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Abstract A nonlinear phenomenological model of
two coupled oscillators is proposed, which is able
to describe the rich nonlinear behaviour stemming
from an unstable pure intrinsic thermo-acoustic (ITA)
mode of a simple combustion system. In an exper-
imental bifurcation analysis of a pure ITA mode, it
was observed that for increasing mean upstream veloc-
ity the flames loose stability through a supercritical
Hopf bifurcation and subsequently exhibit limit cycle,
quasi-periodic and period-2 limit cycle oscillations.
The quasi-periodic oscillations were characterised by
low frequent amplitude and frequency modulation.
It is shown that a phenomenological model consist-
ing of two coupled oscillators is able to reproduce
qualitatively all the different experimentally observed
regimes. Thismodel consists of a nonlinear Van der Pol
oscillator and a linear dampedoscillator,which are non-
linearly coupled to each other. Furthermore, a param-
eter estimation of the model parameters is conducted,
which reveals a good quantitative match between the
model response and the experimental data. Hence, the
presented phenomenological dynamical model accu-
rately describes the nonlinear self-excited acoustic
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behaviour of premixed flames and provides a promis-
ing model structure for nonlinear time-domain flame
models.
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1 Introduction

Thermo-acoustic instabilities pose a severe challenge
in the development of clean burning techniques using
lean fully premixed laminar flames. These instabilities
can typically be divided in two types, namely unsta-
ble modes (i) with a duct acoustic origin and (ii) with
a burner/flame intrinsic thermo-acoustic (ITA) origin
[21]. In the first type, an duct acoustic mode of the
system is perturbed by the heat-release rate oscilla-
tion of the flames and, in turn perturbs the flames. If
the heat-release rate is in phase with the pressure, a
positive feedback is established between the acoustic
mode and the flames. Due to this feedback the acous-
tic mode is destabilised by the flames. The second
type of modes originates from an internal feedback
loop in the burner/flame configuration as shown by
Bomberg et al. [3] and Emmert et al. [9]. For premixed
gaseous velocity-sensitive flames, which are consid-
ered in this research, the heat-release rate generated
by the flames depends on the oscillations of acous-
tic velocity of the unburned mixture, which in turn is
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perturbed by the heat-release rate of the flames and
consequently establishing an internal feedback mech-
anism in the burner/flame configuration. By its nature,
the physics of the ITA modes are not affected by the
acoustic embedding of the flames [19].

Thermo-acoustic instabilities manifest themselves
often as limit cycle oscillations. The amplitude of the
unstable oscillations saturates due to nonlinear pro-
cesses, which renders thermo-acoustic systems as non-
linear dynamical systems. In general, the flames are
believed to contribute as the main nonlinear element in
thermo-acoustic systems [13,15,18,20]. Besides limit
cycle oscillations, a variety of other nonlinear oscilla-
tions are observed. Bifurcation analyses conducted by
Kabiraj et al. [14] and Kashinath et al. [15] reveal that
thermo-acoustic systems also exhibit quasi-periodic
and chaotic behaviour. These bifurcation analyses are
conducted on a systemwhere the acoustics of the appli-
ance vessel are coupled to theflamedynamics.Hence, it
remains unclear if these nonlinear features of the oscil-
lations are purely generated by the flame nonlinearity
or resulting from the coupling between the flames and
the acoustics, which is essentially a coupling between
two oscillators. To elucidate this problem, an experi-
mental setup that decouples the flame dynamics from
the acoustics was built by Wildemans et al. [29]. With
this setup the nonlinear behaviour of pure ITA modes,
reflecting the self-excited dynamics of the flames, are
studied by means of a bifurcation analysis. This bifur-
cation analysis revealed that the flames are able to
generate limit cycle, period-2 limit cycle and quasi-
periodic oscillations.

Accurate models of the flame dynamics are of key
importance in designing clean and thermo-acoustically
stable burning appliances. These models can be used
to investigate the instability mechanisms and broaden
the understanding of these mechanisms. Furthermore,
they can be used to analyse the stability of burning
appliances in an early design phase. Finally, thesemod-
els can be used to design active and passive instability
mitigation strategies. The success of these strategies
depends on the quality of the models that describe the
dynamical behaviour of the system. Besides the accu-
racy of the models, computation time is also important.
Especially, when mitigation strategies or application
designs need to be optimised. In these cases the perfor-
mance of the complete system needs to be evaluated for
a lot of different parameter values, which is a compu-

tational heavy task. Hence, accurate low-order models
of the flame dynamics are required.

Thermo-acoustic systems are typically modelled by
dividing the full system in two subsystems, namely
the acoustic and the flame dynamics. The acoustics are
considered to be linear and are typically modelled by
the linearised wave equation. The flame dynamics of
velocity sensitive flames, as considered in this paper,
are described by a relation between the acoustic veloc-
ity perturbations just upstream of the flames and the
heat-release rate oscillations of the flames. To describe
and predict the nonlinear oscillations as for example
observed in bifurcation analyses, a nonlinear model of
the flame dynamics is required.

In theory, a low-order model that describes the
dynamics of the flames can be derived starting from
first principles. Next, these governing equations should
be simplified analytically to the level where the
main observable quantities (e.g., heat-release rate)
are described by a low-order dynamical model that
captures the essential dynamics. Since such a model
is derived from governing equations, it is based on
physics and its parameters have a physical interpre-
tation. In case of premixed flames, the governing equa-
tions are the fluid dynamical conservation equations
coupled to strongly nonlinear (detailed or reduced)
chemical reactions and an appropriate diffusion model.
In fact, analytical models are mostly developed for sta-
tionary problems in simplified geometries. The flame-
acoustic interaction has analytical solutions for a few
simplified cases such as 1-D flames (burner surface sta-
bilised flat flames). In case of 2-D flames (such as con-
ical flames as investigated in this paper) flame front
tracking equations like the G-equation [30] are used
and only analytical results are obtained incorporating
a number of significantly restricting assumptions [26].
Among those are the neglectionofflame toflow interac-
tion, forcedflameanchoring and the neglection of flame
curvature and flow strain effects. Relaxation of such
restrictions to incorporate for example nonlinear effects
require numerical simulations since the equations can-
not be solved analytically. To conclude, the state-of-
the-art of the description of flame-acoustics interac-
tion does not provide analytical solutions with physics-
based description of the nonlinear flame dynamics.

In absence of physics-based low-order dynamical
models phenomenological models of different com-
plexity are typically used to describe the experimentally
observed flame dynamics. In general these models are
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proven to be useful in understanding the destabilising
mechanisms and designing stable combustion systems.
Furthermore, phenomenological models can also facil-
itate the development of analytical low-order descrip-
tions of the flame-acoustic interaction, since they pro-
vide a set of resulting equations that captures the essen-
tial dynamics that could be aimed for. Next, a number
of different phenomenological models is discussed.

The nonlinear response of the flames is often mod-
elled by a Flame Describing Function (FDF) [18,20].
An FDF is a weakly nonlinear model which assumes
a-priori that the output responds at the same frequency
as the input. FDF do not include the energy transfer
between different frequencies and higher harmonics
in the response are not accounted for. Hence, an FDF
is not able to describe the limit cycles where higher
harmonics are clearly present. Furthermore, due to the
quasi-linear frequency assumption it also fails to pre-
dict other nonlinear oscillations that are observed in
thermo-acoustic systems, such as period-2 limit cycle,
quasi-periodic and chaotic oscillations. The concept
of an FDF is extended by Haeringer et al. [12] by
incorporating the response at higher harmonics. This
enables the prediction of limit cycle oscillations in
which the contribution of higher harmonics is not neg-
ligible. However, the extended FDF is also a weakly
nonlinear model and thus not able to describe aperi-
odic oscillations.

Another type of nonlinear models used to study
thermo-acoustic instabilities is based on low-order
oscillatormodels [4,11,16]. In thesemodels, the acous-
tic mode is described by a Van der Pol oscillator. The
flamedynamics aremodelled by a static nonlinear func-
tion that describes the relation between the acoustic
velocity perturbations and the heat-release rate. It is
shown that these time-domain models are capable of
reproducing a rich variety of nonlinear oscillations. A
slightly different approach is taken byWeng et al. [28],
in which the flame is modelled as a nonlinear oscil-
lator that is nonlinearly coupled to the oscillator that
described the acoustic field. This phenomenological
model of two coupled oscillators is able to qualita-
tively describe the nonlinear oscillations of the bifur-
cation experiment conducted by Kabiraj et al. [14].
However, these flame models require the coupling to
the acoustic oscillators to generate nonlinear oscilla-
tions. These flame models are not able to describe the
self-excited ITA modes which are independent on the
acoustic modes due to the static nature of the flame

models. Hence, these flame models are not capable to
describe all experimentally observed behaviour.

A new data-driven modelling approach is applied to
describe the nonlinear flame response in time-domain
[27]. An artificial neural network is trained on CFD
simulation data. This model accounts for energy trans-
fer between different frequencies and is thus more gen-
eral then a FDF. Furthermore, it was shown that this
model is able to reproduce both the forced and the
self-excited flame dynamics. The main drawback of
this modelling approach is its black-box nature, which
makes it difficult to make a physical interpretation of
the model.

Recently, a grey-box modelling approach is suc-
cessfully applied. Doehner et al. [8] introduced a low-
order time-domain model of two coupled oscillators to
describe the forced response of the flames. This model
was able to provide an accurate representation of the
forced flame dynamics. Since this model is a low-order
time-domain model, it is well suited for inexpensive
time-domain simulations of thermo-acoustic systems.

Since the model of Doehner et al. [8] is identified
based on the acoustic forced dynamics of the flames, it
remains unclear if the model is also capable of repro-
ducing the rich variety of nonlinear oscillations orig-
inated from the self-excited ITA mode as shown by
Wildemans et al. [29]. In Wildemans et al. [29], how-
ever, a phenomenological model of two coupled oscil-
lators was introduced that is able to qualitatively repro-
duce all the different regimes observed in the exper-
imental bifurcation analysis. Hence, a model of two
coupled oscillators provides a promising model struc-
ture for nonlinear time-domain flame models.

The main goal of this paper is to investigate if the
phenomenological model, as introduced in Wildemans
et al. [29], is able to quantitatively describe the non-
linear self-excited oscillations exhibited by a pure ITA
mode. Thereto, the nonlinear model of two nonlinearly
coupled oscillators is investigated in detail to under-
stand the exhibited oscillations. Furthermore, a param-
eter estimation is conducted to show that, besides the
qualitative match, there is also a quantitative match
between themodel response and the experimental time-
series for all four regimes.

The paper is structured as follows. First, the experi-
mental setup to observe pure ITA modes is introduced
and the experimental bifurcation analysis is discussed.
Thereafter, the model of two coupled oscillators is
introduced and explained. In the fourth section, the
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parameter estimation procedure is explained. Subse-
quently, the results of the parameter estimation are pre-
sented and discussed. In this section it is also investi-
gated if the model introduced in Doehner et al. [8] is
able to reproduce the oscillations of the four different
regimes in the bifurcation diagram. Finally, a discus-
sion of the results is presented in the seventh section
followed by conclusions in the last section.

2 Experimental bifurcation analysis

Pure ITA modes are observed when the burner/flame
configuration are completely decoupled from the duct
acoustic modes of the thermo-acoustic system. This
is typically realised by using anechoic up- and down-
stream conditions, such that the acoustic waves are not
reflected back to the flames. A setup is developed to
experimentally observe an unstable pure ITA mode.
With this setup an experimental bifurcation study of
the pure ITA mode is executed. Below, the setup is
explained in more detail and thereafter the main find-
ings of the bifurcation analysis are presented.

2.1 Experimental setup

In Wildemans et al. [29] a setup is introduced to
experimentally observe pure ITA modes. This setup
is schematically depicted in Fig. 1. It consists of three
main parts: the burner and an up- and downstream duct
with their mufflers (denoted by G and H, respectively).
The burner consists of a water cooled burner deck
holder in which a 1 mm thick perforated brass burner
deck (A) is placed. This burner deck has 109 holes with
a diameter of 2 mm which are arranged in a hexagonal
patternwith a pitch of 4.5mm.The up- and downstream
mufflers provide close to anechoic conditions over a
wide frequency range including the typical frequencies
of pure ITA modes. The setup is equipped with three
sensors, namely a Constant Temperature Anemometer
(CTA, denoted by B) to measure the acoustic velocity
oscillations just upstream of the burner deck, a Pho-
tomultiplier (PMT, denoted by C) with an OH∗ light
filter (310± 10nm) to measure the OH chemilumines-
cence as an indicator for the heat-release rate and a
pressure transducer (D) to measure the pressure oscil-
lations in the upstream duct. The flames could exter-
nally be forced by a loudspeaker (E), however, in this
work only self-excited oscillations of the flames are

Fig. 1 Schematic overview of experimental setup: A—burner
deck, B—CTA sensor, C—PMT sensor, D—pressure transducer,
E—loudspeaker inlet, F—mixture inlet, G—upstream muffler
and H—downstream muffler. All dimensions are in mm

considered. In this research a fully premixed methane-
air mixture is used which is injected into the system at
the inlet in the upstream duct (F). The equivalence ratio
φ and the mean upstream velocity of the mixture can
easily be controlled by the means of mass flow con-
trollers. In this research the equivalence ratio is kept
constant at φ = 0.70. The mean upstream velocity of
the mixture in the holes of the burner deck is used as a
bifurcation parameter and denoted by V . An increase
of this velocity at a constant equivalence ratio is sim-
ilar to an increase of thermal power. A more detailed
discussion of the experimental setup can be found in
Wildemans et al. [29].

2.2 Bifurcation analysis

The setup reveals self-excited oscillations for a broad
range ofmean velocitiesV . These oscillations originate
from an unstable ITA mode as shown in Wildemans et
al. [29]. By slowly varying the mean velocity in the
burner deck holes, V , qualitative changes of the self-
excited oscillations are observed. In Wildemans et al.
[29] the nonlinear dynamics of the pure ITA mode are
experimentally investigated by means of a bifurcation
diagram.

The bifurcation diagram is depicted in Fig. 2. The
dots represent the local maxima of the time-series of
the normalised acoustic velocity just upstream of the
burner deck, u′/ū. Here, u′ represents the velocity per-
turbation and ū the mean velocity. This bifurcation dia-
gram reveals four distinct regimes. Regime I, located
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Fig. 2 Bifurcation diagram of pure ITAmode with u′/ū the nor-
malised acoustic velocity fluctuations amplitude and the bifur-
cation parameter V denoting the mean upstream velocity of the
air–fuel mixture

at V < 0.50m/s, represents a stable flame charac-
terised by a velocity perturbation of u′ = 0. Note that
a zero velocity perturbation implies a zero heat-release
rate perturbation. When the bifurcation parameter is
increased, the flame looses stability through a supercrit-
ical Hopf bifurcation and limit cycles emerge. Regime
II of the limit cycles is observed in the range V =
0.50−1.50m/s. In the bifurcation diagram, limit cycles
are typically characterised by a single dot. However, in
Fig. 2 a small spread of dots is observed in regime
II, which is caused by the small differences of local
maxima due to noise. When the bifurcation parameter
V increases to a certain value, the limit cycles bifur-
cate into quasi-periodic oscillations. This bifurcation is
named a Neimark–Sacker bifurcation, which describes
the birth of a second oscillation frequency. The quasi-
periodic oscillations are characterised by a low frequent
amplitude and frequency modulation. The correspond-
ing frequency spectrum reveals a distinct peak at the
low modulation frequency, which turns out to be quite
special. This is elaborated in more detail in Sect. 5.3.
The amplitude modulation results in local maxima of
the time-series with varying peak values characterised
by a large spread of points in Fig. 2 in the range of
V = 1.60−2.40m/s. Thereafter, period-2 limit cycles
are observed which are reached via a period doubling
bifurcation. The signature of this regime is charac-
terised by two distinct dots representing the two distinct
local maxima of the time-series. The bifurcation anal-
ysis reveals that an unstable pure ITA mode exhibits a
rich variety of different nonlinear oscillations. Hence,

a proper flame model should be able to describe all
observed regimes. In the next section, a model of two
coupled oscillators is introduced that produces all four
regimes.

3 Model of coupled oscillators

A proper flame model should be able to describe the
nonlinear oscillations produced by the internal feed-
back loop of the ITA mode. Such a new flame model
can be obtained due to system identification. A first
step in the identification of a model is the selec-
tion of a model structure that is capable of describ-
ing the nonlinear dynamics of the flames of all four
regimes. Dynamical models that exhibit self-excited
oscillations are typically described by nonlinear dif-
ferential equations, also known as oscillators. Many of
such dynamicalmodels exhibit limit cycle and period-2
limit cycle oscillations. However, quasi-periodic oscil-
lations are less common, especially those with a dis-
tinct peak in the frequency spectrum at the low modu-
lation frequency. Most dynamical system that reveal
quasi-periodic oscillations does not show a distinct
peak at the low modulation frequency, e.g., the sys-
tem in Kuznetsov et al. [17]. In Wildemans et al. [29],
it was shown that the frequency spectrum correspond-
ing to the quasi-periodic oscillations reveal a clear peak
at the low modulation frequency, which turns out to be
quite special feature of the flame dynamics and thus can
be used as a guide in selecting a propermodel structure.
The dynamic model proposed in Anishchenko et al. [1]
is able to describe quasi-periodic oscillations charac-
terised by a peak at the lowmodulation frequency. Fur-
thermore, this model is also able to describe the other
observed attractors, namely a stable fixed point, limit
cycle and period-2 limit cycle oscillations as shown in
Wildemans et al. [29]. Hence, this dynamical model
provides a promising model structure to describe the
flame dynamics.

In the remainder of this section the structure and
important features of the model, as introduced in
Anishchenko et al. [1], are discussed. This model rep-
resents two nonlinearly coupled oscillators and is given
by

ÿ −
(
m − d ẏ2

)
ẏ + y = −ẏ ż, (1)

z̈ + γ ż + gz = γΦ(−ẏ), (2)
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with

Φ(x) = I (x)x2, I (x) =
{
1, x > 0
0, x ≤ 0

. (3)

Equation (1) represents the Rayleigh oscillator, that is
characterised by the cubic damping term d ẏ3. This
oscillator is linearly unstable for small values of ẏ
(|ẏ| <

√
m/d) and consequently produces self-excited

oscillations. For large values of ẏ (|ẏ| >
√
m/d), the

damping becomes positive and the amplitude of the
oscillations saturates.Hence, the amplitude of the oscil-
lations is determined by the ratio m/d. The Rayleigh
oscillator is closely related to the classical Van der Pol
oscillator and can easily be transformed to the latter.
The second oscillator is described by Eq. (2) and rep-
resents a linear damped oscillator. This oscillator is
equivalent to a linear mass-spring-damper system. The
damping constant is represented by γ and the spring
constant by g. This linear oscillator is not able to gen-
erate stable self-excited oscillations by itself due to its
linear nature. Both oscillators are nonlinearly coupled
to each other through the terms−ẏ ż and γΦ(−ẏ). The
coupling in the first oscillator affects the damping of
the first oscillator with the magnitude of the first time
derivative of the state variable of the second oscillator.
When the time-series of ẏ and ż are in phase, positive
damping is added and the amplitude of the first oscil-
lator will decrease depending on the oscillations of the
second oscillator. When ẏ and ż are out of phase, the
additional negative damping will result in growth of
the amplitude of ẏ. Hence, this coupling will result in
a variable damping constant. The coupling in the sec-
ond oscillator is only active when ẏ < 0, due to the
Heaviside function I (x). This coupling will add a pos-
itive value to the second derivative of z and potentially
destabilises the second oscillator. Due to this destabil-
isation, the second oscillator can produce oscillations,
which in turn affect the first oscillator. This destabilisa-
tion occurs when ẏ and ż are in phase, because in that
case a positive value is added to the derivative when
the amplitude of its state is positive. When both states
are in anti-phase, the amplitude of ż is damped due to
the coupling.

This dynamical system of two coupled oscillators is
able to generate complex dynamical oscillations due to
their mutual interaction. For example, quasi-periodic
oscillations can be generated in an oscillatory system
with two independent frequencies in which the vari-
able damping constant (α−μ1 ẋ2) is periodically mod-

ulated [1]. These conditions are satisfied by the system
of Eqs. (4) and (5), which is thus due to the nonlinear
coupling able to generate quasi-periodic oscillations.

To obtain better fitting results, the Rayleigh oscil-
lator is transformed into the Van der Pol oscillator.
Furthermore, all terms in both oscillators are uniquely
parametrised to increase the flexibility in describing the
experimental data. This results in the following set of
differential equations:

ẍ1 −
(
α − δx21

)
ẋ1 + βx1 = −μ1 ẋ1 ẋ2, (4)

ẍ2 + εẋ2 + ζ x2 = μ2Φ(ẋ1). (5)

In these equations, β and ζ represent the stiffness
parameters of both oscillators and mainly determine
the oscillation frequencies. The parameters α, δ and ε

are all related to the damping of both oscillators andμ1

andμ2 describe the coupling strength. Furthermore, the
non-smooth function Φ(ẋ1) remains unchanged and is
given by Eq. (3). As explained, this model is a phe-
nomenological model which is not derived from first
principles. Consequently, the states and parameters do
not have a straightforward physical interpretation as
well as the nonlinear (coupling) terms. However, in
the next section it is explained in more detail that the
state ẋ1 reveals a remarkable similarity with the acous-
tic velocity oscillations. This indicates that the state
variable x1 represents a displacement of the acous-
tic medium and ẋ1 the acoustic velocity. The second
oscillator is thus destabilised by a perturbation of the
acoustic velocity in downstream direction (ẋ1 > 0).
Furthermore, when a flame is perturbed it will return
to its stable equilibrium after some time. This indicates
a restoring force which is equivalent to a spring force
in the dynamical model as mentioned in Doehner et al.
[8].

4 Parameter estimation

In the previous section, it is explained that the presented
model of two coupled oscillators is able to describe
the experimentally observed oscillations qualitatively.
To find a quantitative match between the experimen-
tal data and the model, the correct parameters for the
different regimes should be estimated. Thereto, a cost
function is required to evaluate a certain parameter set.
A natural choice for such a function is to compare the
time-series of a certain model output with measured
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time-series. Such a cost function directly enforces a
physical meaning to the model output. A similarity is
observed between the time-series of the state ẋ1 of the
model and the experimental acoustic velocity perturba-
tions in the limit cycle regime. Both time-series reveal
an asymmetric limit cycle characterised by a relatively
fast rise and a relatively slow decay. This feature of the
signal shape is also observed in CFD simulations of a
pure ITA mode by Courtine et al. [7] and Silva et al.
[25]. Hence, the state ẋ1 is chosen as the output of the
model to describe themeasured acoustic velocity.More
specific, the time evolution of the state ẋ1 should match
the experimental time-series data as close as possible.
This requirement results in the minimisation of cost
function

J (θ) =
Nt∑
j=1

(
ỹ j − h(x(t j , θ), t j , θ)

)2
, (6)

subject to the dynamical system as given in Eqs. (4)–
(5). In the cost function, ỹ j is the j th sample of the
experimental time-series, Nt is the total number of sam-
ples, h is the model output given by h(x, t) = ẋ1(θ, t)
and θ is the vector with unknown parameters that
should be estimated. The unknown parameters consist
of all model parameters including the initial conditions
of the states x1, x2 and ẋ2. The parameter vector θ is
given by

θ = [
α β δ μ1 ε ζ μ2 x1(0) x2(0) ẋ2(0)

]T
.

(7)

Note that the initial conditions of the state ẋ1 is equal
to the first value of the experimental time-series due
to the definition of the cost function. Since the exper-
imental data originates from self-excited oscillations,
the parameter estimation is based on output data only.

Parameter estimation of nonlinear dynamical mod-
els is known to be a difficult problem with a variety of
possible pitfalls [22,23]. Among the pitfalls are a lack
of identifiability, local solutions, oscillating dynam-
ics, badly scaled parameters, noisy data and overfit-
ting. Especially, the oscillating dynamics of Eqs. (4)
and (5) poses difficulties to the parameter estimation,
since the cost function will have multiple local min-
ima and an irregular structure [23]. A local (gradient
based) optimisation method will likely converge to a
local minima. Hence, finding the global minimum is
highly dependent on the initialisation of the algorithm.
Several global optimisation approaches are developed

to find the global minimum of a cost function subject to
an oscillator. The simplest algorithm uses a multi-start
approach, which is potentially inefficient if there are
many parameters to identify. Another approach com-
bines a global search phase with a local (e.g., gradient
based) search. A well-known algorithm of this class is
the enhanced scattering search (eSS), that outperforms
the simple multi-start algorithm in many occasions
[10,22]. Furthermore, experimental data is always sub-
jected to noise which poses the problem of overfitting
the data. In an overfitted model the noise is fitted rather
than the signal. The value of the cost function of an
overfitted model can be small, but that does not mean
that the obtainedmodel has good predictive power. One
remedy against overfitting is to reduce the amount of
noise in the data. This can typically be achieved by
filtering the data. However, filtering highly nonlinear
experimental time-series with a low pass filter will fil-
ter out the higher harmonics and consequently alters
the nonlinear oscillations. Therefore, the experimental
data is filtered with a nonlinear filter as described in
Schreiber [24]. Another method to reduce overfitting,
is to use regularisation techniques [10,22]. Tominimise
model complexity and penalise wild behaviour of the
model, a regularisation term is added to the cost func-
tion. The regularisation term adds some regularity to
the minimisation problem and can be used to add some
prior knowledge about the parameters.

The AMIGO toolbox is used for the parameter esti-
mation [2], since this toolbox provides several good
features for parameter estimation. A hybrid algorithm
that combines a global search phase with a local opti-
mization phase, known as eSS, is used to minimise
the cost function. Furthermore, the toolbox enables the
use of the exact Jacobian, which improves and speeds
up the convergence of the local gradient based algo-
rithms. This, however, requires model equations that
are continuous in the states and parameters. The func-
tion Φ(x) in the second oscillator, given by Eq. (3), is
discontinuous due to theHeaviside function. Therefore,
this function is substituted by the following continuous
approximation:

Φ̃(x) = 1

1 + e−40x x
2. (8)

Finally, theAMIGOtoolbox enables to useTikhonov
regularisation to improve the parameter estimation pro-
cedure [10]. The regularisation adds a penalty term
Γ (θ) to the cost function, which results in the regu-
larised cost function
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JR(θ) = J (θ) + λΓ (θ), (9)

where λ is the non-negative regularisation parameter.
Thepenalty function is givenby the followingquadratic
penalty function

Γ (θ) = (θ − θref)
T WTW (θ − θref) . (10)

Herein, W is a diagonal scaling matrix and θref is a
reference parameter vector. In Gabor and Banga [10],
different scenarios of selectingW and θref are discussed
depending on the prior knowledge of the parameters.
Since the model parameters are roughly of O(1) due
to the scaling, a reliable initial guess of the parame-
ters within one order of magnitude is known. Hence, in
Gabor and Banga [10] it is advised to select for W the
identity matrix and for θref the parameter guess which
is chosen as a vector with all its elements equal to 0.1.
The regularisation parameter λ determines the balance
between the prior knowledge and the information of the
data. This parameter is automatically selected by a gen-
eralised cross validation algorithm, which was shown
to produce good results [10].

Furthermore, the experimental time-series reveal
dominant oscillations in the range of 100–200Hz, indi-
cating that the response of the model should be in
the order of milliseconds. An oscillator with such a
response time should have parameter values that differ
several orders inmagnitude. Large differences between
parameter valueswillmake theminimisation of the cost
function with a gradient based algorithm a challenging
task. To avoid these problems, the time variable of the
model is scaled to a dimensionless time τ such that
the parameter values of the scaled model are roughly
of the same order. The dimensionless time is given by
τ = t/Tref , in which Tref describes a typical time scale
of the oscillating flames. A Van der Pol oscillator with
mass and spring values of O(1) and a strength of the
nonlinear damping that provides limit cycle oscillations
with a comparable shape as observed in the experimen-
tal data, has a typical period time of τ = 5. Several
characteristic times can be used to obtain a suitable
reference time. For example, in Doehner et al. [8] the
restoration time is used, which is the typical time for
a flame to recover to its initial position after a pertur-
bation. In this paper, the period time of a typical limit
cycle is used. The limit cycle frequency at a velocity of
1.00 m/s is 150.3 Hz, which corresponds with a char-
acteristic time of 6.7 ms. Hence, the reference time to
slow down the flame dynamics is given by

Table 1 Relation between parameters of scaled and non-scaled
model

Parameter α̃ β̃ δ̃ ε̃ ζ̃

Expression Trefα T 2
refβ Trefδ Trefε T 2

refζ

Tref = t

τ
= 6.7 × 10−3

5
= 1

751.5
s. (11)

Applying this time scaling to the model of Eqs. (4) and
(5) will result in a model with the same structure with
the parameters as given in Table 1. Note that the cou-
pling parameters μ1 and μ2 are not changed due to the
time-scaling. Furthermore, the time of the experimental
data is similarly scaled to match the new dimensionless
time of the model equations.

Besides the time-scaling, also the sampling fre-
quency is adapted to obtain better parameter estima-
tion results. The experimental data is sampled with a
frequency of 3000 Hz. It was found that an increased
sampling frequency improves the parameter estima-
tion.With a higher sampling frequency, the oscillations
are more precisely covered by the reference data and
due to the higher number of data points around themax-
ima a mismatch in the maxima results in a larger value
of the cost function. The sampling frequency of the
experimental data is increased by a factor 4 by using the
ModifiedAkima cubicHermite interpolation (makima)
function in MATLAB.

The parameters are estimated for the experimental
data sets corresponding to all values of the bifurca-
tion parameter V , starting from the low values. Based
on preliminary results, it was observed that the con-
vergence of the algorithm for the data in the limit
cycle regime hardly depends on the initialisation of
the parameter vector and almost always converge to
a proper solution. However, for the other two regimes,
with quasi-periodic and period-2 limit cycle oscilla-
tions, the algorithm does often not converge to a proper
solution with the same qualitative type of oscillations.
The data sets in a specific regime obtained with the
subsequent value of the bifurcation parameter are visu-
ally almost similar. Hence, it is expected that the esti-
mated parameters hardly change between those data
sets. Even when the algorithm was initialised with the
estimated parameters based on the previous data set,
it was often not able to converge to a proper solution.
Therefore, a staged optimisation is applied in which
different sets of parameters are estimated separately.
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The main idea behind this staged optimisation is to
reduce the number of unknowns to simplify the opti-
misation. The parameters β and ζ determine the fre-
quency of both oscillators and consequently have the
largest influence on the cost function. First, the initial
conditions are estimated, then the values of β and ζ to
ensure that the oscillation frequencies of both oscilla-
tors match the experimental data and subsequently the
other parameters are estimated. Note that the initiali-
sation between the different runs is updated with the
newly estimated parameters. Finally, in the last run all
parameters are estimated at the same time to check if
parameters updated in earlier stages should be updated
based on the new parameters of the later stages.

For the parameter estimation the data is divided into
a training and validation set. The training set consists of
8000 samples and is used for the parameter estimation.
The validation set is used to investigate the predictive
power of the model with the identified parameters. The
normalised root-mean-square error (NRMSE) between
the model output and the experimental data set is used
as a metric to quantify and therefore to evaluate the
quality of the estimated parameters and the predictive
power of the model. The NRMSE is calculated as

NRMSE(θ) =

√√√√√ 1

Nt

Nt∑
j=1

(
ỹ j − h(x(t j , θ), t j , θ)

max ỹ − min ỹ

)2

.

(12)

The NRMSE is scaled by the number of samples Nt

to enable the comparison between the quality of the
model based on the training and validation data set.
Furthermore, the error is scaled with the amplitude of
the oscillations to make the NRMSE of different data
sets comparable. Note that only the initial condition of
the state ẋ1 is known in both the training and valida-
tion data sets. Hence, for an adequate validation of the
estimated model parameters, for the validation set the
initial conditions of the other states are estimated with
the same procedure as described above.

5 Results

In this section, the results of the parameter estima-
tion for the different regimes are presented. The model
parameters are identified with the AMIGO toolbox, as
discussed in the previous section, based on the time-
scaled experimental data. These identified parameters

are transformed back to the non-scaled form accord-
ing to the relations in Table 1. Thereafter, the model is
simulated and the results are compared with the corre-
sponding experimental data sets.

5.1 Regime I: stable fixed point

The first regime, observed for V < 0.50 m/s, is char-
acterised by stable flames. This regime indicates a
constant heat-release rate and acoustic velocity just
upstream of the burner deck. Hence, the velocity per-
turbation u′ = 0 which implies that the time-derivative
of the second state equals to zero, ẍ1 = 0. This condi-
tion is only satisfied when the system given by Eqs. (4)
and (5) has a stable equilibrium. The model actually
has a single equilibrium at x0 = [x1 ẋ1 x2 ẋ2]T =
[0 0 0 0]T, which stability is given by the eigenvalues
of the Jacobian matrix of the system evaluated at the
equilibrium point. This results in the following expres-
sions for the eigenvalues of the Jacobian matrix:

λ1,2 = α

2
± 1

2

√
α2 − 4β, (13)

λ3,4 = −ε

2
±

√
ε2 − 4ζ . (14)

Based on these eigenvalues, it is concluded that the
equilibrium point is linearly stable iff α < 0 and ε > 0.
Hence, this is the minimal requirement on the parame-
ters to obtain the stable attractor as observed in regime
I.

5.2 Regime II: limit cycles

When the velocity increases, a regime of limit cycles
is exhibited by the flames in the range of V ∈
[0.50, 1.50]m/s.Experimentally, this regime is reached
after a supercritical Hopf bifurcation as shown in
Wildemans et al. [29]. The nature of the Hopf bifurca-
tion as produced by themodelwhenα becomes positive
is also supercritical.Hence, the nature of the bifurcation
is adequately described by themodel. For the parameter
estimation a typical response with limit cycle oscilla-
tions at V = 1.00 m/s is selected. In Fig. 3a the time-
series of the experiment and the identified model (state
ẋ1) are depicted. This results shows that the model
is able of describing the limit cycle oscillations accu-
rately. The frequency and the shapeof the limit cycle are
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Fig. 3 Limit cycle oscillations of the normalised acoustic veloc-
ity at V = 1.00 m/s. In a the time-series of the experimental data
( ) and themodel ( ) are shown and in b the corresponding
PSDs

both described precisely by the model. The limit cycle
is asymmetric since the absolute values of its maxima
are larger compared to the minima. Furthermore, the
limit cycle is characterised by a bend close before its
minimum, which is also described by the model. The
Power Spectral Densities (PSDs) of both time-series
are depicted in Fig. 3b. As expected based on the time-
series, the dominant frequency and its higher harmonics
are well captured by the model. Especially, the domi-
nant and first harmonic reveal a similar strength com-
pared to the experimental data. The second and third
harmonic are slightly less strongly present in the model
response. The NRMSE of the fit confirms the good
match between the model output and the experimen-
tal data and is given by 0.0161. Besides this good fit,
the model reveals also a strong predictive power since
the NRMSE based on the validation data set (0.0138)
is approximately similar to the NRMSE based on the
training data. Based on these results, we can also con-
clude that the model is not overfitted.

The corresponding estimated parameter values of
the scaled model are shown in Table 2. The parame-

ters β̃ and ζ̃ represents the stiffness of both oscillators
and are closely related to the oscillator frequencies.
Both parameters have approximately the same value,
which indicates that both oscillators have almost the
same frequency. This is also confirmed by the oscil-
lation frequencies of both oscillators in the simulated
model response, which are both 149.6 Hz.

5.3 Regime III: quasi periodicity

The third regime is characterised by quasi-periodic
oscillations and is experimentally observed in the range
ofV ∈ [1.60, 2.40]m/s. The oscillations in this regime
reveal both amplitude and frequency modulation by a
low frequency.The amplitudemodulation is clearly vis-
ible in the time-series as depicted in Fig. 4a, while the
presence of frequencymodulation can be deduced from
the PSD as shown in Fig. 4b. Frequency modulation is
characterised by a frequency spectrum with multiple
sidebands at fITA ± n fL , with n = 1, 2, . . . and fITA
the dominant oscillating frequency and fL the low fre-
quent modulation frequency.

The experimental data corresponding to V = 1.60
m/s is used to perform the parameter estimation. In
Fig. 4a it is shown that the model is able to capture
both the dominant oscillation frequency and the ampli-
tude modulation. In general the maxima and minima
of the model response are slightly larger compared
to the experimental data. However, the minima of the
model are smaller when the modulated amplitude is
minimal. Both time-series reveal a similar frequency
spectrum as depicted in Fig. 4b. The PSD of the model
response shows that the model also describes the fre-
quency modulation. Furthermore, the dominant oscil-
lation frequency and its sidebands are reveal a sim-
ilar strength as in the experimental data. The higher
harmonics and their sidebands are well predicted by
the model, but their strength are in general slightly
over predicted by the model. The model is also able to
describe the characteristic peak at the low modulation
frequency fL . However, its peak is much higher in the
experimental data. To verify how well the frequency
modulation is described by the model, the instanta-
neous frequency of both signals is computed. Thereto,
the Hilbert transform is used, which enables the calcu-
lation of instantaneous attributes of time-series, such
as amplitude, phase and frequency. This transform
extends a real valued signal xr (t) into an analytical
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Table 2 Estimated parameter values of time-scaled model for data sets corresponding to oscillatory regimes II to IV

Parameter α̃ β̃ δ̃ μ1 ε̃ ζ̃ μ2

V = 1.00 (m/s) 0.1810 1.6225 3.6604 0.8119 0.0389 1.4236 0.7431

V = 1.60 (m/s) 0.0735 2.5131 0.015 1.7611 0.2585 1.4892 2.1692

V = 3.00 (m/s) 0.0985 2.1276 1.0391 0.2119 0 0.5300 0

Fig. 4 Quasiperiodic oscillations of the normalised acoustic
velocity at V = 1.60 m/s. In a the time-series of the exper-
imental data ( ) and the model ( ) are shown, in b the
corresponding PSDs and in c the instantaneous frequencies

signal x(t) = xr (t) + i xi (t), in which i represents
the imaginary unit. The imaginary part of the signal xi
is similar to the real part xr , but with a phase shift of
90◦. The instantaneous phase and frequency are closely
related, since the latter is the time rate of change of the
first. The instantaneous phase is given by

φ(t) = arctan

(
xi (t)

xr (t)

)
. (15)

Hence, the instantaneous frequency is given by ω(t) =
dφ/dt . This derivative is numerically computed using
total-variation regularisation [6]. The instantaneous
frequencies of the experimental data andmodel response
are shown in Fig. 4c. Both lines reveal a similar pat-
tern of the frequency modulation. However, the maxi-
mal frequency of the model response is slightly lower
than in the experimental data. Based on the results in
Fig. 4 it is concluded that the model is able to describe
the complex oscillations with amplitude and frequency
modulation rather well.

In Table 2 the corresponding parameter values are
given. Compared to the limit cycle oscillations, the
dominant oscillation frequency is increased which is
reflected by an increase of β̃. However, the estimated
value for ζ̃ is only slightly increased. This indicates that
both oscillators have a different oscillation frequency.
Furthermore, the values of both coupling parameters,
μ1 and μ2, are more than doubled. Hence, the cou-
pling between both oscillators is intensified to produce
quasi-periodic oscillations. Finally, the damping values
are changed for which the drop of δ̃ is most notable.

The quality of the fit and the predictive power are
good as can be seen from the NRMSE values computed
on both data sets. The NRMSE of the training data
equals 0.1068 and of the validation data 0.1029. These
values are roughly a factor seven higher compared to
the limit cycle oscillations, indicating that the model
can describe the limit cycle oscillations more accu-
rately. This is also expected since the quasi-periodic
oscillations are rather complex due to the frequency
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and amplitude modulation and therefore more difficult
to describe.

5.4 Regime IV: period-2 limit cycles

The oscillations in the last regime are period-2 limit
cycles, which repeats itself after two oscillations. This
regime is observed in the range of V ∈ [2.50, 3.50]
m/s. A typical response at V = 3.00 m/s is selected for
the parameter identification anddepicted inFig. 5a. The
model is able to describe the oscillations accurately,
however, there is a small mismatch in the extrema. The
PSDs in Fig. 5b show that the dominant frequency is
well captured by themodel, but the sub- and higher har-
monics are in general less strongly present in themodel
response. This indicates that the shape of the oscilla-
tions are not perfectly matching, which is also visible
in Fig. 5a. Overall, it is concluded that the model is
also able to describe the period-2 limit cycle oscilla-
tions rather accurately. The oscillation frequencies of
both oscillators reveal an interesting relation, namely
the frequency of the first oscillator is exactly twice the
frequency of the second oscillator. The difference in
oscillation frequency is also visible in the estimated
parameters, since ζ̃ is much lower compared to β̃. Fur-
thermore, ζ̃ is also much lower compared to its values
for the limit cycle and quasi-periodic regime, indicat-
ing that the second oscillator changed its behaviour
significantly to generate period-2 limit cycle oscilla-
tions. Besides, the coupling parameter μ2 is equal to
zero, indicating that the second oscillator is not affected
by the first oscillator. Furthermore, the damping con-
stant ε̃ of the second oscillator equals to zero. Since ε̃

andμ2 are equal to zero, the second oscillator is able to
generate oscillationswith a constant amplitude depend-
ing on its initialisation. The oscillations of this second
generator produce an oscillating damping in the first
oscillator through the coupling term. Due to the spe-
cific ratio between the oscillation frequencies of both
oscillators and the oscillating damping in the first oscil-
lator, the system is able to produce period-2 limit cycle
oscillations.

5.5 Estimated parameter values

The relation between the model parameters with the
experimental bifurcation parameter can provide some

Fig. 5 Period-2 limit cycle oscillations of the normalised acous-
tic velocity at V = 3.00 m/s. In a the time-series of the experi-
mental data ( ) and the model ( ) are shown and in b the
corresponding PSDs

insight in the working of the model and the effect of its
model parameters. This clearly reveals which parame-
tersmainly changewhen themodel bifurcates from one
regime to an other. Asmentioned earlier, the oscillation
frequency of the models is mainly determined by the
parameters β and ζ for the first and second oscillator,
respectively. In Fig. 6 the undamped natural frequency
of both oscillators is depicted along the dominant fre-
quency of the experimental data. The undamped natural
frequency of both oscillators is calculated by

fi = 1

2πTref

√
Ψi , (16)

with Ψ ∈ [β̃, ζ̃ ] and the index i denotes the first or
second oscillator. Figure6 reveals that for the limit
cycle oscillations (regime II) the natural frequency of
both oscillators is roughly similar and show a good
correspondence with the frequency of the experimen-
tal limit cycle. When the model bifurcates to quasi-
periodic oscillations (regime III), the natural frequen-
cies of both oscillators are not equal to each other and
to the experimental frequency. The natural frequency
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Fig. 6 Frequencies of oscillations against bifurcation parame-
ter V , with the dominant experimental ITA frequency ( ◦ ),
the undamped natural frequency of the first oscillator, f1 =

1
2πTref

√
β̃ ( + ) and the undamped natural frequency of the sec-

ond oscillator, f2 = 1
2πTref

√
ζ̃ ( × )

of the first oscillator is significantly higher compared
to the experimental dominant frequency and the natural
frequencyof the secondoscillator is significantly lower.
Hence, in this regime we have two coupled oscillators
with significantly different frequencies. These coupled
oscillators are able to generate amplitude and frequency
modulation. Finally, in the regime with period-2 limit
cycle oscillations (regime IV), the natural frequency of
the first oscillator is similar to the dominant frequency
of the experimental data. The natural frequency of the
second oscillator is exactly half of the frequency of the
first oscillator. Hence, the coupled oscillators are able
to produce period-2 limit cycle when the ratio between
both natural frequencies is exactly two.

The coupling strength between both oscillators
depends on the values of μ1 and μ2. In Fig. 7 their
values are shown for different values of the bifurca-
tion parameter V . These results reveal a clear differ-
ence of the coupling strength between the different
regimes. In regime II with the limit cycle oscillations,
the coupling parameters have approximately a simi-
lar strength and are all below 1. In the next regime,
with quasi-periodic oscillations, the coupling parame-
ters have a significantly higher value compared to the
other two regimes. This indicates that in regime III a
strong interaction between both oscillators is required
to generate the quasi-periodic oscillations with fre-
quency and amplitude modulation. In the last regime,
with the period-2 limit cycles, only μ1 has non zero
values. As already mentioned, this indicates that the
second oscillator affects the first one, but not the other
way around. The values of μ1 are slightly lower com-

Fig. 7 Parameter values of the coupling parameters μ1 ( × )
and μ2 ( + ) for different values of V

pared to regime II. However, this does not necessarily
mean that the effect on the dynamics of the first oscil-
lator is weaker, since this is also determined by the
amplitude of the states ẋ1 and ẋ2.

In the standard Van der Pol oscillator, the amplitude

is governed by the ratio
√

δ̃/α̃ as explained in Sect. 3.
This ratio is calculated for all values for the bifurcation
parameter and depicted in Fig. 8. This ratio is small in
the region of the limit cycle oscillations and reveals a
slightly increasing trend with increasing V . This indi-
cates an increase in amplitude,whichwas also observed
in the experiments as depicted in Fig. 2. When the
model enters regime III, a drastic increase of the ratio
is observed. Thereafter, ratio decreases with increasing
V and remains approximately constant during the last
regime. In the experiments, the oscillation amplitude
increases with increasing V in regime III. This is not
reflected in the ratio, that determines the amplitude in
a standard Van der Pol oscillator. This indicates that
in regime III the strong coupling between both oscilla-
tors plays a dominant role in the determination of the
maximal amplitude. Furthermore, the value of the ratio
is higher in the regime of period-2 limit cycles com-
pared to the regime of limit cycle oscillations. This is
in line with the maxima of the experimentally observed
oscillations as shown in Fig. 2.

Finally, the damping parameter of the second oscil-
lator ε̃ is depicted in Fig. 9. It is observed that the
value of this parameter reveals a slightly increasing
trend for the limit cycle oscillations. Furthermore, the
trend is approximately similar to the values of the cou-
pling parameters. This is likely due to the possible
destabilising effect of the coupling term in the second
oscillator, such that the increase in negative damping
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Fig. 8 The ratio
√

α̃/δ̃ for different values of V

Fig. 9 Values of ε̃ for different values of V

is compensated by positive damping. In the regime of
quasi-periodic oscillations, this damping value is sig-
nificantly higher compared to the other regimes and
shows a decreasing trend for increasing V . Finally, in
the regime of period-2 limit cycles this damping van-
ishes. In this last regime the second oscillator should
produce oscillationswith a constant amplitudewhich is
only possible when there is no damping in that oscilla-
tor, otherwise these oscillationswill dampout over time
and the first oscillator will no longer produce period-2
limit cycles.

Overall, the proposed phenomenological model
shows a good quantitativematchwith all datasets corre-
sponding to different values of the experimental bifur-
cation parameter V . Contrary to the slowly varying
experimental bifurcation parameter between different
experiments, some model parameters reveal a jump
between two distinct regimes of oscillations reflecting
the experimentally observed sudden qualitative change
of type of oscillations. This may indicate that the pro-
posed phenomenological model do not directly repro-
duce the structure of, at themoment unknown, the onto-
logical model which may follows from first principle

considerations. However, it provides important insights
in the essential features that a dynamical model should
have to describe all different regimes.

5.6 Comparison with linearly coupled Van der Pol
oscillators

Recently, a new nonlinear time-domain model for lam-
inar premixed flames was introduced by Doehner et al.
[8]. This model consists of two linearly coupled Van
der Pol oscillators. It was calibrated based on exter-
nal acoustic forcing and mainly describes the effect of
acoustic perturbations on the heat-release rate of the
flames. However, it is interesting to investigate if this
model is also able to describe the self-excited ITAoscil-
lations. Thereto, a parameter estimation of this model
is conducted based on the experimental data presented
in the previous sections.

The differential equations of the model read as fol-
lows:

z̈1 + α1 ż1 + β1 ż1z
2
1 + η1z1 = δ1 (z2 − z1) + γ F,

(17)

z̈2 + α2 ż2 + β2 ż2z
2
2 + η2z2 = −δ2 (z2 − z1) , (18)

˙̃z2 = ż2 + 2

ζ
(z2 − z̃2) . (19)

Herein, F is the external acoustic forcing, z1 and ż1 are
the state variables of the first oscillator and z2 and ż2
the state variables of the second oscillator. The nota-
tion z̃ denotes a time-delayed variable. In this model
˙̃z2 describes the heat-release rate. This model has clear
similarities with the model given by Eqs. (4) and (5).
Namely, it also consists of two coupled oscillators and
the first oscillator also resembles a Van der Pol oscil-
lator. The main difference between both models is the
coupling between the oscillators. Themodel introduced
in this paper is characterised by nonlinear coupling
between both oscillators, while the model of Doehner
et al. [8] has linear coupling. Since we are only consid-
ering self-excited oscillations, the external forcing F is
set to zero for the parameter estimation routine. Due to
the similarities between both models, it is assumed that
the state ż1 describes the self-excited acoustic veloc-
ity perturbations just upstream of the flames similar as
the state ẋ1 in the model of Eqs. (4) and (5). Hence,
to investigate if the model of Eqs. (17)–(19) is able to
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Fig. 10 Time-series of limit cycle oscillations of the normalised
acoustic velocity at V = 1.00 m/s of experimental data ( )
and of model with two identical Van der Pol oscillators ( )

reproduce the experimentally observed nonlinear oscil-
lations of pure ITAmodes, the parameters are estimated
such that state ż1 mimics the experimental time-series
of u′/ū.

In Doehner et al. [8] the oscillators are chosen to be
identical to reduce the model complexity in terms of
parameters to estimate. Equations (17)–(19) are equiv-
alent to the model from Doehner et al. [8] for the
following parameter constraints, namely α1 = α2,
β1 = β2, δ1 = δ2 and η1 = η2 = 1. The latter param-
eter constraint is obtained for a specific definition of
Tref . In case of positive parameter values, the model
of Eqs. (17)–(19) will have a single stable fixed point
at z0 = [z1 ż1 z2 ż2]T = [0 0 0 0]T. To let the sys-
tem exhibit self-excited oscillations, the sign of α1 is
changed in the subsequent analysis.

First, it is investigated if the model with two identi-
cal oscillators is able to describe the limit cycle oscil-
lations of regime II. Thereto, the typical time-series of
V = 1.00 m/s is selected to estimate the model param-
eters. The result is depicted in Fig. 10. The dominant
oscillation frequency is well described by the model.
However, the shape of the limit cycle is less accurately
captured compared to the model of Eqs. (4) and (5) as
shown in Fig. 3. It is concluded that the model with
two identical Van der Pol oscillators is not able to
describe the asymmetric shape of the limit cycle. Fur-
thermore, it was observed that this model was also not
able to describe more complex nonlinear oscillations
as the quasi-periodic and period-2 limit cycle oscil-
lations. Hence, the model with two identical linearly
coupled Van der Pol oscillators is not able to describe
the rich variety of self-excited oscillations produced by
an unstable pure ITA mode.

Fig. 11 Time-series of limit cycle oscillations of the normalised
acoustic velocity atV = 1.00m/s of experimental data ( ) and
of model with two non-identical Van der Pol oscillators ( )

Next, it is investigated if a model of two non-
identical linear coupled Van der Pol oscillators is able
to describe the nonlinear oscillations of an unstable
ITA mode. Therefore, the same model structure of
Eqs. (17)–(19) is used but the requirement that the
parameters of both oscillators are need to be similar
is relaxed. Note, that also η1 and η2 are not necessarily
equal to 1. Firstly, parameters are identified to investi-
gate how accurate the non-identical Van der Pol oscil-
lators can describe the limit cycle oscillations. There-
fore, the experimental data corresponding to V = 1.00
m/s is used. The result is shown in Fig. 11. Again, the
dominant oscillation frequency is well captured by the
model. Furthermore, the asymmetric limit cycle shape
is accurately described. The performance of the non-
identical Van der Pol oscillators in describing the limit
cycle oscillations is very well comparable to the results
obtained with the non-linearly coupled oscillators as
shown in Fig. 3. This is also confirmed by the NRMSE
values as given in Table 3, which are approximately
similar compared to the results obtained with the non-
linearly coupled oscillators.

Thereafter, the parameters are estimated for a data
set of quasi-periodic oscillations obtained with V =
1.60 m/s. In Fig. 12a the result is shown. The dominant
oscillation frequency is well described and the ampli-
tude modulation is clearly present. In general the max-
ima are slightly underestimated by themodel, while the
minima are over estimated. In Fig. 12b the PSDs are
depicted, which reveal clear differences between the
model and the experiments. The dominant frequency
and its sidebands are similarly present, indicating the
presence of frequencymodulation.However, the higher
harmonics with their sidebands are almost absent. Fur-
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Table 3 NRMSE for different data sets obtained with the model as introduced in this paper (model I) and the full parametrised model
as introduced by Doehner et al. [8] (model II)

Case (V ) Model I Model II

Training Validation Training Validation

1.00 (m/s) 0.0161 0.0138 0.0123 0.0137

1.60 (m/s) 0.1068 0.1029 0.1464 0.1298

3.00 (m/s) 0.0882 0.0882 0.0630 0.0493

Fig. 12 Quasiperiodic oscillations of the normalised acoustic
velocity at V = 1.60 m/s. In a the time-series of the experimen-
tal data ( ) and the model of two non-identical Van der Pol
oscillators ( ) are shown, in b the corresponding PSDs and in
c the instantaneous frequencies

thermore, the characteristic peak at the lowmodulation
frequency is not produced by the model. The instan-
taneous frequencies of both time-series are given in
Fig. 12c and reveal a frequency modulation with an
approximately similar frequency, but a different shape.
The frequency modulation in the experimental data
is close to symmetrical, while the modulation of the
model is highly asymmetrical. When the amplitude of
the time-series is minimal, the frequency reveals a nar-
row peak which exceeds the maximum frequency of
the experimental data. During the rest of the amplitude
modulation, the frequency remains almost constant at
a value that is significantly higher than the minimal
frequency observed in the experimental data. Hence,
it is concluded that the model of two linearly cou-
pled non-identical Van der Pol oscillators is not able to
describe the quasi-periodic oscillations accurately. The
NRMSE values obtained by this model are also signif-
icantly higher compared to the model as introduced in
Sect. 3. This also shows that the linearly coupled non-
identical Van der Pol oscillators have a lower capability
of describing the quasi-periodic oscillations.

Finally, the ability of the non-identical oscillator
model to describe the period-2 limit cycle oscillations
is investigated. Thereto, the parameters are identified
based on a data set obtained with V = 3.00 m/s. The
result is shown in Fig. 13 and reveals a good agreement
between themodel response and the experimental time-
series. The dominant oscillation frequency is described
accurately. Comparable to the results obtained with the
model of Eqs. (4) and (5), the shape of the oscillations
is captured accurately, but there is a small mismatch in
the extrema.

Based on the above results, it is concluded that
a model of two coupled non-identical oscillators is
able to describe quasi-periodic and period-2 limit cycle
oscillations. However, to describe the experimentally
observed quasi-periodic oscillations accurately includ-
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Fig. 13 Time-series of period-2 limit cycle oscillations of the
normalised acoustic velocity at V = 3.00 m/s of experimental
data ( ) and of model with two non-identical Van der Pol
oscillators ( )

ing the correct frequency modulation and the peak
at low frequency, the nonlinear coupling between the
oscillators turns out to be necessary. Nonlinear, asym-
metric functions, such as Φ(x), are able to demodulate
amplitude modulated signals and thus can extract the
low frequent modulation frequency from such a signal.
When both oscillators produce oscillationswith a small
difference in frequency, this can lead to an amplitude
modulated signal due to the coupling.When thismodu-
lated signal is fed into the functionΦ, it is demodulated
and the low frequent oscillation is extracted from the
signal. Hence, this can produce a distinct peak at this
low modulation frequency in the frequency spectrum
of the model response.

6 Discussion

A model of two coupled oscillators provides a promis-
ing model structure to describe the flame dynamics.
Such a model is of low-order, which makes it useful for
time-domain simulations. Such simulations are impor-
tant in the design of a combustion application and the
design of instability mitigation strategies. In this paper
it is shown that a two coupled oscillator model is able
to describe and predict the self-excited nonlinear oscil-
lations of an unstable ITA mode, which reflects the
self-excited flame dynamics. In Doehner et al. [8] it is
shown that such a model is also capable of describing
the acoustically forced flame dynamics. Hence, with a
model of two coupled oscillators both the self-excited
and the forced flame dynamics can be described accu-
rately. Despite that both mentioned models are coupled
oscillators, there are some important differences.

Themain difference between bothmodels is the cou-
pling. The coupling in the model of Doehner et al. [8]
is on the displacement level and is linear. In the model
introduced in this paper, the coupling is on the level of
velocity and is nonlinear. Both models are capable of
describing the limit cycle and period-2 limit cycle oscil-
lations rather accurate. However, there is a significant
difference in their ability to produce the quasi-periodic
oscillations with the amplitude and frequency modu-
lation. Only the model with the nonlinear coupling is
able to produce a similar frequencymodulation and fre-
quency spectrum including the peak at the low modu-
lation frequency as observed in the experiments. The
presence of the peak at the low frequency spectrum
is likely due to the demodulation of the asymmetric
coupling in the second oscillator. Hence, the nonlin-
ear coupling is important in describing all observed
regimes accurately. Furthermore, the model as intro-
duced in this paper consists of a Van der Pol oscil-
lator coupled to a linear damped oscillator, while the
model of Doehner et al. [8] consists of two coupled Van
der Pol oscillators. Van der Pol oscillators are able to
produce self-excited oscillations, while linear damped
oscillators cannot. Hence, coupled Van der Pol oscil-
lators provides a bit more flexibility in describing the
period-2 limit cycle oscillations.

The proposed phenomenological model provides
an accurate description of the observed nonlinear
regimes and a solid base to continue its development
and include the heat-release rate as a state variable,
leading to a time-domain description of the relation-
ship between acoustic velocity perturbations and heat-
release rate perturbations. This extension of the time-
domain model could for example be realised by a
novel technique named sparse identification of nonlin-
ear dynamics [5]. When the time-domain description
of the relation between the acoustic velocity and heat-
release perturbations is established, this model can be
coupled to an acoustic domain and used for the (stabil-
ity) analysis of a complete thermo-acoustic system.

7 Conclusions

In this paper, a phenomenological model is proposed
that is able to describe the nonlinear self-excited nonlin-
ear dynamics of pure ITA modes. This model consists
of two nonlinearly coupled oscillators, where the first
represents a Van der Pol oscillator and the second one
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a standard mass-damper-spring oscillator. In an exper-
imental bifurcation analysis, it was observed that the
fully premixed flames reveal subsequently four differ-
ent attractors, namely a fixed point and limit cycle,
quasi-periodic and period-2 limit cycle oscillations.
For all four regimes, model parameters are identified
such that the presented phenomenologicalmodel is able
to qualitatively and quantitatively describe the exper-
imentally observed nonlinear attractors. The regime
with quasi-periodic oscillations is characterised by low
frequency amplitude and frequency modulation, which
phenomena are both accurately captured by the model.
A comparable model, proposed byDoehner et al. [8], is
also investigated. This model was able to describe the
limit cycle and period-2 limit cycle accurately, how-
ever, it was not able to describe quasi-periodic oscilla-
tions with a similar frequency spectrum. It is believed
that this is mainly due to the difference in the cou-
pling between both oscillators, which is linear in the
model of Doehner et al. [8] and nonlinear in the model
of this paper. Hence, the model with nonlinear cou-
pling, as presented in this paper, provides a promis-
ing model structure to represent the internal nonlinear
flame dynamics.

Although the presented phenomenological model is
able to describe the nonlinear flame dynamics accu-
rately, it does not yet provide a full description of acous-
tic behaviour of theflames.Therefore, themodel should
be extended such that it can describe the heat-release
rate oscillations as well. The extension of this model is
an interesting question for future research. Other inter-
esting questions are how to couple this model to an
acoustic domain and what is the physical meaning of
the states and model parameters?

Funding This publication is part of the project STAbLE (with
Project Number 16315) of the research programme Open Tech-
nology Programme which is (partly) financed by the Dutch
Research Council (NWO).

Declarations

Conflict of interest The authors declare that they have no con-
flict of interest.

Data availability The data that support the findings of this study
are available from the corresponding author upon reasonable
request.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in anymedium

or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third partymaterial in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to thematerial. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

References

1. Anishchenko, V., Nikolaev, S., Kurths, J.: Winding num-
ber locking on a two-dimensional torus: synchronization
of qausiperiodic motions. Phys. Rev. E 73, 056202 (2006).
https://doi.org/10.1103/PhysRevE.73.056202

2. Balsa-Canto, E., Henriques, D., Gábor, A., Banga, J.R.:
AMIGO2, a toolbox for dynamic modeling, optimization
and control in systems biology. Bioinformatics 32(21),
3357–3359 (2016). https://doi.org/10.1093/bioinformatics/
btw411

3. Bomberg, S., Emmert, T., Polifke, W.: Thermal versus
acoustic response of velocity sensitive premixed flames.
Proc. Combust. Inst. 35(3), 3185–3192 (2015). https://doi.
org/10.1016/j.proci.2014.07.032

4. Bonciolini, G., Faure-Beaulieu, A., Bourquard, C., Noiray,
N.: Low order modelling of thermoacoustic instabilities and
intermittency: flame response delay and nonlinearity. Com-
bust. Flame 226, 396–411 (2021). https://doi.org/10.1016/
j.combustflame.2020.12.034

5. Brunton, S.L., Proctor, J.L., Kutz, J.N., Bialek, W.: Dis-
covering governing equations from data by sparse identi-
fication of nonlinear dynamical systems. Proc. Natl. Acad.
Sci. U.S.A. 113(15), 3932–3937 (2016). https://doi.org/10.
1073/pnas.1517384113

6. Chartrand, R.: Numerical differentiation of noisy, nons-
mooth data. ISRN Appl. Math. (2011). https://doi.org/10.
5402/2011/164564

7. Courtine, E., Selle, L., Poinsot, T.: DNS of intrinsic ther-
moacoustic modes in laminar premixed flames. Combust.
Flame 162(11), 4331–4341 (2015). https://doi.org/10.1016/
j.combustflame.2015.07.002

8. Doehner, G., Haeringer, M., Silva, C.F.: Nonlinear flame
responsemodelling by a parsimonious set of ordinary differ-
ential equations. Int. J. SprayCombust. Dyn. 14(1–2), 17–29
(2022). https://doi.org/10.1177/17568277221094760

9. Emmert, T., Bomberg, S., Polifke, W.: Intrinsic ther-
moacoustic instability of premixed flames. Combust.
Flame 162(1), 75–85 (2015). https://doi.org/10.1016/j.
combustflame.2014.06.008

10. Gábor, A., Banga, J.R.: Robust and efficient parame-
ter estimation in dynamic models of biological systems.
BMC Syst. Biol. 9(1), 74 (2015). https://doi.org/10.1186/
s12918-015-0219-2

11. Gant, F., Ghirardo, G., Bothien, M.: On the importance of
time delay and noise in thermoacoustic modeling. J. Sound

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevE.73.056202
https://doi.org/10.1093/bioinformatics/btw411
https://doi.org/10.1093/bioinformatics/btw411
https://doi.org/10.1016/j.proci.2014.07.032
https://doi.org/10.1016/j.proci.2014.07.032
https://doi.org/10.1016/j.combustflame.2020.12.034
https://doi.org/10.1016/j.combustflame.2020.12.034
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.5402/2011/164564
https://doi.org/10.5402/2011/164564
https://doi.org/10.1016/j.combustflame.2015.07.002
https://doi.org/10.1016/j.combustflame.2015.07.002
https://doi.org/10.1177/17568277221094760
https://doi.org/10.1016/j.combustflame.2014.06.008
https://doi.org/10.1016/j.combustflame.2014.06.008
https://doi.org/10.1186/s12918-015-0219-2
https://doi.org/10.1186/s12918-015-0219-2


Parameter estimation of two coupled oscillator model 12853

Vib. 501, 116067 (2021). https://doi.org/10.1016/j.jsv.2021.
116067

12. Haeringer, M., Merk, M., Polifke, W.: Inclusion of higher
harmonics in the flame describing function for predicting
limit cycles of self-excited combustion instabilities. Proc.
Combust. Inst. 37(4), 5255–5262 (2019). https://doi.org/10.
1016/j.proci.2018.06.150

13. Juniper, M., Sujith, R.: Sensitivity and nonlinear-
ity of thermoacoustic oscillations. Annu. Rev. Fluid
Mech. 50, 661–689 (2018). https://doi.org/10.1146/
annurev-fluid-122316-045125

14. Kabiraj, L., Saurabh, A., Wahi, P., Sujith, R.: Route to
chaos for combustion instability in ducted laminar premixed
flames. Chaos 22(2), 23129 (2012). https://doi.org/10.1063/
1.4718725

15. Kashinath,K.,Waugh, I., Juniper,M.:Nonlinear self-excited
thermoacoustic oscillations of a ducted premixed flame:
bifurcations and routes to chaos. J. Fluid Mech. 761, 399–
430 (2014). https://doi.org/10.1017/jfm.2014.601

16. Kasthuri, P., Unni, V., Sujith, R.: Bursting and mixed mode
oscillations during the transition to limit cycle oscillations
in a matrix burner. Chaos 29(4), 043117 (2019). https://doi.
org/10.1063/1.5095401

17. Kuznetsov, A., Kuznetsov, S., Stankevich, N.: A simple
autonomous quasiperiodic self-oscillator. Commun. Non-
linear Sci. Numer. Simul. 15, 1676–1681 (2010). https://
doi.org/10.1016/j.cnsns.2009006.027

18. Moeck, J., Paschereit, C.: Nonlinear interactions of multi-
ple linearly unstable thermoacoustic modes. Int. J. Spray
Combust. Dyn. 4(1), 1–28 (2012). https://doi.org/10.1260/
1756-8277.4.1.1

19. Mukherjee, N., Shrira, V.: Intrinsic flame instabilities in
combustors: analytic description of a 1-D resonator model.
Combust. Flame 185, 188–209 (2017). https://doi.org/10.
1016/j.combustflame.2017.07.012

20. Noiray, N., Durox, D., Schuller, T., Candel, S.: A
unified framework for nonlinear combustion instabil-
ity analysis based on the flame describing function. J.
Fluid Mech. 615, 139–167 (2008). https://doi.org/10.1017/
S0022112008003613

21. Orchini, A., Silva, C.,Mensah,G.,Moeck, J.: Thermoacous-
tic modes of intrinsic and acoustic origin and their interplay
with exceptional points. Combust. Flame 211, 83–95 (2020).
https://doi.org/10.1016/j.combustflame.2019.09.018

22. Pitt, J.A., Banga, J.R.: Parameter estimation in models of
biological oscillators: an automated regularised estimation
approach.BMCBioinform. (2019). https://doi.org/10.1186/
s12859-019-2630-y

23. Schittkowski, K.: Numerical Data Fitting in Dynamical Sys-
tems: A Practical Introduction with Applications and Soft-
ware. Kluwer Academic Publishers, Boston (2002). https://
doi.org/10.1007/978-1-4419-5762-7

24. Schreiber, T.: Extremely simple nonlinear noise-reduction
method. Phys. Rev. E 47, 2401–2404 (1993). https://doi.
org/10.1103/PhysRevE.47.2401

25. Silva, C., Emmert, T., Jaensch, S., Polifke, W.: Numerical
studyon intrinsic thermoacoustic instability of a laminar pre-
mixed flame. Combust. Flame 162(9), 3370–3378 (2015).
https://doi.org/10.1016/j.combustflame.2015.06.003

26. Steinbacher, T., Polifke, W.: Convective velocity pertur-
bations and excess gain in flame response as a result
of flame-flow feedback. Fluids (2022). https://doi.org/10.
3390/fluids7020061

27. Tathawadekar, N., Doan, N., Silva, C., Thuerey, N.: Mod-
eling of the nonlinear flame response of a Bunsen-type
flame viamulti-layer perceptron. Proc. Combust. Inst. 38(4),
6513–6520 (2021). https://doi.org/10.1016/j.proci.2020.07.
115

28. Weng, Y., Unni, V.R., Sujith, R.I., Saha, A.: Synchronization
framework for modeling transition to thermoacoustic insta-
bility in laminar combustors. Nonlinear Dyn. 100(4), 3295–
3306 (2020). https://doi.org/10.1007/s11071-020-05706-3

29. Wildemans, R., Kornilov, V., de Goey, P., Lopez-Arteaga,
I.: Nonlinear dynamics of pure intrinsic thermo-acoustic
modes. Combust. Combust. Flame 251, 112703 (2023).
https://doi.org/10.1016/j.combustflame.2023.112703

30. Williams, F.: Turbulent combustion. In: Buckmaster, J. (ed.)
TheMathematics of Combustion, chap. 3, pp. 97–131. Soci-
ety for Industrial and Applied Mathematics, Philidelphia
(1985)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123

https://doi.org/10.1016/j.jsv.2021.116067
https://doi.org/10.1016/j.jsv.2021.116067
https://doi.org/10.1016/j.proci.2018.06.150
https://doi.org/10.1016/j.proci.2018.06.150
https://doi.org/10.1146/annurev-fluid-122316-045125
https://doi.org/10.1146/annurev-fluid-122316-045125
https://doi.org/10.1063/1.4718725
https://doi.org/10.1063/1.4718725
https://doi.org/10.1017/jfm.2014.601
https://doi.org/10.1063/1.5095401
https://doi.org/10.1063/1.5095401
https://doi.org/10.1016/j.cnsns.2009006.027
https://doi.org/10.1016/j.cnsns.2009006.027
https://doi.org/10.1260/1756-8277.4.1.1
https://doi.org/10.1260/1756-8277.4.1.1
https://doi.org/10.1016/j.combustflame.2017.07.012
https://doi.org/10.1016/j.combustflame.2017.07.012
https://doi.org/10.1017/S0022112008003613
https://doi.org/10.1017/S0022112008003613
https://doi.org/10.1016/j.combustflame.2019.09.018
https://doi.org/10.1186/s12859-019-2630-y
https://doi.org/10.1186/s12859-019-2630-y
https://doi.org/10.1007/978-1-4419-5762-7
https://doi.org/10.1007/978-1-4419-5762-7
https://doi.org/10.1103/PhysRevE.47.2401
https://doi.org/10.1103/PhysRevE.47.2401
https://doi.org/10.1016/j.combustflame.2015.06.003
https://doi.org/10.3390/fluids7020061
https://doi.org/10.3390/fluids7020061
https://doi.org/10.1016/j.proci.2020.07.115
https://doi.org/10.1016/j.proci.2020.07.115
https://doi.org/10.1007/s11071-020-05706-3
https://doi.org/10.1016/j.combustflame.2023.112703

	Parameter estimation of two coupled oscillator model for pure intrinsic thermo-acoustic instability
	Abstract
	1 Introduction
	2 Experimental bifurcation analysis
	2.1 Experimental setup
	2.2 Bifurcation analysis

	3 Model of coupled oscillators
	4 Parameter estimation
	5 Results
	5.1 Regime I: stable fixed point
	5.2 Regime II: limit cycles
	5.3 Regime III: quasi periodicity
	5.4 Regime IV: period-2 limit cycles
	5.5 Estimated parameter values
	5.6 Comparison with linearly coupled Van der Pol oscillators

	6 Discussion
	7 Conclusions
	References




