine, via a gearbox
and differential. Initial studies by the authors identified
that the “shuffle mode” of the powertrain was a key fre-
quency that drove tramp oscillations, so the torsional
elements of the powertrain are represented as a single
torsional spring connecting the input speed (as seen
leaving the clutch) to the wheel. This spring stiffness
was set such that the natural frequency of this simpli-
fied system matched that of the whole powertrain. The

123



15876 S. Smith et al.

Fig. 2 Freebody diagram
of the system broken into
two parts for readability. In
the top-down view a the
wheel, with radius R, is
connected to axle with mass
M . The axle moves
longitudinally along X ,
resisted by stiffness and
damping k f a and c f a . The
axle is connected to the
engine mass Me via kp ,
which can move along η. In
b the rear view, the axle is
shown to move along Z and
is connected to the
body,Mb , via k and c. The
body can move along Zb. In
c, the axle is shown to pitch
θ , with dimensions a, b and
e shown

wheel connects the axle and sprungmass to the road, via
an equivalent spring and damper in the vertical direc-
tionwhich represent the tyre’s vertical compliancewith
the road surface.Anonlinear functionwas used to relate
the friction generated between the tyre and the road to
the relative slip of the tyre.

With the above inmind, the equations ofmotion used
to describe the axle’s movement are given as follows:

Z̈ = (c(Ż − Żb) + k(Zb − (Z − R)) − kr (Z − R)

−cr Ż − Mg − ceθ − k(b − a)θ)/M (1)

Ẍ = (−c f a Ẋ − k f a X + F

+(k f an + kph)θ + kphη)/M (2)

θ̈ = (−ce2θ̇ − (k(a2 + b2) + k f an
2 + kph

2)θ − ceŻ

−k(b − a)(Z − R) + (kn + kph)X − kphη)Iy
(3)

Equations (1, 2 and 3) capture the vertical (Z ), lon-
gitudinal (X ) and rotational (θ ) motion of the axle. In
these equations: k and C are vertical suspension stiff-
ness and damping; kfa and cfa are the longitudinal stiff-
ness and damping; kr and cr are vertical tyre stiffness
and damping; M and Iy are the unsprung mass and
axle pitch inertia respectively; kp is the pinion stiff-
ness; a, b, e, n and h are moment arms for terms k

2 (a
and b, shown in Fig. 2), c, kfa and kp (for e,n and h
respectively, not shown in figure to maintain clarity); g
is acceleration due to gravity.

As described at the start of the section, the axle’s
motion is influenced by the longitudinal position of the
engine, η. To account for this influence, the following
equation is added to describe the motion of the engine
with respect to the vehicle’s body:

η̈ = (−ceη̇ − kpη − keη + kpX − kphθ)/Me (4)

Here, Me is the mass of the engine and ce and ke are
the longitudinal engine stiffness and damping.

The influence of the vehicle’s sprung mass is cap-
tured as follows:

Z̈ B = (−c(Żb − Ż)

−k(Zb − (Z − R) − Mbg)/Mb (5)

where Mb is the body mass.
The final equation of motion uses a single DOF to

model thewheel’s torsional displacement, δx , as a func-
tion of input speed, Ω . This captures the change in
angular displacement of the wheel relative to the drive-
shaft’s input position, rather than an absolute angular
rotation with respect to a stationary reference frame, to
enable a steady-state to exist even when the wheel is
rotating.

δ ẍ = (−c1δ ẋ − k1δx − F · R)/ iy (6)

where iy is the referred wheel inertia and k1 and c1 are
referred torsional stiffness and damping.
Nonlinearities enter the system through the tyre’s abil-
ity to generate force. The force from the tyre (F),
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Fig. 3 Slip ratio, σ vs normalised longitudinal force, F∗

which acts at a distance R from the wheel’s centre,
is obtained via a nonlinear function that captures typi-
cal tyre behaviour [23–25]. The equation that describes
the force function is:

F = 2 · μ · FN · σpeak · σ

σ 2
peak + σ 2

(7)

where μ is the coefficient of friction, FN is the vertical
normal force. σ is the slip ratio, with σpeak representing
the value where the slip ratio is at its maximum.
Figure 3 shows how the normalised tyre force F∗ varies
as a function of normalised tyre slip ratio. The slip
ratio is the ratio of tyre rotational speed to longitudinal
vehicle speed, defined by the following equation:

σ = (δ ẋ + Ω)R − Ẋ (8)

Here, R is the wheel radius, Ω is the system’s input
speed (equivalent to the speed of the driveshaft after
the clutch), ẋ is the wheel’s rotational speed deviation
from the system’s input speed Ω and Ẋ is the fore/aft
speed of the axle and wheel assembly. The resulting
slip value is expressed as a multiple of vehicle speed:
in the subsequent analysis, the vehicle is assumed to
be moving at a constant speed throughout the tramp
response. Equation (8) therefore couples Eqs. (1, 2 , 3)
and (6).
The normal force on the tyre is applied using the fol-
lowing equation.

FN = −kr (δx − R) (9)

To reflect the change in vertical force on the tyre when
it leaves the ground, the tyre’s vertical stiffness kr
becomes zero when the wheel leaves contact with the
ground via the following piecewise function. Other-
wise, stiffness value is taken from [5].

kr =
{
0 Z > R

166371.6 Z ≤ R
(10)

Equations (1)–(9) describe the symmetric motion of
a beam axle system.

In matrix form, the system can be expressed as;

ẋ = Ax + b (11)

Where

x = [δx1 δ ẋ1 δx2 δ ẋ2 . . .

. . . δx(n−1) δ ẋ(n−1) δx(n) δ ẋ(n)] (12)

where A is the stiffness and inertia system matrix, b is
the nonlinear matrix, and I is the identity matrix.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 . . . . . . . . . . . . . . . 0

−k1/I1 0 k2/I2 0 . . .
. . .

. . .
. . .

. . .
...

0 0 0 1 0 . . .
. . .

. . .
. . .

...

k1/I2 0 −(k2 + k1)/I2 0 k2/I2 0 . . .
. . .

. . .
...

0 0 0 . . .
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0 0 1 0 0

...
. . .

. . .
. . .

. . . k(n−2)/I(n−1) 0 −(k(n−1) + k(n−2))/I(n−1) 0 k(n−1)/I(n−1)
...

. . .
. . .

. . .
. . . . . . 0 0 0 1

0 . . . . . . . . . . . . . . . 0 k(n−1) In 0 −(kn + k(n−1))In

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

b = [0 0 0 F/M 0 0 0 0 0 0 0 − FR/ iy]′ (14)
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Table 2 Model parameters Parameter Symbol Value Unit

Longitudinal stiffness kfa 239339.9 N/m

Longitudinal damping Cfa 3.90 Kg/m-s

Vertical suspension stiffness k 10872 N/m

Vertical suspension damping C 39.05 Kg/m-s

Tyre stiffness kr 166370 N/m

Tyre damping Cr 500 Kg/m-s

Longitudinal propeller shaft stiffness kp 2743653 N/m

Longitudinal engine mounting stiffness ke 509327 N/m

Longitudinal engine mounting damping Ce 168.12 Kg/m-s

Torsional referred stiffness (1st gear) k 164.98 N/m

Torsional referred damping (1st gear) c 1 Kg/m-s

Torsional referred wheel inertia (1st gear) iy 1.21 kg m2

Axle pitch inertia Iy 0.27 kg m2

Wheel radius R 0.29 m

Mass of axle assembly (1/2) and wheel M 18+30.65 Kg

Mass of body (1/4) Mb 120.45 Kg

Engine mass me 160 Kg

Dimension a 0.34 m

Dimension b 0.95 m

Dimension e −0.15 m

Dimension h 0.025 m

Dimension n 0.05 m

Acceleration due to gravity g 9.81 [–]

The model is parameterised using values from pre-
vious work [5], as described in Table 2. The final model
therefore takes the symmetricDOF fromSharp [5]with
the following changes; the wheel is driven by input
speed to ensure an equilibria can be obtained requir-
ing a new torsional system, the wheel dynamics are
updated with modern equations for longitudinal slip
[11–13], the longitudinal engine dynamics from Sharp
are combined in Eq. (4), the mass of the body is added
as a DOF to account for any vertical motion in Eq. (5).
The following section studies the bifurcations that are
present in this model, with a view to explaining some
of the physical mechanisms that drive tramp-like oscil-
lations in automotive systems.

3 Bifurcation analysis of beam axle model

In this section, initial bifurcation results are presented
to show the bifurcations that occur in the nominal
parameterisation of the trampmodel. Input speed,Ω , is
used as the primary continuation parameter with rele-
vant output states being plotted as a function ofΩ . The
bifurcation diagrams are shown in terms of X , Z and
δx as these are the prominent motions for axle tramp.
Showing both X and Z is required to observe the wheel
orbit. The graphical conventions used for the bifurca-
tions are summarised below in Table 3.

Figure 4 presents the bifurcation analysis for a lon-
gitudinal position Z , b vertical position X and c tor-
sional displacement δx , all as functions of input speed,
Ω . There are several features to note in the analysis.
There is a single band of equilibria that is located at the
datum position. This band is stable (blue) for higher
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Fig. 4 One-parameter bifurcation diagrams for a Z , b X and c δx as a function of input parameter clutch speed, Ω with zoomed view
provided
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Table 3 Graphical conventions for bifurcation diagrams

Description Graphical convention

Stable equilibria

Unstable equilibria

Fold bifurcation

Hopf bifurcation

Stable

Unstable limit cycle

Fold bifurcation tracing

Hopf bifurcation tracing

Torus Bifurcation

speeds, and unstable (red dashed) at low speeds. The
change in stability is identified with a Hopf bifurcation
atΩ=16.6 rad/s. This subcritical Hopf bifurcation has a
limit cycle associatedwith it that is either stable (green)
or unstable (dashed cyan): the stability change occurs
at a fold bifurcation. This set of limit cycles has a fre-
quency of 1.86Hz (the same as the torsional eigenfre-
quency), and is associated with large amplitudes in the
torsional displacement. There is a secondHopf bifurca-
tion near zero which bounds these limit cycles. As the
system approaches this second Hopf bifurcation point,
nonlinear resonances are observed (see Fig. 4 aii–cii ).
These peaks aremost visible in the translational degrees
of freedom of the model, suggesting that the torsional
motion is undergoing some form of resonance with the
wheel’s vertical and longitudinal motion. In this non-
linear resonance region, there is a second pair of Hopf
bifurcations that occur at Ω=1.16 & Ω=4.85. These
have a limit cycle frequency of 10.77 Hz, the same as
the longitudinal eigenfrequency, and the amplitude of
the limit cycles is the largest of all limit cycles when
viewed in terms of longitudinal and vertical wheel dis-
placements.

Regions of behaviour that are bound by key bifur-
cations emerge from the initial bifurcation diagrams.
Region 1 is bound by the Hopf bifurcations near zero
andΩ=16.6 rad/s, and contains unstable equilibria and
a combination of stable and unstable limit cycles. The
frequency of these oscillations can either be 1.86Hz or
10.77 Hz, with the 1.86 Hz oscillation occurring across
this entire speed range and the 10.77 Hz oscillations
being a subset of this region bound by the locations of
the additional Hopf bifurcations. The magnitude of the
oscillations can be determined from the size of themin-

imum and maximum amplitude shown on the diagram.
Region 2 is bound by the Hopf bifurcation at Ω=16.6
rad/s and the fold bifurcation at Ω=39.2 rad/s. This
region contains both dynamically stable equilibria and
a combination of stable and unstable limit cycles (with
a frequency of 1.86 Hz). Therefore, an axle that oper-
ates in this region may or may not tramp, depending on
the initial conditions. Finally, region 3, which exists for
any input speed higher than the corresponding speed of
the fold bifurcation, only contains a dynamically stable
equilibriummeaning any speed inputwould result in no
limit cycle oscillations regardless of perturbation. The
existence of these regions is similar to results obtained
by the authors in previous work on brake vibrations
[17], which contained a similar nonlinear friction force.

These regions can be verified by conducting simu-
lations in each region. Figure 5 contains four differ-
ent simulations showing the behaviour of X over time.
In Fig. 5a, the input speed is set to Ω=10 m/s. This
simulation is in region 1, and shows a self-sustaining
oscillation as predicted. Figure 5b shows a simulation
for Ω=50 m/s, which is in region 3 and shows the sys-
tem decaying to rest at the equilibrium observed in the
bifurcation diagram. Simulations in Fig. 5c and d are
both set to Ω=25 m/s which is in region two where
stable equilibria coexist with stable limit cycle. In Fig.
5c, the system observes no self-sustaining vibration.
However, when the system is perturbed in Fig. 5d, a
self-sustaining oscillations can be observed.

Given the complicated limit cycle behaviour at low
speeds, observing the limit cycles in phase space with
the surrounding vector field can provide additional
insight. Figure X contains a phase portrait at Ω=1.5
rad/s viewed in: (a) the δX and δ ẋ plane; (b) the X and
Ẋ plane. In Fig. 6a, the outer limit cycle corresponds to
the torsional mode (at 1.86Hz). In this plane, the vector
field appears to be influenced by this mode more than
the longitudinal response (smaller limit cycle, bottom
left of figure). In Figure (b), the vector field tends to
head past the larger limit cycle (the longitudinal mode)
towards the smaller limit cycle (which is the 1.86Hz
torsional mode). This suggests that the torsional oscil-
lation is more likely to be observed at low speeds than
the longitudinal oscillation.

In light of the observations made above, the fol-
lowing section will explore how this model’s tramp
response changes as key parameters are altered. The
aim of this subsequent investigation is to identify how
live axle designs could be improved to mitigate tramp
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Fig. 5 A series of simulations showing the behaviour in each region

Fig. 6 Phase plots in the angular and longituinal DOF

from persisting, or minimise its effects if it were to
occur.

4 Two-parameter bifurcation analysis

With a one-parameter study presented and the key
bifurcations detected that indicate the regions of behaviour,
several additional two-parameter studies can be con-
ducted to determine how alterations in the model may
affect these bifurcations and therefore the nature of axle
tramp. Three scenarios are considered: changing the
torsional stiffness (which captures the effects of chang-
inggear); changing themass of the beamaxle; changing

the stiffness between the beam axle and chassis. Three
parameters are chosen: the first change can be insti-
gated by the driver, as in the torsional stiffness study it
is shown how the system will behave when the system
undergoes a gear change; the changes to longitudinal
stiffness and axle mass could be altered in the design
phase and are chosen for study here as the system con-
tains a large amount of longitudinal motion, directly
related to the longitudinal stiffness; the axle mass is
directly linked to the force applied on the wheel which
likely influences the stick-slip behaviour involved in
the axle tramp phenomena.
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Fig. 7 Two-parameter bifurcation diagram showing change in
location of bifurcations as input speed,Ω , and torsional stiffness,
k1 are varied simultaneously. Panel a shows Hopf and fold bifur-

cations in parameter space and panel b shows the δx value of the
fold bifurcation as a function of k1. The background hatching
shows the frequency observed

4.1 The influence of torsional stiffness

Figure 7 shows the bifurcation diagram in the param-
eter space a and state parameter space b in terms of
the torsional stiffness, for the key bifurcations in this
system. Following on from the analysis presented in
the previous section, different regions are observable:
two Hopf bifurcations are traced to show the origin of
tramp oscillation at the longitudinal eigenfrequency;
two additional Hopf bifurcations are traced to show the
origin of the tramp that occurs at the torsional eigenfre-
quency; the key fold bifurcation, which occurs at high
speeds, is traced to determine the speed boundary on
tramp.

The fold bifurcation at higher speeds indicates the
peak amplitude that occurs in torsional displacement
during a tramp event. This bifurcation can therefore
be shown in the state parameter space as a marker for
the peak amplitude in δx . As shown in Fig. 7b, the
maximum amplitude of the change in wheel position
decreases as torsional stiffness increases, although it
appears to be tending towards a limit. This result sug-
gests that a higher torsional stiffness will reduce the
size of the torsional component of tramp, but it does
not eliminate the oscillations or change the speed range
over which they occur.

Whilst the driveline’s stiffness could be set at the
design stage, its effective stiffness will change during
operation: changing gears alters the ratio between the
wheels’ and engine’s displacement. As the torsional
system uses a referred stiffness parameter (to capture
the shuffle mode), a change in gear can be represented
by a change in torsional stiffness. An eigenvalue analy-
sis of a multi-degree-of-freedom torsional system cre-
ated by the authors identified that the driveline shuf-
fle mode increases to 2.37 Hz from 1.87 Hz as the
system gores from first to second gear for the vehi-
cle under consideration. This new torsional system can
be reduced to a 1DOF system and applied in the same
way outlined above in the modelling section.

Figure 8 shows a one-parameter bifurcation diagram
of the system in 2nd gear. For comparison, the previous
diagram in 1st gear is shown in grey. The bifurcations
that bound regions of the phase space behaviour out-
lined earlier do not change, as the gearing alteration
does notmove theHopf or fold bifurcation in relation to
the x-axis. The frequency of the limit cycle oscillations
is at the longitudinal and new torsional eigenfrequency,
10.77 Hz and 2.37 Hz respectively.

There are significant changes in the amplitude of the
limit cycles in all DOF. In X and Z , there was a local
peak in amplitude for Ω ∈[10,20] rad/s (bounded by
a pair of fold bifurcations). The gear change shifts this
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Fig. 8 One-parameter bifurcation diagrams showing the behaviour a Z , b X and c δx as a function of input parameter clutch speed,
Ω , in second gear, with zoom viewed added. For reference, the results for first gear are greyed out in the background
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Fig. 9 Two-parameter bifurcation diagram showing change in
location of bifurcations as input speed, Ω , and axle mass, M are
varied simultaneously. Panel a shows Hopf and fold bifurcations

in parameter space and panel b shows the δx value of the fold
bifurcation as a function of M . The background hatching shows
the frequency observed

region to occur at the lower speed range, Ω ∈[5,10]
rad/s. Elsewhere, the resonance spikes still occur but at
lower speeds, and at higher speeds similar limit cycle
behaviour is observed but at a reduced amplitude. The
amplitude of the oscillations reduces in δx across the
speed range, due to the change in torsional system resis-
tance.

This result suggests that tramp could be more severe
if provoked in 1st gear than 2nd, given the ampli-
tude across the entire speed range is generally lower
as the gear is increased from first to second; however,
the change in the unstable limit cycle emanating from
the highest speed Hopf bifurcation suggests that tramp
could be easier to provoke in second gear: the unstable
limit cycle branch will bound the stable limit cycle’s
basin of attraction; as it occurs at a lower δx value for
a given Ω (and similarly in other states too), smaller
perturbations could tend towards the stable limit cycle.

4.2 The influence of axle mass

Figure 9 presents a two-parameter bifurcation dia-
gram for axle mass, with panel (a) showing the two-
parameter bifurcation runs in parameter space. The
trend in the fold bifurcation indicates that, for a lower
beam axle mass, the regions in which tramp will occur
is reduced across the speed range. Furthermore, plot-
ting the fold bifurcation (which represents peak tor-

sional vibration) against axle mass in state–parameter
space shows a small decrease in the torsional displace-
ment when the system with a low axle mass tramps.
This result has potential consequences for heavy vehi-
cles, buses and trucks which are likely to have a beam
axle setup involving heavy masses, suggesting that
tramp in those vehicles could be exacerbated by their
large axle mass.

Two discrete choices of axle mass can provide fur-
ther insight into the tramp amplitude in Z and X .
Reducing the axle mass to 15 Kg, shown in Fig. 10a,b
demonstrates that a smaller axlemass reduces the tramp
amplitude at low speeds (associated with the longi-
tudinal mode), but increases the amplitude at higher
speeds (associated with the torsional mode). Alongside
this quantitative change in tramp, there is a qualitative
change in the limit cycle branch, as a torus bifurca-
tion present in the nominal mass case no longer exists.
This qualitative change from the nominal case also
occurs when the axle mass is increases: increasing the
axle mass to 60kg (shown in Fig. 10c,d) also removes
the torus bifurcation from the limit cycle branch. The
change in amplitude of the limit cycles follows the
observation made for the low mass to nominal mass
comparison: at high speeds (associated with the tor-
sional mode) tramp reduces; at low speeds (associated
with the longitudinal mode) tramp increases.
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Fig. 10 One-parameter
continuation in Z and X for
a reduced axle mass of
15Kg (ai ,bi ) and an
increased axle mass of
60Kg (ci ,di ), with zoomed
counterpart for each shown
below in figures (a − d)i i
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Fig. 11 The initial two-parameter bifurcation diagram showing
change in location of bifurcations as input speed,Ω , and longitu-
dinal stiffness, kfa are varied simultaneously. Panel a showsHopf

and fold bifurcations in parameter space and panelb shows the δx
value of the fold bifurcation as a function of M . The background
hatching shows the frequency observed

4.3 The influence of longitudinal stiffness

Figure 11 presents an initial two parameter bifurcation
analysis for longitudinal stiffness. In Fig. 11a, the two-
parameter study traces the evolution the key fold and
Hopf bifurcations and indicates regions of tramp and
the potential frequency. In Fig. 11b, the state parame-
ter space is shown for the torsionalwheel displacement,
where the fold bifurcation indicates the peak amplitude
for this state. Regions are carved in the parameter space
to show where the limit cycle occurs and at what fre-
quency. The majority of the space contains limit cycles
at 1.86 Hz (the same frequency as the torsional mode)
but with a subsection that also contains an oscillation
at the longitudinal mode, which changes as a func-
tion of kfa. This region of coexistence is bound by two
Hopf bifurcations, which now meet near kfa = 2×105

N/m. This result, unlike the other parameter variations,
includes a parameter range where only a single tramp
frequency is present, warranting further investigation.

Figure 12 contains the bifurcation diagram for a
low longitudinal stiffness of k = 1 × 105 N/m. This
places it in the region where the previous result sug-
gested there was only a single tramp frequency, yet
there still appears to be multiple limit cycle branches
at low speed. There is a general growth in limit cycle

amplitude in bothZandX, resulting in larger axle tramp
oscillations in this system. The large cluster of bifur-
cations found that the default system also remains and
the resonance spikes still occur; however, the increased
amplitude magnifies the effect felt by the vehicle. The
continued presence of large-amplitude limit cycles at
low speed suggests that the previous result in Fig. 11
needs to be reconsidered at low stiffness values.

Figure 13 shows the one-parameter continuation for
(a) Z and (b) X with zooms for each below, for the
case of longitudinal stiffness increased to k = 8× 105

N/m. For reference, the original result is shown in grey.
There are three significant changes to the limit cycle
behaviour. First, the tramp oscillations that are at the
torsional eigenfrequency in Z and X are smaller by an
order of magnitude (compared to the nominal case).
Second, the tramp at the longitudinal eigenfrequency
is larger and the fold bifurcation associated with this
branch is now located at a higher speed value. With the
new fold location exceeding the location of the highest
speed fold bifurcation, it is insufficient to use a single
fold bifurcation as a boundary for tramp when consid-
ering longitudinal stiffness as a secondary continuation
parameter. Finally, the increase in longitudinal stiffness
has removed the fold bifurcations at low speeds and
smoothed this branch, resulting in no resonance spike
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Fig. 12 The one-parameter continuation for (ai ) Z and (bi ) X for a reduced longitudinal stiffness value of kfa = 1 × 105 N/m, with
zoom view a i i and b i i below

and a more comfortable transition when operating at
low speeds.

In light of the results from the one-parameter con-
tinuation runs, two additional bifurcations need to be
considered to correctly capture the range of tramp
behaviour in a single diagram. The result obtained by
tracing these additional bifurcations is shown inFig. 14,
which provides an overviewof all the behaviour discov-
ered. Notably, this increases the size of the parameter
space in which oscillation at the longitudinal eigenfre-
quency can be observed: the second fold bifurcation
acts a boundary on this behaviour for higher stiffness
values, and the high amplitude oscillations at the longi-
tudinal eigenfrequency are bound by new Hopf bifur-
cations at low stiffness values and the previous ones
when the stiffness is higher. This result has implications

for conventional tramp suppression approaches, which
propose increasing the stiffness between the axle and
chassis as a solution: at some point, increasing stiffness
may broaden the range over which tramp can occur.

5 Concluding remarks

This paper presents a bifurcation analysis of a mathe-
matical model of axle tramp. Nonlinearities enter the
model through the tyre, where the friction force varies
nonlinearly with longitudinal slip. Five key bifurca-
tions are identified: two pairs of Hopf bifurcations lead
to tramp oscillations associated with two different fre-
quencies; one fold bifurcation bounds the maximum
speed at which tramp can be observed. Using these
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Fig. 13 One-parameter continuation for an increased longitudinal stiffness value of kfa = 8 × 105 N/m in a Z and b X with zoomed
view provided

Fig. 14 The final
two-parameter bifurcation
diagram showing change in
location of bifurcations as
input speed, Ω , and
longitudinal stiffness, kfa
are varied simultaneously.
Panel a shows Hopf and
fold bifurcations in
parameter space and panel b
shows the δx value of the
fold bifurcation as a
function of M . The
background hatching shows
the frequency observed
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key bifurcations, the influence of drivetrain stiffness,
axle mass and axle fore/aft stiffness are considered. It
is shown that the severity of tramp can be minimised
by increasing drivetrain stiffness, reducing axle mass
or increasing fore/aft stiffness. The trade-off for min-
imising tramp severity is that it may be easier to excite
trampwhen the drivetrain stiffness is increased, and the
speed range over which tramp can occur is increased
as fore/aft stiffness is increased.

The broad motivation for this work stems from the
current trend in the automotive sector to electrify vehi-
cles. Such a change tends to significantly increase the
stiffness of the driveline, as gearing and driveshafts are
reduced/removed. The outcome from this initial study
suggests that such a change in stiffness could make
tramp easier to provoke, although the resulting oscilla-
tions would be of a lower amplitude than in an equiva-
lent combustion-driven vehicle.

The breadth of parameters considered in this work
has discovered plenty of scope for future work to inves-
tigate certain aspects in more detail. With the current
model, the existence and disappearance of a torus bifur-
cation under the action of axle mass warrants further
study to identify the region over which this bifurca-
tion exists, the dynamic behaviour that arises because
of its existence, and the reason why it can be brought
into/out of existence by changing the axle mass. The
nonlinear resonances at low speed could also be studied
to identify parameters thatmove the fold bifurcations in
these limit cycles: knowledge of how these resonances
“stiffen”, and potentially switch in nature, would be of
academic interest. The influence of tyre model parame-
terisation on the nonlinear response could also be stud-
ied.

A semi-analytical studymayprovidedifferent insights
into the influence of model parameters on key bifurca-
tion points. Such a study could adjust the model to
capture tramp with a minimum number of states and
parameters, and then explore the influence of this sim-
plified model’s parameters on the location of the Hopf
bifurcations in themodel. This could be achieved either
by linearising the tyre model and introducing its gradi-
ent and intercept as parameters that drive stability, or by
analytically differentiating the tyre function and using
a graphical approach to study the conditions that lead
to zero crossings of the eigenvalues of the nonlinear
system’s Jacobian matrix.

The model presented in this work assumes that the
tyre’s response is linear up to the point it leaves the

ground. In reality, the tyre’s stiffness will change with
vertical displacement: this would be influenced by tyre
construction, size and pressure. Future work could
identify parameter sets that lead to oscillations where
the wheel can leave the ground, and study the influ-
ence of the model used to capture this critical change
in system dynamics. Finally, future experimental work
could look to confirm the existence of some of the key
behaviours identified in this model (such as the pres-
ence of a subcritical Hopf bifurcation, or two different
tramp frequencies).
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