
ORIGINAL PAPER

Data assimilation method for improving the global
spatiotemporal predictions of epidemic dynamics yielded
by an ensemble Kalman filter and Metropolis–Hastings
sampling

Feng Liu . Xiaowei Nie . Adan Wu . Zebin Zhao . Chunfeng Ma .

Lijin Ning . Yajie Zhu . Liangxu Wang . Xuejun Guo . Xin Li

Received: 17 January 2023 / Accepted: 27 May 2023 / Published online: 18 June 2023

� The Author(s) 2023

Abstract Assimilating the latest epidemic data can

improve the predictions of epidemic dynamics compared

with those using only dynamic models. However,

capturing the nonlinear spatiotemporal heterogeneity

remains challenging. We propose a data assimilation

method to simultaneously update the parameters and

states with respect to their spatiotemporal variation

intervals by (1) developing a susceptible-infected-re-

moved-vaccinated model by considering vaccination

strategy and quarantine periods and (2) assimilating real-

time epidemic data using an ensemble Kalman filter for

daily updates of the state variables and Metropolis–

Hastings sampling for weekly parameter estimation.

Synthetic experiments and a WebGIS-based global

prediction system demonstrate the sufficient nowcasting

accuracy of this method. An analysis of the system

outcomes shows that modeling vaccination details,

embedding reasonable model and observation errors,

using up-to-date parameters, and avoiding the prediction

of sporadic cases can increase the correlation coefficient

and coefficient of determination by more than 31.35%

and 161.19%, respectively, and decrease the root mean

square error bymore than 54.17%.Our prediction system

has been working well for more than 700 days. Its

worldwide nowcasting accuracies have been continu-

ously improved, where the overall correlation coeffi-

cients, coefficient of determination, and threat percent

score exceed 0.7, 0.5 and 65%, respectively. The

proposed method lays promising groundwork for the

real-time spatiotemporal prediction of infectious

diseases.
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1 Introduction

Studies concerning epidemic dynamics based on

mathematical transmission models have been imple-

mented for over 200 years and have laid the ground-

work for epidemic prediction and control. The first

contribution was provided by Daniel Bernoulli [1],

and the canonical susceptible-infected-recovered

(SIR) model was proposed by Kermack and McKen-

drick [2]. Subsequent studies used either complex

networks [3, 4] or fractional differential equations

[5–8] to extend the SIR model by incorporating more

heterogeneities and correlations into the transmission

processes [9]. However, due to the remarkable

spatiotemporal variations exhibited by related factors

[10], such as non-pharmaceutical interventions [11],

population movements [12], and social contacts [13],

as well as the uncertainties caused by virus mutations

and vaccinations [14], mathematical models have long

faced challenges in capturing epidemic dynamics in

terms of multiple factors. Furthermore, small differ-

ences in the quantities, distributions and availability

levels of the initial data and parameters have signif-

icant impacts on epidemic curves, implying that

predictions of epidemic dynamics are highly sensitive

to prior knowledge and have poor reliability. Recently,

some studies switched to machine learning approaches

[15] to find equivalent but faster methods for com-

puting epidemic dynamics [16]. However, machine

learning approaches are blind without background

etiology knowledge [17]. Therefore, predicting epi-

demics with mathematical approaches still requires

further research.

One way to improve the predictions of epidemic

dynamics is to introduce data assimilation [18]. Data

assimilation is an information fusion technique that

incorporates observation data with numeric dynamic

models [19, 20]. The best unbiased estimates of model

trajectories are obtained by weighting the errors in

both the models and observations [21], and the errors

in the whole system are accordingly reduced [22]. In

data assimilation, since imperfect models can be

revised based on the available observation informa-

tion, studies with limited dynamic process knowledge

can benefit from more realistic scenarios. In the field

of epidemiology, a general lack of COVID-19 knowl-

edge was combined with the influences of socioeco-

nomic factors such as population mobility [23] and

medical cost burdens [24]. These dynamics vary for

different socioeconomic statuses and may be hetero-

geneous in a population [25]. Therefore, the introduc-

tion of data assimilation has the potential to greatly

improve epidemic modeling. Examples of early data

assimilation studies in epidemiology include influenza

forecasting by assimilating Google Flu Trends data

into an SIR model [26, 27] and cholera forecasting in

cooperation with the rainfall model [28]. During the

COVID-19 pandemic, data assimilation techniques

have also been applied to parameter estimation

through the use of Kalman filters [29, 30] or calculus

of variations [31] in epidemic models. As the first step

required for generating real-time forecasts [26], epi-

demiological data assimilation is an option whose

potential was suggested by the above studies.

However, previous epidemic prediction studies

exhibit shortcomings, as data assimilation has gener-

ally been used to either estimate parameters or update

states. These strategies lead to a limited understanding

of epidemic dynamics. On the one hand, epidemic

models, e.g., SIR-type models, are nonlinear and

sensitive to the model parameters and the initial values

of the state variables [32], implying that tiny variances

in the initial state variables and parameters of the

models can lead to considerable prediction errors. On

the other hand, the spread of epidemics is highly

variable from spatial and temporal perspectives [33],

so during the lifecycle of the assimilation windows,

updating the spatiotemporally variable parameters and

model states at regular temporal intervals is essential

for capturing epidemic dynamics. However, the tem-

poral interval for updating parameters is much differ-

ent from that for states. Generally, model parameters

are constant and represent invariant control measures

or the transmissibility levels of viruses over a long

time, such as contact rates or vaccine effectiveness

levels; however, model states are more random and

may continue to change over short intervals. There-

fore, determining a better assimilation strategy that

addresses the problem of simultaneously updating the

parameters and states with respect to their temporal

variation intervals can improve the understanding of

epidemic dynamics.

In this study, we propose a data assimilation

method for simultaneously updating the parameters

and states of a prediction model with respect to their

spatiotemporal variations and further develop an

epidemic data assimilation system. The method inte-

grates weekly parameter estimation steps and daily
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state updates to address their temporal variations

during all stages of the disease spread lifecycle. The

system is designed to improve the real-time and

operational predictions concerning the COVID-19

pandemic. Considering that the ongoing COVID-19

pandemic has inevitably entered a more stable phase,

this system provides epidemic dynamic nowcasting to

inform the public and further provides long-term

forecasts for control measure validation, thereby

satisfying the primary goal of establishing a global

COVID-19 prediction system and providing timely

information services. The proposed data assimilation

method and corresponding prediction system both

exhibit real-time epidemic forecasting.

This paper is organized as follows. Section 2

introduces the framework of the study, including the

major materials (e.g., the adopted epidemic data and

model), the utilized methods (e.g., parameter estima-

tion and data assimilation algorithms and error met-

rics), and the procedure used to integrate these

materials and methods. Section 3 presents the main

detailed results obtained in synthetic and real-world

experiments based on the proposed method. The

performance of the proposed epidemic data assimila-

tion system is also estimated. Section 4 provides an

overall discussion on the results and limitations of this

study, as well as the improvements yielded. Conclu-

sions are drawn in Sect. 5.

2 Materials and methods

The proposed data assimilation method is composed

of a susceptible-infected-removed-vaccinated (SIRV)

model, a Metropolis–Hastings (M-H) sampling

approach for estimating the parameters of the SIRV

model, and an ensemble Kalman filter (EnKF) for

assimilating the daily confirmed cases into the SIRV

model. The above components are integrated using a

common data assimilation toolkit (ComDA) [34].

Figure 1 illustrates how these components are

integrated.

2.1 Epidemic model

We extend the SIR model by introducing vaccinated

and quarantined populations, i.e., an SIRVmodel [35],

considering a two-dose vaccination strategy:

S tð Þ¼ 1�að Þ� Na� I t�1ð Þ�R t�1ð Þ�V t�1ð Þ½ �

dI tð Þ
dt

¼b�S tð Þ
N

� I t�1ð Þ�c� I t�1ð Þ

dR tð Þ
dt

¼ c� I t�1ð Þ

V tð Þ¼V1 t�1ð Þ�r1þV2 t�1ð Þ�r2

Q tð Þ¼a� Na� I t�1ð Þ�R t�1ð Þ�V t�1ð Þ½ �

:;

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð1Þ

where S tð Þ, I tð Þ, R tð Þ, V tð Þ, Q tð Þ, N and Na represent

the susceptible, infected, removed, vaccinated, quar-

antined, total and active populations, respectively. The

a, b, and c parameters denote the protection proportion

and the rates of contact and removal, respectively.

V1 tð Þ and r1 are the number of people who are

administered one dose and the corresponding vaccine

effectiveness level, respectively, and V2 tð Þ and r2 are

their counterparts with two vaccine doses.

Note that in (1), the active population Na is defined

as the population that has the ability and is willing to

contact others during all stages of the pandemic

lifecycle. Therefore, individuals who stay at home

voluntarily are not included in the active population

and are not considered in the epidemic dynamics.

Additionally, S tð Þ and Q tð Þ are not determined by

differential equations since they do not steadily

increase and instead vary depending on the current

public health policy. In contrast to other groups, a

person can be quarantined at one time point, finish

their quarantine at the next time point, and then belong

to the susceptible population. This implies that S tð Þ
and Q tð Þ are random and complementary. To estimate

them, we first use a strategy for estimating the active

population on each day and determining the sizes of

the quarantined and susceptible populations in terms

of the time-dependent protection proportion a.
This model should be flexible so that it can

accommodate interventions in different scenarios, as

vaccination programs and non-pharmaceutical inter-

ventions (NPIs) vary during all stages of the pandemic

lifecycle with location and time. Another advantage of

the SIRV model is that, unlike canonical compart-

mental models, it uses an estimated active population

Na to replace the total population at each simulation

time step. Na represents the true number of popula-

tions facing the disease, which generates a random

quarantined population at each timepoint. Therefore, it
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provides an alternative for modeling the quarantine

period in the epidemic model, as some individuals

may be quarantined while others are at the end of their

quarantines. The total number of quarantined popula-

tions at each time is determined by Na and the

protection proportion.

The vaccine expiration date is not included in (1)

because the relevant data remain in the research phase

[36]. Instead, we investigate a similar issue, i.e., how

vaccine effectiveness qualitatively affects the model

outcomes, in the following experiments.

2.2 Parameter estimation

To adjust the model’s parameters and reach the steady

state for each special case, parameter estimation is

performed before executing data assimilation. Here,

we use a typical Markov chain-Monte Carlo (MCMC)

algorithm, i.e., M-H sampling [37, 38]. By learning the

prior knowledge contained in observations, M-H

sampling discovers stationary estimates for the model

parameters in the multidimensional probability space.

In M-H sampling, the posterior distribution of the

unknown parameters h conditioned on the reference

observations X is P hjXð Þ / P Xjhð ÞP hð Þ, where P hð Þ
is the prior of the parameters and P Xjhð Þ is the

likelihood function.

As shown in Fig. 1, M-H sampling mainly contains

twosteps. In thefirst step, candidate samplesaregenerated

for the parameters according to the proposed uniform

distribution, and the accepted samples are determined by

comparing the model’s outputs with X. In the second

step, the same procedure is performed, but the

proposed distribution follows N h; covð Þ, where cov is
a covariance matrix. The diagonal of the covariance

matrix is set to the variances of the accepted samples

in the first step, and the other elements are set to zero.

The final estimated parameters are the modes of the

accepted samples in the second step. The pseudocode

of M-H sampling is provided in ‘‘Appendix A1’’.

Fig. 1 The framework of the epidemic data assimilation

method for simultaneously updating the model parameters and

states. The epidemic curve is divided into a parameter

estimation stage and a data assimilation stage, where the

segmentation point occurs 7 days before the initial data

assimilation time point
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2.3 EnKF

A nonlinear system of time-dependent states x

according to a deterministic dynamic M and extra

observations (real-world data) y is written as [39]

xtþ1 ¼ M xtð Þ þ e
y ¼ H xtþ1ð Þ þ �

�

ð2Þ

Here, H is the observation mapping operator. H is

used to convert the state vector x to specific variables

that can be directly compared with the available

observations y. The subscript t denotes the calendar

day or runtime. The independent variables e�N 0;Qð Þ
and ��N 0;Rð Þ are the model error and observation

error, respectively, where Q and R are the covariance

matrices of the model error and observation error,

respectively.

The EnKF [40, 41] is one of the most commonly

used assimilation algorithms in geosciences, and it

resolves the nonlinear estimation problem by employ-

ing the ensemble forecasting scheme. In the EnKF, the

final estimate is

xa ¼ xtþ1 þ K y�H xtþ1ð Þð Þ; ð3Þ

where K ¼ PfHT HPfHT þ R
� ��1

is the Kalman gain,

Pf ¼ 1
N�1

xtþ1 � xtþ1ð Þ xtþ1 � xtþ1ð ÞT is the variance of
the ensemble simulation of M xtð Þ, and xtþ1 is the

average value of the state vector. Figure 2 illustrates

the concept of ensemble data assimilation.

In the epidemiology data assimilation workflow

(Fig. 1),M andH are the epidemic model and identity

matrix, respectively. The state x denotes the number of

infected people. The pseudocode of the EnKF algo-

rithm applied during the data assimilation stages is

provided in Appendix A2.

2.4 Configurations

The model’s parameters are calibrated by M-H sam-

pling during the parameter estimation stage. M-H can

find the optimal model parameters by repeatedly

sampling from the multidimensional probability space

and then adjusting the model structure according to the

observation series over a long time interval. The

sampling space comprises three parameters (the pro-

tection proportion a, contact rate b, and removal rate c)
in the SIRV model and one state variable (the active

population Na). Here, the sampling ranges for a, b, c

and Na are 0:01; 1½ �, 0:0001; 0:5½ �, 0:000001; 0:1½ � and
1;N½ �, respectively, where N denotes the total popu-

lation. The sampling ranges are experiential since they

must be widely applicable. The parameter estimation

stage is further divided into several timespans over

7 days, and M-H sampling is performed in each of the

timespans. The numbers of sampling iterations for the

uniform and normal distributions are 3000 and 1500,

respectively. The corresponding optimal parameters

(i.e., modes) are used to reconstruct the past epidemic

curves and to set up the SIRV model.

The model’s trajectory is continuously adjusted

during the data assimilation stage. Here, the EnKF is

used to assimilate the daily confirmed cases at a specific

discrete time. The optimal parameters obtained during

the parameter estimation process of the last time span

are input into the SIRV model. The initial field consists

of the above parameters and the infected population

(with 10% perturbation). Since we assume that the

system state (i.e., the infected population) equates with

the daily confirmed cases, which have been introduced

as the observations to be assimilated, the observation

operator is the corresponding identity matrix. The ratio

of the observation error to the model error is 1:10,

implying that the observations (daily confirmed cases)

are assigned higher weights when generating the final

Fig. 2 Schematic of the data assimilation process using an

EnKF. Two model states (colored in blue and green) consist of

their distributions and samples (ensemble members) and evolve

in accordance with the model’s dynamics or rules at each time

step. At t2, after the ensemble members (in either the blue or

green state) are updated by assimilating observation (red star),

the uncertainty levels of the model states are reduced (the

distributions turn from solid ellipses into dotted ellipses), and

the ensemble members converge in distributions with smaller

buffer zones. The averages of the updated ensemble members

are regarded as the best unbiased estimations for the model

states. Generally, the numbers of model states and ensemble

members are much larger than 2. (Color figure online)
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state variable values. The EnKF follows the standard

workflow to update the states by calculating the

ensemble averages of 100 ensemble members.

The forecasting results highlight three possible

values for disease spread in the next 60 days and further

provide convincing predictions when the factors that

affect the epidemic change. The forecasting effect is

enhanced by performing a scenario analysis after the

parameter estimation stage; for example, it is assumed

that typical NPIs may result in a variety of control

measures [42, 43]: mitigating (using the protection

proportion a in the SIRV model, which is the regular

value of the intervention factor), mild (using 0:5a,
indicating relaxed policies) and suppressive (using

1:5a, indicating severe interventions). We adjust the

dynamics and then update the future epidemic curve

according to the three intervention factors.

Nowcasting predicts the next 7 days of daily

confirmed cases during the data assimilation stage.

To generate real-time nowcasting results, the param-

eter estimation and data assimilation stages both drift

over time, which means that the last time span also

moves forward to update the optimal parameters. This

strategy ensures that the SIRV model is up-to-date

based on the latest epidemic curve.

2.5 Data

We collect the following open access datasets: (1) the

infection data from the COVID-19 Data Repository

[44]; (2) the vaccination data from the official website

of Our World in Data [45]; (3) the population density

data from the Population Estimation Service (https://

doi.org/10.7927/H4DR2SK5); (4) the Map server

from Tianditu (http://lbs.tianditu.gov.cn/server/

MapService.html); and 5) the gross national income

per capita data from the World Bank’s list of econo-

mies published in June 2020. The first two datasets are

automatically downloaded at 14:00 (UTC ? 8) each

day by retrieving files software (GNUWget). We use a

7-day piecewise polynomial fitting method to obtain

smoother infection data and to avoid the potential

overfitting problem in the subsequent work.

2.6 Error metrics

To calculate the explainability, bias and correlation

levels of the outcomes, the coefficient of determination

(R2), root mean square error (RMSE), and correlation

coefficient (r) [46] are introduced as follows.

R2 ¼ 1�
PT

i¼1 xat � yot
� �2

PT
i¼1 xat � yot

� �2 ; ð4Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T

XT

t¼1

xat � yot
� �2

v
u
u
t ; ð5Þ

r ¼
PT

t¼1 xat � xat
� �

yot � yot
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT

t¼1 xat � xat
� �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PT

t¼1 yot � yot
� �2

q ; ð6Þ

where T represents the full period of data assimilation

and xat and yot represent the assimilation and observa-

tion time series at time t, respectively. xat and yot
represent the average assimilation and observation

values, respectively.

Additionally, we use the threat percent score (TPS)

to measure the proportion of successful predictions.

The TPS is similar to the threat score [47] but is

defined as the distance between an estimation and an

observation rather than that between dichotomous

(true or false) forecasts:

TPS¼
1� xa�yoj j=yo; if yo

is located in theuncertainty range

0; otherwise

:;

8
><

>:

ð7Þ

where xa and yo are the assimilation results and true

confirmed cases, respectively. The uncertainty ranges

consist of the ensemble averages and their � 25%

buffer zones.

The nowcasting accuracy is higher when the TPS, R2

and r are closer to 1 or when the RMSE is closer to 0.

Regarding the TPS, we store all the nowcasting data

and the true number of confirmed cases over the last

7 days and then compare them by using (7) in

chronological order. With respect to the other error

metrics, we see the assimilation data and the true

number of confirmed cases as the assimilation results

and the observation time series, namely, xat and yot in

(4) * (6), respectively.
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3 Results

3.1 Synthetic experiments

The data assimilation method was tested in advance with

synthetic experiments. The first step was to generate

observations using Model (1). The configurations were as

follows: the parameters a, b, and c were 0.05, 0.05, and
0.01, respectively. The total population size N and

initial infected population size were 1 million and 1,

respectively. It was assumed that 0.15% of the total

population was vaccinated each day. A 500-day time

loop was then executed based on Model (1), and 40%

perturbations were added to the corresponding facti-

tious epidemic curve to generate the observations. The

number of ensembles was 100. The model error and

observation error were time-dependent and were set to

10% of the ensemble averages and observations. In the

second step, we randomly selected 100 30-day

subperiods as the parameter estimation stages

(Fig. 3) and performed 7-day nowcasting with only

parameter estimation (as the control method) or with

both parameter estimation and data assimilation (the

proposed method, as shown in Fig. 1). Finally, we

calculated error metrics (R2, RMSE, and r) between

the model outputs (or observations) and the nowcast-

ing results for each subperiod, as well as their

averages.

The errormetric results demonstrate that our proposed

method outperformed the control method. Although the

correlations between the two nowcasting methods and

model outputs (r=0.99 for each) are indistinguishable,

the R2 (0.60 for the control method and 0.98 for the

proposed method) and RMSE values (226.32 for the

control method and 38.83 for the proposed method)

show that the proposed method captured the true

epidemic curve with higher accuracy. The error

metrics between the nowcasting results and observa-

tions demonstrates consistent performance; i.e., for the

control method, r=1.00, R2=0.62 and RMSE =

221.29, and for the proposed method, r=1.00,

R2=0.98 and RMSE = 30.57. This experiment illus-

trates that learning the observations with data assim-

ilation during the nowcasting stage can improve the

predictability of epidemic dynamics.

3.2 WebGIS-based global system implementation

The data assimilation method was applied in a

COVID-19 data assimilation (COVDA) system to

generate daily COVID-19 predictions for 193 coun-

tries or regions. The source data (see the ‘Data’

section) were automatically downloaded each day, and

all system configurations were adaptive without any

manual intervention. For example, the parameters

were customized for a specific country or region

during a specific period, and the observations and

model errors were self-amplified or diminished

according to the model states. The system was used

to estimate the numbers of confirmed cases for the

upcoming 7 days in the nowcasting output and to

propose 3 possible scenarios for the next 60 days in

the forecasting output. Both the nowcasting and

forecasting results were visualized using a WebGIS-

based interface on personal computers and mobile

devices (Fig. 4). The interactive webpage allowed

users to select countries or regions, epidemic periods,

and other features (e.g., confirmed data, prediction

data and error ranges) in the plots.

3.3 The 60-day forecasting module and its

performance

The 60-day forecasting module is an independent dash-

board in the system web interface (Fig. 4d). Here, we

present examples concerning three countries to explain

how the system can provide different scenarios regarding

the spread of the disease. These instances are all based on

epidemicphases on specific dates, i.e.,March23. For each

example, three scenarios (theyellow, red, andbluecurves)

corresponding to the mitigating, mild and suppressive

policies were considered with different disease spread

dynamics from April 18 to June 16. For example,

compared to the mild scenario, the obvious rise of the

epidemic curve based on real-world data (documented

cases) afterMarch 23 inFig. 5a indicates thatmilderNPIs

may have been implemented. Similarly, the flat curve and

falling curve obtained based on real-world data (Fig. 5b

and c, respectively) may have been caused by the

mitigation and suppression of NPIs, respectively. There-

fore, comparisons between the curves produced based on

real-world data and simulated scenarios allow the public

to estimatewhether and how to change the currentNPIs to

control the spread of the disease.
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3.4 Nowcasting performance

To evaluate the nowcasting performance of the

proposed approach, the whole running period of the

COVDA system was divided into three stages. The

system was first released in early June 2020, and its

formal version was launched on 31 August 2020. The

system was upgraded on 1 January 2021 to include

ongoing vaccination. Thus, Stage 1 was from June

2020 to December 2020, in which we employed a

Fig. 3 Synthetic epidemic nowcasting experiments conducted

based on the developed strategy with parameter estimation

(Metropolis–Hastings sampling) and data assimilation (ensem-

ble Kalman filter). The main epidemic curve (dotted line) was

generated using an SIRV model, and 100 30-day subperiods

(bold short lines) were randomly selected to perform the

parameter estimation process, followed by 7-day nowcasting

with the control and proposed strategies. Subplots a and b are

synthetic experiments implemented during two random subpe-

riods. Observation cases (pink fine line) included 40%

perturbations of the model outputs (blue fine lines), and both

the control (green fine line) and proposed strategies (red line)

were based on the adjusted model with parameter estimation.

(Color figure online)

Fig. 4 The web interface of the real-time global COVID-19

data assimilation prediction system comprises 4 web dashboards

for a selecting a country and displaying its epidemic curve (193

countries/regions in total), b determining the number of country-

level cumulative confirmed cases using geographic information,

c performing nowcasting using data assimilation and (d) fore-

casting using parameter estimation and scenario analysis. e is

the corresponding mobile dashboard (in Chinese). All fig-

ures were captured from the web interface
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Fig. 5 Sixty-day forecasting results obtained in scenarios under

a mild, b mitigating and c suppressive non-pharmaceutical

interventions (NPIs). The excessive rise or fall of the epidemic

curve based on real-world data indicates milder or more

suppressive NPIs, respectively. d Presents the 7-day nowcasting

results obtained with 100 ensemble members and the corre-

sponding ensemble average. All figures were captured from the

web interface
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simple SIR model. Stage 2 was from January 2021 to

December 2021, during which vaccinations were

included in the system, and the vaccine effectiveness

levels ranged from 85 to 95% (customized for SARS-

CoV-2). Stage 3 was from January 2022 to March

2022, in which the vaccine effectiveness levels were

updated for the variants (ranging from 30 to 60%) in

accordance with the effectiveness of the vaccines

against the SARS-CoV-2 variants [48, 49].

The nowcasting results are validated by themeasures

listed in the ‘‘Errormetrics’’ section. Figure 6 shows the

7-day average error metrics for the system. The results

display three patterns. First, the nowcasting accuracies

increased stage by stage as the dynamic model and

parameters were improved. For example, during Stage

1, the correlationcoefficient (Fig. 6a, blue line) fell from

0.4747 to 0.1961. The system performed poorly due to

(1) the absence of a vaccinated population in the SIR

model, (2) the unreasonable ratio of the observation

error to the model error (1:1), and (3) the system

instability exhibited during the initial launch stage.

During Stage 2, we developed the SIRV model to

address the global rollout of the COVID-19 vaccine and

updated the ratio of the observation error to the model

error (1:10). Then, the corresponding values increased

(ranging from 0.6235 to 0.3125). During Stage 3, we

updated the vaccine effectiveness levels to match the

global spread of the SARS-CoV-2 variants, and the

correlation coefficients further increased (ranging from

0.6943 to 0.3401). Compared to that achieved in other

stages, the prediction performance attained in Stage 1

was poor, indicating that the accuracy of pandemic

dynamics modeling decreases when vaccination and

reasonable observation and model errors are not

considered. Second, the accuracies decreased daily

during thenowcastingcycle (7 days). Inparticular, from

the first day until the 7th day, the averaged r values were

0.5975, 0.3181, 0.3161, 0.3221, 0.3088, and 0.2832

(Fig. 6a, solid line); the averaged R2 values were

0.3365, 0.0981, 0.0818, 0.0726, 0.0587, 0.0499, and

0.0305 (Fig. 6b, solid line); and the averaged RMSE

and TPS values presented similar trends (Fig. 6c and

d, respectively, solid lines). Compared with the first

day, the performances of the error metrics worsened

and were basically consistent during the 2nd and 7th

days, implying that the long-term prediction results

were inferior to the short-term prediction results.

Regarding the RMSEs, although the performances

were slightly better on the 6th and 7th days for some of

the subplots, we believe that the insufficiency of the

samples for producing a large infected population

contributed to this phenomenon. Third, we classified

the countries and regions as having outbreaks if their

average numbers of daily confirmed cases were larger

than 1000. The corresponding curves (Fig. 6, dotted

line) are easily identifiable by their larger r (37.35%

more than global average, similarly hereinafter), R2

(49.83%), and TPS (6.94%) values and their smaller

RMSEs (93.40% less than the global average). These

results indicate that the predictions were more accu-

rate for countries/regions with outbreaks. This phe-

nomenon was more significant in the RMSEs, where

the global RMSEs continued to rise after the 2nd day.

A further interpretation of Fig. 6 is as follows. The

results confirm that one-day prediction performed better

than long-term prediction. During the first and second

nowcasting days, the correlation coefficients were

reduced by almost half, the coefficient of determination

decreased by more than two-thirds, and a large RMSE

increase was observed. Distinguished from the other

metrics, the TPS fell gradually (by only approximately

5%) from the first to the second nowcasting day. This

phenomenonwasmainly caused by the buffer zones (see

the ‘Error metrics’ section) used for comparison with the

ground truths; i.e., the smaller the buffer zones were, the

more obvious the decrease became. For example, if �
2.5% buffer zones were used, the TPS would decrease

by approximately 15%. Additionally, the system

performances achieved for the countries and regions

with outbreaks surpassed the worldwide performances

in terms of every error metric, meaning that the

predictions in these countries yielded greater accu-

racy. These results further support the conclusion that,

in the real world, the SIRV model is more appropriate

for a population with a sufficiently high infection rate,

exhibiting better performance than that achieved in

applications with sporadic cases.

We further evaluated the one-day nowcasting error

metrics (Fig. 7). The lifecycle of the data assimilation

system was also divided into the same three stages.

Clearly, the system performance improved after the

model operation and error evaluation were improved

(Stage 2) or the parameters were closer to reality

(Stage 3). During Stage 1, the nowcasting accuracies

experienced a lasting upgrade. This is because the

assimilation method continued to be revised, including
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determining the appropriate sampling ranges, times-

pans, and loop counts during parameter estimation or

the number of ensemble members and the correct

observation preprocessing strategy (data smoothing)

during assimilation. During Stage 2, due to the

introduction of the vaccination module, the system

operation was stable (compared with those of Stage 1,

r and R2 increased by 31.35% and 161.19%, respec-

tively, and the RMSE decreased by 54.17%) but faced

the issue of virus variants that affected the epidemic

dynamics; therefore, the nowcasting accuracies

slightly declined at the end of Stage 2. During Stage

3, we used an updated vaccine effectiveness mecha-

nism that was customized for the SARS-CoV-2

variants, which helped improve the performance of

the system (compared with those of Stage 2, r and R2

increased by 11.36% and 31.87%, respectively, and

the RMSE decreased by 10.94%). The nowcasting

accuracy curves produced for the countries and

regions with outbreaks were higher than the world

average (r and R2 increased by 13.27% and 16.50% on

average, respectively, and the RMSE decreased by

50.87% on average), implying that sporadic cases may

result in poor performance for the SIRV model.

4 Discussion

Since it was released in early June 2020, COVDA has

been working well for more than 700 days. The

nowcasting accuracies of COVDA have been continu-

ously improved for 193 countries and regions (the overall

correlation coefficients, coefficients of determination,

and TPSs exceed 0.7, 0.5, and 65%, respectively).

Compared with the existing methods, the main

advantage of our approach is that it finds a solution to

the nonlinear spatiotemporal heterogeneity estimation

problem concerning epidemic dynamics. By introduc-

ing the EnKF and M-H sampling, the parameters and

states of the epidemic model are simultaneously

Fig. 6 The 7-day average

nowcasting error metrics

induced by the epidemic

data assimilation system

during Stage 1 (from June

2020 to December 2020),

Stage 2 (from January 2021

to December 2021), and

Stage 3 (from January 2022

to March 2022). Countries/

regions with outbreaks

(dotted line) were defined as

having daily average

numbers of confirmed cases

that were larger than 1000.

Note that the Y-axis in the

RMSE plot is logarithmic
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updated according to their spatiotemporal variations.

The results of synthetic experiments show that these

solutions can improve the accuracy of epidemic

dynamics prediction. Another advantage is that we

developed a real-time spatiotemporal data assimila-

tion system, where the proposed method had been put

into practice. This system has accumulated a large

amount of prediction data, permitting us to complete

comprehensive evaluations and post-analyses of the

effectiveness of the proposed method.

Our study demonstrated that the development of a

general epidemic assimilation method and a correspond-

ing prediction system for real-time and operational use is

promising. Utilizing the EnKF to directly assimilate the

number of confirmed cases into the SIRV model can

result in an epidemic curve similar to that of the real

world. Although the SIRVmodel is too simple to capture

epidemic tendencies, an evaluation of the assimilation

results showed that the total TPS produced for one day

was more than 85% and that obtained for 7 days was

approximately 77.6%. Note that this evaluation was

global, and the parameters for each country were self-

adaptive without any specific settings. However, the

temporal variations in the error metrics of the assimila-

tion results indicate decreases in predictability with

increasing time scale. The error metrics in Fig. 6 also

illustrate that the system can be further improved,

especially for forecasting times exceeding 2 days.

The limitations of our study mainly originate from

this simplified data assimilation framework. The model

and observation errors require further study in both

epidemic model comparisons and data validations, and

they should be quantified and input into the assimilation

system. In our study, the configurations of these errors

were empirical such that the assimilation results were

closer to the observations. This empirical configuration

was also applied to the number of ensembles, whichwas

set to 100. For the assimilation algorithm, the effective-

ness of the EnKF in the epidemic prediction systemwas

demonstrated. However, other algorithms, such as

Fig. 7 The one-day

nowcasting error metrics,

i.e., the correlation

coefficients (r), coefficients

of determination (R2),

RMSEs, and TPSs,

produced during Stage 1

(from June 2020 to

December 2020), Stage 2

(from January 2021 to

December 2021), and Stage

3 (from January 2022 to

March 2022). The countries

and regions with outbreaks

(dotted line) were defined as

having daily average

numbers of confirmed cases

that were larger than 1000
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canonical particle filters, calculus of variations, or

emergent algorithms customized for epidemiology,

should be further tested to better capture the nonlinear-

ity, non-Gaussianity, heterogeneity, and randomness of

the spread of epidemics. Regarding the observations,

identifying the true infected population is challenging

due to the virus incubation period and the timespan

between infection and confirmed, which follows a

Weibull distribution. Therefore, we directly assimilated

the number of confirmed cases into the system, implying

that the number of daily confirmed cases equaled the

number of daily infections; however, these two vari-

ables are not the same, so they may have negative

impacts on the prediction results.

Considering the proposed data assimilation frame-

work, we recommend the following potential

improvements in future work.

(1) Complex but more real epidemic models, such as

contact networks [50], are also suitable for this

assimilation framework. Compared with SIR-

type models, a contact network model performs

better in terms of capturing the heterogeneity and

randomness in transmission processes. However,

the use of more real models may require a high-

performance computing architecture.

(2) Regarding the investigation of compound epi-

demic patterns for combining pathophysiolog-

ical transmission processes and data-driven

models, data assimilation can provide an alter-

native strategy based on information fusion,

such as Bayesian model averaging.

(3) The development of observation operators can

enable the good use of big data related to

epidemiology. As a primary component of data

assimilation, observation operators can character-

ize the relationships between states and observa-

tions. For example, if the infected population is

regarded as a model state, then introducing

conversions from the available observations (i.e.,

observation operators) to the infected population

can provide comprehensive state calculations and

improve the predictability of epidemic assimila-

tion. By means of observation operators, the

pathogenesis of the factors, which are so indefinite

or complex that they cannot be included in

epidemic models, can be incorporated into the

assimilation system to update the infection pop-

ulation and influence the epidemic curve.

5 Conclusions

To tackle the nonlinear spatiotemporal heterogeneity

problem of epidemic dynamics estimation, a new

method is proposed and can be used to simultaneously

estimate the parameters and update states with respect

to their temporal variation intervals. This method uses

information fusion techniques (including the EnKF

and Metropolis–Hastings sampling) to harmonize the

available health-related data and epidemic model and

provides better predictions. A synthetic test showed

that the proposed method benefits the capture of the

epidemic curve and yields improved prediction accu-

racy. This method has been further applied in

COVDA, which is a real-time and operational epi-

demic data assimilation system. COVDA has been

operationally used for more than 700 days and has

produced a large amount of prediction data. This

permits us to conduct a comprehensive post-analysis.

Some improvements of COVDA, such as vaccination

modeling, the use of reasonable model and observa-

tion errors, and avoidance of sporadic case prediction,

can increase the correlation coefficient and coefficient

of determination by more than 31.35% and 161.19%,

respectively, and decrease the RMSE by more than

54.17%. Future studies on epidemic data assimilation

should focus on integrating more real and data-driven

epidemic model operators with information fusion

techniques and developing observation operators to

make good use of big data related to epidemiology.
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Appendix A2: The pseudocode of the EnKF

algorithm
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