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Abstract Reservoir computing (RC) methods have

received more and more attention and applications in

chaotic time series prediction with their simple

structure and training method. Recently, the next-

generation reservoir computing (NG-RC) method has

been proposed by Gauthier et al. (Nat Commun

12:5564, 2021) with less training cost and better time

series predictions. Nevertheless, in practice, available

data on dynamic systems are contaminated with noise.

Though NG-RC is shown highly efficient in learning

and predicting, its noise resistance captivity is not

clear yet, limiting its use in practical problems. In this

paper, we study the noise resistance of the NG-RC

method, taking the well-known denoising method, the

high-order correlation computation (HOCC) method,

as a reference. Both methods have similar procedures

in respect of function bases and regression processes.

With the simple ridge regression method, the NG-RC

method has a strong noise resistance for white noise,

even better than the HOCC method. Besides, the NG-

RC method also shows a good prediction ability for

small colored noise, while it does not provide correct

reconstruct dynamics. In this paper, other than recon-

struction parameters, four numerical indicators are

used to check the noise resistance comprehensively,

such as the training error, prediction error, prediction

time, and auto-correlation prediction error, for both

the short-time series and long climate predictions. Our

results provide a systematic estimation of NG-RC’s

noise resistance capacity, which is helpful for its

applications in practical problems.

Keywords Next-generation reservoir computing �
Noise resistance � Reservoir computing � High-order
correlation computation

1 Introduction

Analysis and prediction of data play an important role

in people’s production and life, such as weather

prediction, environmental pollution control, earth-

quake prediction, financial data analysis, speech

recognition, image processing, and aircraft control

[1–10]. For the field of time series prediction, various
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methods have been proposed and obtained more

satisfactory prediction results, such as system dynam-

ics reconstruction and neural network prediction.

However, in various applications, all the prediction

methods are facing a central problem—noise, which

brings great difficulties for prediction. For example,

when extracting valuable signals from the collected

data, the correlation between the noises affects the

estimation performance of the signal parameters

seriously [11]. In radar monitoring, the presence of

noise can make the dynamic reconstruction results

unstable [12]. In remote sensing, the effect of noise on

the prediction of system dynamics can lead to biased

detection of spatiotemporal concentration distribution

information [13]. Therefore, the ability to accurately

obtain system dynamics from noisy data becomes one

of the essential indicators of prediction methods.

To overcome the effects caused by noise in the data,

researchers have proposed a variety of dynamical

reconstruction methods, such as smoothing method

[14], polynomial fitting method [15], local dynamics

global fitting method [16], and high-order correlation

computation (HOCC) method [17]. The smoothing

method takes multi-step averaging to attenuate the

noise effect. The polynomial fitting method proposed

by Lu et al. [15] directly uses polynomials to fit the

time series with noise. The local dynamics global

fitting method proposed by Wang and Lan et al. [16]

uses globally invariant polynomials to fill all the local

pieces of time series. The HOCC method proposed by

Chen et al. uses the differential-time correlation of

variables to filter out the noise and solves all the

unknown coefficients in the system equation by

calculating the high-order correlation between vari-

ables. In HOCC, the use of differential-time correla-

tion to remove the effect of noise can adjust the time

difference in a considerable range to adapt to different

noise conditions.

In the last decades, lots of new methods have been

proposed to learn, predict and reconstruct the dynam-

ics from data, such as different network structures

detection methods [18, 19], extra local driving for

topology inference [20], and the compressive sensing

technology [21, 22]. Among all these new methods,

neural networks have also attracted much attention

and applications in the field of prediction due to their

good nonlinear mapping capability, self-learning

adaptation ability, and parallel information processing

capability [23–27]. At the beginning of this century, a

novel recurrent neural network method, reservoir

computing (RC), was proposed to bring a break-

through to chaotic forecasting with its simple structure

and training method [28–34]. Recently, the next-

generation reservoir computing (NG-RC) method,

proposed by Gauthier et al. [35] simplifies the RC

computation system, significantly reducing its demand

on computer resources and saving a lot of time. The

new method creates linear and nonlinear feature

vectors directly from discretely sampled input data

without using a neural network. In NG-RC, the linear

feature vector consists of constant terms and observa-

tions of the input vector at the current and certain

previous time steps. The nonlinear feature vector

consists of a two-by-two combination of linear

components. The NG-RC method is 33–162 times

faster than traditional RC calculations and requires

only 28 neurons to achieve the accuracy that would

have been achieved with 4000 neurons. Besides, the

new method uses 400 data points to obtain the same

results as the traditional RC using 5000 or even more

data points for training (the exact number of data

points depends on the required accuracy).

The high efficiency of the NG-RC methods attracts

lots of attention. However, as one of the learning and

prediction methods, the noise resistance of NG-RC is

not discussed in detail yet, limiting its applications in

practice where the available data is always contami-

nated with noise. Different from classical reservoir

computing methods, the NG-RC method depends on

the feature vectors, which is similar to the function

bases of some reconstruction methods, such as HOCC.

As one of the well-developed noise-resistant methods,

the effectiveness, robustness, and adaptability of

HOCC to different conditions have also been studied

comprehensively in simulation validation [17, 36, 37].

Hence, to study the noise resistance of NG-RC

comprehensively, we take the HOCC as a reference

and compare the differences between these two

methods and their noise resistance ability. Surpris-

ingly, we find that even though the NG-RC method

does not have special designs for noise resistance, it

surpasses the HOCC method for systems with white

noise and provides reasonable prediction ability for

small colored noise.

In this paper, we compare the noise resistance

ability and characteristics of NG-RC with reference to

HOCC methods from theoretical analysis and numer-

ical experiments. In terms of theory, we analyze the
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similarities between the two methods. Both methods

have similar procedures in the respect of function

bases and regression processes, especially when one

considers the NG-RC method without time-delay

function bases. We take the Lorenz system as an

example and explore the difference in the coefficient

reconstructed by the two methods. In terms of

numerical experiments, four indicators are introduced

to show the noise resistance of methods, such as the

training error, prediction error, prediction time, and

auto-correlation prediction error. Both the white and

colored noise are considered in this paper. The effects

of the noise intensity, training length, and sampling

interval on the noise resistance ability of the two

methods are explored comprehensively. Besides, the

noise resistance to colored noise with the change of

time delay in NG-RC and HOCC is also studied to

study the potential variations of the method for colored

noise.

This paper is organized as follows: Section 2

introduces NG-RC and HOCC methods and compares

their difference theoretically. Sections 3 and 4 show

the numerical experimental results of the NG-RC

method without and with time-delay function bases on

the white and colored noise-driven system. Section 5

concludes the paper.

2 Theoretical comparative analysis of NG-RC

and HOCC

Considering the dynamics of an arbitrary noise-driven

system as:

_xðtÞ ¼ fðxðtÞÞ þ CðtÞ;

x ¼ ðx1; x2; . . .; xMÞT ;

f ¼ ðf1; f2; . . .; fMÞT ;

C ¼ ðC1;C2; . . .;CMÞT ;

ð1Þ

where x is the state variable, M the dimensionality of

the state variable, t the time variable, and f the

function. The CiðtÞ; i ¼ 1; 2; . . .;M is the noise term

which is either Gaussian white with \CðtÞ[ ¼ 0

and\CðtÞCðsÞ[ ¼ 2Ddðt � sÞ where D is the noise

intensity, or Ornstein–Uhlenbeck colored noise with

\CðtÞCðsÞ[ ¼ 1
2s expð�jt � sj=sÞ in this paper.

From the dynamical system Eq. (1), one gets the

measurable data as time series,

xðt1Þ; xðt2Þ; . . .; xðtkÞ; . . .; xðtNÞ;
Dt ¼ tkþ1 � tk � 1; k ¼ 1; 2; . . .;N � 1;N � 1;

ð2Þ

where N denotes the time series length, and Dt is the
time sampling interval.

In this paper, we consider the inverse problem that

given the time series in Eq. (2), how to obtain the

original dynamical system Eq. (1). Here, we take the

Lorenz system [5] as the example of an original noise-

driven dynamic system. It is one of the most famous

models in chaos studies, developed in 1963 as the first

system discovered to produce chaotic attractors. The

Lorenz system follows the dynamics of Eq. (1) with

three coupled nonlinear differential equations:

f ¼ ðf1; f2; f3ÞT

¼ ðrðy� xÞ; xðq� zÞ � y; xy� bzÞT ;
ð3Þ

where x, y, z denote the state variables. In this paper,

we take the parameters r ¼ 10; q ¼ 28; b ¼ 8=3 to for

chaotic time series. In the following, we use NG-RC

and HOCC methods for the inverse problems with

noise to get the original Lorenz dynamical systems.

2.1 NG-RC method

The NG-RC method is developed from the traditional

RC. It is no longer requiring a linear combination of

the input signals using a randomly generated neural

network to obtain the output signal, but instead

directly creates feature vectors with discretely sam-

pled input data, where the feature vectors are called

bases. For prediction, the bases consist of three parts:

constant term, linear terms, and nonlinear terms. For

the Lorenz system, the linear terms at the moment tk
are usually composed of

xðtkÞ; yðtkÞ; zðtkÞ; xðtk�1Þ; yðtk�1Þ; zðtk�1Þ [35], where

k ¼ 2; . . .;N � 1. The nonlinear terms component is

composed of two combinations of constant and linear

terms, totaling 21 terms. The whole basis function

matrix P is obtained from the observed data x, where

the k-th column Pk for time tk is:
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Pk ¼ ð1; xðtkÞ; yðtkÞ; zðtkÞ; xðtk�1Þ; yðtk�1Þ;

zðtk�1Þ; x2ðtkÞ; xðtkÞyðtkÞ; xðtkÞzðtkÞ;

xðtkÞxðtk�1Þ; xðtkÞyðtk�1Þ; xðtkÞzðtk�1Þ;

yðtkÞyðtk�1Þ; yðtkÞzðtk�1Þ; z2ðtkÞ; y2ðtkÞ;

yðtkÞzðtkÞ; yðtkÞxðtk�1Þ; zðtkÞxðtk�1Þ;

zðtkÞyðtk�1Þ; zðtkÞzðtk�1Þ; x2ðtk�1Þ;

xðtk�1Þyðtk�1Þ; xðtk�1Þzðtk�1Þ;

y2ðtk�1Þ; yðtk�1Þzðtk�1Þ; z2ðtk�1ÞÞ:

ð4Þ

The basic assumption of NG-RC is that the function

base is complete for the original dynamical systems,

from which the dynamical function f ðxÞ in Eq. (1)

could be expressed as a linear transformation of P as

f ðxÞ ¼ A1P; ð5Þ

where A1 is the coefficient matrix. The left hand side

of Eq.(5) can be estimated through a simple difference

method as:

f ðxkÞ � Xk ¼
1

Dt

xðtkþ1Þ � xðtkÞ
yðtkþ1Þ � yðtkÞ
zðtkþ1Þ � zðtkÞ

0
B@

1
CA: ð6Þ

Taking Xk as the k-th column, one gets the target

matrix X whose size is 3� L, where L ¼ N � 2 is the

length of training data. Correspondingly, the size of

coefficient the matrix A1 and basis function matrix P

are 3� 28 and 28� L respectively.

In NG-RC method, the ridge regression method is

used to solve A1:

A1 ¼ XPTðPPT þ aIÞ�1; ð7Þ

where PT is matrix transpose of P, a ridge regression

parameter, and I the identity matrix. After solving the

reserve problem and getting A1, an Euler-like integra-

tion step can be used to obtain the prediction time

series y:

yiþ1 ¼ yi þ A1PiDt; ð8Þ

with i ¼ 1; 2; . . .;1. For learning and prediction of

chaotic time series, the NG-RC method using bases

with time delay is shown to have the same or even

better prediction capacity compared to the traditional

RC using randomly generated neural networks [35].

But here we focus on its noise resistance ability.

2.2 HOCC method

In this paper, we take the HOCC method as the

reference, which uses the differential-time correla-

tions of variables to remove noise and solves all

unknown coefficients in the system equation by

calculating the high-order correlations among the

variables. When using the HOCC method for predic-

tion, it is necessary to select an appropriate function

basis in advance, denoted as Q as not to be confused

with the function basis for NG-RC. For the Lorenz

system, the polynomial functions are often chosen as

the bases. Similar to the NG-RC method, the whole

basis function matrix Q is obtained from the observed

data x, where the k-th column Qk for time tk as:

Qk ¼ ð1; xðtkÞ; yðtkÞ; zðtkÞ; x2ðtkÞ; xðtkÞyðtkÞ;

xðtkÞzðtkÞ; y2ðtkÞ; yðtkÞzðtkÞ; z2ðtkÞÞ:
ð9Þ

It is worth to be noted that the basis function matrix Q

is exactly a part of the function matrix P except for the

time-delay terms.

The basic assumption of HOCC is also the same as

NG-RC, where the function base Q is complete for the

original dynamical systems, from which the dynam-

ical function f ðxÞ in Eq. (1) could be expressed as a

linear transformation of Q as

f ðxðtÞÞ ¼ A2Q; ð10Þ

where A2 denotes the coefficient matrix of Q. Up to

this step, the two methods, NG-RC and HOCC, are

exactly the same, with only a slightly difference in the

choice of function basis. If we use the ridge regression

method to get A2 directly, this is the NG-RC method

without time-delay terms. However, in the HOCC

method, one more step is applied to remove the noise.

Here, one takes the function vector QTðxðt � sÞÞ with
time delay as

QðxÞ ¼ ðQ1ðxÞ;Q2ðxÞ; . . .;Q10ðxÞÞT ; ð11Þ

and right multiple it with Eq. (1). Then by taking time

averaging to calculate all related correlations, we have

BTð�sÞ ¼ A2Ĉ ð�sÞ þ\CðtÞQTðt � sÞ[ ; ð12Þ

with
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Bð�sÞ ¼ ðB1ð�sÞ;B2ð�sÞ; . . .;B10ð�sÞÞT ;

Blð�sÞ ¼ \ _xðtÞQlðt � sÞ[

¼ 1

L� P

XL
k¼pþ1

_xðtkÞQlðtk�pÞ;

_xðtkÞ ¼
xðtkþ1Þ � xðtkÞ

Dt
; s ¼ pDt;

Ĉð�sÞ ¼ ðCltÞ

¼ 1

L� P

XL
k¼pþ1

QlðtkÞQt tk�p

� �
 !

;

ð13Þ

where l ¼ 1; 2; . . .; 10, \ � [ denotes time averag-

ing. The time delay s is assumed to satisfy the

inequality 0 � sd � s � 1, that it is much larger than

the correlation time of dynamical noise sd, and much

smaller than the characteristic times of deterministic

network dynamics, previously assumed to be of order

1. In this case, noises and correlations are decorrelated

as

\CðtÞQTðt � sÞ[ � 0; s[ td; ð14Þ

since the fast-changing noise must not be correlated

with any variable data of previous times, disregarding

any forms of colored noises. Now with the noise-

decorrelation of Eqs. (14) and (12) can be reduced to

BTð�sÞ ¼ A2Ĉ ; ð15Þ

which leads to

A2 ¼ BTð�sÞĈ�1
; ð16Þ

which could be solved directly. This differential-time

correlation-based procedure to get A2 is the essential

part of the HOCC method and also the major

difference between the NG-RC method. After getting

the coefficient matrix A2, one can reconstruct the

original dynamic is as

_xðtÞ ¼ A2Q; ð17Þ

and also iterate the system and obtain the predicted

time series y similar to NG-RC.

It can be seen that both the NG-RC and HOCC

methods use the same idea to fit the original system

with function bases that are selected in advance and

then solve its coefficient matrix. If both methods

choose the same bases, the target matrix for its

optimization is the same. The difference is that in the

HOCC method, the Ĉ in Eq. (15) is composed of the

differential-time correlations of the basis vectors, and

the coefficient matrix A2 is regression solved after the

correlations, so that the noise is removed by using the

property that the noise and the correlators must be

decorrelated. While in the NG-RC method, the matrix

Y is directly combined by the basis vectors. The ridge

regression method is used directly to solve the

coefficient matrix A1, and by adjusting a to remove

noises while preventing over-fitting.

It is straightforward to notice that these two

methods are comparable in theory. In the following,

we will use numerical methods to check how well the

simple ridge regression method used in NG-RC is for

the noise resistance, compared to the HOCC method

which has a special designed time difference correla-

tions procedure for noise elimination.

3 The NG-RC method without time-delay function

bases

In this paper, the Lorenz system in Eq. (3) is set with

r ¼ 10, q ¼ 28, b ¼ 8=3(the Lorenz system is chaotic

with this parameter), and the sampling interval reads

h ¼ 0:0002. The data of the original Lorenz system is

generated by the iteration of the Runge–Kutta method,

which is noted as yLorenz. Two types of noise are

considered, as the Gaussian white noise and Ornstein–

Uhlenbeck colored noise. To show the noise effect, we

increase the noise strength gradually, from 0.0001 to

25. The colored noise correlation time is fixed at 25 h.

The phase diagrams with either white or colored noise

are shown in Fig. 1.

It is clear that noises affect the dynamics of the

Lorenz system dramatically in Fig. 1. How to get the

original system through such data is the challenging

problem that we want to solve with NG-RC and

HOCC methods.

In Section 2, we know that if the same function

bases are selected, i.e., the NG-RC method without

time-delay function bases, then the goal matrix of the

two methods is the same. But NG-RC and HOCC have

different procedures for noise resistance. Hence, in the

following, we compare NG-RC and HOCC in two

steps. In this section, we only focus on the NG-RC

method without time-delay function bases, denoted as
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NG-RC10 for it only considering the 10 function

bases. And in the next section, we will use the full

bases introduced in NG-RC.

3.1 White noise-driven system

First, consider the white noise-driven Lorenz system.

With HOCC and NG-RC methods, the dynamical

system is reconstructed. Compared with the original

Lorenz system, We obtain reconstruction errors of

these two methods and show them in Table 1.

When theD is smaller, the standard deviation of the

coefficients corresponding to the Lorenz system

obtained by the HOCC method is about 10�5 to

10�6, and the other terms are about 10�2. When the D

is large, the standard deviation of coefficient terms is

about 10�3, and other terms are about 10�2. It can be

found that the reconstruction result of NG-RC10 is

close to that of the HOCC method. HOCC method has

only slightly better noise resistance ability than NG-

RC10 for white noise cases. Here, the train steps L and

sampling interval h are chosen as L ¼ 15 million and

h ¼ 0:0002, which are chosen as one of the best

parameters for the HOCC method, studied in [37].

To further explore the processing ability of the two

methods for noisy data with different parameters, and

better understand their noise resistance characteristics,

we adopted the control variable method to analyze the

noise resistance performance of the NG-RC and

HOCC methods from the perspective of the influence

of train steps L, sampling interval h and noise strength

D on the predicted results respectively. Instead of the

reconstructed parameters, here we use a single

numerical indicator introduced in [35], Et, to estimate

the reconstruction result, which reads

Et ¼
1

N

XN
k¼1

ðyLorenzk � ykÞ2; ð18Þ

as mean square error between reconstructed time

series y and the original one yLorenz. The smaller the

Et is, the better the noise resistance ability of the

method. The experimental results of Et changes with

the above three variables are shown in Fig. 2. Here,

considering that the ridge regression parameter a of

the NG-RC method has a certain influence on its noise

resistance ability, for each data point in Fig. 2, a was

optimized to obtain the optimal Et for display. The

optimization process is in Supplementary Note 1.

When the sampling interval is sufficiently small, as

shown in Fig. 2a, fixing h ¼ 0:00002 and choosing

four different intensities of white noise to drive the

system for training, the Et of the two methods do not

differ much when the amount of training data is small,

and both decrease as the number of train steps

increases. These results coincide with the one obtained

from the reconstructed parameters shown in Table 1

that the NG-RC10 method and HOCC method have

almost the same noise resistance in these cases.

However, as shown in Fig. 2b, increasing the

sampling interval to h ¼ 0:001, the reconstruction

error Et of the HOCC method appears to be a ‘‘plateau

area’’ when D is small, while Et continues decreasing

with the increase of L for NG-RC10 method. The

Fig. 1 Phase diagrams of the Lorenz system are driven by

different intensities of white noise or colored noise.

h ¼ 0:00002, r ¼ 10, q ¼ 28, b ¼ 8=3. (a–d) show the Lorenz

system driven by white noise with D ¼ 0:0001, D ¼ 0:01,
D ¼ 5, and D ¼ 15. (e–h) show the Lorenz system driven by

colored noise with D ¼ 0:0001, D ¼ 0:01, D ¼ 5, and D ¼ 15
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simpler NG-RCmethod works even better than HOCC

for time series with large sampling intervals and

sufficient large train steps. More details can be found

in Fig. 2c, where the training data are the same and

large enough (15 million), and the white noise-driven

system with three different sampling intervals is

selected for training. The reconstruction error Et of

both methods increases with the increase of D, while

Et of the HOCC method appears ‘‘plateau area’’ at

h ¼ 0:001 and h ¼ 0:0002. Combined with Fig. 2b,

the HOCC method can no longer decrease Et when

training and predicting data with minor D and greater

h, no matter how to reduceD or increase the number of

train steps, and this lower limit varies with h. The

larger the h, the higher the lower limit.

The above results are corroborated in Fig. 2d. For

NG-RC10, Et is more affected by D, but the variation

of Et with h is smaller for the same D system. For the

HOCC method, when h is small, the smaller D is, the

smaller Et is, similar to the NG-RC10 method. But for

large sample interval h, the difference between Et

corresponding to different D decreases until it over-

laps when h[ 0:001. In these cases, a decrease in the

noise strength D does not result in the improvement of

prediction capacity. The sampling interval defines a

minimum value of Et, increasing with the increase of

h. As a result, for time series with large sampling

intervals, the NG-RC10 method works better than

HOCC, as shown in Fig. 3. Here, the a is also

optimized. When h ¼ 0:00002, the noise resistance

ability of the two methods is comparable in Fig. 3a.

When increasing h to 0.0002 and 0.001, the Et of the

HOCC methods becomes larger for smaller intensity

noise, while the results of NG-RC10 are less affected,

as shown in Fig. 3b, c. The appearance of the ‘‘plateau

area’’ of the HOCCmethod is an open question and out

of the scope of this paper, but from this phenomenon,

the NG-RC10 method could provide a better predic-

tion for the dynamical system with white noise.

In the above results, the prediction error Et is used

to describe the noise resistance ability of the method.

Meanwhile, we noted that other indicators were also

used in previous studies to measure the reconstruction

or prediction ability of the method. For example, in

[16, 17], the results obtained by the reconstruction

method are compared with the coefficients of the

original dynamic system to measure its reconstruction

ability. In [35], the mean square error of the prediction

time sequence obtained by the noise resistance methodT
a
b
le

1
W
h
en

th
e
w
h
it
e
n
o
is
e-
d
ri
v
en

sy
st
em

is
re
co
n
st
ru
ct
ed
,
th
e
st
an
d
ar
d
d
ev
ia
ti
o
n
o
f
th
e
co
ef
fi
ci
en
ts
o
b
ta
in
ed

b
y
th
e
tw
o
m
et
h
o
d
s
an
d
th
e
m
ea
n
o
f
th
e
d
if
fe
re
n
ce

co
rr
es
p
o
n
d

to
th
e
o
ri
g
in
al

L
o
re
n
z
sy
st
em

D
¼

0
:0
0
0
1

D
¼

0
:1

D
¼

1
:2

N
G
-R
C
1
0

H
O
C
C

N
G
-R
C
1
0

H
O
C
C

N
G
-R
C
1
0

H
O
C
C

_ x
x

1
e
�
5
�
9
e-

5
�
0
:0
3
1
8
1
�
9
e-

5
�
0
:0
1
4
�
3
e-
3

�
0
:0
3
8
1
1
�
9
e-

5
0
:0
9
7
�
4
e-
3

�
0
:0
3
8
1
1
�
9
e-

5

y
4
e
�
5
�
6
e-

5
0
:0
1
1
1
�
6
e-

4
0
:0
1
1
�
2
e-

3
0
:0
1
1
1
2
�
6
e-

5
�
0
:0
6
7
�
3
e-

3
0
:0
1
1
1
2
�
6
e-

5

_ y
x

�
6
e
�
5
�
8
e-

5
0
:0
2
4
9
�
1
e-

4
1
e
�
3
�
1
e-

3
0
:0
2
4
�
2
e-

3
0
:0
5
0
�
5
e-

3
0
:0
6
4
�
5
e-

3

y
1
:2
e
�
4
�
6
e-

5
�
0
:0
3
0
6
0
�
8
e-

5
�
4
:2
e
�
3
�
9
e-

4
�
0
:0
3
3
7
�
9
e-

4
�
0
:0
2
8
�
4
e-

3
�
0
:0
5
3
�
4
e-

3

xz
0
�
2
e-

5
�
1
:2
5
6
e
�
3
�
3
e-

6
�
7
e
�
5
�
3
e-

5
�
0
:0
0
1
2
8
�
3
e-

5
�
0
:0
0
1
6
�
2
e-

4
�
0
:0
0
2
�
2
e-

3

_z
z

2
:9
e
�
4
�
6
e-

5
�
0
:0
1
4
9
5
�
5
e-

5
5
e
�
3
�
1
e-

3
�
0
:0
1
0
�
1
e-

3
0
:0
0
8
�
3
e-

3
�
0
:0
0
9
�
3
e -

3

xy
�
8
e
�
5
�
5
e-

5
3
:0
7
6
e
�
3
�
4
e-

6
5
e
�
4
�
2
e-

4
0
:0
0
3
6
�
2
e-

4
�
0
:0
0
4
�
1
e-

3
�
0
:0
0
1
�
1
e-

3

o
th
er

b
as
es

0
�
1
e-

3
0
:0
1
�
0
:0
2

�
0
:0
1
�
0
:0
2

0
:0
0
1
�
0
:0
3

0
�
0
:1

0
:0
2
�
0
:0
6

123

Noise resistance of next-generation reservoir 14301



and the training data was calculated to measure the

method’s fitting ability to the training data. In [38], the

prediction ability of the method was measured by the

coincident steps between the prediction sequence and

the original noise-free sequence. To understand the

two methods in multiple dimensions, we check the

noise resistance ability of the two methods in terms of

a more refined four-dimensional representation. Other

than the prediction error Et, we consider the training

error En, prediction time Tp, and auto-correlation

prediction error Ea.

(1) The training error En, the mean square error of y

and ytrain, is defined as

En ¼
1

N

XN
k¼1

ðytraink � ykÞ2: ð19Þ

It is the objective function of the training phase and is

used to measure the learning error with noise.

(2) The prediction time Tp, the coincident steps of y

and yLorenz, is defined as the maximum time step k

where the square error between the predicted time

series and original Lorenz system is smaller than 0.01.

It is important to note here that Tp is correlated with Et.

A Smaller prediction error Et results in a larger

prediction time Tp. But for different dynamical

systems, Tp also depends on the system’s maximum

Lyapunov exponent, where the Lyapunov time is

usually used as the unit of Tp.

(3) Auto-correlation prediction error Ea is defined as

the time series auto-correlation coefficient prediction

error between y and yLorenz. To measure the differ-

ence between the predicted time series and the original

Lorenz system time series long-time evolution behav-

ior of the two methods. The auto-correlation coeffi-

cients of the time series rkðk ¼ 1; 2; . . .;NÞ are

calculated using the following equation: rk ¼ ck
c0
with

ck ¼ 1
T

PT�k
t¼1 ðxt � �xÞðxtþk � �xÞ and

c0 ¼ 1
T

PT
t¼1ðxt � �xÞ2. Here fxtg represents a set of

time series, T represents the length of the time series,

and fxtþkg represents the time series after delaying

fxtg by k steps, leading to

Ea ¼
1

N

XN
k¼1

ðrLorenzk � rkÞ2: ð20Þ

The training and prediction results of the two methods

using the above four indexes for the white noise-

driven system are shown in Fig. 4, where the two

methods use the same data set for training, and the size

of the training data is selected to be 15 million.

It can be seen that the two methods have very

different performances in the four indicators. For

training error En, there two methods have similar

performance, satisfying En ¼ 10�5 approximately as

shown in Fig. 4a, showing that both methods has

reached the optimized result as they designed to get.

However, such optimized results from these two

methods are different, shown as by the prediction

error Et in Fig. 4b, especially whenD is small. Here Et

of NG-RC10 is smaller than that of the HOCCmethod,

the dynamical system from NG-RC10 is closer to the

original Lorenz system than HOCC. This fact results

in a longer prediction time Tp and smaller auto-

correlation prediction error Ea of NG-RC10 in Fig. 4c,

d, describing the better prediction ability for the short

and long evolution of the system.

Compared with the HOCC method, we can con-

clude that the NG-RC method with the same function

bases has a better noise resistance and prediction

ability for white noise. This is from the learning limit

Fig. 2 Effects of L,D, and h on the Et of the two methods. (a–c)
the circle line represents the HOCC method and the star line

represents NG-RC10. (a, b) the influence of L on two methods:

blue, red, green, and rose red represents D = 0.001, D ¼ 0:01,
D ¼ 0:1, andD ¼ 0:8 respectively, where h ¼ 0:0002 in (a) and
h ¼ 0:001 in (b). c the effect ofD on two methods: fixed L ¼ 15

million, red, blue and green represents h ¼ 0:00002,
h ¼ 0:0002, h ¼ 0:001. d the effect of h on two methods: fixed

number of L ¼ 15 million, the red and blue represent the HOCC

and NG-RC10, and the circle, star, and square lines represent the

noise intensity of D ¼ 0:001, D ¼ 0:1, and D ¼ 0:8. (Color
figure online)

123

14302 S. Liu et al.



of HOCC by large sampling intervals. Studying the

mechanism of HOCC is out of the scope of this paper.

But for the NG-RC method, it is sufficient to conclude

a positive statement for its noise resistance to white

noise. We will consider the NG-RC method with time-

delay terms in the next section and obtain the same

results.

3.2 Colored noise-driven system

The spectrum of noise is an important feature. The

HOCC method has developed a full frame to deal with

colored noise and shows a good noise resistance

ability [37]. Here we take the Ornstein–Uhlenbeck

noise and check the noise resistance of the NG-RC10

method with colored noise.

Similar to the analysis of white noise, we first

reconstruct the parameters and check the reconstruc-

tion errors of HOCC and NG-RC10. The results are

shown in Table 2. No matter how small the noise

strength D is, the reconstruction errors of NG-RC10

are much larger than HOCC. As the variations of the

reconstructed parameters are kept sufficiently small,

one can conclude that the reconstructed parameters by

NG-RC10 have systematic bias from the original

dynamical systems. This error is removed by HOCC

through differential-time correlation methods.

The training and prediction results of the two

methods using the four numerical indicators for the

colored noise-driven system are shown in Fig. 5,

where the two methods use the same data set for

training, and the size of the training data is selected to

be 15 million. The optimization process of a is shown

in Supplementary Note 2. Similar to the white noise

cases, En of the HOCC method and NG-RC10 are

almost the same, but for the prediction error, Et of the

NG-RC10 method is always larger than Et of HOCC.

Consequently, HOCC has better prediction ability

when dealing with the prediction time Tp and auto-

correlation prediction error Ea. However, it is inter-

esting to note that when the noise strength is

sufficiently small as D\0:01, the NG-RC10 and

HOCC have almost the same numerical indicators,

showing the same prediction capacity, even the

reconstructed parameters shown in Table 2 from

Fig. 3 Prediction error Et of the two methods for different noise

strength D with sampling interval h. The black solid line

indicates that the Et of the two methods are equal. The h used in

(a–c) are h ¼ 0:001, h ¼ 0:0002 and h ¼ 0:00002, L ¼ 15

million, and the dots of different colors represent 20 different

D. (Color figure online)

Fig. 4 En, Et, Tp, Ea of the white noise-driven system by NG-

RC10 and HOCC methods. The blue line represents the HOCC

method, and the red line represents NG-RC10. (Color

figure online)
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NG-RC10 have a much larger error compared with the

ones of HOCC.

The power of HOCC to deal with colored noise is

from the time delay s in the differential-time corre-

lations. When s is much larger than the correlation

length sd of the noise and much smaller than the

characteristic time of the system dynamics, HOCC has

a good noise resistance of colored noise [4, 17]. As

shown in Fig. 6, the prediction error Et decreases with

the increase of s to a minimum value after s[ 100. As

for the NG-RC10 method, its prediction error Et is the

same as the HOCC with s ¼ 1.

The NG-RC10 methods without the differential-

time correlations could not reconstruct the original

dynamics correctly, as it mixes the dynamics and noise

correlations. However, if the noise strength is suffi-

ciently small, the NG-RC10 method could give the

same good prediction of the system’s evolution as the

ones from the HOCC method, which has good

reconstructed parameters. The mechanism of this

phenomenon is an open question, and out of the scope

of this paper. We will study it in our following work

with various types of colored noise.

4 The NG-RC method with time-delay function

bases

In the above section, NG-RC10 shows a good effect in

antiwhite noise prediction and even performs better

than the HOCC method when the sampling interval

h is large. However, in colored noise resistance

prediction, its noise resistance ability is worse than

HOCC, especially when the noise strength D is large.

In this section, we further consider the NG-RCmethod

with all 28 function bases and explore the contribu-

tions of the additional time-delay terms.

It is worth noting that there are two parameters in

the method: k and s. The linear part of the function

bases of the method consists of the input vector at the

current and at k � 1 previous times steps spaced by s,

where s� 1 is the number of skipped steps between

consecutive observations. For the noiseless Lorenz

system, k ¼ 2 and s ¼ 1 are often used. Increasing k

means adding more time-delay bases to the linear

terms. And the s is similar to the s in the HOCC

method, increasing s is to train with data that skip more

observations between consecutive observations. This

section will optimize both parameters.T
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4.1 White noise-driven system

To optimize parameters k and s to obtain the optimal

prediction results, enough data was used for training.

The Et under different k and s are obtained by training

20 white noise-driven systems with different D.

Figure 7 shows the result when D ¼ 0:1.

As shown in Fig. 7, Et increase with the increase of

k and s, indicating that increasing the number of time-

delay bases in the basis function and using data after

skipping more observations between consecutive

observations for training are counterproductive to the

noise resistance ability of the NG-RC method. Exper-

iments on all the white noise-driven systems with

different D show similar results. The k and s that make

Et reach the minimum are mostly k ¼ 2 and s ¼ 1,

which are often used to predict the noiseless Lorenz

system. With optimized parameters of k and s, the

results of the four indexes are shown in Fig. 8. See

Supplementary Note 3 for the optimization process of

a.

Fig. 5 En, Et, Tp, Ea of the colored noise-driven system by NG-

RC10 and HOCC methods. The blue line represents the HOCC

method, and the red line represents the NG-RC10. (Color

figure online)

Fig. 6 Relation between Et and s of NG-RC10 and HOCC

method. The sampling interval is h ¼ 0:0002, and the noise

correlation length is sd ¼ 25h

Fig. 7 Relationship between Et and k or s of the white noise-

driven system by NG-RC method with time-delay function

bases. The parameters of the white noise-driven Lorenz system

are h ¼ 0:0002, D ¼ 0:1

Fig. 8 Et,En,Tp,Ea of the white noise-driven system by NG-RC

method with time-delay function bases and NG-RC10. The blue

line represents the NG-RC method with time-delay function

bases, and the red line represents NG-RC10. (Color

figure online)
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Figure 8 shows the prediction results of NG-RC10

and NG-RC after optimized parameter in the white

noise-driven system. The difference between NG-

RC10 and NG-RC is small in all four numerical

indicators. The NG-RC method with time-delay

function bases has no significant effect on the predic-

tion performance of the white noise-driven system.

Hence both the NG-RC10 and NG-RCmethods have a

good white noise resistance.

4.2 Colored noise-driven system

As for the colored noise, the k and s are still optimized.

Figure 9 shows the change of Et with k and s when

D ¼ 0:0001. For different k, when s ¼ 1, Et is small,

and then with the increase of s, Et rapidly peaks, and

then gradually decreases. The difference is that the Et

when k ¼ 2 is always smaller than the Et correspond-

ing to other k, and presents a U-shaped change with s,

and its lowest point is close to the position where Et of

HOCC method starts to stabilize when it changes with

s in Fig. 6. It can be seen that the selection of

appropriate k and s in the time-delay bases have a

certain effect on the denoising of the NG-RC method.

Figure 10 shows the results of four indexes of the NG-

RC method optimized after k and s and the NG-RC

method without time-delay bases. Each data point in

the figure is the result of a optimization, see Supple-

mentary Note 4 for details.

In Fig. 10a, En of the NG-RC method with time-

delay bases is very similar to that of the NG-RC

method without time-delay bases, indicating that they

have similar fitting effects on training data. In

Fig. 10b, the NG-RC method with time-delay bases

is smaller than that without time-delay bases when the

D is relatively large or small. Similarly, for Tp and Ea

in Fig. 10c, d, except for several data points with

moderate D, the Tp and Ea of other data points of the

NG-RCmethod with time-delay bases are smaller than

those of NG-RC method without time-delay bases. It

can be seen from the above results that the resistance

ability to colored noise of the NG-RC method

optimized with k, s, and a is improved compared with

the NG-RC method without time-delay bases. How-

ever, compared with the HOCC method in Fig. 5,

there is still a certain gap. Further improving the NG-

RC’s resistance ability to colored noise is an open

question and a promising approach.

5 Conclusions

In this paper, the noise resistance ability of the NG-RC

method is studied from the theoretical as well as

numerical experimental, with reference to the HOCC

method. Various aspects of these two methods are

compared, such as the reconstruction error of param-

eters, training error En, prediction error Et, prediction

Fig. 9 Relationship between Et and k or s of the colored noise-
driven system by NG-RC method with time-delay function

bases. The parameters of the colored noise-driven Lorenz

system are h ¼ 0:0002, D ¼ 0:0001, and sd ¼ 25h

Fig. 10 En, Et, Tp, Ea of the colored noise-driven system by

NG-RC method with time-delay function bases and NG-RC10.

The blue line represents the NG-RC method with time-delay

function bases and the red line represents NG-RC10. (Color

figure online)
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time Tp, and the auto-correlation prediction error Ea.

The similarity of the NG-RC and HOCC is shown

theoretically, from which we study the NG-RC

method without time-delay function bases. Such

NG-RC10 method share the same function bases with

HOCC. With different procedures and algorithms, we

find that the NG-RC10 method has a better noise

resistance when dealing with white noise than HOCC.

Even for colored noise, the NG-RC10 method also

shows a good prediction power when the noise

strength is small, comparable with HOCC, while it

cannot provides the correct reconstructed parameters.

The NG-RCmethod with time-delay function bases

is also discussed. Such additional time-delay terms are

helpful in the noise resistance of this method. The NG-

RC method with and without time-delay function

bases has the same noise resistance capacity for white

noise. But for the colored noise, the NG-RC method

with time-delay function bases works better by

optimizing k and s in some conditions.

Reservoir computing methods, including the NG-

RC method we discussed in this paper, is a promising

study field of inverse problems of the dynamical

system. In this paper, we show the simple ridge

regression method in reservoir computing has a

relatively strong noise resistance for white noise. But

how to improve its noise resistance for colored noise is

still an open question and a promising research topic.
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