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Abstract We consider a SIR-type compartmental
model divided into two age classes to explain the sea-
sonal exacerbations of bacterial meningitis, especially
among children outside of the meningitis belt. We
describe the seasonal forcing through time-dependent
transmission parameters that may represent the out-
break of the meningitis cases after the annual pilgrim-
age period (Hajj) or uncontrolled inflows of irregular
immigrants. We present and analyse a mathematical
model with time-dependent transmission. We consider
not only periodic functions in the analysis but also gen-
eral non-periodic transmission processes.We show that
the long-time average values of transmission functions
can be used as a stability marker of the equilibrium.
Furthermore, we interpret the basic reproduction num-
ber in case of time-dependent transmission functions.
Numerical simulations support and help visualize the
theoretical results.
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1 Introduction

Bacterial meningitis is a severe infection that occurs
as an explosive epidemic every 5–10 years in the sub-
Saharan African meningitis belt, as well as seasonal
outbreaks in different parts of the world [1]. The bac-
terium Neisseria meningitidis is known to be the main
cause of bacterial meningitis. It has been reported that
the infection has high rates of fatality and may leave
serious sequelae in survivors [2]. Six (A,B,C,W,X, and
Y ) of the twelve serogroups are responsible for nearly
all cases of invasive meningococcal disease (IMD),
with a large variation of serogroups in different age
groups and geographic regions [3]. IMD is transmitted
through respiratory droplets by a close contact, and the
asymptomatic carriers play a major role in the spread
of the disease, although only less than 1% of them
develop meningococcal disease [4]. The seasonal as
well as irregular outbreak patterns of IMD have been
discussed by various researchers in the concept of dry
season (from December to May) along the meningitis
belt [5–7]. IMD displays seasonal exacerbations out-
side of the meningitis belt, too. In 1987, an outbreak
was caused by a strain of N. meningitidis serogroup A
associated with the Hajj pilgrimage [8], which is one of
the religious duties of Islam that consists of visiting the
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Kaaba in Mecca at least for a week and participating
in communal worship processions. According to the
data of the General Authority for Statistics (GASTAT)
of the Kingdom of Saudi Arabia, 2.4 million Muslims
from different parts of the world joined to pilgrimage
in 2019, of which 634 thousand were domestic pil-
grims [9]. The geographic and ethnic diversity of the
people promote the transmission of respiratory infec-
tions during the Hajj [10]. Furthermore, pilgrims from
hyper-endemic areas, including the African meningitis
belt, carry different N. meningitidis strains to this com-
munity that will soon transfer the disease to their home
country, and thus, seasonal outbreaks all over the world
come forward [4,8,11–14].

The Saudi authorities have required all Hajj pilgrims
to receive the quadrivalent (serogroups A, C,W, andY)
meningococcal (MenACWY) polysaccharide vaccine
prior to their arrival in Saudi Arabia since 2002 [15].
However, there is no vaccine available to protect people
against all serogroups today [16]. In addition,meningo-
coccal polysaccharide vaccination does not prevent the
acquisition of carriage, whereas a quadrivalent conju-
gate vaccine may prevent acquisition of new carriage.
Nevertheless, no vaccine can remove an existing car-
riage that may take two months or more [13]. In some
studies, researchers have noticed the seasonal spikes of
IMD among the household contacts of returning pil-
grims [4,17–19].

Pilgrimage and Umrah (a voluntary pilgrimage to
Mecca) were temporarily suspended in 2020 because
of the COVID-19 pandemic, and Hajj pilgrimage was
limited to just 60,000 citizens and residents in 2021 by
the Saudi Arabian authorities. However, as of August
2021 it was announced that the requests of two million
Muslim pilgrims who want to perform Umrah from
abroad will be accepted every month. As one can pre-
dict heuristically, the number of pilgrims may increase
in the coming yearswith the decrease in the effect of the
COVID-19 pandemic. Taking into account the spread
dynamics of infectious diseases, preventive measures
may also be increased and new regulations may be put
into effect during the worship process [20,21].

Since Daniel Bernoulli’s publication on an early
mathematical model for smallpox [22], mathematical
epidemiology has largely been devoted to explaining
the dynamics of the spread of contagious diseases and
suggesting control strategies. There are various mod-
elling approaches for the spread of bacterialmeningitis,
but only a few of them deal with the seasonal trans-

mission dynamics of the disease [23–27]. On the other
hand, there exist modelling studies on the seasonality
of several other infectious diseases (influenza, measles,
chickenpox, pertussis,malaria, etc.) or epidemiological
models with a generic aspect [28–34].

In this paper, we consider a mathematical model
motivated by explaining possible seasonal outbreaks
of IMD that are caused by the returning pilgrims from
Hajj, who transmit the disease to their close contacts, or
other mass movements such as uncontrolled migration.
We draw attention to the fact that the time-dependent
transmission rates do not have to be periodic functions.
Consequently, we present a mathematical analysis of
the model under time-dependent transmission param-
eters in the most general sense. We include various
examples for seasonal exacerbation of IMD in the sim-
ulations.

This paper is organized as follows. The main mod-
elling ideas are given in Sect. 2. Basic properties of
the nonlinear model are derived in Sect. 3, and a linear
stability analysis of the disease-free equilibrium is pre-
sented in Sect. 4. The concept of the basic reproduction
number is discussed in Sect. 5. The analytical results
are numerically verified in Sect. 6. A brief conclusion
in Sect. 7 ends the paper.

2 Modelling ideas

Our starting point is the autonomous model given in
[35], which describes the transmission dynamics of a
contagious disease between children and adults. While
presenting a general approach that could be applied to
different childhood diseases, the authors also mention
there the specific example of IMD carried by Hajj pil-
grims. Since IMD displays temporary outbreaks rather
than stable epidemics all over the world except the
meningitis belt, a non-autonomous system may bet-
ter explain the seasonal exacerbation of the disease.
Inspired by this idea, an age-structured model driven
by a seasonal forcing function was introduced in [34]
that takes into account the variability of the climate
describing the transmission dynamics between children
and adults, where the authors obtained sufficient con-
ditions that assure the existence and global attractivity
of a positive periodic solution. In the present paper, we
concentrate on the stability of the disease-free state in
the time-dependent transmission case and show that the
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Fig. 1 Flowchart of model (1)

mean values of transmission functions enable to define
the exacerbation of IMD as an outbreak.

The basic structure of the model and the transmis-
sion routes are shown in Fig. 1. Our aim is to investi-
gate the seasonal spikes of IMD among the household
contacts of returning pilgrims. Although people of any
age can develop IMD, children are at increased risk of
the disease [36]. The incidence of IMD in infants and
young children (aged less than 5 years) occupies 75%
of all cases of meningococcal meningitis andmeningo-
coccemia in children. Further, the second peak of inci-
dence according to age scale appears in adolescents
and young adults [14]. In this sense, the population
is divided into two age groups: adults and children,
indicated by the subscripts A and C in this paper. The
key assumption here is that these close contacts are
households and that children largely constitute the tar-
get group. However, in the absence of a large dataset on
the prevalence of the IMD in sub-age groups of child-
hood, the childhood is limited to a single age group.
As a result of this assumption, the interpretation of the
transmission parameters of the disease is limited to two
age groups.As usual, S, I , and R represent the suscepti-
ble, infectious, and recovered individuals, respectively.

We assume that all adults are vaccinated and they
may carry IMD to the children with a time-dependent
transmission rate. While the vaccines for IMD offer
protection against some most common serogroups of
the disease, the rarer serogroups of disease may cause
novel outbreaks. The available literature claims that the
majority of pilgrims receive the polysaccharide Men-
ACWY vaccine and that this does not affect carriage
and onward transmission. A more complete compli-
ance and transition to a conjugate MenACWY vaccine
could provide more robust and broader protection for

pilgrims, and additional immunization options could be
considered [37]. Because of not displaying any symp-
toms of the disease, the recovery process for adults
is neglected. Although the prevalence of the disease
varies in age subgroups of children, we do not define an
age threshold between adult and child classes clearly,
as we do not analyse any other age subgroup of chil-
dren. We assume that all surviving children are recov-
ered, although some of them are effected by neurologic
sequelae [38]. Certainly, children continuing their lives
with severe sequelae cannot be considered as a com-
plete recovery, but since our study focuses on the spread
of the disease rather than recovery, leaving sequelae is
not considered as a distinct class.

The time-dependent parameters βAA(t), βCC (t) and
βAC (t) represent the transmission rate among adults,
among children, and between adults and children,
respectively. We ignore the transmission from chil-
dren to adults since biological literature indicates that
children (< 18 years) are drastically more likely to
contract IMD than adults. The parameter BC is the
number of daily births in the households of pilgrims,
and BA represents the daily entrance of adult people
to the system. Further, μ represents the natural death
rate and r denotes the recovery rate from the disease.
The parameters BA, BC , μ, and r are positive and the
time-dependent transmission rates.βAA(t),βAC (t) and
βCC (t) are taken to be non-negative bounded functions.

Based on the foregoing considerations, we arrive
at the following non-autonomous model, which is an
extension of the autonomous model studied in [35].

dSA
dt

= BA − βAA(t)IASA − μSA

dSC
dt

= BC − (
βCC (t)IC + βAC (t)IA

)
SC − μSC

d IA
dt

= βAA(t)IASA − μIA

d IC
dt

= (
βCC (t)IC + βAC (t)IA

)
SC − μIC − r IC

dRC

dt
= r IC − μRC .

(1)

3 Basic properties of the nonlinear system

We first show the positivity and boundedness of the
solutions of the model (1).
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Theorem 3.1 Solutions of the system (1) are non-
negative and bounded for all t > 0whenever the initial
values are non-negative.

Proof Treating the right-hand side of each equation in
the system (1) as a linear equation of the variable on
the left, the solutions can be written as

SA(t) = φAA(t)
(
SA(0) + BA

∫ t

0
φ−1
AA(τ ) dτ

)

SC (t) = φAC (t)
(
SC (0) + BC

∫ t

0
φ−1
AC (τ ) dτ

)

IA(t) = IA(0) · exp
{ ∫ t

0
(βAA(τ )SA(τ ) − μ) dτ

}

IC (t) = φCC (t)
(
IC (0)

+
∫ t

0
βAC (τ )IA(τ )SC (τ )φ−1

CC (τ ) dτ
)

RC (t) = e−μt
(
RC (0) + r

∫ t

0
IC (τ )eμτ dτ

)
. (2)

where

φAA(t)=exp
{
−

∫ t

0
[βAA(τ )IA(τ ) + μ] dτ

}

φAC (t)=exp
{
−
∫ t

0
[βCC (τ )IC (τ )

+βAC (τ )IA(τ )+μ]dτ
}

φCC (t)=exp
{ ∫ t

0
[βCC (τ )SC (τ ) − μ − r ] dτ

}

The non-negativity of SA, SC , and IA are immediate
from the first three equations in (2) since the φ are pos-
itive functions, and the non-negativity of IC and RC

follows from the last two equations due to integration
of non-negative functions. To show boundedness, con-
sider the equations for the adult and children population
sizes, NA = SA + IA and NC = SC + IC + RC , as well
as the total population size N = NA + NC , obtained
by adding appropriate equations from the model (1):

dNA

dt
= BA − μNA

dNC

dt
= BC − μNC

dN

dt
= BA + BC − μN . (3)

The system (3) has solutions

NA(t) = SA(t) + IA(t)

= BA

μ
+

(
NA(0) − BA

μ

)
e−μt (4a)

NC (t) = SC (t) + IC (t) + RC (t)

= BC

μ
+

(
NC (0) − BC

μ

)
e−μt (4b)

N (t) = BA + BC

μ
+

(
N (0) − BA + BC

μ

)
e−μt ,

(4c)

which show that the non-negative solutions of (1) are
bounded for t > 0. ��
Remark 3.2 Note that only thenon-negativity ofβAC (t)
is needed to show the non-negativity and hence the
boundedness of the solutions.

On the basis of (4), a reduction is possible in the
equation (1),whichyields an exact solution for the adult
subpopulations. Solving for SA from (4a) as

SA(t) = BA

μ
+ (SA(0) + IA(0) − BA

μ
)e−μt − IA(t)

(5)

and substituting into the equation for IA in (1), we
obtain
d IA
dt

=
(
λ3(t) + k1βAA(t)e−μt

)
IA − βAA(t)I 2A, (6)

where k1 = (SA(0) + IA(0) − BA
μ

) is a constant that
depends on the initial conditions and

λ3(t) = βAA(t)
BA

μ
− μ. (7)

(The reason for the choice of notationwill become clear
in the next section, where wewill see that λ3(t) appears
as one of the time-dependent eigenvalues of the sys-
tem’s Jacobian.) Equation (6) is a Bernoulli differential
equation and can be solved after reduction to a linear
equationvia thewell-knownsubstitutionu = I−1

A . This
gives an exact solution for IA(t) as

IA(t) = IA(0) η(t)

1 + IA(0)
∫ t

0
βAA(τ ) η(τ ) dτ

, (8)

where

η(t) = exp

{∫ t

0
[λ3(τ ) + k1βAA(τ )e−μτ ] dτ

}
.
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Furthermore, substituting (8) into (5) gives the exact
solution for SA(t). Therefore, the dynamics of the adult
subgroups are explicitly determined.

One can followa similar procedure for the young age
groups. Although in this case it is not possible to obtain
explicit formulas for the solutions, one can reduce the
problem essentially to a knowledge of IC . Indeed, if IC
is known, then RC can be found from the last equation
in (1) as

RC (t) = e−μt
(
RC (0) + r

∫ t

0
IC (τ )eμτ dτ

)
, (9)

following which, SC can be determined from (4b) as

SC (t) = BC

μ
+ k2e

−μt − IC (t) − RC (t), (10)

where k2 = (SC (0) + IC (0) + RC (0) − BC
μ

). Substi-
tuting (10) into the equation for IC in (1), we obtain

d IC
dt

= βAC (t)IA(t)
( BC

μ
+ k2e

−μt − RC (t)
)

+
(
λ4(t) + βCC (t)(k2e

−μt

− RC (t)) − βAC (t)IA(t)
)
IC

− βCC (t)I 2C (11)

where

λ4(t) = βCC (t)
BC

μ
− μ − r. (12)

Thus, the solution of the system (1) is in principle
reduced to solving (11). With IA(t) being a known
function given by (8), equation (11) is a Riccati-like
differential equation for IC , except that the expression
for RC that must be substituted from (9) further con-
tains an integral of IC .

Although finding the exact solution of (11) is diffi-
cult, the foregoing derivation already identifies the key
quantities thatwill prove to be important for the dynam-
ical behaviour of the model (1), namely λ3 and λ4, as
defined in (7) and (12). In the next section, we will see
that these are the two time-dependent eigenvalues of
the system’s Jacobian matrix and thus play a decisive
role in the stability of the equilibrium (as the remaining
eigenvalues are constant and negative).

4 Disease-free equilibrium and linear stability
analysis

With time-dependent transmission rates, the system (1)
turns out to have a single equilibrium point, which is
the disease-free state.

Theorem 4.1 If βAA(t) and βCC (t) are non-constant
functions, then the system (1) has a unique equilibrium

(S∗
A, S∗

C , I ∗
A, I ∗

C , R∗
C ) = ( BA

μ
,
BC
μ

, 0, 0, 0
)
, which cor-

responds to the disease-free state.

Proof Let (S∗
A, S∗

C , I ∗
A, I ∗

C , R∗
C ) denote an equilibrium

point of the system (1). Thus, we have

0 = BA − βAA(t)I ∗
AS

∗
A − μS∗

A

0 = BC − (
βCC (t)I ∗

C + βAC (t)I ∗
A

)
S∗
C − μS∗

C

0 = I ∗
A

(
βAA(t)S∗

A − μ
)

0 = (
βCC (t)I ∗

C + βAC (t)I ∗
A

)
S∗
C − μI ∗

C − r I ∗
C

0 = r I ∗
C − μR∗

C .

By the third equation, either I ∗
A = 0 or βAA(t)S∗

A =
μ > 0. The latter cannot hold since it implies S∗

A �= 0
and thus βAA(t) = μ/S∗

A, which is not possible if
βAA(t) is non-constant. Therefore, I ∗

A = 0. Substi-
tuting this value in the fourth equation and follow-
ing a similar reasoning, we find I ∗

C = 0. Substi-
tuting these in the remaining equations, we obtain
(S∗

A, S∗
C , I ∗

A, I ∗
C , R∗

C ) = (BA/μ, BC/μ, 0, 0, 0). ��
We associate the outbreaks of the disease as devia-

tions from thedisease-free state, and to analyse themwe
consider the linear variational equation for (1) around
the unique equilibrium point (S∗

A, S∗
C , I ∗

A, I ∗
C , R∗

C ) =
(BA/μ, BC/μ, 0, 0, 0). To this end, we denote devia-
tions from the equilibrium values by �SA = SA − S∗

A,
�SC = SC −S∗

C ,�IA = IA− I ∗
A,�IC = IC − I ∗

C , and
�RC = RC−R∗

C . Then the linear variational equations
are
d �SA
dt

= −μ�SA − βAA(t)
BA

μ
�IA

d �SC
dt

= −μ�SC−βAC (t)
BC

μ
�IA−βCC (t)

BC

μ
�IC

d �IA
dt

=
(
βAA(t)

BA

μ
− μ

)
�IA

d �IC
dt

= βAC (t)
BC

μ
�IA+

(
βCC (t)

BC

μ
−μ−r

)
�IC

d �RC

dt
= r �IC − μ�RC , (13)
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or, equivalently, in matrix form

d

dt
� = J ∗(t)�,

where � = [
�SA �SC �IA �IC �RC

]�
and

J ∗(t) =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢
⎣

−μ 0 −βAA(t) BA
μ

0 0

0 −μ −βAC (t) BC
μ

−βCC (t) BC
μ

0

0 0 βAA(t) BA
μ

− μ 0 0

0 0 βAC (t) BC
μ

βCC (t) BC
μ

− μ − r 0

0 0 0 r −μ

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥
⎦

.

We note that the eigenvalues of J ∗ are λ1,2,5 = −μ,
λ3(t) = βAA(t) BA

μ
−μ, andλ4(t) = βCC (t) BC

μ
−μ−r .

The time-dependent eigenvalues λ3(t) and λ4(t) are
precisely the quantities defined in (7) and (12), and they
play an important role in the stability of the equilibrium,
as we will see below.

The solution to the linear variational system (13) can
be written as

�SA(t) = �SA(0) e−μt

− BA

μ

∫ t

0
e−μ(t−τ)βAA(τ )�IA(τ ) dτ

(14a)

�SC (t) = �SC (0) e−μt

− BC

μ

∫ t

0
e−μ(t−τ)

(
βAC (τ )�IA(τ )

+ βCC (τ )�IC (τ )
)
dτ (14b)

�IA(t) = �IA(0) · η3(t) (14c)

�IC (t) = �IC (0) · η4(t)

+ BC

μ

∫ t

0
βAC (τ )�IA(τ )

η4(t)

η4(τ )
dτ (14d)

�RC (t) = �RC (0) e−μt

+ r
∫ t

0
e−μ(t−τ) �IA(τ ) dτ. (14e)

where the positive functions η3 and η4 are defined by

η3(t) = exp

{∫ t

0
λ3(τ ) dτ

}

η4(t) = exp

{∫ t

0
λ4(ω) dω

}
.

We investigate the conditions under which the pertur-
bations � around the equilibrium go to zero. The next
lemma shows that the question can be reduced to a
consideration of only the pair (�IA,�IC ).

Lemma 4.2 lim
t→∞ �(t) = 0 if and only if lim

t→∞ �IA(t)

= limt→∞ �IC (t) = 0.

Proof If� → 0, then�IA and�IC clearly go to zero,
being components of �. To prove the other direction,
let�NA(t) = �SA(t)+�IA(t),�NC (t) = �SC (t)+
�IC (t) + �RC (t), and �N (t) = �NA(t) + �NC (t).
Then from (13),

d �NA

dt
= −μ�NA,

d �NC

dt
= −μ�NC ,

d �N

dt
= −μ�N ,

yielding

�NA(t) = �NA(0)e−μt , �NC (t) = �NC (0)e−μt ,

�N (t) = �N (0)e−μt .

Thus, �NA(t), �NC (t), and �N (t) go to zero as t →
∞.

Now assume that both �IA and �IC go to 0 as t →
∞. Then �SA → 0 since �SA = �NA − �IA and
both terms on the right go to zero. Similarly,�SC → 0
since�SC = �NC−�IC−�RC and each term on the
right goes to zero. To show that �RC → 0 as t → ∞,
we compute the limit from (14e) using L’Hospital’s
rule:

lim
t→∞ �RC (t) = lim

t→∞
[
�RC (0) e−μt

+e−μt
∫ t

0
reμτ�IA(τ ) dτ

]

= lim
t→∞

∫ t
0 re

μτ�IA(τ ) dτ

eμt

= lim
t→∞

reμt�IA(t)

μeμt

= lim
t→∞

r

μ
�IA(t) = 0.

Hence, � → 0 since all of its components go to zero.
��

On the basis of the above lemma, we focus on
the conditions that yield lim

t→∞ �IA(t) = 0 and
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lim
t→∞ �IC (t) = 0. The first limit is straightforward,

as (14c) implies that a necessary and sufficient condi-
tion for �IA(t) → 0 is that

∫ ∞
0 λ3(t) dt = −∞. The

case for �IC (t) → 0 is more involved: by (14d) it can
be seen that a similar condition

∫ ∞
0 λ4(t) dt = −∞

is only a necessary condition for �IC (t) → 0 but
not a sufficient one. A full characterization of stabil-
ity therefore requires consideration of additional con-
ditions. Below we list several relevant conditions and
investigate their implications for stability.

(C1)
∫ ∞
0 λ3(t) dt = ∫ ∞

0 (βAA(t) BA
μ

− μ)dt = −∞.

(C2)
∫ ∞
0 λ4(t) dt = ∫ ∞

0 (βCC (t) BC
μ

− μ − r)dt =
−∞.

(C3) There existsM > 0 such thatλ4(t) = βCC (t) BC
μ

−
μ − r ≤ −M for t ≥ 0.

(C4) There exists a > 0 such that aβAC (t) ≤
βAA(t) BA

μ
− βCC (t) BC

μ
+ r for t ≥ 0, or equiv-

alently aβAC (t) ≤ λ3(t) − λ4(t) for t ≥ 0.

As noted above, the first two conditions (C1)–(C2)
are necessary for the stability of equilibrium solution,
which we state as a theorem.

Theorem 4.3 The disease-free equilibrium of the non-
autonomous system (1) is unstable if either (C1) or (C2)
fails to hold.

Proof If either (C1) or (C2) does not hold, then the
variations�IA(t) �→ 0 or�IC (t) �→ 0 since the expo-
nential terms in (14c) or (14d) do not tend to zero, and
the result follows from Lemma 4.2. ��

For the remainder of this section, we focus on the
local stability of the unique equilibrium solution of (1),
in the sense of stability of the zero solution of the linear
variational equation (13).

Theorem 4.4 Suppose the condition (C1) holds. Then
all solutions of the variational equation (13) decay to
zero if either of the conditions (C3) or (C4) holds.

Proof Condition (C1) guarantees that �IA(t) → 0 by
(14c). By Lemma 4.2, it suffices to show �IC (t) → 0.
We consider the limit under each of the conditions (C3)
and (C4) separately.

i) If (C3) holds, then
∫ ∞
0 λ4(t) dt ≤ ∫ ∞

0 −M dt =
−∞, so the first term on the right-hand side of (14d)
goes to zero. For the remaining term, the limit is cal-

culated using L’Hospital’s rule as

lim
t→∞

∫ t

0
βAC (τ )�IA(τ )

BC

μ
e− ∫ τ

0 λ4(w) dw dτ

exp

{
−

∫ t

0
λ4(τ ) dτ

}

= lim
t→∞

βAC (t)�IA(t) BC
μ

e− ∫ t
0 λ4(w) dw

−λ4(t) · exp
{
−

∫ t

0
λ4(τ ) dτ

}

= lim
t→∞

βAC (t)�IA(t) BC
μ

−λ4(t)
= 0,

showing that �IC (t) → 0.
ii) If (C4) holds, then λ3(t) − λ4(t) ≥ 0 since

a is positive and βAC is non-negative. Therefore,∫ ∞
0 λ4(t) dt ≤ ∫ ∞

0 λ3(t) dt = −∞ by (C1). This
yields

∫ ∞
0 λ4(t) dt = −∞, i.e. the condition (C2).

Thus, the first term on the right-hand side of (14d) goes
to zero. Now, using (14c) and (C4), we write the inte-
gral in the second term of (14d) as

∫ t

0
βAC (τ )�IA(τ )

BC

μ
e− ∫ τ

0 λ4(w) dw

= �IA(0)
BC

μ

∫ t

0
βAC (τ )e

∫ τ
0 [λ3(w)−λ4(w)] dwdτ

≤�IA(0)BC

aμ

∫ t

0
(λ3(τ )0−λ4(τ )) e

∫ τ
0 [λ3(w)−λ4(w)]dwdτ

= �IA(0)BC

aμ

(
e
∫ τ
0 [λ3(w)−λ4(w)]dw − 1

)
.

Hence, the second term on the right-hand side of (14d)
is bounded above by

�IA(0)BC

aμ

(
exp

{∫ t

0
λ3(τ ) dτ

}
− exp

{ ∫ t

0
λ4(τ ) dτ

})
,

which goes to zero as t → ∞ since (C1) and (C2) hold.
Hence, �IC (t) → 0. ��

We now establish stability criteria in terms of aver-
age quantities. Recall that if f : [0,∞) → R is inte-
grable on [0, t] for all t > 0, then the average of f is
the (extended) real number defined by

f̄ := lim
t→∞

1

t

∫ t

0
f (τ ) dτ. (15)

If f is a T -periodic function, then its average (15) can
be calculated over one period:

f̄ = 1

T

∫ T

0
f (t) dt. (16)
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Useful results about averages are summarized in
Appendix.

We list further conditions in terms of averages that
play a role in stability.

(C5) β̄AA <
μ2

BA
and β̄CC <

μ(μ+r)
BC

, or equivalently,

λ̄3 < 0 and λ̄4 < 0.
(C6)

∫ t
0 (βCC (τ )−β̄CC ) dτ , or equivalently

∫ t
0 (λ4(τ )−

λ̄4) dτ , is bounded for t ≥ 0.
(C7) β̄AA

BA
μ

< β̄CC
BC
μ

− r < μ, or equivalently,

λ̄3 < λ̄4 < 0.

Theorem 4.5 All solutions of the variational equation
(13) decay to zero if either (C7) holds, or else both (C5)
and (C6) hold together.

Proof In both cases �IA(t) → 0, so by Lemma 4.2 it
suffices to show that �IC (t) → 0. Now the first term
on the right-hand side of (14d) goes to zero by Lemma
A.3. It remains to show that the second term

exp

{∫ t

0
λ4(τ ) dτ

}

·
∫ t

0
βAC (τ )�IA(τ )

BC

μ
e− ∫ τ

0 λ4(w) dw dτ (17)

goes to zero as well, whichwewill establish under each
of the given assumptions.

i) Suppose both (C5) and (C6) hold.Multiplying and
dividing the expression (17) by e−λ̄4t gives

exp

{∫ t

0
(λ4(τ ) − λ̄4) dτ

}

︸ ︷︷ ︸
bounded by (C6)

·
∫ t
0 βAC (τ )�IA(τ )

BC
μ

e− ∫ τ
0 λ4(w) dw dτ

e−λ̄4t
.

Taking the limit for the fraction using L’Hospital’s rule
yields

lim
t→∞

∫ t
0 βAC (τ )�IA(τ )

BC
μ

e− ∫ τ
0 λ4(w) dw dτ

e−λ̄4t

= lim
t→∞

βAC (t)�IA(t) BC
μ

e− ∫ t
0 λ4(w) dw

−λ̄4 · e−λ̄4t

= lim
t→∞ e

∫ t
0 λ̄4−λ4(τ ) dτ

︸ ︷︷ ︸
bounded by (C6)

1

−λ̄4

BC

μ
βAC (t)�IA(t)

= 0,

which shows the expression (17) goes to zero. There-
fore, �IC (t) → 0.

ii) Suppose (C7) holds. Note thatβAC (t) is bounded.
Using (14c) in expression (17) gives

∫ t

0
βAC (τ )�IA(τ )

BC

μ
e− ∫ τ

0 λ4(w) dw dτ

= �IA(0)
BC

μ

∫ t

0
βAC (τ )e

∫ τ
0 λ3(w)−λ4(w) dwdτ

≤ K
∫ t

0
e
∫ τ
0 λ3(w)−λ4(w)dwdτ

for some K > 0. If we let f (t) = λ3(t) − λ4(t), then
f̄ = λ̄3 − λ̄4 < 0 by (C7), and using Lemma A.4 we
observe boundedness of the left-hand side of the above
inequality. Thus, expression (17) has the bound

e
∫ t
0 λ4(τ ) dτ

∫ t

0
βAC (τ )�IA(τ )

BC
μ

e− ∫ τ
0 λ4(w) dw dτ

≤ K Ne
∫ t
0 λ4(τ ) dτ

for some K , N > 0, which goes to zero by Lemma
A.3. Therefore, �IC (t) → 0. ��

Finally, in case of periodic transmission functions,
we can give a simple and sharp criterion for stability in
terms of averages.

Theorem 4.6 Suppose βAA(t) and βCC (t) are peri-
odic functions. Then the origin of the variational equa-
tion (13) is asymptotically stable if and only if (C5)
holds.

Proof If βCC (t) is periodic, then (C6) is satisfied by
Lemma A.5. Therefore, if (C5) holds then stability fol-
lows by Theorem 4.5. On the other hand, if (C5) does
not hold, then either (C1) or (C2) does not hold byLem-
mas A.3 and A.7, and instability follows by Theorem
4.3. ��

To summarize, considering outbreaks as small devi-
ations from the disease-free equilibrium state of the
system, we have constructed the linear variational Eq.
(13) around the disease-free equilibrium for the model
(1) and analysed the non-autonomous system. This
approach is not only specific to epidemiologicalmodels
but can also be used for compartmental models repre-
senting various dynamical processes in various disci-
plines like sociology, chemistry, finance etc.
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5 Note on the basic reproduction number under
time-dependent transmission

In autonomous epidemic models, the basic reproduc-
tion number R0 is commonly defined as the number
of secondary infections that result from the introduc-
tion of a single infectious individual into an entirely
susceptible population [39], and is typically associ-
ated with the local stability of the equilibria via the
method of next-generation matrix [40]. However, this
standard definition of R0 is no longer applicable in
periodic environments [41]. One of the earliest works
for the case of time-dependent systems is [42], where
the authors approximate the basic reproduction num-
ber for a periodically transmitted disease model. This
work and its followers revealed that a general explicit
formula forR0 does not exist under seasonal dynamics
[43–45]. Moreover, in numerical simulations large out-
breaks have been observed even when R0 was below
the threshold value 1 [46,47]. Since then, the compu-
tation and interpretation of an appropriate formula for
R0 for non-autonomous systems have attracted much
attention [34,48,49].

The derivation of the basic reproduction number is
based on the linearization of the ODE model about
a disease-free equilibrium, and is therefore directly
related to the analysis of Sect. 4. Hence, considering
only the infected compartments, let the matrices F and
V denote, as usual, the rate at which secondary infec-
tions increase the compartment size and the net out-
flow from the compartment, respectively. Hence, for
the model (1),

F(t) =

⎡

⎢⎢⎢
⎣

βAA(t)
BA

μ
0

βAC (t)
BC

μ
βCC (t)

BC

μ

⎤

⎥⎥⎥
⎦

and

V (t) =
⎡

⎣
μ 0

0 μ + r

⎤

⎦

and the next-generation matrix M = FV−1 is given by

M(t) =

⎡

⎢⎢⎢
⎣

βAA(t)
BA

μ2 0

βAC (t)
BC

μ2 βCC (t)
BC

μ(μ + r)

⎤

⎥⎥⎥
⎦

.

In autonomous systems, the basic reproduction num-
ber is defined as the dominant eigenvalue of the next-

generation matrix M . In our case, M(t) and its eigen-
values are time dependent. We denote the eigenvalues
as

	3(t) = βAA(t)
BA

μ2 and 	4(t) = βCC (t)
BC

μ(μ + r)
.

The reason for the notation is that these eigenvalues
are directly related to the two eigenvalues (7) and (12)
that are responsible for the stability of the disease-free
equilibrium, namely

λ3(t) = μ(	3(t) − 1) and λ4(t) = (μ + r)(	4(t) − 1).

Therefore, λ3 < 0 (resp., λ4 < 0) if and only if 	3 <

1 (resp., 	4 < 1), and conditions (C1)–(C4) can be
readily expressed in terms of the eigenvalues 	3,	4

of the next-generation matrix.
To obtain a single quantity that can play the role

of the basic reproduction number, it is thus natu-
ral to consider time averages, in the sense of (15).
Hence, the mean next-generation matrix is M̄ =
lim
t→∞

1

t

∫ t

0
M(τ ) dτ and has eigenvalues

	̄3 = β̄AA
BA

μ2 and 	̄4 = β̄CC
BC

μ(μ + r)
,

which are related to the time averages of the Jacobian
eigenvalues by

λ̄3 = μ(	̄3 − 1) and λ̄4 = (μ + r)(	̄4 − 1). (18)

The conditions (C5)–(C7) for the stability of the
disease-free equilibrium are then immediately avail-
able in terms of 	̄3,4. Amean basic reproduction num-
ber R̄0 can be defined as the spectral radius of M̄ , that
is,

R̄0 = max{|	̄3|, |	̄4|}
= max

{
β̄AA

BA

μ2 , β̄CC
BC

μ(μ + r)

}
. (19)

For periodic transmission functions, the relation of R̄0

to stability is sharp by Theorem 4.6, which we state as
a corollary.

Corollary 5.1 Suppose βAA(t) and βCC (t) are peri-
odic functions. Then the disease-free equilibrium is
locally asymptotically stable if and only if R̄0 < 1.

The situation is less clear-cut for non-periodic trans-
mission functions. As Theorem4.5 indicates, condition
(C5), i.e. R̄0 being less than 1, may not be enough for
the stability of the disease-free state, unless condition
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(C6) holds aswell. Indeed, the sufficient condition (C7)
shows that both eigenvalues, and not just the dominant
eigenvalue, may have a role in stability.More precisely,
using (18), condition (C7) can be expressed as

	̄4 − 	̄3

1 − 	̄4
>

r

μ

when R̄0 < 1, which is the condition that 	̄4 be larger
than 	̄3 by an amount that depends on the ratio r/μ.
Hence, there may be subtler cases when the condition
R̄0 < 1 by itself does not suffice to guarantee the stabil-
ity of the disease-free equilibrium. On the other hand,
R̄0 > 1 is always a marker of instability.

Corollary 5.2 If R̄0 > 1, then the disease-free equi-
librium is unstable.

Proof If R̄0 > 1, then either λ̄3 or λ̄4 is positive by
(18), in which case Lemma A.3 implies that either∫ ∞
0 λ3(t) dt = ∞ or

∫ ∞
0 λ4(t) dt = ∞. The result

then follows by Theorem 4.3. ��

6 Numerical simulations

To visualize the dynamical behaviour of the math-
ematical model (1) in the light of the theoretical
results obtained from mathematical analysis, we per-
form numerical simulations using the standard Mat-
lab routines for solving systems of differential equa-
tions [50]. Although local and international outbreaks
of IMD have been strictly associated with Umrah/Hajj
travel in different studies, data on IMDare still sparse or
lacking in the Eastern Mediterranean and North Africa
regions [14,51,52]. For this reason, we cannot fit the
model (1) to a particular data set, butwe use the findings
fromdifferent studieswhen choosing themodel param-
eters. While there are gaps in the available statistical
data, the reality is that Hajj, one of the world’s largest
mass movements and gatherings of people, is directly
related to a variety of health problems, including the
seasonal outbreaks of infectious diseases. The World
Bank classifies the countries in the African meningitis
belt as low-middle income countries. Since we have
noted seasonal outbreaks of IMD outside the meningi-
tis belt, we perform our simulations for a hypothetical
upper-middle income country.

Dogu et al. [14] presented a recent review of avail-
able IMD data by scanning the literature between Jan-
uary 2000–February 2021. Based on 11 different stud-
ies, they report that the rates of asymptomatic carriage

Table 1 Parameters of the model (1)

Parameters Value Units Source

BA 1 year−1 Assumed

BC 13.1 year−1 [60]

μ 0.0132 year−1 [58]

r 26.06 year−1 [59]

in the pilgrim risk group range from 0.0% [53,54] to
27.4% [18]. The IMD incidence in the general popu-
lation ranges from 0 to 20.5/100, 000 in children aged
under 5 years [14]. The most recent study among them
refers to a data set from Turkey and indicates an inci-
dence of 0.9/100, 000 [55]. Another recent study from
Morocco points out an incidence of 3.75/100, 000 for
children aged under 18 years [56]. From the perspec-
tive of mathematical models, the transmission rate β of
IMD among thewhole population is estimated between
0.137–0.548 per day [24,57]. As a matter of fact, it is
statistically difficult to assign a transmission rate spe-
cific to age groups. We assume that the average values
of transmission parameters (βAA, βAC , βCC ) remain
in the interval [0.00005,0.05]. To estimate the natural
death rate μ, we use the World Bank data, according to
which the average life expectancy at birth varies from
64 years in low-income countries to 81 years in high-
income countries. Therefore, in the numerical simula-
tions, we take the life expectancy for an upper-middle
income country [58] as μ = 1

76
1

year . For the recovery

rate r , we use the value 26.06 1
year , based on the fact

that recovery from bacterial meningitis in infants and
children takes approximately 14 days [59].

The Saudi government has established a Hajj visa
quota of 1 pilgrim per 1000 people for each Muslim
country since 1987 [61]. Let us assume a hypothetical
upper-middle income country with a total population
number of 1000. Only 1 person per year from this coun-
try would go to Hajj and come back home; therefore,
we take BA = 1. For the remaining parameters, we use
the available data set of a specific upper-middle income
country (Turkey) in order to have more precise values.
Thus, the number of yearly births is chosen to be 13.1
in a population of 1000 people and the initial popula-
tion SA(0) = 734 and SC (0) = 265 according to the
percentage of young people aged under 18 in Turkey
[60].
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To visualize the results of Sect. 4, we create three
different scenarios for various choice of the transmis-
sion functions where we mainly focus on their average
values. We study the short-and long-term behaviour of
outbreaks by taking the average values of transmission
functions β̄AA(t), β̄CC (t) and β̄AC (t) equal and in the
range [0.00005,0.05] for different types of transmission
functions.

The choices of transmission functions represent the
model in three possible scenarios, see Fig. 2. In sce-
nario 1, we employ periodic transmission functions
βAA(t), βCC (t), and βAC (t) with a sinusoidal shape
(Fig. 2a) that may represent a yearly outbreak caused
by the seasonal transmission after the annual Hajj pil-
grimage. In scenario 2, we choose a discontinuous
periodic transmission function in the form of β(t) =
2β̄H(1/2 − t + �t�), where H(t) is the Heaviside
function with H(0) = 1 and �t� is the floor func-
tion (Fig. 2b), that may correspond to the behaviour
of an outbreak after an Umrah-like intermittent move-
ment of people. In scenario 3,we considermore general
non-periodic transmission functions (Fig. 2c) that may
describe irregular mass movements such as migration.

In the following simulations, we manipulate the
average values of β̄AA, β̄CC , and β̄AC in the interval
[0.00005,0.05] to get different signs of λ̄3 and λ̄4,which
are markers of stability according to theorems 4.4–4.3.
Table 2 summarizes the organization of the simulations.

7 Conclusion

Bacterial meningitis shows various seasonal patterns
outside of the African meningitis belt, which con-
sists of a group of countries in sub-Saharan Africa
where major epidemics occur every few years [62,63].
Increased incidences inEurope,MiddleEast,Australia,
and America are often associated with Hajj, Umrah,
or other mass gatherings [64]. Indeed, over two mil-
lion Muslims visit Mecca every year in the Hajj sea-
son where all pilgrims stay in close contact for a long
time period [13]. Furthermore, the role of migrants and
refugees in the spread of bacterial meningitis has been
highlighted under current global conditions [65]. Based
on the seriousness of the issue, the World Health Orga-
nization (WHO) has put forward a roadmap to defeat
meningitis by 2030.

In this paper, we have presented and analysed a
mathematical model (1) to understand the seasonal out-

Fig. 2 The three categories of transmission functions used in
the simulations

breaks of meningitis among adults and children by tak-
ing account the time-dependent transmission processes
of IMD. Outbreaks are identified with deviations from
the disease-free equilibrium state. Mathematical anal-
ysis of the model (1) shows that the long-time aver-
age values λ̄3 and λ̄4 of the time-dependent eigenval-
ues of the Jacobian matrix (4) determine the stabil-
ity of the disease-free equilibrium. Thus, we are able
to establish the average values λ̄3 and λ̄4 as “mark-
ers of stability.” Furthermore, stability is connected
to a time-averaged basic reproduction number. In this
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Table 2 Summary of the presentation of simulation results

Type of transmission function λ̄3 λ̄4 Implications Figure

+ − Short-term and long-term existence of outbreak Fig. 3

Periodic sinusoidal transmission − − Short-term periodic increase and long-term quenching of outbreak Fig. 4

+ + Short-term periodic increase and long-term existence of outbreak Fig. 5

+ − Short-term and long-term periodic existence of outbreak Fig. 6

Periodic discontinuous transmission − − Short-term periodic increase and long-term quenching of outbreak Fig. 7

+ + Short-term periodic increase and long-term existence of outbreak Fig. 8

+ − Short-term and long-term periodic existence of outbreak Fig. 9

Non-periodic transmission − − Short-term periodic increase and long-term quenching of outbreak Fig. 10

+ + Short-term periodic increase and long-term existence of outbreak Fig. 11

Fig. 3 β̄AA = β̄CC = β̄AC = 0.005 (λ̄3 = 0.3668, λ̄4 =
−21.1066)

study, the time-dependent transmission rates βAA(t),
βAC (t) and βCC (t) are taken as non-negative bounded
functions in the most general sense. Thus, an advanta-
geous model setup is presented which can also address
the case where the transmission rates are non-periodic.
However, in real-life problems, it may not be possible
to determine the functions βAA(t), βAC (t) and βCC (t)
in some cases. Being aware of this limitation, we have
extracted the parameter values used in the numerical

Fig. 4 β̄AA = 0.00005, β̄CC = β̄AC = 0.005 (λ̄3 = −0.0094,
λ̄4 = −21.1066)

simulations from real statistical data. Since the irregu-
lar migration process has a very complicated structure,
and the data are not available, we have used some hypo-
thetical functions to describe them. We hope that our
results motivate more detailed research in this area to
determine more realistic functional forms.

We have carried out numerical simulations to sup-
port our analysis via three different scenarios of time-
varying transmission: periodic sinusoidal functions,
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Fig. 5 β̄AA = 0.0005, β̄CC = β̄AC = 0.05 (λ̄3 = 0.0248,
λ̄4 = 23.6954)

Fig. 6 β̄AA = β̄CC = β̄AC = 0.005 (λ̄3 = 0.3668, λ̄4 =
−21.1066)

Fig. 7 β̄AA = 0.00005, β̄CC = β̄AC = 0.005 (λ̄3 = −0.0094,
λ̄4 = −21.1066)

Fig. 8 β̄AA = 0.0005, β̄CC = β̄AC = 0.05 (λ̄3 = 0.0248,
λ̄4 = 23.6954)
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Fig. 9 β̄AA = β̄CC = β̄AC = 0.005 (λ̄3 = 0.3668, λ̄4 =
−21.1066)

Fig. 10 β̄AA = 0.00005, β̄CC = β̄AC = 0.005 (λ̄3 = −0.0094,
λ̄4 = −21.1066)

Fig. 11 β̄AA = 0.0005, β̄CC = β̄AC = 0.05 (λ̄3 = 0.0248,
λ̄4 = 23.6954)

periodic discontinuous step functions, and arbitrary
non-periodic functions. Periodic sinusoidal functions
represent a seasonal transmission of the disease once a
year as in the Hajj season, periodic step function repre-
sents the transmission rate during Umrah mass move-
ment, and non-periodic functions represent irregular
migration.Ourmethodology can also be applied to sim-
ilar epidemiological and social processes that involve
adult/children age groups and time-dependent trans-
mission between them.
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Appendix A: The average of a function

Let f : [0,∞) → R be integrable on [0, t] for all
t > 0. The average of f is the number defined by

f̄ := lim
t→∞

1

t

∫ t

0
f (τ ) dτ , whenever the limit exists as

an extended real number. We provide some properties
about the average of a function.

Lemma A.1 If
∫ t
0 ( f (τ )−α) dτ is bounded for t > 0,

then limt→∞ 1
t

∫ t
0 f (τ ) dτ = α.

Proof Suppose | ∫ t
0 f (τ )−α dτ | ≤ M for t > 0. Then∣

∣∣ 1t
∫ t
0 f (τ ) dτ − α

∣
∣∣ ≤ M/t and letting t → ∞ proves

the result. ��
The converse of Lemma A.1 is not always true, that

is, the existence of f̄ does not imply the boundedness
of

∫ t
0 ( f (τ ) − f̄ ) dτ . An example is provided by the

function f (x) = (x + 2)/(x + 1).

Lemma A.2 If limt→∞ f (t) = α and
∫ t
0 f (τ ) dτ

exists for t > 0, then f̄ = α.

Proof For a given ε > 0, there is a t0 > 0 such
that | f (x) − α| < ε/2 for t ≥ t0. Let Iε =∫ t0
0 | f (τ ) − α| dτ and t1 = 2Iε/ε. Then for all t >

max{t0, t1},
∣∣∣
∣
1

t

∫ t

0
f (τ ) dτ − α

∣∣∣
∣ =

∣∣∣
∣
1

t

∫ t

0
( f (τ ) − α) dτ

∣∣∣
∣

≤ 1

t

∫ t

0
| f (τ ) − α|dτ

= 1

t

∫ t0

0
| f (τ ) − α|dτ + 1

t

∫ t

t0
| f (τ ) − α|dτ

<
1

t
Iε + 1

t

∫ t

t0

ε

2
dτ <

ε

2
+ t − t0

t

ε

2
< ε,

which completes the proof. ��
The converse of Lemma A.2 is not true, as the

existence of f̄ does not necessarily imply that f (t)
has a limit as t → ∞. (As an example, consider
f (t) = sin t .)

Lemma A.3 If f̄ > 0 (resp.,< 0), then
∫ ∞
0 f (t) dt =

∞ (resp., −∞).

Proof
∫ ∞
0 f (t) dt = limt→∞

∫ t
0 f (τ ) dτ

= limt→∞ t
(
1
t

∫ t
0 f (τ ) dτ

)
. ��

Here f̄ = ±∞ are also included, as the proof sug-
gests.

Lemma A.4 If f̄ > 0, then
∫ ∞
0 exp{∫ t

0 f (τ ) dτ }dt =
∞. If f̄ < 0, then

∫ ∞
0 exp{∫ t

0 f (τ ) dτ }dt exists as a
positive real number.

Proof Limit comparisonwith the integral of exp( f̄ t/2)
gives the result. ��

Here f̄ = ±∞ are also included, because in
this case there exists t0 > 0 such that for t ≥ t0,∫ t
0 f (τ ) dτ > t or

∫ t
0 f (τ ) dτ < −t , and the result

follows from comparison with et or e−t , respectively.

Lemma A.5 If there is a T > 0 such that f (t + T ) =
f (t) for t ≥ 0 and 1

T

∫ T
0 f (t) dt = α, then the function

defined by g(t) := ∫ t
0 f (τ ) dτ − αt is continuous, T -

periodic, and hence bounded on [0,∞).

Proof Since f is integrable,
∫ t
0 f (τ ) dτ is continuous,

and so is αt . Thus, g is continuous and

g(t + T ) =
∫ t+T

0
f (τ ) dτ − α(t + T )

=
∫ t

0
f (τ ) dτ − αt

︸ ︷︷ ︸
g(t)

+
∫ t+T

t
f (τ ) dτ − αT

︸ ︷︷ ︸
0

= g(t)

so g is T -periodic. Hence, g is bounded on [0,∞),
being continuous on [0, T ]. ��
Corollary A.6 If f is T -periodic and 1

T

∫ T
0 f (t) dt =

α then f̄ = α.

Proof
∫ t
0 ( f (τ )−α) dτ is bounded by Lemma A.5 and

the result follows by Lemma A.1. ��
In case f is a periodic function, we can be more

precise when f̄ = 0 in Lemmas A.3 and A.4.

Lemma A.7 Let f be T -periodic and
∫ T
0 f (t) dt = 0.

Then
∫ ∞
0 f (t) dt does not exist unless f is the zero

function. Furthermore,
∫ ∞
0 exp

{∫ t
0 f (τ ) dτ

}
dt =

∞.
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Proof g(t) := ∫ t
0 f (τ ) dτ and h(t) := exp(g(t)) are

periodic by Lemma A.5 thus g(t) cannot have a limit
as t → ∞ unless it is constant. Also,

∫ ∞
0 h(t) dt =

limn→∞ n
∫ T
0 h(t) dt = ∞ since h(t) > 0 and T -

periodic. ��

References

1. Soeters, H.M., Diallo, A.O., Bicaba, B.W., et al.: Bac-
terial meningitis epidemiology in five countries in the
meningitis belt of sub-Saharan Africa, 2015–2017. J. Inf.
Dis. 220(Supplement–4), 165–174 (2019). https://doi.org/
10.1093/infdis/jiz358

2. Parikh, S.R., Campbell, H., Bettinger, J.A., et al.: The ever-
changing epidemiology of meningococcal disease world-
wide and the potential for prevention through vaccination.
J. Infect. 81(4), 483–498 (2020). https://doi.org/10.1016/j.
jinf.2020.05.079

3. Berti, F., Romano, M.R., Micoli, F., Adamo, R.: Carbo-
hydrate based meningococcal vaccines: past and present
overview. Glycoconj. J. (2021). https://doi.org/10.1007/
s10719-021-09990-y

4. Yezli, S.: The threat of meningococcal disease during the
Hajj and Umrah mass gatherings: a comprehensive review.
Travel Med. Infect. Dis. 24, 51–58 (2018). https://doi.org/
10.1016/j.tmaid.2018.05.003

5. Traore, Y., Tameklo, T.A., Njanpop-Lafourcade, B.-M.,
et al.: Incidence, seasonality, age distribution, and mortal-
ity of pneumococcal meningitis in Burkina Faso and Togo.
Clin. Infect. Dis. 48(s2), 181–189 (2009). https://doi.org/
10.1086/596498

6. Agier, L., Deroubaix, A., Martiny, N., et al.: Seasonality of
meningitis in Africa and climate forcing: aerosols stand out.
J. R. Soc. Interface 10(79), 20120814 (2013). https://doi.
org/10.1098/rsif.2012.0814

7. Mazamay, S., Broutin, H., Bompangue, D., et al.: The envi-
ronmental drivers of bacterial meningitis epidemics in the
Democratic Republic of Congo, Central Africa. PLOSNegl.
Trop. Dis. 14(10), 0008634 (2020). https://doi.org/10.1371/
journal.pntd.0008634

8. Lingappa, J.R., Al-Rabeah, A.M., Hajjeh, R., et al.:
Serogroup W-135 meningococcal disease during the Hajj,
2000. Emerg. Infect. Dis. 9(6), 665–671 (2003). https://doi.
org/10.3201/eid0906.020565

9. GASTAT, K.o.S.A.: Hajj statistics 2019. Technical report,
General Authority for Statistics (2020). https://www.stats.
gov.sa/en/28

10. Gautret, P., Benkouiten, S., Griffiths, K., Sridhar, S.: The
inevitable Hajj cough: surveillance data in French pilgrims,
2012–2014. TravelMed. Infect. Dis. 13(6), 485–489 (2015).
https://doi.org/10.1016/j.tmaid.2015.09.008

11. Wilder-Smith, A., Goh, K.T., Barkham, T., Paton, N.I.:
Hajj-associated outbreak strain of Neisseria meningitidis
Serogroup W135: estimates of the attack rate in a defined
population and the risk of invasive disease developing in car-
riers. Clin. Infect. Dis. 36(6), 679–683 (2003). https://doi.
org/10.1086/367858

12. Ceyhan,M., Anis, S., Htun-Myint, L., et al.: Meningococcal
disease in the Middle East and North Africa: an important
public health consideration that requires further attention.
Int. J. Infect. Dis. 16(8), 574–582 (2012). https://doi.org/
10.1016/j.ijid.2012.03.011

13. Alasmari, A., Houghton, J., Greenwood, B., et al.:Meningo-
coccal carriage amongHajj pilgrims, risk factors for carriage
and records of vaccination: a study of pilgrims to Mecca.
Trop. Med. Int. Health (2021). https://doi.org/10.1111/tmi.
13546

14. Dogu, A.G., Oordt-Speets, A.M., Kessel-de Bruijn, F., et al.:
Systematic review of invasive meningococcal disease epi-
demiology in the Eastern Mediterranean and North Africa
region. BMC Infect. Dis. (2021). https://doi.org/10.1186/
s12879-021-06781-6

15. Badahdah, A.-M., Alghabban, F., Falemban, W., et al.:
Meningococcal vaccine for Hajj pilgrims: compliance, pre-
dictors, and barriers. Trop. Med. Infect. Dis. 4(4), 127
(2019). https://doi.org/10.3390/tropicalmed4040127

16. Al-Tawfiq, J.A., Memish, Z.A.: The Hajj 2019 vac-
cine requirements and possible new challenges. J. Epi-
demiol. Global Health (2019). https://doi.org/10.2991/jegh.
k.190705.001

17. Wilder-Smith, A., Chow, A., Goh, K.T.: Emergence and
disappearance of W135 meningococcal disease. Epidemiol.
Infect. 138(7), 976–978 (2009). https://doi.org/10.1017/
s095026880999104x

18. Ceyhan, M., Celik, M., Demir, E.T., et al.: Acquisition of
meningococcal serogroup W-135 carriage in Turkish Hajj
pilgrims who had received the quadrivalent meningococcal
polysaccharide vaccine. Clin. Vaccine Immunol. 20(1), 66–
68 (2013). https://doi.org/10.1128/cvi.00314-12

19. Tezer, H., Gülhan, B., Gişi, A.S., et al.: The impact
of meningococcal conjugate vaccine (MenACWY-TT) on
meningococcal carriage inHajj pilgrims returning toTurkey.
Human Vaccines Immunother. 16(6), 1268–1271 (2019).
https://doi.org/10.1080/21645515.2019.1680084

20. Al-Shaery,A.M.,Hejase, B., Tridane,A., et al.: Agent-based
modeling of the Hajj rituals with the possible spread of
COVID-19. Sustainability 13(12), 6923 (2021). https://doi.
org/10.3390/su13126923

21. Shambour, M.K., Gutub, A.: Progress of IoT research tech-
nologies and applications serving Hajj and Umrah.
Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/
s13369-021-05838-7

22. Bernoulli, D., Blower, S.: An attempt at a new analysis of
the mortality caused by smallpox and of the advantages of
inoculation to prevent it. Rev. Med. Virol. 14(5), 275–288
(2004). https://doi.org/10.1002/rmv.443

23. Broutin, H., Philippon, S., Magny, G.C., et al.: Comparative
study of meningitis dynamics across nine African countries:
a global perspective. Int. J. Health Geogr. 6(1), 29 (2007).
https://doi.org/10.1186/1476-072x-6-29

24. Irving, T.J., Blyuss, K.B., Colijn, C., Trotter, C.L.: Mod-
elling meningococcal meningitis in the African meningitis
belt. Epidemiol. Infect. 140(5), 897–905 (2011). https://doi.
org/10.1017/s0950268811001385

25. Martínez, M.J.F., Merino, E.G., Sánchez, E.G., et al.: A
mathematical model to study the meningococcal meningi-
tis. Procedia Comput. Sci. 18, 2492–2495 (2013). https://
doi.org/10.1016/j.procs.2013.05.426

123

https://doi.org/10.1093/infdis/jiz358
https://doi.org/10.1093/infdis/jiz358
https://doi.org/10.1016/j.jinf.2020.05.079
https://doi.org/10.1016/j.jinf.2020.05.079
https://doi.org/10.1007/s10719-021-09990-y
https://doi.org/10.1007/s10719-021-09990-y
https://doi.org/10.1016/j.tmaid.2018.05.003
https://doi.org/10.1016/j.tmaid.2018.05.003
https://doi.org/10.1086/596498
https://doi.org/10.1086/596498
https://doi.org/10.1098/rsif.2012.0814
https://doi.org/10.1098/rsif.2012.0814
https://doi.org/10.1371/journal.pntd.0008634
https://doi.org/10.1371/journal.pntd.0008634
https://doi.org/10.3201/eid0906.020565
https://doi.org/10.3201/eid0906.020565
https://www.stats.gov.sa/en/28
https://www.stats.gov.sa/en/28
https://doi.org/10.1016/j.tmaid.2015.09.008
https://doi.org/10.1086/367858
https://doi.org/10.1086/367858
https://doi.org/10.1016/j.ijid.2012.03.011
https://doi.org/10.1016/j.ijid.2012.03.011
https://doi.org/10.1111/tmi.13546
https://doi.org/10.1111/tmi.13546
https://doi.org/10.1186/s12879-021-06781-6
https://doi.org/10.1186/s12879-021-06781-6
https://doi.org/10.3390/tropicalmed4040127
https://doi.org/10.2991/jegh.k.190705.001
https://doi.org/10.2991/jegh.k.190705.001
https://doi.org/10.1017/s095026880999104x
https://doi.org/10.1017/s095026880999104x
https://doi.org/10.1128/cvi.00314-12
https://doi.org/10.1080/21645515.2019.1680084
https://doi.org/10.3390/su13126923
https://doi.org/10.3390/su13126923
https://doi.org/10.1007/s13369-021-05838-7
https://doi.org/10.1007/s13369-021-05838-7
https://doi.org/10.1002/rmv.443
https://doi.org/10.1186/1476-072x-6-29
https://doi.org/10.1017/s0950268811001385
https://doi.org/10.1017/s0950268811001385
https://doi.org/10.1016/j.procs.2013.05.426
https://doi.org/10.1016/j.procs.2013.05.426


A mathematical interpretation 14483

26. Asamoah, J.K.K., Nyabadza, F., Seidu, B., et al.: Mathemat-
ical modelling of bacterial meningitis transmission dynam-
ics with control measures. Comput. Math. Methods Med.
(2018). https://doi.org/10.1155/2018/2657461

27. Blyuss, K.B.: In: Aston, P.J., Mulholland, A.J., Tant,
K.M.M. (eds.) Mathematical Modelling of the Dynam-
ics of Meningococcal Meningitis in Africa, pp. 221–
226. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-25454-8_28

28. Soper, H.E.: The interpretation of periodicity in disease
prevalence. J. Roy. Stat. Soc. 92(1), 34 (1929). https://doi.
org/10.2307/2341437

29. Stone, L., Olinky, R., Huppert, A.: Seasonal dynamics of
recurrent epidemics. Nature 446(7135), 533–536 (2007).
https://doi.org/10.1038/nature05638

30. Chitnis, N., Hardy, D., Smith, T.: A periodically-forced
mathematical model for the seasonal dynamics of malaria
in mosquitoes. Bull. Math. Biol. 74(5), 1098–1124 (2012).
https://doi.org/10.1007/s11538-011-9710-0

31. Onyango, N.O., Müller, J.: Determination of optimal vac-
cination strategies using an orbital stability threshold from
periodically driven systems. J. Math. Biol. 68(3), 763–784
(2013). https://doi.org/10.1007/s00285-013-0648-8

32. Doutor, P., Rodrigues, P., Céu Soares, M., Chalub, F.A.C.C.:
Optimal vaccination strategies and rational behaviour in sea-
sonal epidemics. J. Math. Biol. 73(6–7), 1437–1465 (2016).
https://doi.org/10.1007/s00285-016-0997-1

33. Greer, M., Saha, R., Gogliettino, A., et al.: Emergence of
oscillations in a simple epidemic model with demographic
data. R. Soc. Open Sci. 7(1), 191187 (2020). https://doi.org/
10.1098/rsos.191187

34. Arenas, A.J., González-Parra, G., Espriella, N.D.L.:
Nonlinear dynamics of a new seasonal epidemiologi-
cal model with age-structure and nonlinear incidence
rate. Comput. Appl. Math. (2021). https://doi.org/10.1007/
s40314-021-01430-9

35. Gölgeli, M., Atay, F.M.: Analysis of an epidemic model for
transmitted diseases in a group of adults and an extension to
two age classes. Hacet. J.Math. Stat. 49(3), 921–934 (2020).
https://doi.org/10.15672/hujms.624042

36. Oordt-Speets, A.M., Bolijn, R., Hoorn, R.C., et al.: Global
etiology of bacterial meningitis: a systematic review and
meta-analysis. PLoS ONE 13(6), 0198772 (2018). https://
doi.org/10.1371/journal.pone.0198772

37. Badur, S., Khalaf, M., Öztürk, S., et al.: Meningococcal dis-
ease and immunization activities inHajj andUmrah pilgrim-
age: a review. Infect. Dis. Therapy 11(4), 1343–1369 (2022).
https://doi.org/10.1007/s40121-022-00620-0

38. Molesworth, A.M., Cuevas, L.E., Connor, S.J., et al.: Envi-
ronmental risk and meningitis epidemics in Africa. Emerg.
Infect. Dis. 9(10), 1287–1293 (2003). https://doi.org/10.
3201/eid0910.030182

39. Dietz, K.: Infectious diseases of humans: dynamics and con-
trol. Parasitol. Today 8(5), 179 (1992). https://doi.org/10.
1016/0169-4758(92)90018-w

40. Driessche, P., Watmough, J.: Reproduction numbers and
sub-threshold endemic equilibria for compartmental mod-
els of disease transmission. Math. Biosci. 180(1–2), 29–48
(2002). https://doi.org/10.1016/s0025-5564(02)00108-6

41. Grassly, N.C., Fraser, C.: Seasonal infectious disease epi-
demiology. Proc. R. Soc. BBiol. Sci. 273(1600), 2541–2550
(2006). https://doi.org/10.1098/rspb.2006.3604

42. Bacaër, N., Guernaoui, S.: The epidemic threshold of vector-
borne diseases with seasonality. J. Math. Biol. 53(3), 421–
436 (2006). https://doi.org/10.1007/s00285-006-0015-0

43. Wang, W., Zhao, X.-Q.: Threshold dynamics for compart-
mental epidemic models in periodic environments. J. Dyn.
Diff. Equat. 20(3), 699–717 (2008). https://doi.org/10.1007/
s10884-008-9111-8

44. Thieme, H.R.: Spectral bound and reproduction number
for infinite-dimensional population structure and time het-
erogeneity. SIAM J. Appl. Math. 70(1), 188–211 (2009).
https://doi.org/10.1137/080732870

45. Griffin, J.T.: The interaction between seasonality and pulsed
interventions againstmalaria in their effects on the reproduc-
tion number. PLoS Comput. Biol. 11(1), 1004057 (2015).
https://doi.org/10.1371/journal.pcbi.1004057

46. Heffernan, J.M., Smith, R.J., Wahl, L.M.: Perspectives on
the basic reproductive ratio. J. R. Soc. Interface 2(4), 281–
293 (2005). https://doi.org/10.1098/rsif.2005.0042

47. Bacaër, N., Gomes, M.G.M.: On the final size of epidemics
with seasonality. Bull. Math. Biol. (2009). https://doi.org/
10.1007/s11538-009-9433-7

48. Bacaër,N.:Approximation of the basic reproduction number
r0 for vector-borne diseases with a periodic vector popula-
tion. Bull. Math. Biol. 69(3), 1067–1091 (2007). https://doi.
org/10.1007/s11538-006-9166-9

49. Nakata, Y., Kuniya, T.: Global dynamics of a class of SEIRS
epidemic models in a periodic environment. J. Math. Anal.
Appl. 363(1), 230–237 (2010). https://doi.org/10.1016/j.
jmaa.2009.08.027

50. Inc., T.M.: MATLAB Version: 9.13.0 (R2022b. The Math-
Works Inc., Natick, Massachusetts, United States (2022)

51. Dinleyici, E.C., Ceyhan,M.: The dynamic and changing epi-
demiology of meningococcal disease at the country-based
level: the experience in Turkey. Expert Rev. Vaccines 11(5),
515–518 (2012). https://doi.org/10.1586/erv.12.29

52. Cooper, L.V., Kristiansen, P.A., Christensen, H., et al.:
Meningococcal carriage by age in the African menin-
gitis belt: a systematic review and meta-analysis.
Epidemiol Infect. (2019). https://doi.org/10.1017/
s0950268819001134

53. Metanat, M., Sharifi-Mood, B., Sanei-Moghaddam, S., Rad,
N.S.: Pharyngeal carriage rate of Neisseria meningitidis
before and after the Hajj pilgrimage, in Zahedan (southeast-
ern Iran), 2012. Turkish J. Med. Sci. 45, 1317–1320 (2015).
https://doi.org/10.3906/sag-1405-7

54. Husain, E.H., Dashti, A.A., Electricwala, Q.Y., et al.:
Absence of neisseria meningitidis from throat swabs of
Kuwaiti pilgrims after returning from the Hajj. Med.
Princ. Pract. 19(4), 321–323 (2010). https://doi.org/10.
1159/000312721

55. Ceyhan, M., Ozsurekci, Y., Basaranoglu, S.T., et al.: Multi-
center hospital-based prospective surveillance study of bac-
terial agents causing meningitis and seroprevalence of dif-
ferent serogroups of neisseria meningitidis, haemophilus
influenzae type b, and streptococcus pneumoniae during
2015 to 2018 in Turkey. Sphere (2020). https://doi.org/10.
1128/msphere.00060-20

123

https://doi.org/10.1155/2018/2657461
https://doi.org/10.1007/978-3-319-25454-8_28
https://doi.org/10.1007/978-3-319-25454-8_28
https://doi.org/10.2307/2341437
https://doi.org/10.2307/2341437
https://doi.org/10.1038/nature05638
https://doi.org/10.1007/s11538-011-9710-0
https://doi.org/10.1007/s00285-013-0648-8
https://doi.org/10.1007/s00285-016-0997-1
https://doi.org/10.1098/rsos.191187
https://doi.org/10.1098/rsos.191187
https://doi.org/10.1007/s40314-021-01430-9
https://doi.org/10.1007/s40314-021-01430-9
https://doi.org/10.15672/hujms.624042
https://doi.org/10.1371/journal.pone.0198772
https://doi.org/10.1371/journal.pone.0198772
https://doi.org/10.1007/s40121-022-00620-0
https://doi.org/10.3201/eid0910.030182
https://doi.org/10.3201/eid0910.030182
https://doi.org/10.1016/0169-4758(92)90018-w
https://doi.org/10.1016/0169-4758(92)90018-w
https://doi.org/10.1016/s0025-5564(02)00108-6
https://doi.org/10.1098/rspb.2006.3604
https://doi.org/10.1007/s00285-006-0015-0
https://doi.org/10.1007/s10884-008-9111-8
https://doi.org/10.1007/s10884-008-9111-8
https://doi.org/10.1137/080732870
https://doi.org/10.1371/journal.pcbi.1004057
https://doi.org/10.1098/rsif.2005.0042
https://doi.org/10.1007/s11538-009-9433-7
https://doi.org/10.1007/s11538-009-9433-7
https://doi.org/10.1007/s11538-006-9166-9
https://doi.org/10.1007/s11538-006-9166-9
https://doi.org/10.1016/j.jmaa.2009.08.027
https://doi.org/10.1016/j.jmaa.2009.08.027
https://doi.org/10.1586/erv.12.29
https://doi.org/10.1017/s0950268819001134
https://doi.org/10.1017/s0950268819001134
https://doi.org/10.3906/sag-1405-7
https://doi.org/10.1159/000312721
https://doi.org/10.1159/000312721
https://doi.org/10.1128/msphere.00060-20
https://doi.org/10.1128/msphere.00060-20


14484 C. Türkün et al.

56. Loutfi, A., Hioui, M.E., Jayche, S., et al.: Epidemiologi-
cal, cytochemical and bacteriological profile of meningitis
among adults and children in north west of Morocco. Pak.
J. Biol. Sci. 23(7), 891–897 (2020). https://doi.org/10.3923/
pjbs.2020.891.897

57. Musa, S.S., Zhao, S., Hussaini, N., et al.:Mathematicalmod-
eling and analysis of meningococcal meningitis transmis-
sion dynamics. Int. J. Biomath. 13(01), 2050006 (2020).
https://doi.org/10.1142/s1793524520500060

58. World Bank: Data, Population Website. https://data.
worldbank.org/income-level/upper-middle-income

59. Alamarat, Z., Hasbun, R.: Management of acute bacterial
meningitis in children. Infect Drug Resist 13, 4077–4089
(2020). https://doi.org/10.2147/idr.s240162

60. TUIK: Adrese dayalı nüfus kayıt sistemi sonuçları,
2019. Technical report, Turkish Statistical Institute
(2020). https://data.tuik.gov.tr/Kategori/GetKategori?
p=Nufus-ve-Demografi-109

61. Aleeban, M., Mackey, T.K.: Global health and visa policy
reform to address dangers of Hajj during summer seasons.
Front. Public Health (2016). https://doi.org/10.3389/fpubh.
2016.00280

62. Kessel, F., Ende, C., Oordt-Speets, A.M., Kyaw, M.H.: Out-
breaks of meningococcal meningitis in non-African coun-
tries over the last 50 years: a systematic review. J. Global
Health (2019). https://doi.org/10.7189/jogh.09.010411

63. Mazamay, S.,Guégan, J.-F.,Diallo,N., et al.:Anoverviewof
bacterial meningitis epidemics in Africa from 1928 to 2018
with a focus on epidemics outside-the-belt. BMC Infect.Dis.
(2021). https://doi.org/10.1186/s12879-021-06724-1

64. Sebastian, S., Badahdah,A.-M.,Khatami,A., Rashid,H.: In:
Laher, I. (ed.) Meningococcal Disease During Hajj, Umrah,
and Other Mass Gatherings, pp. 1–22. Springer, Cham
(2020). https://doi.org/10.1007/978-3-319-74365-3_52-1

65. Dinleyici, E.C., Borrow, R.: Meningococcal infections
among refugees and immigrants: silent threats of past,
present and future. Hum. Vaccin. Immunother. 16(11),
2781–2786 (2020). https://doi.org/10.1080/21645515.
2020.1744979

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

Springer Nature or its licensor (e.g. a society or other partner)
holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving
of the accepted manuscript version of this article is solely gov-
erned by the terms of such publishing agreement and applicable
law.

123

https://doi.org/10.3923/pjbs.2020.891.897
https://doi.org/10.3923/pjbs.2020.891.897
https://doi.org/10.1142/s1793524520500060
https://data.worldbank.org/income-level/upper-middle-income
https://data.worldbank.org/income-level/upper-middle-income
https://doi.org/10.2147/idr.s240162
https://data.tuik.gov.tr/Kategori/GetKategori?p=Nufus-ve-Demografi-109
https://data.tuik.gov.tr/Kategori/GetKategori?p=Nufus-ve-Demografi-109
https://doi.org/10.3389/fpubh.2016.00280
https://doi.org/10.3389/fpubh.2016.00280
https://doi.org/10.7189/jogh.09.010411
https://doi.org/10.1186/s12879-021-06724-1
https://doi.org/10.1007/978-3-319-74365-3_52-1
https://doi.org/10.1080/21645515.2020.1744979
https://doi.org/10.1080/21645515.2020.1744979

	A mathematical interpretation for outbreaks of bacterial meningitis under the effect of time-dependent transmission parameters
	Abstract
	1 Introduction
	2 Modelling ideas
	3 Basic properties of the nonlinear system
	4 Disease-free equilibrium and linear stability analysis
	5 Note on the basic reproduction number under time-dependent transmission
	6 Numerical simulations 
	7 Conclusion
	Appendix A: The average of a function
	References




