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Abstract This paper aims to study the dynamics of

the single-degree-of-freedom magnetic spring-based

oscillator system. The proposed oscillator system

contains a nonmagnetic shaft, a floating permanent

magnet (PM), and two fixed permanent magnets

(PMs). All PMs are placed in such a way that they

can repel each other. At first, the proposed system’s

magnetic properties and magnetic restoring force are

studied. Experimental and numerical analyses have

been carried out to validate the analytical investigation

of the magnetic restoring force. The linear and

nonlinear coefficients of the oscillator system are

analysed from the magnetic restoring force. Moreover,

how the gravitational force affects the equilibrium

position is studied by varying the height of the

oscillator. The magnetic restoring forces for different

oscillator heights are also analysed. In addition, the

system dynamics, such as damping ratio, eigenvalues

and natural frequencies of the oscillator system, are

investigated with and without electromechanical cou-

pling. Finally, the proposed system’s energy genera-

tion capacity is examined using electromechanical

coupling.

Keywords Magnetic restoring force � Linear
stiffness � Nonlinear stiffness � Electromechanical

coupling � Power generation

1 Introduction

Compared to other power take-offs (PTO) systems, the

linear generator-based PTO system contains fewer

moving parts resulting in less mechanical complexity

and less installation and maintenance costs. Different

design concepts have been proposed, developed, and

tested to overcome the disadvantages of linear gener-

ators and increase their efficiency [1–4]. In most cases

for wave energy conversion, linear generator systems

have been designed based on linear oscillators and

traditional design concepts. Conventionally, perma-

nent magnets are usually mounted in the translators

with opposite poles facing each other. An iron core is

sandwiched between two permanent magnets. Trans-

lators move inside stators, causing the magnetic flux to

change inside winding coils, which generates electri-

cal energy. A linear oscillator-based energy generator

generally produces the maximum power output, while

a nonlinear oscillator harvester has a broader fre-

quency bandwidth. Therefore, nonlinear oscillators

can harvest more energy from random vibrations [5].

Owens et al. found that nonlinear oscillators are more
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efficient at expanding frequency response bandwidth

than linear oscillators [6].

A magnetic levitation (magnetic spring) system can

be used in the translator design to make the oscillator

nonlinear. Magnetic springs work like physical

springs and are formed when two magnets face each

other in the same poles (N–N or S–S). A study showed

that a magnetic spring-based linear generator would

harness energy more efficiently from low-frequency

vibration sources [7]. The design of the magnetic

spring-based linear generator is relatively straightfor-

ward; however, several important aspects still need to

be thoroughly investigated or analysed, such as the

dynamics, the optimal design of the multi-pole magnet

arrangements, the accurate modelling of the magnetic

restoring force, and the nonlinear response.

So far, many magnetic spring-based energy har-

vesters have been proposed and developed to generate

energy from vibrations such as handshaking, human

motion and the environment. Zhu and Zu developed

and simulated a linear generator based on a magnet

spring system [7]. A cubic polynomial curve fit was

used to model the magnetic levitation or restoring

force. Moreover, an analytical formula was employed

to compute the average axial magnetic flux. However,

the nonlinear behaviour of the magnetic spring-based

oscillator system was not studied. Mann and Sims

studied a novel linear generator based on a magnetic

levitation system [8]. The magnetic levitation system

was used to create an oscillator with a tuneable

resonance, and a cubic polynomial function was

proposed to measure the magnetic restoring force.

The stiffness coefficients of the cubic polynomial law

were determined experimentally. However, the effects

of the gravitational force and the position of a fixed

magnet have not been discussed. Lee et al. used cubic

and quintic polynomials to study the linear and

nonlinear coefficients of the magnetic restoring force

[9]. The polynomial coefficients and electromechan-

ical coupling were determined experimentally. The

floating magnet’s static displacement was directly

measured under gravitational force to determine the

magnetic restoring force, but its equilibrium position

was not examined under gravitational force. A variety

of magnetic spring-based generator structural designs

were studied by Munaz et al. [10]. Multipole magnets

were studied using the superposition principle, and

magnetic flux density was modelled using analytical

functions. Finite element analysis (FEA) was

performed to determine the optimal flux distribution

of the moving magnet and the number of poles.

Although the system’s dynamics were considered, the

effect of the changing position of the fixed magnet was

not considered. Priya and Apo explored the impact of

magnet multipole arrangements and used the cubic

polynomial to estimate the stiffness terms [11]. To find

the optimal magnetic configuration, a finite element

analysis was presented. However, no information

about how to solve the equation of motion was

provided. Avila Bernal and Garca proposed an

analytical model for the magnetic field distribution

and magnetic force, as well as a mathematical

derivation to represent the dynamics of the monopole

linear generator [12]. The analytical analyses were

compared with FEM. The dynamic behaviour of the

oscillator system was not studied. Masoud Masoumi

and Ya Wang proposed a nonlinear oscillator system

called the repulsive magnetic scavenger [13]. Mag-

netic properties were estimated numerically for dif-

ferent magnet arrays and arrangements using FEM.

The restoring force coefficients were identified from

numerical simulation using the cubic polynomial law,

and the numerical procedures were evaluated exper-

imentally. However, the gravitational force was not

considered during the measurement of the magnetic

restoring force. In addition, Pedro Carneiro et al.

reviewed the architectures of electromagnetic energy

generators based on magnetic levitation systems [14].

Twenty-one design arrangements were compared in

terms of geometric parameters, constructive parame-

ters, optimisation approaches, and energy-generating

performances. In addition, this review introduces the

essential advanced models used to describe the

physical phenomena of transduction mechanisms.

The literature shows that the magnetic restoring

force is a function of the floating magnet’s position,

which is estimated in most research investigations by

seeking the polynomial power series coefficients by

curve fitting [14]. The magnetic restoring force must

be measured correctly to determine a system’s linear

and nonlinear coefficients. The magnetic restoring

force has been measured using numerical [15, 16],

analytical [17, 18], and experimental models

[8, 13, 19, 20]. To date, no paper has been published

that simultaneously validates experimental measure-

ments of magnetic restoring force with numerical and

theoretical measurements. Because of the gravita-

tional force, the equilibrium position of the magnetic
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spring-based system (vertical arrangement) is

affected, but very few researchers considered this fact

without studying how the gravitational force effect

changes the equilibrium position. Furthermore, not a

single researcher in the literature studied the changing

position of the top fixed magnet, which determines the

total height of the oscillator, and how it affects the

oscillator design. The dynamics of the magnetic

spring-based system are fundamental for understand-

ing and developing the system deeply, but unfortu-

nately, none of the articles that appear in the literature

has studied the dynamics intensely. Therefore, this

paper aims to investigate the magnetic restoring forces

with validation, the effect of the changing height of the

oscillator, and how the gravitational effect changes the

system’s equilibrium position for different positions of

the top fixed magnet and the dynamics of the nonlinear

oscillator system.

The paper introduces the advantages of using the

nonlinear over linear oscillator system, previous

research works, and research gaps. Following this,

the design configuration and investigation of the

magnetic properties are presented. The following

section presents the magnetic restoring force and

coefficient analysis of the magnetic spring-based

oscillator system. The design is analysed for various

lengths of the oscillator in the following section.More-

over, the nonlinear oscillator model is analysed with

and without electromechanical coupling in Sect. 5.

Section 6 presents the oscillator system’s dynamics,

including the dynamics for different heights of the

oscillator, with and without electromechanical cou-

pling and the model of the energy generator for

different oscillator lengths. Finally, the paper dis-

cusses where the proposed model is compared with the

existing models.

2 Design configuration and investigation

of the magnetic properties

As shown in Fig. 1, the proposed nonlinear oscillator

consists of three permanent ring magnets and a

circular aluminium shaft. All magnets are axially

magnetised (N42) through the height (13 mm), and

each magnet’s outer and inner diameters are 72 mm

and 32.5 mm, respectively. Two fixed ring magnets

are attached to the shaft, whose polarities are switched

to create a repulsive force between the levitating

magnet and the fixed magnets. SN-NS-SN is the

orientation of the magnetic poles in order to repel each

other. This test rig is 300 mm high and 300 mm wide.

The shaft has a diameter of 12 mm and a height of

550 mm. The middle and bottom magnets are sepa-

rated by 79 mm, and the top and middle magnets by

104 mm.

A fishing line connects the floating magnet with the

servo motor pulley to create a sine wave. The

displacement sensor measures the displacement of

the middle floating magnet. Initially, the magnetic

properties of the oscillator are studied without a

winding coil. Figure 2 shows the magnetisation

Fig. 1 Test rig
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direction and the magnetic flux density on the magnet

surface. The magnitude of the magnetic flux density is

shown in Fig. 3.

Figure 2c displays how the distributed magnetic

field moves through the air gap. Line d, 37 mm from

the magnet stack chosen as the coil location, is used to

calculate the magnetic flux density radially for the

system. When selecting the winding coil position, it is

essential to consider the magnetic flux density in the

air gap. The vertical arrows move in equivalent ways

due to the symmetry in Fig. 2c. Figure 3 displays the

numerically measured (ANSYS Maxwell) axial and

radial magnetic flux densities.

Magnetic flux density is affected much more by

external forces or vertical movement of the middle

magnet than by keeping them stationary, as shown in

Fig. 3a, b. During magnet vibrations, magnetic flux

density changes, which is an essential factor for

maximising power harvesting.

Fig. 2 a Magnet surface

flux density and

b magnetisation direction

and c Magnetic flux density

(B_Vector) in XZ plane
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3 Magnetic restoring force and coefficient analysis

of the magnetic spring-based oscillator system

The pole orientation of magnets determines whether it

will attract or repel another magnet when moved near

it. When opposite poles are aligned (SN-SN or NS-

NS), attraction occurs, while repulsion occurs when

the same poles are oriented together (NS-SN or SN-

NS). The forces will vary depending on the magnets’

shape, orientation, magnetisation direction, and sep-

aration. The numerical, theoretical and experimental

methods can be used to calculate attractive and

Fig. 3 Magnetic flux

density B_Vector a axial

direction and b radial

direction
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repulsive forces. There are three magnets in Fig. 4; the

central floating ring magnet is free to move, while the

upper and underneath ring magnets are fixed.

The magnetic force between two magnets can be

written as [17],

Ft ¼
l0QtQm

4prt2
ð1Þ

Fb ¼
l0QbQm

4prb2
ð2Þ

The top andmiddlemagnets are separated by rt, and

the bottom and middle magnets are separated by rb.

The magnetic field intensities of the top, bottom, and

middle magnets are Qt, Qb and Qm, respectively. The

magnetic restoring force of the moving magnet (Fres)

can be calculated using the distance x, representing the

displacement of the middle moving magnet in Fig. 4.

Fres ¼ Ft � Fb

¼ l0Qm

4p
Qt

rt � xðtÞð Þ2
� Qb

rb þ xðtÞð Þ2

 !
ð3Þ

According to Fig. 1, all ring magnets are placed

vertically. Magnetic restoring force curves changed

due to gravitational force shifting the equilibrium

point away from the centre point. The Taylor series

can be used to express Eq. 3 for the test rig setup as

follows:

Fres ¼ k1xþ k2x
2 þ k3x

3 þ k4x
4 þ k5x

5 þ a ð4Þ

where a is the constant, k1 is the linear spring

coefficient and k2; k3; k4 and k5 are the nonlinear

coefficients of the system. Figure 5 shows the calcu-

lated magnetic restoring forces derived analytically

(using Eq. 3), numerically (Using Ansys Maxwell)

and experimentally.

Due to the gravitational effect, the magnetic

restoring force between the bottom and middle

magnets is higher than that between the top and

middle magnets in Fig. 5. There is a striking similarity

between the experimentally measured and numeri-

cally and theoretically calculated magnetic restoring

forces. Figure 5b displays the residual error analysis

for the experimental, numerical and theoretical mea-

surements. The standard error for experimental,

numerical and analytical analysis are 0.117, 0.117

and 0.042, respectively. Moreover, the experimental

measurement’s standard deviation and sample vari-

ance are 0.694 and 0.481, respectively. The standard

deviation values for numerical (0.838) and analytical

(1.359) measurements are higher than those for the

experimental measurement. Even though some arti-

cles have been published on magnetic levitation-based

nonlinear oscillators, their dynamics have yet to be

clarified. In some studies, researchers used the linear

equation for small excitations of the floating magnet.

In other studies, the magnetic restoring force was

measured using cubic (3rd order) and quintic (5th

order) polynomials curve fitting. The magnetic restor-

ing force curves in Fig. 6 can be used to calculate the

linear and nonlinear stiffness. Least-squares curve

fitting of the graph can be used to measure of k1,

k2; k3; k4 and k5. A polynomial of cubic and fifth order

in Fig. 6 represents the magnetic restoring force.

It can be seen from Fig. 6 that the 5th-order

(quintic) polynomial fits the data more accurately than

the 3rd-order (cubic) polynomial. The distance

between permanent magnets strongly influences the

coefficient of the proposed system. The characteristic

changes substantially when the distance changes.

S

N

N

S

N

S

Fig. 4 Magnetic spring-based oscillator system

123

15710 R. Ahamed et al.



Figure 7 presents the natural frequencies of the

experimental, theoretical and numerical measure-

ments for fitting 3rd-order and 5th-order polynomial

models. Figure 7 shows the floating magnet’s theo-

retical natural frequencies for different excitation

ranges are almost identical. In addition, for small

excitation ranges, as shown in Fig. 7, the measured

natural frequencies for 3rd-order polynomial curve

fitting are almost the same as those for 5th-order

polynomial curve fitting. Measured natural frequen-

cies for fitting the 3rd and 5th-order polynomial curves

are around 4.85 Hz and 5 Hz, respectively.

For the curve fitting of experimental measurements,

Fig. 8 shows the Root Mean Squared Error (RMSE)

and R-square values. Based on Fig. 8, it can be seen

that higher-order polynomials are more accurate than

lower-order polynomials. Based on the RMSE values,

Fig. 8 shows that higher-order polynomials deliver a

good match for both high and small excitation ranges.

Based on the measurements of the RMSE for all

curve-fitting analyses for various ranges of the floating

magnet’s position, the polynomial model of the 5th

order provided the lowest RMSE. The 3rd-order

polynomial models produced the minimum RMSE

Fig. 5 a Validation of

magnetic restoring force and

b Residual error
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values for smaller excitation ranges, such as 5 mm and

10 mm. Thus, the lower-order polynomial model for

small excitation ranges is generally more appropriate,

but a higher-order polynomial model is more suit-

able for long excitation ranges.

4 Design analysis for various lengths

of the oscillator

The system has a total length of 222 mm for the

normal equilibrium position. Because of the different

lengths of the oscillator, the middle and bottom

magnets and the middle and top magnets have

different distances between them, as shown in Fig. 9.

By changing the total length of the oscillator, the

equilibrium position changes.

The floating magnet’s position changed as expected

because of gravitational force effects when the top

magnet moved or varied the total length of the

oscillator, as seen in Fig. 9. During the equilibrium

position of the oscillator, the middle magnet moved by

13 mm toward the bottom magnet from the projected

position (equilibrium position for floating magnet) due

to gravitational force effects. This length, due to

gravitational force effects, decreased when reduced

the oscillator length but it increased when increased

the oscillator length as seen in Fig. 9. Figure 9 shows

Fig. 6 Magnetic restoring

force (3rd order and 5th

order polynomial model

(50 mm excitation ranges))

a Experimental

measurement and

b Residual error
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that the distance between the middle and bottom

magnets and between the middle and top magnets

changed with varying the oscillator length. The

distance between the middle and bottom magnets

changes slightly compared to the distance between the

top and middle magnets.

Moreover, the damping ratio and natural frequency

of the oscillator changed with changing the total length

of the oscillator. Figure 9 presents the change in

damping ratio and natural frequency of the oscillator

for different top fixedmagnet positions. It is clear from

Fig. 9 that when the length of the oscillator is reduced,

the damping ratio and natural frequency increase.

Alternatively, the damping ratio and the natural

frequency decreased when the oscillator length

increased. The magnetic restoring forces for different

lengths of the oscillator have been measured experi-

mentally, as shown in Fig. 10.

It can be said from Fig. 10 that the magnetic

restoring force changes with changing the total length

of the oscillator. Increasing oscillator length leads to

decreases magnetic restoring force, and decreasing
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Fig. 7 Natural frequency

analysis for 3rd and 5th-

order polynomial curve

fittings

Fig. 8 Goodness of fit for

the experimental

measurement
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oscillator length leads to increases magnetic restoring

force.

The cubic (3rd order) polynomial curve fit has been

used to measure the magnetic restoring force for

various lengths of the oscillator. The magnetic restor-

ing force curve is displayed in Fig. 10, and from this

curve, the linear and nonlinear stiffness have been

calculated. The experimental measurement for the

restoring force has been used to measure the system’s

linear and nonlinear stiffness by changing the top

magnet’s fixed position. The polynomial of the cubic

model for this new position is selected to represent the

magnetic restoring force, as shown in Table 1. The

values of k1; k2 and k3 have been measured from the

least-squares curve fitting of the above graph. By

changing the position of the top magnet, the linear and

nonlinear coefficients for 50 mm excitation ranges are

investigated, as presented in the following Table 1.

It can be seen from Table 1 that the coefficients of

the system changed with changing the length of the

oscillator. The linear stiffness increased with reducing

the oscillator length, and it declined with increasing

the oscillator length, which can be seen in Table 1.

Fig. 9 Change of damping

ratio and natural frequency

for different positions of the

top magnet

Fig. 10 Magnetic restoring force for different oscillator lengths (experimental measurement)
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5 Model analysis with and without

electromechanical coupling

In the equilibrium position, the separation distance

between the bottom and the floating magnet is 79 mm,

and between the floating and top magnets is 104 mm.

The middle magnet creates elastic restoring forces

(Fr ¼ k1yþ k2y
2 þ k3y

3) when an external force is

applied to it or when it moves up and down. The free-

body diagram in Fig. 11 illustrates the oscillator

system with electromechanical coupling. Fb

(Fb ¼ b _y) is the damping force of the oscillator

system. y represents the relative displacement, _y

represents the relative velocity and €y represents the

relative acceleration of the magnet. The coil has a

length of l, and the magnet’s flux density is B(y). The

electromagnetic coupling coefficient is a(a ¼ BðyÞl)

and Fe (Fe ¼ aI) is the electromagnetic force. The

oscillator system’s dynamic equation can be expressed

as follows,

M
d2y

dt2
þ Fb þ Fr ¼ FbSin xtð Þ ð5Þ

where k1 is the linear spring constant and k2 and k3 are

the nonlinear coefficients of the system. In the

Table 1 Linear and

nonlinear stiffnesses of the

oscillator system for various

lengths (Theoretical

measurement)

Oscillator lengths (mm) Coefficients

k1 (N/m) k2 (N/m2) k3 (N/m3)

212 259:87 7580:7 244955

217 250:89 6878:7 209888

222 (Equilibrium position) 246:32 6387:9 184996

232 221:7 5167 1:377� 105

242 202:53 4313:3 106770

252 183:56 3832:6 86119

262 169 3504:6 72985

272 157:32 3308 64428

Fig. 11 Free body diagram of the nonlinear oscillator system with electromechanical coupling
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presence of electromechanical coupling, the oscillator

system’s dynamic equation can be written as,

M
d2y

dt2
þ Fb þ Fr þ Fe ¼ FbSin xtð Þ ð6Þ

RinI þ L
dI

dt
¼ a

dy

dt
ð7Þ

Equations 6 and 7 can be expressed as

M
d2y

dt2
þ b

dy

dt
þ k1yþ k2y

2 þ k3y
3 þ aI ¼ FbSinðxtÞ

ð8Þ

M €yþ b _yþ k1yþ k2y
2 þ k3y

3 þ aI ¼ FbSinðxtÞ
ð9Þ

RinI þ L _I ¼ a _y ð10Þ

V þ L
dI

dt
¼ a

dy

dt
ð11Þ

where Rin is the coil’s resistance, L is the winding

coil’s inductance, and I is the induced current (I ¼ V
R)

and V is the induced voltage.

5.1 State space analysis of the nonlinear oscillator

system

A state space model is a linear representation of a

dynamic system’s discrete or continuous time. The

continuous time form of a model in state space form

can be written by

_x ¼ Axþ Bu ð12Þ

z ¼ Cxþ Du ð13Þ

where A, B and C are the system matrix, input matrix

and output matrix, respectively. The remaining matrix

is D which is typically zero because the input directly

does not normally affect the output.

M
d2y

dt2
þ b

dy

dt
þ kyþ k2y

2 þ k3y
3 ¼ FbSinðxtÞ ð14Þ

€y ¼ 1

M
FbSin xtð Þ � b _y� k1y� k2y

2 � k3y
3

� �
ð15Þ

By considering the state variables Z1 and Z2, the

system Eq. 15 can be written in state space form by the

following:

Z1 ¼ y ð16Þ

Z2 ¼ _y ¼ _Z1 ¼
dZ1

dt
ð17Þ

dZ2

dt
¼ €y ð18Þ

u ¼ FbSinðxtÞ ð19Þ

The differential equation is expressed as a state

space matrix as follows,

_Z2 ¼
dZ2
dt

¼ 1

M
U1 � bZ2 � k1Z1 � k2Z

2
1 � k3Z

3
1

� �
ð20Þ

The resulting state space matrix for 3rd order

polynomial model form of the differential equation

gives:

dZ1
dt
dZ2
dt

2
64

3
75 ¼

0 1
�k1 � k2Z1 � k3Z

2
1

M

�b
M

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

Z1
Z2

� �

þ
0
1

M

" #
|fflffl{zfflffl}

B

U1½ � ð21Þ

y½ � ¼ 1 0

0 1

� �
|fflfflfflffl{zfflfflfflffl}

C

Z1
Z2

� �
þ 0½ �|{z}

D

u½ � ð22Þ

The matrix form of the state-space model of the

oscillator system with electromechanical coupling can

be expressed as

_Z1
_Z2
_Z3

2
4

3
5 ¼

0 1 0
�k1 � k2Z1 � k3Z

2
1

M

�b
M

�a
M

0
a
L

�Rin

L|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

2
66666664

3
77777775

Z1
Z2
Z3

2
4

3
5

þ
0
1

M
0|{z}
B

2
666664

3
777775 U1½ �

ð23Þ
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_y½ � ¼
1 0 0

0 1 0

0 0 1

2
4

3
5

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
C

Z1
Z2
Z3

2
4

3
5þ 0½ �|{z}

D

u½ � ð24Þ

6 Dynamics analysis of the nonlinear oscillator

system

The dynamics of the 3rd-order polynomial model have

been analysed. The linear and nonlinear coefficients of

the oscillator system for various excitation have been

presented in Table 2.

The log decrement method has been used to

measure the oscillator’s damping ratio, constant, and

natural frequency (total length 222 mm). The mea-

sured damping ratio, damping constant, and natural

frequency are 0.031, 0.74 Ns=m and 32.35 rad=s,

respectively. The theoretical simulation of the system

has been run by MATLAB code using the values of M

(mass including plastic bush), b, k1, k2 and k3 are

0.37 kg, 0.74 Ns=m, 269.31 N=m, 5680.4 N=m2 and

163,159 N/m3, respectively. The simulation results of

the system are displayed in Fig. 12. The colour bar in

Fig. 12 shows the floating magnet’s various positions.

When the magnet is in the expected equilibrium

position (0 mm), the resulting eigenvalues are

ki¼1to4 ¼ - 1.0000?26.9604i, 0, 0 and - 1.0000?

26.9604i, and the corresponding frequency is

26.9790 rad/s or 4.296 Hz. It has been seen from the

Table 2 Coefficients of the oscillator system (3rd order

polynomial model)

Excitation (mm) Coefficients

k1 (N/m) k2 (N/m2) k3 (N/m3)

- 5 to 5 307.35 819.63 1� 106

- 10 to 10 304.28 6447.5 814,030

- 15 to 15 308.21 2588.2 94,713

- 20 to 20 306.58 3494.3 116,588

- 25 to 25 302.01 3732 128,941

- 30 to 30 292.33 4255.2 150,269

- 35 to 35 302.95 4204.3 128,199

- 40 to 40 293.98 4671.7 142,945

- 45 to 45 283.72 5205.1 152,028

- 50 to 50 269.31 5680.4 163,159

Fig. 12 Eigenvalues and frequency responses for various positions of the floating magnet (50 mm excitation ranges, 3rd order

polynomial model)

123

Dynamic analysis of magnetic spring-based nonlinear oscillator system 15717



analysis that the real parts of the eigenvalues remained

constant for all various positions of the middle magnet

when it moved toward the top and bottom magnets.

However, the imaginary parts of the eigenvalues, and

thus the frequencies, changed with the changing

position of the floating magnet. There is a considerable

decrease in the imaginary part of the eigenvalues, and

thus frequencies, until 17 mm is reached before

increasing when the floating magnet moves toward

the top magnet from the equilibrium position.

The minimum resulting eigenvalues and frequency

were - 1.0000?24.3580i, 0, 0 and - 1.0000

- 24.3580i and 3.88 Hz (24.37 rad/s), respectively,

found at 17 mm up towards the top magnet. After

17 mm towards the top magnets, the imaginary parts

of the eigenvalues and natural frequencies rose

steadily. On the other hand, the imaginary parts of

the eigenvalues and frequencies increased steadily

with the increasing distance of the floating magnet

from the equilibrium position towards the bottom

magnet. Theminimum values for the imaginary part of

the eigenvalues and natural frequency should be found

in the equilibrium position. However, it did not occur

due to the gravitational force’s effect on the equilib-

rium position. Because of the gravitational effects, the

equilibrium position moved 17 mm away toward the

bottom magnet where it should be. When the position

of the floating magnet is 50 mm towards the top

magnet (- 50 mm), the resulting eigenvalues are

ki¼1to4 ¼ - 1.0000 ? 32.5833i, 0, 0 and

- 1.0000?32.5833i. Moreover, when the position of

the floating magnet is 50 mm towards the bottom

magnet (?50 mm), the resulting eigenvalues found

are ki¼1to4 ¼ - 1.0000?50.9599i, 0, 0 and

- 1.0000–50.9599i as displayed in Fig. 12.

The eigenvalues can be calculated by using the

following equations.

ki ¼ � b
2M

;� 1

2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Mk � b2i

q
ð25Þ

ki ¼ � b
2M

;
1

2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Mk � b2i:

q
ð26Þ

The calculated eigenvalues were - 1.000?26.

9604i and - 1.000 - 26.9604i when the position of

the floating magnet is 0 mm (expected equilibrium

position). These equations work when the system is

linear and the displacement of the floating magnet is

very small (near equilibrium position). For the other

displacement (high displacement), this system works

as a nonlinear system, and these equations will not

work. Moreover, with the changing of the floating

magnet’s position, the oscillator’s frequency changes,

as shown in Fig. 12. The corresponding natural

frequencies could be measured by using the following

formula:

xi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReðkiÞ2 þ ImðkiÞ2

q
ð27Þ

The calculated natural frequencies for -50 mm,

0 mm and ? 50 mm positions of the floating magnet

are 32:5986 rad/s (5.20 Hz), 26:9790 rad/s (4.30 Hz)

and 50:9697 rad/s (8.11 Hz), respectively which are

close to the measured frequency, as shown in Fig. 13.

Figure 13b, c show the asymptotic analysis for the

floating magnet when it is equilibrium position and a

different position, respectively. The legend y in

Fig. 13 is the position of the floating magnet from

the equilibrium position. In the legend, y = 0 means

the floating magnet is in equilibrium. In legend,

y = - 0.05 means the position of the floating magnet

is 50 mm away from the equilibrium position toward

the top magnet. The position of the floating magnet

50 mm away from the equilibrium position toward the

bottom magnet is presented in legend as y = 0.05. The

analytically calculated average natural frequency for

this test rig setup (total length of the oscillator is

222 mm) is 32.66 rad/s (5.20 Hz) which is almost

similar to the experimentally measured (log-decre-

ment) natural frequency of 32.35 rad/s (5.15 Hz).

Moreover, both eigenvalues’ real numbers are

negative; therefore, the model is stable. The damping

ratio can be found using the formula

fi ¼ ReðkiÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReðkiÞ2 þ ImðkiÞ2

q
ð28Þ

The calculated average damping ratio is 0.032

when the oscillator length is 222 mm, which is almost

similar to the experimentally measured damping ratio

of 0.031. With changing excitation positions of the

floating magnet, the coefficients of the magnetic

spring system change. Figure 14 presents the resulting

eigenvalues and frequencies for different ranges of

excitation of the floating magnet.

The legends in Fig. 14 present the floating magnet’s

excitation ranges. The variable- 0.005 to 0.005 in the

legend is indicated that the floating magnet moved

5 mm toward the top magnet and 5 mm toward the
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bottom magnet from the equilibrium position. From

Fig. 14, it can be seen that the real parts of the

eigenvalues stayed constant for all excitation ranges of

the floating magnet, but the imaginary parts of the

eigenvalues changed with the changing of the excita-

tion ranges of the floating magnet. Moreover, the

resulting frequency responses for all excitation ranges

are closer to each other. If an external force is applied

to the floating magnet, then the displacement and

velocity of the magnet are shown in Fig. 15. The

applied external harmonic force (Fb) amplitude is

10N, and the frequency (f) is 0.1 Hz. Moreover, the

values of M, b, k1, k2 and k3 are 0.37 kg, 0.74 Ns/m,

269.31 N/m, 5680.4 N/m2 and 163,159 N/m3, respec-

tively. The ode23t solver has been used in MATLAB

to find the displacement and velocity of the floating

magnet.

(a)

Fig. 13 Frequency response of the system when the floating

magnet moved 50 mm toward the top magnet and 50 mm

toward the bottom magnet from the equilibrium position (3rd

order polynomial model) a Bode diagram b Asymptotics

analysis for the equilibrium position of the floating magnet

and cAsymptotics analysis for different positions of the floating

magnet
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(b)

(c)
Fig. 13 continued
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The excitation of the floating magnet was assumed

to have the initial displacement y = 0 and its corre-

sponding velocity _y ¼ 0. The frequency of the

harmonic force was 0.1 Hz. As expected, the dis-

placement and the velocity were sinusoidal and were

90� out of phase with one another. The displacement

amplitude was around 20 mm toward the bottom

magnet and about 30 mm toward the top magnet. This

confirms the amplitude of the displacement signal, as

shown in Fig. 15. Moreover, the velocity versus

displacement graph of the floating magnet under this

harmonic force has been presented in Fig. 16b as well.

Figures 15 and 16 show that at the beginning of the

middle magnet’s movement under the harmonic force,

it creates some noises and becomes smooth

afterwards.

Furthermore, the nonlinear and linear models of the

oscillator (total length 222 mm) system have been

compared, as shown in Figs. 17, 18 and 19, respec-

tively. The applied external harmonic force (Fb)

amplitude is 10 N, and the frequency (f) is 0.1 Hz.

Moreover, the values of M, b, k1, k2 and k3 are

0.37 kg, 0.74 Ns/m, 269.31 N/m, 5680.4 N/m2 and

163,159 N/m3, respectively.

It can be seen from the above Figures that the

floating magnet creates higher displacement in the

linearised model than in the nonlinear model, but it

achieves higher velocity in the nonlinear model than

the linear model under the same external applied

harmonic forces. Consequently, the nonlinear model is

more effective in generating a higher velocity of the

floating magnet.

6.1 Dynamics analysis of the nonlinear oscillator

system for different heights

The eigenvalues and frequencies have been analysed

for different lengths of the oscillator. All linear and

nonlinear values have been used here for -50 mm to

50 mm excitation ranges. The eigenvalues and fre-

quency responses have been measured by using the

theoretical 3rd-order polynomial curve fitting’s data. It

has been seen from Fig. 9 that the damping ratio

increases means the damping constant increases when

Fig. 14 Eigenvalues and frequency response for floating magnet’s different excitation ranges (3rd order polynomial model)
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the oscillator length decreases and the damping

constant declines when the oscillator length rises.

Therefore, it can be said that the system becomes more

unstable when the oscillator length increases. The

system’s eigenvalues have been measured to check

these findings, as shown in Fig. 20.

The real parts of the eigenvalues are always- 1 for

various positions of the floating magnet when the

oscillator’s total length is 222 mm (considered equi-

librium position means 0 mm position of the top

mixed magnet). The real parts of the eigenvalues

increase on the negative side when the top fixed

magnet travels toward the central magnet (decreases

the total length of the oscillator) from 0 mm position

(222 mm, equilibrium position for this particular

magnet setup), as seen in Fig. 20. Alternatively, when

the top fixed magnet moves away from the 0 mm

position, then the eigenvalues’ real parts decrease and

come close to zero in the scale. The system becomes

more stable when the top fixed magnet travels toward

the central magnet (decreases the total length of the

oscillator), and it becomes more unstable when the top

fixed magnet moves away continuously from the

equilibrium position. Figure 21 displays the frequency

responses of the system for different oscillator lengths.

Figure 21 shows that the natural frequency increases

when the top fixed magnet travels toward the central

magnet and decreases when it moves away from the

central magnet.

6.2 Dynamics analysis of the nonlinear oscillator

with electromechanical coupling

The dynamics of the proposed energy harvester have

been analysed using the system’s state-space model.

The used parameters of the system are presented in

Table 3. Initially, the eigenvalues and frequency of the

system were analysed. During the experimental exci-

tation of the middle magnet by an applied external

force, the floating magnet moved a maximum of

20 mm toward the bottom magnet and 50 mm toward

the top magnet from the equilibrium position. There-

fore, the excitation range has been considered 20 mm

toward the bottom magnet and 50 mm toward the top

magnet from the equilibrium position. The magnetic

restoring force has been determined for this excitation

range, and the linear and nonlinear coefficients have

been measured from this magnetic restoring force. The

system’s eigenvalues for various positions of the

middle/floating magnet have been shown in Table 4.

The real parts of the eigenvalues (Mechanical part)

remained almost similar for the floating magnet’s

Fig. 15 Displacement and

velocity of the floating

magnet under harmonic

force
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various positions. However, the eigenvalues’ imagi-

nary part changed with changing the floating magnet’s

position. On the other hand, the real part of the

eigenvalues of the electrical part is almost similar for

various floating magnet’s positions. Still, the imagi-

nary parts remained zero for all floating magnet’s

different positions. The system’s eigenvalues when

the floating magnet was in the equilibrium position

have been presented in Table 4. The natural frequency

of the mechanical part changed with the floating

magnet’s different positions. However, the natural

frequency of the electrical part remained constant at

around 151.79 Hz for all positions of the floating

magnet. The natural frequencies of the mechanical

part increased when the floating magnet travelled

toward the bottom or top magnets. The system’s

resonance frequency has been analysed with and

without electrical–mechanical coupling. The system’s

resonance frequency without electrical–mechanical is

shown in Fig. 22a (with asymptotics analysis), and the

(a) (b)

Fig. 16 a Displacement and velocity of the floating magnet under harmonic force b Displacement versus velocity

Fig. 17 Displacement of

the floating magnet for

linear and nonlinear model

analysis
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system’s resonance frequency with electrical–me-

chanical coupling is presented in Fig. 22b (with

asymptotics analysis). The asymptotic analysis indi-

cated the resonance frequency of the mechanical and

electrical systems, as shown in Fig. 22b, c. To

determine the system’s resonance frequency, the

selected coil’s average magnetic flux density, length,

resistance and inductance were 0.35 T, 23.5 m, 5.48X
and 0.005546 H, respectively. Figure 22c shows the

resonance frequencies for various positions of the

floating magnet.

Fig. 18 Velocity of the

floating magnet for linear

and nonlinear model

analysis

Fig. 19 Velocity versus

displacement
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The generator system’s frequency response showed

no maximum (or peak) amplitude due to electrical–

mechanical coupling effects, as shown in Fig. 22c. It

has been known from the literature that the stiffness,

mass and damping constant affect the resonance

frequency of any system.

The movement of the middle floating magnet

generates an electric field inside the winding coil.

Fig. 20 Eigenvalues for

various positions of the top

fixed magnet

Fig. 21 Frequency response for various positions of the top magnet
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When a constant velocity of 0.5 m/s moves the

floating magnet from the equilibrium position, it

generates induced voltage and flux linkage, as pre-

sented in Fig. 23. As shown in Fig. 23, the maximum

flux linkage occurred inside the winding coil only

when the moving magnet and coil were parallel (both

the floating magnet and the coil were in the same

position). The induced voltage was zero when the flux

linkage was at its maximum. Figure 24a shows an

electromechanical coupling for a single coil, whereas

Fig. 24b displays electromagnetic force and damping.

In the absence of a magnet, the magnetic flux changes

in each loop cancel out, resulting in a zero value.

Moreover, the theoretical generator model dynam-

ics have been analysed using the state-space model

(ode23t). The generator system’s displacement, veloc-

ity, and induced voltage for different simulation times

have been determined under harmonic force. The

harmonic force’s amplitude and frequency were 25 N

and 0.1 Hz, respectively. The initial displacement,

velocity and induced voltage were considered zero,

and the simulation was run for 20 s. Figure 25

displays the system’s displacement, velocity, and

induced voltage. The bifurcation analysis has been

performed to know the behavior of the generator’s

displacement, velocity, and output for different time

periods. The bifurcation analysis have been presented

in Fig. 26.

Figure 26 shows the maxima and minima of the

displacement, velocity, and output voltage of the

generator for different periods. The generator shows

high voltage output and high velocity during a small

period means it is in the high-frequency range. The

displacement of the oscillator decreased with increas-

ing the frequency of the floating magnet. On the other

hand, the velocity and output voltage increased with

the increasing frequency of the oscillator. Figure 27

presents the power of the system for 0.1 Hz.

For the 25sin(2phi*0.1*t) applied harmonic force,

the floating magnet moved around 31 mm towards the

Table 3 Required parameters for the system

Parameter Values

k1 241.73 [N/m]

k2 4392.6 [N/m2]

k3 134,759 [N/m3]

b 0.74 [Ns/m]

M 0.36745 [kg]

L 0.005546 [H]

R 5.48 [ohm]

l 23.5 [m]

B(y) 0.35 [T]

Table 4 Eigenvalues of the system

Position of the floating magnet (mm) Eigenvalues Frequency (Hz)

Mechanical part (1.0e?02) Electrical part (1.0e?02) Mechanical part Electrical part

- 50 - 0.1844?0.2594i - 9.5324?0.0000i 5.07 151.79

- 45 - 0.1844?0.2354i - 9.5323?0.0000i 4.76 151.79

- 40 - 0.1844?0.2132i - 9.5323?0.0000i 4.49 151.79

- 35 - 0.1844?0.1933i - 9.5323?0.0000i 4.25 151.79

- 30 - 0.1844?0.1767i - 9.5322?0.0000i 4.07 151.79

- 25 - 0.1845?0.1642i - 9.5322?0.0000i 3.93 151.79

- 20 - 0.1845?0.1568i - 9.5322?0.0000i 3.86 151.79

- 15 - 0.1845?0.1554i - 9.5322?0.0000i 3.84 151.79

- 10 - 0.1845?0.1599i - 9.5322?0.0000i 3.89 151.79

- 05 - 0.1844?0.1701i - 9.5322?0.0000i 4.00 151.79

0 - 0.1844?0.1849i - 9.5323?0.0000i 4.16 151.79

05 - 0.1844?0.2033i - 9.5323?0.0000i 4.37 151.79

10 - 0.1844?0.2245i - 9.5323?0.0000i 4.63 151.79

15 - 0.1844?0.2477i - 9.5324?0.0000i 4.92 151.79

123

15726 R. Ahamed et al.



(a)

(b)

26.96

953.24

Fig. 22 Resonance

frequency of the system a in
the absence of electrical–

mechanical coupling, b in

the presence of electrical–

mechanical coupling and

c for various positions of the
floating magnet
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bottom and about 43 mm towards the top. Between

that time, the maximum velocity of the floating

magnet was 0.026 m/s. The measured maximum

induced voltage was around 0.23 V for this displace-

ment of the floating magnet. Moreover, the determined

maximum power was 0.01 W, as shown in Fig. 27.

The harmonic force frequency was 0.1 Hz, so the

displacement line should touch the 0 points after a

complete cycle. Figure 25 shows that the displace-

ment curve did not touch the 0 points after an entire

cycle (when the simulation was run for 10 s) due to the

electromechanical coupling effect.

(c)

Fig. 22 continued
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6.3 Analyses of the energy generator model

for different oscillator lengths

The linear and nonlinear stiffnesses, damping con-

stants and natural frequencies of the oscillator system

changed with the oscillator length. In this section, the

generator system has been analysed by changing the

oscillator’s length. The displacements and velocities

of the floating magnet have been determined. The

induced voltages have been measured for various

oscillator lengths. During that analysis, the amplitude

and frequency of the applied harmonic force were

considered 25 N and 0.1 Hz, respectively. A winding

coil (100 turns) which consists of 5.48-X internal

resistance and 0.005546 H inductance, was considered

to determine the induced voltage. The length of the

oscillator varies from 212 to 272 mm. Figure 28

displays the displacement and velocity of the gener-

ator system for various lengths of the oscillator.

Increasing oscillator length increased the floating

magnet’s displacement and velocity, as shown in Fig. 28.

The generated induced voltage increasedwith expanding

the oscillator length, as presented in Fig. 29. Therefore, it

can be said that increasing the oscillator length can

improve the generator’s efficiency.

7 Discussion

The mass and size of the magnets are comparably

higher than those of the magnets used to build

magnetic levitation-based oscillator systems in liter-

ature, as presented in Table 5. The equation used in the

literature is applied to measure the magnetic flux

density of ring types of permanent magnets to measure

the axial magnet flux density but not for radial

magnetic flux density. Measuring radial magnetic flux

density is essential as the winding coils are placed

outside the floating magnet’s surface. Thus, the axial

magnetic flux density was measured using the analyt-

ical method, whereas the radial magnetic flux density

was measured using the experimental method [21].

The findings (analytical) were validated with numer-

ical measurement to justify the analytical analysis of

axial magnetic flux density. The measurements (ex-

perimental) were validated with the numerical results

to justify the experimental measurement of radial

magnetic flux density. It was found that the numerical

methods showed very similar findings to analytical

and experimental methods. The magnetic properties of

the proposed magnetic spring-based oscillator system

were studied using numerical methods. In the litera-

ture, it was seen that the magnetic restoring forces

were measured using either numerical, analytical, or

experimental methods, as shown in Table 5. However,

Fig. 25 Displacement,

velocity and induced voltage

of the system
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(a)

(b)
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the novelty of this present work is that the magnetic

restoring force of the proposed oscillator system is

measured using analytical, numerical and experimen-

tal methods, and the measurements are validated by

comparing each other.

Compared with other oscillator systems, the pro-

posed single-degree-of-freedom system has a higher

magnetic restoring force [6, 8, 25]. It was also found

that gravitational force impacts the system’s equilib-

rium position and magnetic restoring force. The centre

floating magnet moved toward the bottom fixed

magnet by 12.5 mm from the expected equilibrium

position. Maximum researchers in the literature did

not consider or ignore the gravitational force effects

presented in Table 6. Therefore, analysing the grav-

itational force effects on equilibrium position is the

originality of this current study. The coefficients of the

proposed SDOF oscillator system were determined

from the magnetic restoring force curve using the

polynomial curve fitting method. The stiffnesses of the

system were determined for various excitation ranges

of the centre floating magnet. It was found that the

higher-order polynomial curve fitting provided a good

fit for high excitation ranges; however, lower-order

polynomial curve fitting provided a good fit for the low

excitation range.

The linear and nonlinear stiffnesses were used to

study the dynamics of the SDOF nonlinear oscillator

system. As the maximum researchers did not consider

the gravitational force effects, one of the nonlinear

spring constants (k2) (N/m2) was ignored, as shown in

Table 7.

The eigenvalues and frequency responses were

analysed by changing the floating magnet’s position. It

was found from this study that the eigenvalue and

resonance frequency of the oscillator system changed

with changing the floating magnet’s position. The

bFig. 26 Bifurcation analysis a Displacement versus time

period, b Velocity versus time period and c voltage versus time

period

(c)

Fig. 26 continued
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oscillator system has shown an average 5.19 Hz

(analytical measurement) natural frequency in the

system’s equilibrium position, which changed with

changing the position of the floating magnet. The

experimental measured natural frequency was

5.14 Hz, and the findings’ error percentage was

0.962%. Moreover, the damping ratio of the system

was determined analytically (0.032) and experimen-

tally (0.031) with a percentage of error of 3.22%. The

measured natural frequency of the system is lower

than the other system’s natural frequency, as presented

in Table 7. Moreover, the system was analysed by

changing the oscillator length. The damping ratio

varied from 0.0153 to 0.0463, and the natural

frequency varied from 3.76 to 5.47 Hz. The magnetic

restoring force of oscillators increased with decreasing

lengths and declined with increasing lengths. How-

ever, the dynamics study of the oscillator system for

various positions of the floating magnet and different

oscillator length are one of the main novelties of this

present work.

8 Conclusion

This paper studied an SDOF magnetic spring-based

oscillator mechanism, dynamics, and magnetic repul-

sive force. The benefits of the magnetic spring-based

linear generator design are that it has few moving

mechanical parts and a stronger magnetic field,

leading to a high voltage output. The coefficients of

the proposed oscillator system have been studied

numerically, theoretically and experimentally. The

coefficients of the systemwere determined using cubic

and quintic polynomial curve fitting models. The

characteristics and dynamics of the proposed oscilla-

tor have been studied using analytical, numerical and

experimental methods. The eigenvalues and resonance

frequency of the oscillator system have been analysed

with and without electromechanical coupling. The

magnetic properties of the proposed oscillator system

have been analysed to evaluate the magnetic flux

density and magnetic field strength for different arrays

and configurations. According to the study, the

separation distance between magnets influences the

system’s dynamics, leading to behavioural changes

from hardening to softening based on its linear and

nonlinear characteristics. The height of the oscillator

system greatly impacts the oscillator system, which

has also been analysed by changing the height of the

oscillator. Moreover, the present study was compared

with the other existing studies presented in the

literature. The comparison study shows that the

proposed system has a higher magnetic restoring

force. With all these investigations, the researchers

will gain a deeper understanding of magnetic restoring

forces, coefficients and dynamics of the SDOF oscil-

lator system.

Fig. 27 Power output of the

system
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(a)

(b)

Fig. 28 a Displacement and b Velocity of the SDOF generator system for different oscillator lengths
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Fig. 29 Generated voltage of the SDOF generator system for different lengths of the oscillator

Table 5 Comparison of the parameters of the oscillator system from the literature

References Magnet type NIM MFM (g) Size (mm) Magnet grade

T B M

[8] C 1 19.5 ND ND ND ND

[17] C 1 1.23 3 9 2 3 9 2 6 9 6 N35

[22] R 1 29 12 9 5 9 1 12 9 5 9 1 12 9 5 9 10 ND

[23] C 1 18.1 12.7 9 4.76 12.7 9 4.76 12.7 9 19.1 N42

[12] C 1 ND ND ND 13 9 5 ND

[18] C 1 3.35 2 9 2 2 9 2 6 9 16 N35

[24] C 1 1.24 3 9 1 3 9 1 3 9 6 ND

[15] C 2 27 10 9 1 10 9 1 15 9 8 ND

[16] C 2 20.9 10 9 1 10 9 1 15 9 8 ND

[10] C 3 11.5 10 9 5 10 9 10 10 9 30 ND

[13] R 3 1539 50.8 9 6.4 9 12.7 50.8 9 6.4 9 12.7 50.8 9 6.4 9 25.4 N42

[20] C 3/6 9.4 20 9 4 20 9 4 20 9 4 N35

This study R 1 315 72 9 32.5 9 13 72 9 32.5 9 13 72 9 32.5 9 13 N42

NIM, number of inertial magnets; MFM, mass of the floating magnet; T, top magnet; B, bottom magnet; M, middle magnet; C,

cylindrical; R, ring; ND, not defined
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Table 6 Comparison of the

parameters of the oscillator

system from the literature

rt , distance between top to

the middle magnet; rb,
distance between middle to

the bottom magnet; GFE,

gravitational force effect on

the equilibrium position;

SA, semi-analytical; ND,

not defined; A, analytical;

FEM, finite element

method; E, experimental

Ref rt (mm) rb (mm) GFE Magnetic field Magnetic restoring force

[8] 37.3 37.3 No ND E/A

[17] 18–28 18–28 No A A

[22] 8 8 No FEM SA

[23] 36.1 36.1 No A SA/FEM

[12] ND ND No A A/FEM

[18] 14 14 No A A

[24] 25 25 No SA SA

[15] 17 17 Yes FEM FEM/A

[16] 19 19 Yes FEM FEM/A

[10] 17.5 17.5 No SA/FEM ND

[13] 50.8 50.8 No FEM E/A

[20] 56 56 No FEM E/A

This study 104 79 Yes FEM/E E/A/FEM

Table 7 Coefficients and dynamics of the system compared with other existing systems

References OL (mm) LSC (k1) (N/m) NSC (k2) (N/m
2) NSC (k3) (N/m

3) DC EVA RF (Hz)

[17] 46 10 ND 7.6 9 104 A/E No 14.36

56 4.9 ND 2.1 9 104 A/E No 10.05

66 2.7 ND 7.4 9 104 A/E No 7.46

[8] ND 35 ND 1.384 9 105 A/E No 6.74

[22] 64 628 ND ND ND No 23.43

[23] 100.8 2566 ND 2.963 9 109 ND No 9

100.8 1002 ND 8.693 9 107 ND No 11

[12] ND ND ND ND A No ND

[18] 44 7.08 ND ND ND No 7.32

[24] 58 ND ND ND A/SA No ND

[15] 44 61.5 ND ND A/E No 7.6

[16] 56 7.8370 9 10–2 4.2003 9 10–6 4.1142 9 10–4 A/E No 10.4

[10] 80 ND ND ND ND No 6

[13] 254 6450.84 ND 7.92E06 A/E No 10.3

[20] 140 67.8963 ND 58,014 A/E No 5–7.8

This Study 212 157.32 3308 64,428 A/E Yes 5.47

222 269.31 5680.4 163,159 A/E Yes 5.14

272 259.87 7580.7 244,955 A/E Yes 3.76

OL, oscillator length; LSC, linear spring constant; NSC, nonlinear spring constant; DC, damping coefficient; EVA, eigenvalue

analysis; RF, resonance frequency; ND, not defined; A, analytical; SA, semi-analytical; E, experimental
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