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Abstract Hardware-in-the-loop (HIL)measurements
of highly interrupted milling processes were con-
ducted. A real spindle was used with a dummy tool
on which the cutting forces were emulated with con-
tactless sensors and actuators. During the experiments,
Hopf- and period-doubling bifurcations were identi-
fied. The nonlinear dynamics of these period-doubling
bifurcations are analyzed for a discrete model of highly
interrupted milling. This investigation found the bifur-
cation to be subcritical, which draws the attention to the
limited practical validity of linear stability analysis.

Keywords Period-doubling · Delay · Discrete-time ·
Chatter

1 Introduction

The main limiting factor of efficiency and productivity
in machining operations is the occurrence of regenera-
tive vibrations (called chatter), which can increasewear
on machine tools and produce intolerable machined
surface quality [1]. One approach to limiting these
harmful vibrations is the design of milling tools with
irregular geometry [2]. The manufacturing of these
tools themselves is a complex process making their
design and prototyping expensive and time-consuming.
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The HIL environment allows for the emulation of cut-
ting forces related to any tool geometry and material
property without a need for prototyping.

It has previously been shown that the HIL system
developed in [3] is capable of reproducing the Hopf-
bifurcation-related self-excited vibrations in turning
processes and the inherent nonlinearities of the actu-
ation of this HIL system have also been studied. The
emulation of the real nonlinear dynamics of milling
processes is yet to be implemented in this HIL system;
however, the approximation of the linear terms alone
was sufficient for the detection of stability boundaries
and for the identification of possible bifurcation sce-
narios.

It is well known that the Hopf-bifurcations in
machining operations are subcritical, which is critical
because large enough perturbations can disrupt the lin-
early stable machining process [4–6]. It was shown in
[7] for a discrete model of highly interrupted cutting
that the period-doubling bifurcations are also subcriti-
cal. A similar discrete nonlinear model is investigated
in this paper with a detailed analytic approximation of
the resulting unstable limit cycles, which also involves
the migration of the center of the limit cycles. This is
significant in determining the parameter setup of the
so called fly-over effect when the tool loses contact
with the workpiece and further non-smooth nonlinear
effects appear.
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Fig. 1 Mechanical model of milling operations

2 Motivation and HIL experiments

A highly interrupted down-milling process is inves-
tigated with a simple straight edge milling tool at
low radial immersion. The corresponding mechanical
model is shown in Fig. 1.

The parametersm, c and k are themass, damping and
stiffness describing the relevant modal behavior of the
machine tool. The Z = 3-tooth milling tool has diam-
eter D, and the spindle speed is given byΩ in rotations
per minute. Parameters a (axial depth-of-cut), r (radial
depth-of-cut) and v (feed rate) determine the material
removal rate. The equation of motion describing this 1
degree of freedom oscillator is derived in [8]:

ẍ(t) + 2ζωn ẋ(t) + ω2
nx(t)=

aKs(t)

m
(h0+x(t − τ)−x(t)),

(1)

where h0 = vτ is the desired chip thickness and Ks(t)
is the specific cutting force variation determined by
the radial immersion (r/D) and the experimentally

Fig. 2 Components of the HIL system

Fig. 3 Specific cutting force variation and its emulation in the
HIL system

determined material properties. The delay parameter
τ = 60/(ZΩ) is the time period of the tooth-pass. The
angular natural frequency is ωn = √

k/m, damping
ratio is ζ = c/(2mωn), and damped natural frequency
is ωd = ωn

√
1 − ζ 2. These modal parameters were

carefully identified for the investigated experimental
HIL system leading to the relevant natural frequency
[3]

fd = ωd/(2π) = 3056Hz and ζ = 1.98%. (2)

In the HIL environment, the oscillations of a dummy
tool in a real spindle were measured at different axial
depth-of-cuts and spindle speeds at 1% radial immer-
sion. The position of the dummy tool is measured with
a laser based sensor. The emulated force is updated at
up to a 100 kHz frequency using a low inductance coil.

This high frequency is needed to follow the sudden
changes related to the teeth entering and/or leaving the
material. The sketch of the HIL system can be seen
in Fig. 2. The original and discretized specific cutting
force variations are presented in Fig. 3.

The oscillations of the dummy tool were measured
at each axial depth-of-cut and spindle speed combina-
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Fig. 4 Theoretical and experimental stability chart andwaterfall
diagram for the HIL system emulating a milling process

tion. The stability boundaries were determined based
on the resulting vibration amplitudes. The result of the
measurements can be seen in Fig. 4 panel a), com-
pared to the stability boundaries predicted by the semi-
discretization method [9]. The stability regions show
good agreement of the calculations and the measure-
ments.

For the experimental identification of the bifurca-
tions, the frequency content of the measured oscilla-
tions was used (Fig. 4 panel b).

In the region of the left-side lobe, the dominant
regenerative vibration frequency is close to the natu-
ral frequency of the dummy tool with no linear depen-
dence on the spindle speed Ω , which is in accordance
with the presence of Hopf-bifurcation. The right-side
lobe shows period-doubling frequencies, which are lin-
early dependent on the spindle speed and are harmon-
ics of the half of the tooth-pass frequency. The results
of these measurements show that the HIL system is
capable of emulating real milling processes by cap-
turing the period-doubling bifurcations that are unique
to milling processes, besides the Hopf-bifurcations
appearing also in simple turning processes.

3 Mechanical model of highly interrupted cutting

In highly interruptedmachining operations, the amount
of time the tool spends in contact with the material,
compared to free-flight is small, which is characterized

Fig. 5 Mechanical model of highly interrupted cutting

by the parameter ρ � 1 giving the ratio of cutting to
not cutting in time. This allows for the approximation
of the motion as combinations of free-flights of length
τ and impact-like short cutting segments [7].

The simplest mechanical model of highly inter-
rupted cutting and its relation to the continuous milling
process (1) through the specific cutting force variation
can be seen in Fig. 5; in this case, the ratio ρ can be
determined directly from the specific cutting force vari-
ation.

Let us introduce the notation

x j = x(t j ) = x( jτ) j = 0, 1, 2 . . . (3)

for state variables immediately after the impact-like
cutting and let x−

j denote variables immediately before
impact.

Since the short cutting segment is treated as an
instantaneous impact, the position of the tool does not
change (x j = x−

j ) and the change in velocity is related
to the impulse of the cutting force alone, as the inertial
forces have negligible effect in such a short time. This
means that the linear cutting force characteristics may
be described simply with a constant K1 (see Fig. 5)
such that its integral over ρτ is the same as that of the
specific cutting force variation

K1 = 1

ρτ

τ∫

(1−ρ)τ

Ks(t)dt. (4)
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The nonlinear cutting force can be calculated using
the instantaneous chip thickness h and the experimen-
tally verified 3/4 rule [10]

F(h) = Cah3/4 = Ca(h0 + x j−1 − x j )
3/4. (5)

The linear term K1 was identified as opposed to param-
eter C ; however, the Taylor-series of (5) can be deter-
mined around h = h0

F(h) ≈Cah3/40 + 3Ca

4h1/40

(x j−1 − x j )

− 3Ca

32h5/40

(x j−1 − x j )
2

+ 5Ca

128h9/40

(x j−1 − x j )
3 . . .

= 4

3
K1ah0 + K1a(x j−1 − x j )

− K1a

8h0
(x j−1 − x j )

2

+ 5K1a

96h20
(x j−1 − x j )

3 . . . . (6)

According to Eq. (6), the velocity change during the
impact simplifies to

m(ẋ j − ẋ−
j ) =

τ∫

(1−ρ)τ

F(h)dt, (7)

that is,

m(v j − v−
j ) = ρτ

4

3
K1ah0 + ρτK1a(x j−1 − x j )

− ρτ
K1a

8h0
(x j−1 − x j )

2

+ ρτ
5K1a

96h20
(x j−1 − x j )

3. (8)

The free-flight segment of the motion of the milling
tool is simply governed by the equation

ẍ(t) + 2ζωn ẋ(t) + ω2
nx(t) = 0 , t ∈ [t j − τ, t j − ρτ).

(9)

For a single τ -length period of free-flight and cutting,
we may start with initial conditions x j−1 and v j−1 and

calculate the solution of Eq. (9) to get

x(t j−1 + (1 − ρ)τ) ≈ x(t j−1 + τ) = x−
j = x j ,

v(t j−1 + (1 − ρ)τ) ≈ v(t j−1 + τ) = v−
j . (10)

Then use Eq. (8) to get the velocity after the impact:

v j = v−
j + 4ρτ

3m
K1ah0 + ρτ

m
K1a(x j−1 − x j )

− ρτ

m

K1a

8h0
(x j−1 − x j )

2

+ ρτ

m

5K1a

96h20
(x j−1 − x j )

3. (11)

This can all be done in closed form to get the nonlinear
discrete model of highly interrupted cutting

[
x j+1

v j+1

]
= A

[
x j
v j

]
+

⎡

⎣
0∑

p+q=2,3;p,q≥0
bpq x

p
j v

q
j

⎤

⎦

+
[

0
4ρτ
3m K1ah0

]
, (12)

where the matrix describing the linear part A takes the
form

A =
[
A11 A12

A21 A22

]
. (13)

Introducing the phase parameter ε by tan ε

= ζ/
√
1 − ζ 2, the coefficients of matrix A become

A11 = e−ζωnτ

√
1 − ζ 2

cos(ωdτ − ε),

A12 = e−ζωnτ

ωn
√
1 − ζ 2

sin(ωdτ),

A21 = −ωne−ζωnτ

√
1 − ζ 2

sin(ωdτ)

+ρτ

m
K1a

(

1 − e−ζωnτ

√
1 − ζ 2

cos(ωdτ − ε)

)

,

A22= e−ζωnτ

√
1−ζ 2

(
cos(ωdτ+ε)− ρτ

mωn
K1a sin(ωdτ)

)
.

(14)

4 Period-doubling bifurcation

The stability of highly interrupted milling in Eq. (12)
can simply be determined based on the eigenvalues of
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Fig. 6 Stability chart of the discrete model of highly interrupted
cutting

matrix A, while the fixed point (x∗, y∗) is given by
[
x∗
y∗

]
= (I − A)−1

[
0

4ρτ
3m K1ah0

]
. (15)

This fixed point in the discrete system corresponds to
a τ -periodic steady-state motion in time.

Considering a period-doubling bifurcation, we may
assume that one of the eigenvalues of A is λ1 = −1.
In this case, the other eigenvalue and the critical axial
depth-of-cut can be derived as

λ1 = −1,

λ2 = e−ζωnτ (sinh(ζωnτ) + cos(ωdτ)) , (16)

and

acr = mωd

ρτK1

cosh(ζωnτ) + cos(ωdτ)

sin(ωdτ)
. (17)

This closed-form result for the stability map may
be compared with the one provided by the semi-
discretizationmethod for the continuousmodel (1) (see
Fig. 6).

The stable domain predicted by this discrete model
is somewhat larger than it is for the continuous model
given with the numerical results of the semi-discretiza-
tion method; however, the placement of the lobes and
the types of bifurcations match well.

In order to investigate this period-doubling bifurca-
tion, we may introduce a bifurcation parameter μ as

a = acr + μ, (18)

which corresponds to the crossing of the stability
boundary seen in Fig. 6. The eigenvectors correspond-
ing to the eigenvalues in (16) are

s1 =
[

sin(ωdτ)

−ωn cos(ωdτ − ε) − ωdeζωnτ

]
,

s2 =
[

1
ωn

sin(ωdτ)

−ζ sin(ωdτ) + √
1 − ζ 2 sinh(ζωnτ)

]

. (19)

Using this eigenbasis, the modal transformation matrix
Tcr and modal coordinates ξ and η for the critical
parameters may be defined:

Tcr = [
s1 s2

]
,

[
x
y

]
= Tcr

[
ξ

η

]
. (20)

This transformation is applied for Eq. (12), and its com-
bination with a shifting in accordance with Eq. (15)
results in the equation

[
ξ j+1

η j+1

]
= Bcr

[
ξ j
η j

]
+

⎡

⎢
⎣

∑

p+q=2,3;p,q≥0
cpqξ

p
j η

q
j

∑

p+q=2,3;p,q≥0
dpqξ

p
j η

q
j

⎤

⎥
⎦ ,

(21)

where

Bcr =
[−1 0
0 λ2

]
. (22)

The two-dimensional problem (21) can be extended
with a parameter dimension μ j+1 = 1 ·μ j and as such
be divided into a two-dimensional center subspace,
spannedby ξ andμ, corresponding toλ1 = −1,λμ = 1
critical eigenvalues and a stable subspace, spanned by
η, corresponding to the stable eigenvalue |λ2| < 1. For
some value of the bifurcation parameter μ, the modal
transformation takes the form
[
x
y

]
= T(μ)

[
ξ

η

]
, (23)

and

[
ξ j+1

η j+1

]
=B(μ)

[
ξ j
η j

]
+

⎡

⎢
⎣

∑

p+q=2,3;p,q≥0
Cpq(μ)ξ

p
j η

q
j

∑

p+q=2,3;p,q≥0
Dpq(μ)ξ

p
j η

q
j

⎤

⎥
⎦,

(24)

where

B(μ) =
[−1 + β(μ) 0

0 Λ2(μ)

]
. (25)

We may then construct an approximation of the center
manifold tangent to the center subspace, such that the
solutions of Eq. (24) converge to this manifold [11]

η = H(ξ, μ) = H20ξ
2 + H11ξμ + H02μ

2. (26)

The coefficients of this quadratic formulation are cal-
culated by finding the values for which restricting the
motion to the center manifold fulfills the two equations
of (24). First, η j = H(ξ j , μ) and η j+1 = H(ξ j+1, μ)

are substituted into Eq. (24). Then the Taylor-series
approximation of the μ dependent terms is used, for
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which the zeroth-order terms are the parameters defined
in Eqs. (21) and (22). Finally, only terms of up to the
second order of ξ j andμ are kept. The polynomial bal-
ance of these terms results in the coefficients

H20 = d20
1 − λ2

, H11 = 0, H02 = 0, (27)

where

d20=− ωn

2h0

sin(ωdτ) (cos(ωdτ) + cosh(ζωnτ))

cos(ωdτ)+ cosh(ζωnτ)+2 sinh(ζωnτ)
.

(28)

After restriction to the center manifold, the dynam-
ical system is described by

ξ j+1 = g1(μ)ξ j + g2(μ)ξ2j + g3(μ)ξ3j + O(ξ4j ), (29)

where

g1(μ) = −1 + β(μ),

g2(μ) = C20(μ),

g3(μ) = C30(μ) + C11(μ)H20. (30)

The second degree term can be eliminated from Eq.
(29) using the near identity transformation

ξ = u + f2(μ)u2, (31)

where

f2(μ) = g2(μ)

g21(μ) − g1(μ)
, (32)

resulting in

u j+1 = (−1 + β(μ)) u j + δ(μ)u3j . (33)

The coefficient δ(μ) in Eq. (33) is similar in role to the
Poincaré–Lyapunov constant in Hopf-bifurcations and
determines the criticality of the period-doubling bifur-
cation. Let us assume that the sign of δ(μ) does not
change for any μ sufficiently close to the critical point.
In this way, the zeroth-order Taylor-series approxima-
tion may be used to determine its sign:

f20 = f2(0) = c20
2

,

δ0 = δ(0) = c220 + c30 + c11
d20

1 − λ2
. (34)

We can see that all of the terms in Eq. (34) are param-
eters defined in Eqs. (21) and (22) at the critical point.

After some algebraic manipulations, f20 and δ0 can be
given as

f20 = 1

4h0

sin(ωdτ) (cos(ωdτ) + cosh(ζωnτ))

cos(ωdτ) + cosh(ζωnτ) + 2 sinh(ζωnτ)
,

δ0 = − 5

12h20

sin2(ωdτ)(cos(ωdτ) + cosh(ζωnτ))

cos(ωdτ) + cosh(ζωnτ) + 2 sinh(ζωnτ)

< 0, (35)

where the result for δ0 agrees with the one presented in
[12], while the new formula for f20 will become rele-
vant during the identification of the periodic solutions.
The δ0 parameter is always negative, which leads to the
bifurcation being subcritical. The simplest way to find
the approximation of the unstable limit cycle related to
this bifurcation is to perform one more scaling trans-
formation in Eq. (33)

u = 1√|δ(μ)|w. (36)

Making use of δ(μ) < 0, transformation (36) results in

w j+1 = (−1 + β(μ)) w j − w3
j . (37)

Using the Taylor-series approximation

β(μ) = β(0) + dβ

dμ
(0)μ + O(μ2), (38)

Eq. (37) has a 2τ -periodic solution for

w2
j = β1μ + O(μ2). (39)

Here, β1 is a parameter still to be determined. How-
ever, this is simply related to the change of the critical
eigenvalue for a givenμ and can be calculated from the
linear system alone. Let us investigate matrix A for a
given parameter μ

A(μ) =
[

Acr
11 Acr

12
Acr
21 + μα21 Acr

22 + μα22

]
, (40)

where Acr
i j are the elements ofA atμ = 0. Constructing

the characteristic equation for the eigenvalue−1+β(μ)

and noticing that −1 fulfills this equation for μ = 0,
we find

β2(μ) − (2 + μα22 + Acr
22 + Acr

11)β(μ)

+ μα22(A
cr
11 + 1) − μα21A

cr
12 = 0. (41)

Differentiation of Eq. (41) by μ results in

dβ(μ)

dμ
= α22(β(μ) − 1 − Acr

11) + α21Acr
12

2(β(μ) − 1) − μα22 − Acr
22 − Acr

11
,
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β1 = dβ

dμ
(0) = α22(Acr

11 + 1) − α21Acr
12

2 + Acr
22 + Acr

11
< 0. (42)

After some algebraic manipulation, we find

β1=−2ρτK1

mωd

sin(ωdτ)

cos(ωdτ)+ cosh(ζωnτ)+2 sinh(ζωnτ)
,

(43)

which is always negative. This means that the dynam-
ical system described by w has a solution

wk = (−1)k
√

β1μ. (44)

Now, we can reverse the transformations (36), (31) and
(23) approximatedwith their zeroth-orderTaylor-series
inμ, to find the approximation of the limit cycle ampli-
tude in the order of

√
μ and the approximation of the

center of the limit cycle in the order of μ:

uk = (−1)k
√

−β1

δ0
μ ,

ξk = (−1)k
√

−β1

δ0
μ + f20

(−β1

δ0

)
μ,

xk = (−1)k sin(ωdτ)

√
−β1

δ0
μ

+ sin(ωdτ)

(−β1

δ0

) (
f20 + H20

ωn

)
μ. (45)

The result (45) means that there exists an unsta-
ble limit cycle in the linearly stable parameter domain.
This is a critical case from engineering viewpoint since
the machining process might be disrupted by a large
enough perturbation of the system even for (linearly)
stable cutting parameters.

In order to verify these results numerically, simu-
lations were conducted. This could be done relatively
simply considering that (12) is a discrete system. The
initial conditions for these simulationswere close to the
center manifold; thus, the point where the initial condi-
tions become large enough for the solution to diverge
corresponds to initial conditions just “outside” the limit
cycle calculated in Eq. (45). The results of these sim-
ulations can be seen in Fig. 7, and the estimates match
well for both the amplitudes and the offset of the center
of the limit cycles.

This subcritical behavior describes the dynamics of
highly interrupted cutting well as long as the tool is still
able to make cuts with all its cutting edges. Once the

Fig. 7 Simulated and analytic unstable limit cycles

Fig. 8 Analytical prediction of unstable limit cycles of the
period-doubling bifurcation and the fly-over effect for h0 = 10
μm

displacements are large enough for any of the cutting
edges to pass over the workpiece, fly-over occurs, that
is, the instantaneous chip thickness h(tk) = h0+xk−1−
xk becomes zero, or virtually negative. Formula (45)
provides another critical bifurcation parameterμ∗ < 0,
and a related new critical axial depth-of-cut

a∗ = acr − δ0h20
4β1 sin2(ωdτ)

, (46)

where fly-over first occurswith the unstable limit cycle.
In this calculation, the center of the limit cycle deter-
mined by f20 does not appear; however, it affects the
conservative estimation of the allowable perturbation
(see Fig. 8):

|Δx | ≤ 1

2
h0 −

∣∣∣∣∣

f20 + H20
ωn

4 sin(ωdτ)

∣∣∣∣∣
h20 . (47)

For depth-of-cut a < a∗, the fly-over effect erases the
unstable 2τ -periodicmotion andmakes the steady-state
cutting globally stable.
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5 Conclusions

Highly interrupted machining processes were investi-
gated. First, a HIL experiment was conducted, which
was able to reproduce both the Hopf and period-
doubling bifurcations present in milling operations.
Then a discrete nonlinear model of highly interrupted
cutting was analyzed. Using this model, it was shown
that the period-doubling bifurcations are subcritical.
The developed closed form expressions for the unstable
periodic motion provides an efficient method to accu-
rately estimate the parameter region where the fly-over
effect appears.
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