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Abstract A new variational principle for mechanical
systems subject to holonomic constraints is presented.
The newly proposed GGL principle is closely related
to the often used Gear-Gupta-Leimkuhler (GGL) sta-
bilization of the differential–algebraic equations gov-
erning the motion of constrained mechanical systems.
The GGL variational principle relies on an extension
of the Livens principle (sometimes also referred to
as Hamilton–Pontryagin principle) to mechanical sys-
tems subject to holonomic constraints. In contrast to
the original GGL stabilization, the new approach facil-
itates the design of structure-preserving integrators. In
particular, new variational integrators are presented,
which result from the direct discretization of the GGL
variational principle. These variational integrators are
symplectic and conserve momentum maps in the case
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of systems with symmetry. In addition to that, a new
energy–momentum scheme is developed, which results
from the discretization of the Euler–Lagrange equa-
tions pertaining to the GGL variational principle. The
numerical properties of the newly devised schemes are
investigated in representative examples of constrained
mechanical systems.

Keywords Livens principle · Holonomic constraints ·
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tion · Structure-preserving integration · Variational
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1 Introduction

The motion of mechanical systems subject to holo-
nomic constraints is governed by differential–algebraic
equations (DAEs) with differentiation index three (cf.
[1,2]). These DAEs are known to be prone to numer-
ical instabilities. The GGL stabilization due to Gear,
Leimkuhler and Gupta [3] yields an index reduction by
taking into account the hidden constraints on velocity
level. In particular, the GGL stabilization achieves an
index reductionbyminimal extension [1] and facilitates
a stable numerical integration of the resulting index 2
DAEs.

Since, apart from the index reduction property, the
GGL stabilization does not suffer from the drift off
phenomenon [2], it gained high popularity over the
last decades. In fact, the GGL stabilization has been
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widely used in the designof numericalmethods for con-
strained mechanical systems. For example, the GGL
stabilization is frequently used in the computer simu-
lation of flexible multibody dynamics [2,4,5]. It has
been shown to be advantageous for the numerical solu-
tion of optimal control problems of multibody systems
[6,7]. Moreover, it has been employed in the design of
DAE Lie group methods [8]. Related works on con-
strained mechanical systems benefiting from the usage
of velocity constraints have been developed in [9,10].

In thepast, a number of structure-preserving schemes
has been developed for the numerical integration of
constrainedmechanical systems. Representative exam-
ples are symplectic integrators [11–13] and energy–
momentum schemes [14–17]. These methods typi-
cally rely on a direct discretization of the constrained
equations of motion in the Hamiltonian framework.
In the present work, we follow another path towards
the design of structure-preserving integrators, which is
based on Livens principle. This variational principle
can be traced back to Livens [18] (see also Pars [19]),
where it has been formulated in the context ofmechani-
cal systems without constraints. In recent times, Livens
principle has also been termed Hamilton–Pontryagin
principle (see [20–22]) due to its close relation with
optimal control problems.

In the present work, we propose an extension of
Livens principle tomechanical systems subject to holo-
nomic constraints. The Euler–Lagrange equations of
the newly devised variational principle yield an index
reduction of the underlying DAEs to index 2 in the
spirit of the GGL stabilization. Therefore, we choose
the name GGL principle for the novel variational prin-
ciple, which accounts for both position constraints and
hidden velocity constraints. In contrast to the original
GGL stabilization, the availability of the GGL vari-
ational principle makes possible the design of vari-
ational integrators (VIs). VIs rely on the direct dis-
cretization of the underlying variational functional [23–
25]. We stress that previously developed VIs for con-
strained mechanical systems such as [23] do not rely
on GGL-type stabilization, which hinges on a suitable
modification of the underlying continuous formulation.
VIs are typically symplectic and capable of conserving
momentummaps in the case of systemswith symmetry.
In addition to that, we show that the Euler–Lagrange
equations of the GGL principle facilitate the design of
energy–momentum (EM) schemes. EM schemes typi-
cally rely on the notion of a discrete derivative [26–28]

and are capable of conserving the system’s total energy
and momentum maps.

The remainder of this work is structured as fol-
lows. Section2 contains an outline of Livens princi-
ple and a summary of the original GGL stabilization
approach to constrained mechanical systems. In addi-
tion to that, structural properties of interest are sum-
marized. In Sect. 3, the newly proposed GGL varia-
tional principle for constrained mechanical systems is
introduced. Novel VIs based on the GGL principle are
devised in Sect. 4. In addition to that, a newEM scheme
resulting from the discretization of the Euler–Lagrange
equations of the GGL principle is presented in Sect. 5.
In Sect. 6, the properties of the time-stepping schemes
at hand are investigated in the context of representa-
tive numerical examples. Eventually, conclusions are
drawn in Sect. 7.

2 Fundamentals

This section contains an outline of important relation-
ships required for the subsequent developments.

2.1 Livens principle

Consider a dynamical system with d degrees of free-
dom and generalized coordinates q ∈ Q̂. Within the
time interval I = [0, T ], the trajectory on the con-
figuration space Q̂ is characterized by q : I → Q̂.
The corresponding velocities v ∈ TqQ̂ can be used as
independent variables in Hamilton’s principle of least
action. To this end, the kinematic relation q̇ = v is
appended to the Lagrangian by using Lagrange multi-
pliers p ∈ T ∗

q Q̂. The corresponding augmented action
integral reads

S(q, v, p) =
∫ T

0

[
L(q, v) + p · (q̇ − v)

]
dt , (1)

where L(q, v) : T Q̂ → R is the Lagrangian. The func-
tional (1) can be linked to Livens theorem (cf. Sec-
tion 26.2 in Pars [19]) which goes back to Livens [18].
More recently, the term Hamilton–Pontryagin princi-
ple has been used [20–22] in allusion to the close rela-
tionwith optimization problems for dynamical systems
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(cf. Bryson andHo [29]).1 Livens principle unifies both
Lagrangian and Hamiltonian viewpoints on mechanics
and automatically accounts for the Legendre transfor-
mation.

By stating the stationary condition δS(q, v, p) =
0 and performing the variations with respect to every
independent variable, one obtains the Euler–Lagrange
equations in the form

q̇ = v , (2a)

ṗ = D1L(q, v) , (2b)

p = D2L(q, v) . (2c)

Note that integration by parts and the usual endpoint
conditions δq(0) = δq(T ) = 0 have been employed.
Moreover, D j L(q, v) stands for the partial derivative
of function L with respect to the j’s argument.

With regard to (2c), themultiplier p can be identified
as the conjugate momentum. Accordingly, the Legen-
dre transformation is built into the variational principle
via its fiber derivative. Note that after substituting (2c)
for p in (2b) and making use of (2a), Livens principle
traces back to the Lagrange equations.

In the presentwork,we focus onmechanical systems
whose Lagrangian takes the form

L(q, v) = 1

2
v · Mv − V (q) . (3)

Here,M ∈ R
d×d is a symmetric, positive-definitemass

matrix and V : Q̂ → R is a potential function. Intro-
ducing the total energy function

E(q, v, p) = p · v − L(q, v) , (4)

variational functional (1) can be recast in the form

S(q, v, p) =
∫ T

0

[
p · q̇ − E(q, v, p)

]
dt . (5)

Remark 1 Making use of (2c), the velocities can be
expressed in terms of the coordinates q and conju-
gate momenta p, i.e., v = ṽ(q, p). Thus, it is possible
to eliminate the velocities from the formulation such

1 Due to its mixed character based on three independent fields
(q, v, p), it resembles the Hu–Washizu principle from the theory
of elasticity (cf. Marsden and Hughes [30]).

that the generalized energy (4) can be identified as the
Hamiltonian

H(q, p) = E(q, ṽ(q, p), p) . (6)

In the case of mechanical systems with Lagrangian of
the form (3), one obtains

H(q, p) = 1

2
p · M−1p + V (q) . (7)

Substituting (6) into (5), the two-field variational prin-
ciple

S̃(q, p) =
∫ T

0

[
p · q̇ − H(q, p)

]
dt (8)

remains, which is sometimes referred to as the modi-
fied Hamilton’s principle (e.g., Sect. 8–5 in Goldstein
[31]). The Euler–Lagrange equations corresponding to
the modified Hamilton’s principle are given by

q̇ = D2H(q, p) , (9a)

ṗ = −D1H(q, p) , (9b)

and thus take the form of Hamilton’s canonical equa-
tions of motion.

2.2 Structural properties

Next, we outline main structural properties of mechan-
ical systems in the context of the equations of motion
(2) emanating from Livens principle. These properties
will also play a crucial role in the subsequent treatment
of constrained mechanical systems.

2.2.1 Symmetries and momentum maps

Consider a one-parameter family of curves qα(t) in
configuration space Q̂ with q0(t) = q(t). Conform-
ing with (2a), we introduce vα(t) = q̇α(t). The corre-
sponding infinitesimal generators are defined by

ξQ = d

dα

∣∣∣∣
α=0

qα(t) , (10a)

ξV = d

dα

∣∣∣∣
α=0

vα(t) . (10b)

The mechanical system has symmetry if at all times t
the condition

L(qα(t), vα(t)) = L(q(t), v(t)) (11)
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holds. Correspondingly, the infinitesimal symmetry
condition is given by

d

dα

∣∣∣∣
α=0

L(qα, vα)

=D1L(q, v) · ξQ + D2L(q, v) · ξV = 0 . (12)

According to Noether’s theorem, each symmetry of
the system leads to the conservation of an associated
momentum map. This can be verified by resorting to
the equations of motion (2). Scalar multiplying (2b)
by ξQ and (2c) by ξV and subsequently adding both
resulting equations yield

ṗ · ξQ + p · ξV = 0 , (13)

where symmetry condition (12) has been used. Since
(2a) together with (10) implies ξV = ξ̇Q, (13) gives
rise to

ṗ · ξQ + p · ξ̇Q = d

dt

(
p · ξQ

) = 0 , (14)

so that the momentum map

Jξ :=p · ξQ (15)

is a conserved quantity.
We are particularly interested on curves

qα(t) = Aαq(t) (16)

resulting from the action of a matrix group G on the
configuration space Q̂, where Aα ∈ G ⊂ GL(d,R),
the general linear group ofRd . As before,q0(t) = q(t),
which implies A0 = I, where I is the d × d identity
matrix. Now, the infinitesimal generator (10a) assumes
the specific form

ξQ = d

dα

∣∣∣∣
α=0

qα(t) = ξq , (17)

where ξ ∈ g, the Lie algebra of G. With regard to (2a),
we further obtain

vα(t) = Aαv(t) (18)

together with

ξV = d

dα

∣∣∣∣
α=0

vα(t) = ξv . (19)

Moreover, (2c) impliespα = D2L(qα, vα). Thus,mak-
ing use of symmetry property (11), one obtains

pα(t) = Aα−T
p(t) , (20)

from which follows the corresponding infinitesimal
generator

ξP = d

dα

∣∣∣∣
α=0

pα(t) = −ξ T p . (21)

We eventually remark that the symmetry properties
considered above imply the invariance of the energy
function (4). That is, E(qα, vα, pα) = E(q, v, p).

2.2.2 Conservation of energy

In the case of an autonomous Lagrangian, the total
energy of the mechanical system is conserved. Differ-
entiating energy function (4) with respect to time yields

d

dt
E = ṗ · v − D1L(q, v) · q̇ + (p − D2L(q, v)) · v̇ .

(22)

Taking into account the Euler–Lagrange equations (2),
one obtains Ė = 0, so that the total energy is a con-
served quantity.

2.2.3 Symplecticness

The flow generated by the equations of motion (2) is
symplectic. It is convenient to define symplecticness
by expressing the symplectic two-form Ω in terms of
the exterior or wedge product (Sanz-Serna and Calvo
[32], Leimkuhler and Reich [13]). Accordingly,

Ω = dq ∧ dp , (23)

where dq and dp represent differentials of the coor-
dinates q and momenta p, respectively. Important
properties of the wedge product are summarized in
Appendix A.1. Correspondingly, the property of sym-
plecticness is equivalent to the fact that the symplectic
two-form Ω is conserved along solution trajectories of
the equations of motion (2), i.e., Ω̇ = 0. For complete-
ness, this is verified in Appendix A.2.

2.3 Constrained dynamics and classical GGL
stabilization

Assume that the coordinates q are redundant due to
the presence of m independent scleronomic, holo-
nomic constraints. Arranging the constraint functions
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gk : R
d → R (k = 1, . . . , m) in a column vector

g ∈ R
m , the constraints are given by

g(q) = 0 . (24)

The constraint functions are assumed to be indepen-
dent, so that the constraint Jacobian G(q) = Dg(q)

has rank m. Note that the constraints give rise to the
configuration manifold

Q =
{

q ∈ R
d | g(q) = 0

}
. (25)

To get the equations of motion, Livens principle
can be augmented to account for the constraints (24).
Accordingly, the corresponding functional assumes the
form

Ŝ(q, v, p,λ) = S(q, v, p) +
∫ T

0
λ · g(q) dt , (26)

where λ ∈ R
m represents Lagrange multipliers for the

enforcement of the constraints. Imposing the station-
ary conditions on functional (26), the resulting Euler–
Lagrange equations are given by

q̇ = v , (27a)

ṗ = D1L(q, v) − G(q)Tλ , (27b)

p = D2L(q, v) , (27c)

0 = g(q) . (27d)

If we take into account the specific form of the
Lagrangian (3), the above equations can be recast in
the form

q̇ = v , (28a)

ṗ = −DV (q) − G(q)Tλ , (28b)

p = Mv , (28c)

0 = g(q) . (28d)

Note that (28c) canbeused to eliminate either the veloc-
ity v or themomentump from the formulation. It iswell
known that the above differential algebraic equations
(DAEs) have differentiation index 3 (see, for example,
[1,2]). One established way to stabilize numerical inte-
gration schemes for constrained mechanical systems is
to apply the GGL method [3]. The GGL method also
takes into account the secondary (or hidden) constraints
on velocity level arising from differentiating the con-
straints (24) with respect to time and making use of

(28a) and (28c).Accordingly, the secondary constraints
can be written as gv(q, p) = 0, where

gv(q, p) = G(q)M−1p . (29)

The GGL method relies on the inclusion of the sec-
ondary constraints as additional algebraic constraints.
This procedure leads to the DAEs

q̇ = M−1p + G(q)Tγ , (30a)

ṗ = −DV (q) − G(q)Tλ , (30b)

0 = g(q) , (30c)

0 = gv(q, p) . (30d)

The new variables γ ∈ R
m can be viewed as additional

multipliers for the enforcement of the secondary con-
straints (30d). It is well known [1–3] that theDAEs (30)
have differentiation index 2. It is important to realize
that the inclusion of both the constraints (30c) and (30d)
confines the dynamics of the constrained mechanical
system to the phase space manifold

M =
{
(q, p) ∈ R

d × R
d | g(q) = 0, gv(q, p) = 0

}

(31)

This is a prerequisite for the design of symplectic inte-
grators which preserve the restriction toM of the sym-
plectic two-form (23) in Rd ×R

d , see Leimkuhler and
Skeel [11]. However, the presence of the extra variable
γ in (30a) essentially hinders the design of structure-
preserving integrators. For example, concerning con-
servation of energy, differentiating the Hamiltonian (7)
with respect to time yields

d

dt
H = D1H(q, p) · q̇ + D2H(q, p) · ṗ

= DV (q) ·
(

M−1p + G(q)Tγ
)

+ (M−1p) ·
(
−DV (q) − G(q)Tλ

)

= γ · G(q)DV (q) . (32)

Accordingly, energy conservation holds under the pro-
vision that γ = 0, which is true for the time-continuous
case [1–3]. However, in the discrete setting the dis-
crete counterpart of γ is in general non-zero, since it
is required to impose the velocity constraints. Accord-
ingly, the presence of the extra γ term in (32) indicates
that the design of energy conserving time-stepping
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schemes is not feasible. Similar conclusions can be
made regarding the conservation of the symplectic two-
form (see Appendix A.3 for details) as well as the con-
servation of momentum maps.

3 GGL principle

In this section, we present a new variational principle
which achieves an index reduction of the index 3 DAEs
(27) in the spirit of the GGL method. We show that the
newly introduced GGL variational principle is particu-
larly well suited for the design of structure-preserving
numerical methods.

3.1 Governing equations

The GGL variational principle can be viewed as an
extension of Livens principle (1). Similar to the GGL
stabilization, the GGL principle relies on the introduc-
tion of extra Lagrange multipliers γ ∈ R

m which serve
the purpose to enforce the secondary constraints (29)
in addition to the primary constraints (24). In particu-
lar, the GGL principle relies on the augmented action
integral

SGGL =
∫ T

0

[
L(q, v) + p · (q̇ − v)

− λ · g(q) − γ · gv(q, p)
]
dt . (33)

where the velocity constraint functiongv has previously
been introduced in (29). It can be easily observed that
functional (33) boils down to Livens augmented action
integral (1) if no constraints are present. Imposing the
stationary condition

δSGGL(q, v, p,λ, γ ) = 0 (34)

yields

∫ T

0
δp ·

(
q̇ − v − D2gv(q, p)T γ )

)
dt = 0 , (35a)

∫ T

0

((
D1L(q, v) − G(q)Tλ

) · δq

+ p · δq̇ − δq · D1gv(q, p)Tγ
)
dt = 0 , (35b)

∫ T

0
δv · (D2L(q, v) − p) dt = 0 , (35c)

∫ T

0
δλ · g(q) dt = 0 , (35d)

∫ T

0
p · M−1 G(q)T δγ dt = 0 . (35e)

With regard to (35b), we apply integration by parts to
obtain

∫ T

0
p · δq̇ dt = −

∫ T

0
δq · ṗ dt + δq · p

∣∣∣T

0
. (36)

Consequently, taking into account the arbitrariness of
the variations δq, δv, δp, δλ and δγ , aswell as consider-
ing the usual endpoint conditions δq(0) = δq(T ) = 0,
we obtain the Euler–Lagrange equations

q̇ = v + D2gv(q, p)Tγ , (37a)

ṗ = D1L(q, v) − Dg(q)Tλ − D1gv(q, p)Tγ , (37b)

p = D2L(q, v) , (37c)

0 = g(q) , (37d)

0 = gv(q, p) . (37e)

It can be concluded from the fiber derivative (37c) that
p represents the conjugate momenta in analogy to the
Livens principle. Moreover, it can be observed from
(37d) and (37e) that both the primary and the sec-
ondary constraints are enforced. The presence of the
secondary constraints entails an index reduction in the
spirit of the GGL stabilization. In particular, we show
in Appendix A.4 that the DAEs (37) (i) have differ-
entiation index 2, and (ii) yield γ = 0 in analogy
to the classical GGL stabilization. Thus, in the time-
continuous setting, the DAEs (37) boil down to the
underlying DAEs (27).

Remark 2 Similar to the original Livens principle, p in
the GGL principle (33) plays the role of a Lagrange
multiplier for the imposition of the side condition

q̇ = fγ (q, v) , (38)

where

fγ (q, v) = v + G(q)M−1γ , (39)

cf. (37a).
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Remark 3 The GGL principle (33) is also valid for
configuration-dependent mass matrices M(q), imply-
ing gv(q, p) = G(q)M(q)−1p.

Remark 4 There seems to be some ambiguity in the
representation of the secondary constraints in func-
tional (33). An alternative form relies on

S̃GGL =
∫ T

0

[
L(q, v) + p · (q̇ − v)

− λ · g(q) − γ · g̃v(q, v)
]
dt , (40)

where the secondary constraints are given by
g̃v(q, v) = G(q)v. This version, however, does not
yield the correct equations of motion for constrained
mechanical systems. For further details, we refer to
Appendix A.5.

3.2 Structural properties

This section contains an outline of the main structural
properties of the Euler–Lagrange equations (37) ema-
nating from theGGLprinciple. These properties are not
affected by the additional multiplier γ as will become
obvious in the sequel.

3.2.1 Symmetries and momentum maps

Assume that the Lagrangian has invariance prop-
erty (11), i.e., L(qα, vα) = L(q, v), where the one-
parameter curves (qα, vα) have to comply with the
constraints. That is, qα ∈ Q and vα ∈ TqQ. Corre-
spondingly, (qα, pα) ∈ M. Now the symmetry of the
constrained mechanical system at hand is assumed to
be characterized by the infinitesimal symmetry condi-
tions

0 = D1L(q, v) · ξQ + D2L(q, v) · ξV , (41a)

0 = D1gv(q, p) ξQ + D2gv(q, p) ξP , (41b)

0 = Dg(q) ξQ . (41c)

Note that (41a) follows from invariance property (11) as
has been shown in (12). Similarly, (41b) and (41c) typ-
ically follow from invariance properties gv(qα, pα) =
gv(q, p) and g(qα) = g(q), respectively. The symme-
try properties (41) give rise to the conservation of an
associated momentum map as shown next.

Scalar multiplying (37a) by (−ξP ), (37b) by ξQ,
(37c) by ξV , and subsequently adding the resulting
equations yields

− ξP · q̇ + ξQ · ṗ + ξV · p = −ξP · v , (42)

where symmetry conditions (41) have been taken into
account. Inserting the infinitesimal generators (17),
(19) and (21) into the last equation yields

(ξ T p) · q̇ + (ξq) · ṗ + (ξv) · p = (ξT p) · v , (43)

and thus

0 = p · ξ q̇ + ṗ · ξq = d

dt
(p · ξq) . (44)

Accordingly, the momentum map

Jξ = p · ξq (45)

is a conserved quantity.

3.2.2 Conservation of energy

Similar to Sect. 2.2.2, we consider the time derivative
of the total energy (4) to obtain

d

dt
E = ṗ · v − D1L(q, v) · q̇ + (p − D2L(q, v)) · v̇ .

(46)

The last term on the right-hand side vanishes due to
(37c). Inserting from (37a) for v and from (37b) for
D1L into the last equation yields

d

dt
E = −λ · Dg(q)q̇

− γ · (
D1gv(q, p) q̇ + D2gv(q, p) ṗ

)

= −λ · d

dt
g(q) − γ · d

dt
gv(q, p)

= 0 . (47)

The last equationholds independently from theLagrange
multipliers λ and γ due to the consistency conditions
dg/ dt = 0 and dgv/ dt = 0 which result from (37d)
and (37e), respectively.

3.2.3 Symplecticness

Solutions (q(t), p(t)) ∈ M of the Euler–Lagrange
equations (37) preserve the symplectic two-form (23).
To show this, consider the differential one-forms result-
ing from (37):

dq̇ = dv + d
(
D2gv(q, p)Tγ

)
, (48a)
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dṗ = D2
11L(q, v) dq + D2

12L(q, v) dv (48b)

− d
(
Dg(q)Tλ

)
− d

(
D1gv(q, p)Tγ

)
,

dp = D2
21L(q, v) dq + D2

22L(q, v) dv , (48c)

These relationships can be inserted into the expression
for the time derivative of the symplectic two-form (23)
leading to
d

dt
Ω = d

dt
( dq ∧ dp)

= dq̇ ∧ dp + dq ∧ dṗ

= d
(
D2gv(q, p)Tγ

)
∧ dp− dq ∧ d

(
Dg(q)Tλ

)

− dq ∧ d
(
D1gv(q, p)Tγ

)
(49)

Missing terms in the last equation vanish (cf.
Appendix A.2) and thus have been omitted. The second
term on the right-hand side of the last equation vanishes
as well as shown in Appendix A.3, (135). Accordingly,
we arrive at
d

dt
Ω = dγ∧ (

D1gv(q, p) dq + D2gv(q, p) dp
)

+
m∑

k=1

γk dq∧
(
D2
21gv

k(q, p)T−D2
12gv

k(q, p)
)
dp

= 0 (50)

Note that the first term on the right-hand side of the
above equation vanishes since (37e) implies
dgv(q, p) = 0. The second term also vanishes due
to the equality of mixed derivatives. Accordingly, the
symplectic two-form is preserved, independently from
multiplier γ .

4 GGL variational integrators

Variational integrators (VIs) canbedesignedbydirectly
discretizing the underlying functional. Subsequently,
the discretized functional can be extremized to obtain
the discrete Euler–Lagrange (DEL) equations. In this
section, this procedure shall be applied in the frame-
work of the newly devised GGL functional. We refer
to Lew and Mata [24] and Hairer et al. [33] for more
background on variational integrators.

4.1 First-order scheme

To illustrate the design of VIs emanating from the GGL
functional, we start with a simple scheme, which has

already been presented in the preliminary work [34].
The time interval I = [0, T ] is divided into N subin-
tervals leading to

I =
N−1⋃
n=0

[tn , tn+1] (51)

with t0 = 0 and t N = T . For simplicity, we consider
time steps of constant size h = tn+1 − tn . The approx-
imation of a function (•)(t) at time tn is denoted by
(•)n , so that, for example, qn ≈ q(tn). The GGL func-
tional (33) may now be approximated by the discrete
action sum

Sd =
N−1∑
n=0

[
h L(qn, vn) − h λn+1 · g(qn+1)

+ pn+1 · (
qn+1 − qn − h vn

− h M−1G(q̄)Tγ n+1)] , (52)

where

q̄ = qn + h vn (53)

has been introduced. Note that in each time interval
[tn tn+1], side condition (38) is discretized similarly
to the explicit Euler method with associated Lagrange

multiplier pn+1. Moreover,
∫ tn+1

tn L(q, v)dt is approx-
imated by hL(qn, vn), while multiplier λn+1 enforces
the holonomic contraints at the end of each time inter-
val.

Stationary conditions can be applied directly to the
discrete functional. Taking into account the indepen-
dence of the respective variables, this yields

N−1∑
n=0

δpn+1 · (
qn+1 − qn − h vn

− h M−1G(q̄)Tγ n+1) = 0 , (54a)
N−1∑
n=0

δqn · (
h D1L(qn, vn) − pn+1

− h
m∑

k=1

γ n+1
k D2gk(q̄)M−1pn+1) (54b)

+
N−1∑
n=0

δqn+1 ·
(
−h G(qn+1)Tλn+1 + pn+1

)
= 0 ,
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N−1∑
n=0

δvn · (
h D2L(qn, vn) − h pn+1

− h2
m∑

k=1

γ n+1
k D2gk(q̄)M−1pn+1) = 0 ,

(54c)

along with

N−1∑
n=0

δλn+1 · g(qn+1) = 0 , (54d)

N−1∑
n=0

δγ n+1 · G(q̄)M−1pn+1 = 0 . (54e)

Next, we apply an index shift in the second part of (54b)
from n + 1 to n. This procedure is also referred to as
discrete integration by parts (see Marsden and West
[23]). In addition to that, we apply the usual endpoint
conditions δq0 = δqN = 0. Taking into account the
arbitrariness of the variations, we obtain the discrete
Euler–Lagrange (DEL) equations

qn+1 − qn = h vn + h M−1G(q̄)Tγ n+1 ,

(55a)

pn+1 − pn = h D1L(qn, vn) − h G(qn)Tλn

−h
m∑

k=1

γ n+1
k D2gk(q̄)M−1pn+1 ,

(55b)

D2L(qn, vn) =
(
Id×d + h

m∑
k=1

γ n+1
k D2gk(q̄)M−1)pn+1 ,

(55c)

g(qn+1) = 0 , (55d)

G(q̄)M−1pn+1 = 0 , (55e)

for n = 0, . . . , N −1. In total, (55) provide (3 d +2m)

equations for the determination of the unknowns (qn+1,
pn+1, vn , λn , γ n+1) in every time step. Scheme (55)
can be viewed as discrete counterpart of the continu-
ous Euler–Lagrange equations (37). Note that relation
(55c) can be interpreted as the discrete fiber derivative
of the Legendre transformation, which links velocity
and momentum variables. Moreover, the primary con-
straints (55d) are enforced at the end of each time step,
while the secondary constraints are enforced in an inter-
mediate sense (cf. (55e)).

It is worth mentioning that scheme (55) can be
regarded as generalization to constrained mechanical
systems of the symplectic Euler method (see Hairer
et al. [33]). For the sake of completeness, we verify
in Appendix A.6 that scheme (55) is symplectic and
capable of conserving momentum maps of the form
(45).

4.2 One-step GGL variational integrators with
improved accuracy

The specific GGL variational integrator devised in the
previous section is first-order accurate. We next aim
at one-step GGL variational integrators with enhanced
numerical accuracy. To this end, we borrow ideas from
the discretization approach developed in Betsch and
Becker [35] within the context of optimal control prob-
lems. The developments therein follow the philosophy
first discretize then optimize, which is closely related
to the present task of discretizing the GGL functional.
Accordingly,we introduce the discreteGGLaction sum

Sd =
N−1∑
n=0

[
Lλ
d(q

n, Qn, vn+1)

+ pn+1 ·
(

qn+1 − qn − fγ
d (qn, Qn, vn+1)

)

+ Pn ·
(

Qn − qn − fγ
d (qn, Qn, vn+1)

) ]
.

(56)

Here, auxiliary coordinates Qn and momenta Pn have
been introduced which will be determined below. Fur-
thermore, the functions

Lλ
d(q

n, Qn, vn+1) = Ld(qn, Qn, vn+1)

−λn · gd(qn, Qn) ,

(57)

and

fγ
d (qn, Qn, vn+1) = hvn+1 + M−1Gd(qn, Qn)Tγ n

(58)

have been introduced, where Ld, gd and Gd will be
specified in the sequel. In this connection,

Ld(qn, Qn, vn+1) ≈
∫ tn+1

tn
L(q, v)dt (59)

represents the discrete Lagrangian. Similarly, gd and
Gd stand for discrete versions of the constraint func-
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tion and the constraint Jacobian, respectively. The spe-
cific discretization (56) of the GGL functional can be
motivated in the following way. In each time interval
[tn tn+1], side condition (38) is discretized in the spirit
of a one-stage Runge–Kutta method (see Hager [36]).
In this regard, Qn is closely related to the stage value in
a Runge–Kutta method. Moreover, pn+1 and Pn play
the role of Lagrange multipliers.

Evaluating the discrete stationary conditions ema-
nating from (56), we obtain

N−1∑
n=0

δpn+1 ·
[
qn+1 − qn − fγ

d (qn, Qn, vn+1)
]

= 0 ,

(60a)
N−1∑
n=0

δPn ·
[
Qn − qn − fγ

d (qn, Qn, vn+1)
]

= 0 ,

(60b)
N−1∑
n=0

δqn · [
D1Lλ

d(q
n, Qn, vn+1) − pn+1 − Pn

− D1fγ
d (qn, Qn, vn+1)

T
(

pn+1 + Pn
) ]

+
N−1∑
n=0

δqn+1 · pn+1 = 0 , (60c)

N−1∑
n=0

δQn · [
D2Lλ

d(q
n, Qn, vn+1) + Pn (60d)

− D2fγ
d (qn, Qn, vn+1)

T
(

pn+1 + Pn
) ] = 0 ,

N−1∑
n=0

δvn+1 · [
D3Ld(qn, Qn, vn+1) (60e)

− D3fγ
d (qn, Qn, vn+1)

T
(

pn+1 + Pn
) ] = 0 ,

N−1∑
n=0

δλn · DλLλ
d(q

n, Qn, vn+1) = 0 , (60f)

N−1∑
n=0

δγ n · Dγ fγ
d (qn, Qn, vn+1)

T
(

pn+1 + Pn
)

= 0 ,

(60g)

for n = 0, ..., N − 1. Due to the arbitrariness of δpn+1

and δPn , (60a) and (60b) imply that

Qn = qn+1 . (61)

Performing again an index shift in (60c) and taking into
account the arbitrariness of the variations, the discrete
equations of motion can be obtained as

qn+1 − qn = fγ
d (qn, qn+1, vn+1) , (62a)

pn+1 − pn + Pn = D1Lλ
d(q

n, qn+1, vn+1) (62b)

−D1fγ
d (qn, qn+1, vn+1)T

(
pn+1 + Pn

)
,

−Pn = D2Lλ
d(q

n, qn+1, vn+1) (62c)

−D2fγ
d (qn, qn+1, vn+1)T

(
pn+1 + Pn

)
,

0 = D3Ld(qn, qn+1, vn+1)

−D3fγ
d (qn, qn+1, vn+1)T

(
pn+1 + Pn

)
,

(62d)

together with the discrete constraints

gd(qn, qn+1) = 0 , (62e)

gv
d(q

n, qn+1, pn+1 + Pn) = 0 , (62f)

for n = 0, ..., N − 1. In (62f), the discrete constraint
function

gv
d = Gd(qn, qn+1)M−1(pn+1 + Pn) (63)

has been introduced.Note that (62d) serves as a discrete
version of the fiber derivative (37c) and links velocity
to momentum variables. In total, the above DEL equa-
tions constitute a set of (4 d + 2m) equations for the
determination of the unknowns (qn+1, pn+1, Pn, vn+1,

λn, γ n).
Depending on the specific choice for Ld, Gd and

gd, the above DEL equations generate a family of sym-
plectic integrators (cf. Appendix A.7.1). In addition to
that the above family of integrators is capable of con-
serving momentum maps of the form (45), provided
that the following discrete symmetry conditions are
satisfied by the specific choice for Ld, Gd and gd (cf.
Appendix A.7.2):

0 = D1Ld · ξqn + D2Ld · ξqn+1 + D3Ld · ξvn+1 ,

(64a)

0 = D1gv
dξqn + D2gv

dξqn+1 − D3gv
dξ

T
(

pn+1 + Pn
)
,

(64b)

0 = D1gdξqn + D2gdξqn+1 . (64c)

Of course, the discrete symmetry conditions are closely
connected to the continuous symmetry conditions (41).
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4.3 One-stage theta methods

To particularize specific integrators emanating from
(62), we introduce the convex combination

qn+θ = (1 − θ) qn + θ qn+1 (65)

for θ ∈ [0, 1]. We now are in a position to choose

Ld(qn, qn+1, vn+1) = hL(qn+θ , vn+1) , (66a)

Gd(qn, qn+1) = hG(qn+θ ) . (66b)

It can be verified that this choice satisfies the discrete
symmetry conditions (64a) and (64b), provided that the
continuous conditions (41a) and (41b) hold. Based on
the choice (66), functions (57) and (58) can be recast
in the form

Lλ
d(q

n, qn+1, vn+1)

= hL(qn+θ , vn+1) − λn · gd(qn, qn+1) ,
(67)

and

fγ
d (qn, qn+1, vn+1) = hvn+1 + h M−1G(qn+θ )

T
γ n .
(68)

Now the partial derivatives appearing in (62) can be
written as

D1Lλ
d(q

n, qn+1, vn+1) = h(1 − θ)D1L(qn+θ , vn+1)

− D1gd(qn, qn+1)Tλn ,
(69a)

D2Lλ
d(q

n, qn+1, vn+1) = hθ D1L(qn+θ , vn+1)

− D2gd(qn, qn+1)Tλn ,
(69b)

D1fγ
d (qn, qn+1, vn+1) (69c)

= h(1 − θ)

m∑
k=1

γkD
2gk(qn+θ )M−1,

D2fγ
d (qn, qn+1, vn+1) = hθ

m∑
k=1

γkD
2gk(qn+θ )M−1 ,

(69d)

D3fγ
d (qn, qn+1, vn+1) = h I . (69e)

Moreover, (62d) yields

Mvn+1 = pn+1 + Pn , (70)

while (62c) leads to

Pn = −hθD1L(qn+θ , vn+1) + D2gd(qn, qn+1)Tλn

+ hθ

m∑
k=1

γkD
2gk(qn+θ )M−1

(
pn+1 + Pn

)
.

(71)

Adding up (62b) and (62c) yields

pn+1 − pn = hD1L(qn+θ , vn+1)− (D1gd +D2gd)T λn

− h
m∑

k=1

γkD
2gk(qn+θ )M−1

(
pn+1 + Pn

)
.

(72)

Inserting D1L(qn+θ , vn+1) from the last equation into
(71), one obtains

Pn = −θ
(

pn+1 − pn
)

−
(
θ D1gTd − (1− θ)D2gTd

)
λn .

(73)

Substituting Pn from the last equation into (70) even-
tually yields

Mvn+1 = pn+1−θ −
(
θ D1gTd − (1 − θ)D2gTd

)
λn

(74)

where

pn+1−θ = θ pn + (1 − θ) pn+1 (75)

has been introduced.
To summarize, the θ -version of the DEL (62) can be

written in the form

qn+1 − qn = h vn+1 + h M−1G(qn+θ )
T
γ n , (76a)

pn+1 − pn= h D1L(qn+θ , vn+1)− (D1gd +D2gd)T λn

− h
m∑

k=1

γ n
k D

2gk(qn+θ )vn+1 , (76b)

Mvn+1 = pn+1−θ −
(
θ D1gTd − (1 − θ)D2gTd

)
λn ,

(76c)

0 = gd(qn, qn+1) , (76d)
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0 = G(qn+θ )vn+1 . (76e)

Note that we still have to specify the discrete constraint
function gd(qn, qn+1) to obtain a specific integrator.
For that purpose, we shall consider the ensuing two
options.

4.3.1 Option A: Intermediate constraint evaluation

The first option is based on the choice

gd(qn, qn+1) = h g(qn+θ ) . (77)

It can be shown that this choice satisfies the discrete
symmetry condition (64c) under the assumption that
the continuous condition (41c) holds. Choice (77) gives
rise to the partial derivatives

D1gd(qn, qn+1) = h (1 − θ) G(qn+θ ) , (78a)

D2gd(qn, qn+1) = h θ G(qn+θ ) . (78b)

Inserting these relations into (76), the resulting DEL
are given by

qn+1 − qn = h vn+1 + h M−1G(qn+θ )
T
γ n , (79a)

pn+1 − pn = D1Ld(qn+θ , vn+1) − h G(qn+θ )Tλn

− h
m∑

k=1

γ n
k D

2gk(qn+θ )vn+1 , (79b)

Mvn+1 = pn+1−θ , (79c)

g(qn+θ ) = 0 , (79d)

G(qn+θ )vn+1 = 0 . (79e)

The above DEL can be used for θ ∈ (0, 1).

4.3.2 Option B: Trapezoidal constraint evaluation

The second option relies on the introduction of a sec-
ond parameter ϑ ∈ (0, 1] to control the evaluation of
the constraint on configuration level. Specifically, we
choose

gd(qn, qn+1) = h
(
(1 − ϑ) g(qn) + ϑ g(qn+1)

)
.

(80)

Since consistent initial conditions for q0 = q(t = 0)
ensure that g(q0) = 0, the discrete constraint equation

(80) enforces the configuration constraint at tn+1 for
arbitrary ϑ ∈ (0, 1]. It can be shown that (80) satis-
fies the discrete symmetry condition (64c) under the
assumption that the continuous condition (41c) holds.
The partial derivatives of (80) yield

D1gd(qn, qn+1) = h (1 − ϑ) G(qn) , (81a)

D2gd(qn, qn+1) = h ϑ G(qn+1) . (81b)

Hence, (76) gives rise to the DEL

qn+1 − qn = h vn+1 + h M−1G(qn+θ )
T
γ n , (82a)

pn+1 − pn = D1Ld(qn+θ , vn+1) (82b)

− h
(
(1 − ϑ) G(qn) + ϑ G(qn+1)

)T
λn

− h
m∑

k=1

γ n
k D

2gk(qn+θ )vn+1 ,

Mvn+1 = pn+1−θ − h
(
θ (1 − ϑ) G(qn)T (82c)

− (1 − θ) ϑ G(qn+1)T
)
λn ,

g(qn+1) = 0 , (82d)

G(qn+θ )vn+1 = 0 , (82e)

for θ ∈ [0, 1] and ϑ ∈ (0, 1]. For example, the choice
θ = 1 and ϑ = 0.5 yields the specific integrator

qn+1 − qn = h vn+1 + h M−1G(qn+1)
T
γ n , (83a)

pn+1 − pn = D1Ld(qn+1, vn+1) (83b)

− h

2
(G(qn) + G(qn+1))Tλn

− h
m∑

k=1

γ n
k D

2gk(qn+1)vn+1 ,

Mvn+1 = pn − h

2
G(qn)Tλn , (83c)

g(qn+1) = 0 , (83d)

G(qn+1)vn+1 = 0 . (83e)

5 Energy–momentum scheme

In this section, we present a new energy–momentum
(EM) conserving scheme which conserves both pri-
mary and secondary constraints. This scheme results
from a direct discretization of the Euler–Lagrange
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equations (37) emanating from the GGL principle.
Specifically, we consider

qn+1 − qn = hvn+1/2 + h(DG
p gv)Tγ n+1 , (84a)

pn+1 − pn = hDG
q L − hDGgTλn+1 − h(DG

q gv)Tγ n+1 ,

(84b)

pn+1/2 = DG
v L , (84c)

0 = g(qn+1) , (84d)

0 = gv(qn+1, pn+1) , (84e)

where the derivatives in (37) have been replaced by cor-
respondingdiscrete derivatives in the sense ofGonzalez
[26]. In (84), the expressionDG

α (•) denotes the discrete
derivative with respect to the argument α. The discrete
derivatives represent second-order perturbations of the
midpoint derivatives. Particular examples are provided
in the context of the numerical examples in Sect. 6. The
discrete derivatives have to satisfy the following prop-
erties:

1. Orthogonality conditions corresponding to the sym-
metry conditions (41)

0 = DG
q L · ξqn+1/2 + DG

v L · ξvn+1/2 , (85a)

0 = DG
q gvξqn+1/2 − DG

p gvξTpn+1/2 , (85b)

0 = DGgξqn+1/2 . (85c)

Note that in the underlying symmetry conditions
(41), the infinitesimal generators (17), (19) and (21)
have been evaluated in themidpoint to arrive at (85).

2. Directionality conditions (cf. Gonzalez [26])

L(qn+1, vn+1) − L(qn, vn) (86a)

= DG
q L · (qn+1 − qn) + DG

v L · (vn+1 − vn) ,

gv(qn+1, pn+1) − gv(qn, pn) (86b)

= DG
q gv(qn+1 − qn) + DG

p gv(pn+1 − pn) ,

g(qn+1) − g(qn) = DGg(qn+1 − qn) . (86c)

For systems with a constant mass matrix, the EM
scheme (84) can be related to the method presented
by Gonzalez [14] in a Hamiltonian framework. The
present scheme, however, additionally preserves the
secondary constraints and does not require to set up
a Hamiltonian as it solely relies on the Lagrangian L .

5.1 Conservation of energy

To show that scheme (84) conserves the energy (4), take
the scalar product of (84a) with (pn+1 −pn), the scalar
product of (84b) with−(qn+1−qn), the scalar product
of (84c) with −h(vn+1 − vn), and add the resulting
equations to obtain

pn · vn − pn+1 · vn+1

= −
(
DG

q L · (qn+1 − qn) + DG
v L · (vn+1 − vn)

)

+ γ n+1 ·
(
DG

q gv(qn+1−qn)+DG
p gv(pn+1−pn)

)

+ λn+1 · DGg(qn+1 − qn) . (87)

Taking into account the directionality properties (86)
of the (partitioned) discrete derivatives, we get

pn · vn − pn+1 · vn+1

= −
(

L(qn+1, vn+1) − L(qn, vn)
)

+ γ n+1 ·
(

gv(qn+1, pn+1) − gv(qn, pn)
)

+ λn+1 ·
(

g(qn+1) − g(qn)
)
. (88)

The last two lines vanish due to (84d) and (84e).
Accordingly, algorithmic conservation of the total
energy holds in the sense that

E(qn+1, vn+1, pn+1) = E(qn, vn, pn) . (89)

5.2 Conservation of momentum maps

To show that scheme (84) is capable of conserving
momentum maps of the form (45), take the scalar
product of (84a) with ξTpn+1/2, the scalar product of
(84b) with ξqn+1/2, the scalar product of (84c) with
hξvn+1/2, and add the resulting equations to get

pn+1 · ξqn+1 − pn · ξqn

= h
(
DG

q L · ξqn+1/2 + DG
v L · ξvn+1/2

)

− hγ n+1 ·
(
DG

q gvξqn+1/2 − DG
p gvξpn+1/2

)

− hλn+1 · DGgξqn+1/2

= 0 . (90)
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Table 1 Overview of integration methods

Integration scheme Section Label Equation Parameters

Simple GGL variational integrator 4.1 VI-S (55) –

One-stage theta method, option A: Intermediate constraint evaluation 4.3 VI-A (79) θ = 0.5

One-stage theta method, option B: Trapezoidal constraint evaluation 4.3 VI-B (83) θ = 1 , ϑ = 0.5

GGL energy–momentum scheme 5 EM (84) –

Accordingly, algorithmic conservation of momentum
maps holds in the sense that

pn+1 · ξqn+1 = pn · ξqn , (91)

provided that the orthogonality conditions (85) of the
discrete derivatives are satisfied.

6 Numerical investigations

Throughout this section, the previously developed inte-
gration schemes are analyzed by means of numeri-
cal examples. In particular, we focus on the schemes
summarized in Table 1. Newton’s method has been
applied to solve the algebraic system of equations cor-
responding to the respective scheme. If not otherwise
specified, the known quantities at tn have been taken
as initial guess for the computation of the unknowns
at tn+1. The tolerance in Newton’s method has been
set to εtol = 10−9 for all of the subsequent exam-
ples. The computations have been performed using the
open source package metis, which is available at [37]
together with detailed simulation data.

6.1 Mathematical pendulum in 3D

As a first example, we investigate the mathemati-
cal pendulum in three dimensions (Fig. 1), consisting
of a massless rod of length l = 1 which forces the
point mass with mass m = 1 onto its configuration
manifold S2, the unit sphere. Gravitation acts in the
negative e3-direction leading to the potential function
V (q) = −mb · q, where b = −9.81e3 is the gravi-
tational acceleration. Moreover, the kinetic energy is
given by T (v) = 1

2mv · v leading to the mass matrix
M = diag(m, m, m). Correspondingly, Lagrangian (3)
is given by

L(q, v) = 1

2
mv · v + mb · q . (92)

Fig. 1 Mathematical Pendulum

The configuration constraint assumes the form

g(q) = 1

2

(q · q
l2

− 1
)

= 0 , (93)

giving rise to the secondary constraint

gv(q, p) = 1

ml2
q · p = 0 . (94)

The present problem has rotational symmetry about
the e3-axis. Accordingly, matrix Aα in (16) is orthog-
onal (i.e., G = SO(3), the special orthogonal group in
R
3) and can be written in the form

Aα = exp(αê3) , (95)

where ê3 is a skew-symmetric matrix with associated
axial vector e3 satisfying ê3a = e3 × a for any a ∈ R

3.
To show that invariance property (11) holds, consider
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L(qα, vα) = 1

2
mv · (Aα)TAαv + mq · (Aα)Tb

= L(q, v) , (96)

where orthogonality property (Aα)T = (Aα)−1 along
with (Aα)Tb = −9.81 exp(−αê3)e3 = −9.81e3 = b
have been used. Similarly, it can be easily shown that
invariance properties g(qα) = g(q) and gv(qα, pα) =
gv(q, p) are satisfied.

Moreover, equation (95) leads to

d

dα

∣∣∣∣
α=0

Aα = ê3 = ξ . (97)

Now, it can be easily verified that the symmetry condi-
tions (41) are satisfied. The corresponding momentum
map (45) takes the form

J3 = (q × p) · e3. (98)

Accordingly, the angular momentum J3 of the pendu-
lum is a first integral of the motion.

The discrete derivatives featuring in the EM scheme
(84) need to be applied to the functions L(q, v),
g(q) and gv(q, p). Since these functions are at most
quadratic, the discrete derivatives coincide with the
respective midpoint derivatives. That is,

DG
q L = mb , (99a)

DG
v L = mvn+1/2 , (99b)

DG
q gv = 1

ml2
pn+1/2 , (99c)

DG
p gv = 1

ml2
qn+1/2 , (99d)

DGg = 1

l2
qn+1/2 . (99e)

It can be easily checked that orthogonality condi-
tions (85) are satisfied.

Being initially released frompositionq0 = [1, 0, 0]T
with a velocity of v0 = [0, 1, 0]T, the pendulum under-
goes a motion which is exemplarily shown in Fig. 6,
where the initial configuration and the configuration at
t = T is depicted. The momenta have been initialized
with p0 = Mv0. The total simulation period is T = 10,
and the time step size has been chosen as h = 0.05.

The 1-component of the positions and momenta are
depicted in Figs. 2 and 3, respectively, to show that
slight deviations between the different schemes occur.
Those differences can also be viewed with respect to

Fig. 2 Position

Fig. 3 Momentum

Fig. 4 Lagrange multiplier for position constraint

the energies. The Lagrange multipliers enforcing posi-
tion constraint (93) and velocity constraint (94) are dis-
played in Figs. 4 and 5, respectively. It becomes obvi-
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Fig. 5 Lagrange multiplier for velocity constraint

Fig. 6 Trajectory calculated with VI-S

Fig. 7 Energy quantities (VI-S)

ous that solutions obtained with VI-A and VI-B exhibit
slight oscillations in λ and γ , respectively.

The results for kinetic energy T , potential energy
V and Hamiltonian H are exemplarily displayed for
the VI-S scheme in Fig. 7. All the VIs (VI-S, VI-A
and VI-B) exhibit fluctuations of the energy function
E that are typical for symplecticmethods (cf. Fig. 8). In
contrast to that, as expected, the EM scheme conserves
the energy of the pendulum up to numerical round-off.
This can be seen from Figs. 8 and 9.

Furthermore, the evolution of the angular momen-
tum components is exemplarily displayed for the VI-
S method in Fig. 10. The other schemes yield only

Fig. 8 Energy function E

Fig. 9 Incremental changes of the energy function E (EM)

Fig. 10 Angular momentum components (VI-S)

Fig. 11 Incremental changes of the 3-component of the angular
momentum

small deviations from these results. All of the present
integrators conserve the 3-component of the angular
momentum (98) up to numerical round-off. This can
be observed from Fig 11.

The primary constraint on position level is correctly
captured by VI-S, VI-B and EM, as can be seen from
Fig. 12. In contrast to that, VI-A violates the primary
constraint by design (Fig. 13).
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Fig. 12 Constraint on configuration level

Fig. 13 Constraint on configuration level (VI-A)

Fig. 14 Constraint on momentum level

Fig. 15 Constraint on momentum level (VI-A)

Similarly, the secondary constraint on velocity level
is correctly captured by VI-S, VI-B and EM (Fig. 14),
while VI-A violates the secondary constraint by design
(Fig. 15). Although VI-S shows the correct behavior in
this simple example, this is not the case anymore for
more involved examples (see below).

Fig. 16 Gyroscopic top

6.2 Steady precession of a gyroscopic top

This example has been taken from Betsch and Leyen-
decker [38] (see also [16,17]). In particular, the rigid
body is described as constrained mechanical system,
see [39,40] for further details.

Accordingly, the configuration of the rigid body is
characterized by the coordinate vector

q =

⎡
⎢⎢⎣

q1

q2

q3

q4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ϕ

d1

d2

d3

⎤
⎥⎥⎦ , (100)

where ϕ ∈ R
3 is the position vector of the center of

mass and di ∈ R
3 (i = 1, 2, 3) constitute a body-fixed

director frame (Fig. 16). For simplicity, the director axis
are assumed to coincide with the principal axis of the
rigid body. In the Lagrangian (3), the potential energy
is given by V (q) = −mb · ϕ, where b = −9.81e3 is
the gravitational acceleration. The mass matrix takes
the form

M =

⎡
⎢⎢⎣

mI 0 0 0
0 E1I 0 0
0 0 E2I 0
0 0 0 E3I

⎤
⎥⎥⎦ . (101)
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The inertia quantities are given by the total mass m
of the rigid body along with the principal moments of
inertia Ii (i = 1, 2, 3) about its center of mass, from
which Ei in (101) follow as Ei = 1/2

(
I j + Ik − Ii

)
for even permutations of the indices (i, j, k).

There are two types of holonomic constraints lead-
ing to the constraint function

g(q) =
[

gint(q)

gext(q)

]
. (102)

To enforce the orthonormality of the director frame,
internal constraints of the form

gint(q) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2 (d1 · d1 − 1)
1
2 (d2 · d2 − 1)
1
2 (d3 · d3 − 1)

d1 · d2

d1 · d3

d2 · d3

⎤
⎥⎥⎥⎥⎥⎥⎦

(103)

are imposed. To fix the tip of the gyroscopic top to
the origin of the inertial frame (Fig. 16), the external
constraint

gext(q) = 1

l
ϕ − d3 (104)

is used.Accordingly, to describe themechanical system
at hand, the n = 3+ 9 = 12 redundant coordinates are
subjected to m = 6 + 3 = 9 constraints.

Similar to the last example, the present problem has
rotational symmetry about the e3-axis. Accordingly,
matrix Aα in (16) is given by

Aα =

⎡
⎢⎢⎣
exp(αê3) 0 0 0

0 exp(αê3) 0 0
0 0 exp(αê3) 0
0 0 0 exp(αê3)

⎤
⎥⎥⎦

(105)

leading to

ξ = d

dα

∣∣∣∣
α=0

Aα =

⎡
⎢⎢⎣

ê3 0 0 0
0 ê3 0 0
0 0 ê3 0
0 0 0 ê3

⎤
⎥⎥⎦ . (106)

It is straightforward to verify that symmetry conditions
(41) are satisfied.2

The corresponding momentum map (45) takes the
form

Jξ = p · ξq =
∑4

i=1
pi ê3qi

= e3 ·
(∑4

i=1
qi × pi

)
, (107)

so that the 3-component of the total angularmomentum
of the rigid top is a first integral of the motion.

Since the functions L(q, v), g(q), and gv(q, p) are at
most quadratic, the discrete derivatives required in the
EM scheme (84) coincide with the respective midpoint
derivatives.

The data used in the numerical example are as fol-
lows. The total mass of the top amounts tom = 0.7069,
the moments of inertia are I1 = I2 = I3 = 5.3014 ·
10−4 and the center of mass is located along the sym-
metry axis at l = 0.075.

The initial nutation angle is α0 = π/3. Correspond-
ingly, the initial coordinates in (100) are specified by
using the rotation matrix

R(α0) =
⎡
⎣1 0 0
0 cos(α0) − sin(α0)

0 sin(α0) cos(α0)

⎤
⎦ , (108)

such that

d0
i = R(α0)ei (109)

and

ϕ0 = R(α0)

⎡
⎣0
0
l

⎤
⎦ . (110)

The gyroscopic top is subject to an initial angular veloc-
ity vector of

ω0 = ωp e3 + ωs d3 , (111)

where the initial precession rate is chosen as ωp = 10.
The initial velocities corresponding to the coordinates

2 Note that although gext(qα) �= gext(q), the corresponding
infinitesimal symmetry property (41c) still holds provided that
gext(q) = 0, since Dgext(q)ξq = ê3gext(q).
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Fig. 17 Vertical coordinate of the center of mass

given in (100) are obtained by v0i = ω0 × q0
i , with

i ∈ {1, 2, 3, 4}. The conjugate momenta have been set
to p0 = Mv0. In order to achieve the case of steady
precession, the initial spin rate has to fulfill

ωs = m g l

I3 ωp
+ I1 + m l2 − I3

I3
ωp cos(α0) (112)

(cf. p. 221 in Goldstein [31]). In the present example,
it amounts to ωs = 135.6. By ensuring the condition
for steady precession (112), the center of mass has to
rotate on a constant height of ϕ3,ana = 0.0375 about
the vertical axis.

In addition to the present integration schemes (cf.
Table 1), we apply the scheme proposed in Bobenko
and Suris [41] (see also [42]), which has been devel-
oped specifically for the Lagrange top. This scheme is
summarized in Appendix A.8 and labeled “BS99”.

None of the schemes under investigation satisfies
the condition of steady precession (i.e., ϕ3 = ϕ3,ana =
0.0375) as shown for h = 0.002 in Fig. 17 due to
reasons of numerical accuracy.

To check the order of accuracy, the relative error in
the vertical coordinate of the center of mass is calcu-
lated according to

eq = |ϕ3(t = 0.001) − ϕ3,ana|
ϕ3,ana

. (113)

As shown in Fig. 18, VI-S, BS99 and VI-B are first-
order accurate, whereasVI-A andEMare second-order
accurate. Figure19 depicts the error for the momentum

Fig. 18 Relative error in q

Fig. 19 Relative error in p

vector of the center of mass calculated via

ep = ||p1(t = 0.001) − p1,ref||
||p1,ref|| , (114)
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Fig. 20 Constraints on momentum level (VI-S)

Fig. 21 Four-particle system

where p1,ref represents the solution at t = 0.001
obtained with the EM scheme with h = 5 · 10−7. It
becomes visible that VI-S, BS99 and VI-B are first-
order accurate, whereasVI-A andEMare second-order
accurate.

Again, as expected, only the EM scheme is capa-
ble of conserving the total energy of the system. How-
ever, all integrators at hand conserve the total angular
momentum of the top about the vertical axis. In con-
trast to the pendulum example from Sect. 6.1, VI-S is
not able to fulfill the velocity constraints exactly. Rep-
resentative constraints are depicted in Fig. 20. Note,
however, that the linear external constraints (i.e., k ∈
{7, 8, 9}) are still exactly fulfilled down to computer
precision. As already pointed out in the previous exam-
ple, VI-A does not fulfill both types of constraints in
the endpoints, while VI-B and EM, by design, exactly
capture the constraints both on configuration and on
velocity level.

6.3 Four-particle system

The goal of this next example is to analyze the newly
devised schemes with respect to robustness and the
required computational effort. Moreover, we compare
the EM method with the original scheme by Gonzalez
[14]. The example of the four-particle system depicted
in Fig. 21 has been taken fromGonzalez [14]. The con-
figuration of the system is characterized by the config-
uration vector

q =

⎡
⎢⎢⎣

q1

q2

q3

q4

⎤
⎥⎥⎦ . (115)

The two nonlinear springs give rise to the potential
function

V (q) = 1

2
k13

(
(q3 − q1) · (q3 − q1) − l213

)2

+ 1

2
k24

(
(q4 − q2) · (q4 − q2) − l224

)2
,

(116)

where the spring stiffnesses are set to k13 = 50 and
k24 = 500. The natural lengths of the two springs
are l13 = l24 = 1, respectively. Obviously, the mass
matrix is block diagonal and contains the masses mi

(i = 1, . . . , 4). Specifically, m1 = 1, m2 = 3, m3 =
2.3, m4 = 1.7. There are two holonomic constraints
with associated constraint functions

g1(q)=1

2

(
1

l212
(q2 − q1) · (q2 − q1) − 1

)
, (117a)

g2(q)=1

2

(
1

l234
(q4 − q3) · (q4 − q3) − 1

)
, (117b)

where l12 = l34 = 1, respectively.
To summarize, the system has n = 12 redundant

coordinates subject to m = 2 constraints. Moreover,
the system has two symmetries. The first symmetry
is related to the translational invariance of the system
characterized by qα

i = qi + αe for arbitrary e ∈ R
3.

Correspondingly, (10a) yields ξ T
Q = [eT , eT , eT , eT ],

so that momentum map (15) results in

Jξ = e ·
(∑4

i=1
pi

)
(118)

Since e is arbitrary, the total linear momentum
L:= ∑4

i=1 pi is a first integral of the motion.
The second symmetry is related to the rotational

invariance of the system.With regard to (16), rotational
invariance is characterized by

Aα =

⎡
⎢⎢⎣
exp(αê) 0 0 0

0 exp(αê) 0 0
0 0 exp(αê) 0
0 0 0 exp(αê)

⎤
⎥⎥⎦ (119)
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for arbitrary e ∈ R
3. The last equation yields

ξ = d

dα

∣∣∣∣
α=0

Aα =

⎡
⎢⎢⎣

ê 0 0 0
0 ê 0 0
0 0 ê 0
0 0 0 ê

⎤
⎥⎥⎦ . (120)

It is straightforward to verify that symmetry conditions
(41) are satisfied. The corresponding momentum map
(45) takes the form

Jξ = p · ξq =
∑4

i=1
pi êqi

= e ·
(∑4

i=1
qi × pi

)
. (121)

Since e is arbitrary, the total angular momentum
J:= ∑4

i=1 qi × pi is a first integral of the motion.
Since the kinetic energy, g(q) and gv(q, p) are at

most quadratic, the corresponding discrete derivatives
required in the EM scheme (84) coincide with the mid-
point derivatives. In contrast to that, the higher non-
linearity of potential function (116) demands a proper
design of the corresponding discrete derivative (cf.
Gonzalez [26]). To this end, we introduce the quadratic
invariants

π1(q) = (q3 − q1) · (q3 − q1) , (122a)

π2(q) = (q4 − q3) · (q4 − q3) . (122b)

Note that these invariants account for both symmetry
properties. Now, potential function (116) can be recast
in the form

V (q) = Ṽ1(π1(q)) + Ṽ2(π2(q)) , (123)

where

Ṽ1(π1(q)) = 1

2
k13

(
π1(q) − l213

)2
, (124a)

Ṽ2(π2(q)) = 1

2
k24

(
π2(q) − l224

)2
. (124b)

The discrete derivative of V (q) can be viewed as dis-
crete counterpart of the chain rule result

DV (q) = Ṽ ′
1(π1)

∂π1

∂q
+ Ṽ ′

2(π2)
∂π1

∂q
, (125)

in which the classical Greenspan’s formula [43] is
applied to obtain

DGV = Ṽ1(π
n+1
1 ) − Ṽ1(π

n
1 )

πn+1
1 − πn

1

∂π1

∂q
(qn+1/2)

+ Ṽ2(π
n+1
2 ) − Ṽ2(π

n
2 )

πn+1
2 − πn

2

∂π2

∂q
(qn+1/2) . (126)

It is straightforward to verify that both orthogonality
condition (85) and directionality condition (86) are sat-
isfied.

In the numerical simulations, the following initial
conditions have been applied:

q0
1 = [

0, 0, 0
]

, q0
2 = [

1, 0, 0
]

, (127a)

q0
3 = [

0, 1, 0
]

, q0
4 = [

1, 1, 0
]

(127b)

and

v01 = [
0, 0, 0

]
, v02 = [

0, 0, 0
]

, (127c)

v03 = [
0, 0, 0

]
, v04 = [

0, 0, 2/1.7
]
. (127d)

The momenta have been initialized with p0
i = mi v0i .

The simulations have been conducted with h = 0.01
for a total time of T = 10.

The motion of the four-particle system is illustrated
with some snapshots in Fig. 22.

For the sake of comparability, we have also included
results of the original EM scheme developed by Gon-
zalez [14]. This scheme only takes into account the pri-
mary constraints and is labeled as “EM-G”. Although
EM-G does not exactly satisfy the secondary con-
straints (Fig. 23), which is in contrast to the present
EM scheme (Fig. 24), both schemes yield compa-
rable results concerning conservation of total energy
(Fig. 25) conservation of angular momentum (Figs. 26
and 27) and accuracy.

Next we investigate the numerical effort caused by
the schemes at hand. To this end, we compare the com-
putation time along with the mean number of New-
ton iterations n̄iter required per time step. In particular,
the computation time tcomp is normalized with respect
to the time required by VI-S. The results in Table 2
refer to the use of two alternative initial guesses for
qn+1 in Newton’s method. In the first two columns of
Table 2, qn has been used as initial guess (“ simple ini-
tial guess”), while the results in the second column rely
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Fig. 22 Snapshots of the motion of the four-particle system computed with the EM at t = {0 , 2 , 4 , 6 , 8 , 10}

Fig. 23 Constraints on momentum level (EM-G)

Fig. 24 Constraints on momentum level (EM)

Fig. 25 Incremental changes of the energy function E

Fig. 26 Angular momentum components (EM and EM-G)

Fig. 27 Incremental changes of the angular momentum compo-
nents (EM)

Table 2 Computational effort

Method Simple initial guess Advanced initial guess

n̄iter tcomp n̄iter tcomp

VI-S 4 1 3 0.819

VI-A 4 1.1414 3 0.9158

VI-B 4 1.1912 3 0.9221

EM 4.305 1.8663 3.207 1.3481
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Fig. 28 Relative error in q

Fig. 29 Relative error in p

on the initial guessqn+h vn (“ advanced initial guess”).
It can be observed that EM causes the largest numeri-
cal effort due to the computation of discrete gradients.
Moreover, an advanced initial guess for the Newton
method serves the purpose to decrease the necessary
amount of iterations.

Figure 28 shows that bothEMandEM-Gare second-
order accurate in the coordinates. Specifically, the rela-
tive error for the positionof the fourth particle at t = 0.1
has been calculated via

eq = ||q4(t = 0.1) − q4,ref ||
||q4,ref || , (128)

where q4,ref represents the reference solution calcu-
lated with EM for h = 10−5. Similarly, both schemes
yield second-order accuracy in the momenta (cf. Fig-
ure 29) and first-order accuracy in the Lagrange multi-
pliers λ as can be observed from Fig. 30.

Eventually,we focus on the numerical stability of the
schemes under investigation. Since only EM is capa-
ble of conserving the total energy, it exhibits supe-
rior numerical stability properties (see Gonzalez and
Simo [44] for a related stability analysis). This is con-
firmed by the results depicted in Figs. 31, 32 and 33.

Fig. 30 Relative error in λ

Fig. 31 Stable energies with h = 0.01

Fig. 32 Energy blow-ups with h = 0.05

For h = 0.01, all of the schemes under investigation
remain stable (cf. Fig. 31). In fact, for h ≤ 0.04 all
schemes under investigation keep stable at least until
T = 1000. The lower-order schemes VI-S and VI-
B experience numerical energy blow-up already for
h = 0.05 as shown in Fig. 32. For h = 0.25 (Fig. 33),
VI-A exhibits an energy blow-up at about t = 55. Inter-
estingly, EMkeeps stable even for quite large time steps
of h = 0.675.

It can be concluded that the superior numerical sta-
bility of EM comes at the expense of a larger numerical
effort per time step.
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Fig. 33 Energy blow-ups with h = 0.25

7 Conclusion

Thepresent approach to the numerical integrationof the
DAEs governing the motion of constrained mechani-
cal systems relies on an index reduction in the spirit of
the well-known GGL stabilization. We have presented
the GGL variational principle which can be viewed
as an extension of the Livens principle to constrained
mechanical systems. The judicious inclusion of the sec-
ondary constraints into the GGL principle yields the
desired index reduction in the spirit of the GGL stabi-
lization. Accordingly, the Euler–Lagrange equations of
the GGL principle assume the form of index 2 DAEs.
These DAEs have been shown to preserve main struc-
tural properties of the underlying mechanical system
independently of themultiplier associated with the sec-
ondary constraints. This feature is in sharp contrast to
the original GGL stabilization and makes possible the
design of structure-preserving discretization methods.
In particular, the availability of the GGL functional has
facilitated the design of novel variational integrators
for the constrained mechanical systems at hand. These
integrators have been shown to be symplectic and capa-
ble of conserving angular momentum maps. In addi-
tion to that, a new energy–momentum scheme has been
developed by discretizing the Euler–Lagrange index 2
DAEs pertaining to the GGL principle.

While the GGL functional in the form (33) is valid
for configuration-dependent (or non-constant) mass
matrices, the development of variational integrators has
been restricted to mechanical systems with constant
massmatrix. The inclusion of non-constantmassmatri-
ces would be of interest for future work.

Similar observations hold for the EM scheme (84)
presented in Sect. 5. Apart from the inclusion of the
velocity constraints, scheme (84) in general differs
from the EM scheme due to Gonzalez [14] in the case
of non-constant mass matrices. This holds true even for
the unconstrained case dealt with in [26].

As the numerical investigations have shown, the
present integrators are at most second-order accurate in
the coordinates and the momenta. The development of
higher-order variational integrators should be possible
by following the ideas presented in Wenger et al. [45].
In this connection, the approach recently developed in
Altmann and Herzog [46] should also be applicable.
Furthermore, it would be of interest to investigate con-
strained symplectic partitioned Runge–Kutta methods
(see Jay [12] andMarsden andWest [23]) in the frame-
work of the GGL principle.
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A. Appendix

A.1 Properties of the wedge product

The following properties of the wedge product are of
importance (see, for example, Leimkuhler and Reich
[13]):
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da ∧ db = − db ∧ da , (129a)

da ∧ (β1 db + β2 dc) = β1 da ∧ db + β2 da ∧ dc ,
(129b)

da ∧ (A db) = (AT da) ∧ db , (129c)

da ∧ (B da) = 0 . (129d)

Here, da, db and dc ∈ R
d are arbitrary vector-valued

differential one-forms, β1, β2 ∈ R are scalar-valued
quantities, A ∈ R

d×d is an arbitrary matrix and B =
BT ∈ R

d×d is symmetric.

A.2 Conservation of the symplectic two-form along
solutions of (2)

The conservation of the symplectic two-form (23) can
be verified by calculating

d

dt
Ω = d

dt
( dq ∧ dp) = dq̇ ∧ dp + dq ∧ dṗ .

(130)

The equations of motion (2) give rise to the differential
one-forms

dq̇ = dv , (131a)

dṗ = D2
11L(q, v) dq + D2

12L(q, v) dv , (131b)

dp = D2
21L(q, v) dq + D2

22L(q, v) dv , (131c)

where D2
i j (•) denote the second-order partial deriva-

tives.Accordingly, the temporal evolutionofΩbecomes

d

dt
Ω = dv ∧ D2

21L(q, v) dq + dv ∧ D2
22L(q, v) dv

+ dq ∧ D2
11L(q, v) dq+ dq ∧ D2

12L(q, v) dv .
(132)

Since both D2
11L and D2

22L are symmetric matrices,
the second and third term on the right-hand side of the
above equation vanish due to property (129d) of the
wedge product. Taking into account properties (129c)
and (129a) of the wedge product, one arrives at the
result

d

dt
Ω = dv ∧

(
D2
21L(q, v) − (D2

12L(q, v))T
)
dq = 0

(133)

due to the equality of mixed derivatives.

A.3OriginalGGLstabilization and the symplectic two-
form

To investigate how the GGL stabilization affects con-
servation of the symplectic two-form, we consider

d

dt
Ω = dq̇ ∧ dp + dq ∧ dṗ

=
(

M−1 dp
)

∧ dp + d(G(q)Tγ ) ∧ dp

− dq ∧
(
D2V (q) dq

)
− dq ∧ d

(
Dg(q)Tλ

)
,

(134)

where (30a) and (30b) have been used. Due to property
(129d), the first and third term vanish. The fourth term
becomes zero as well since

d
(
Dg(q)Tλ

)
∧ dq

= Dg(q)T dλ ∧ dq +
m∑

k=1

λkD
2gk(q) dq ∧ dq

= dλ ∧ Dg(q) dq = 0 , (135)

where (129c) and (129d) have been used along with
(30c), which implies that Dg(q) dq = 0. Eventually,
we arrive at

d

dt
Ω = d(G(q)Tγ ) ∧ dp

= G(q)T dγ ∧ dp +
m∑

k=1

γkD
2gk(q) dq ∧ dp .

(136)

Therefore, the conservation of the symplectic two-form
Ω requires γ = 0, which holds for the continuous case.

A.4 Euler–Lagrange equations of the GGL princple

For the time-continuous case, the DAEs (37) yield γ =
0. This can be shownalong the lines of the originalGGL
stabilization [3]. Differentiating (37d) with respect to
time yields

d

dt
g(q) = G(q)q̇ = 0 . (137)
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Substituting (37a) into the above equation leads to

G(q)v + G(q)M−1G(q)Tγ = 0 . (138)

Assuming a system with Lagrangian (3), the first term
on the left-hand side of the last equation vanishes due
to (37e) and (37c). Thus, it remains

G(q)M−1G(q)Tγ = 0 , (139)

which leads to γ = 0 since M is positive definite and
G(q) has full rank.

Moreover, the DAEs (37) have differentiation index
2. To show this we differentiate (37e) with respect to
time to obtain

d

dt
G(q)M−1p + G(q)M−1ṗ = 0 . (140)

Substituting from (37b) for ṗ into the last equation and
taking into account the above result γ = 0 yields

G(q)M−1G(q)Tλ = g̃(q, v, p) , (141)

where remaining terms have been collected in func-
tion g̃. Since GM−1G is non-singular, the above equa-
tion can be solved for λ. One more time differentiation
yields an explicit expression for λ̇ and the index is thus
equal to two.

A.5 Invalid form of the variational principle

The Euler–Lagrange equations associated with func-
tional (40) are given by

q̇ = v , (142a)

ṗ = D1L(q, v) − Dg(q)Tλ − D1̃gv(q, v)Tγ , (142b)

p = D2L(q, v) − D2̃gv(q, v)Tγ , (142c)

0 = g(q) , (142d)

0 = g̃v(q, v) . (142e)

Assuming a Lagrangian (3), relation (142c) can be used
and inserted into (142e) such that

G(q)v = G(q)M−1(p + D2̃gv(q, v)Tγ ) . (143)

Noting that D2̃gv(q, v) = G(q), we can find an explicit
expression for the Lagrange multiplier as

γ = γ̃ (q, p) = −M̃(q)−1G(q)M−1p (144)

with M̃(q) = G(q)M−1G(q)T. Correspondingly, the
Euler–Lagrange equations (142) cannot be traced back
to the standard formulation (27), sinceγ does in general
not vanish.

A.6 Structure-preservation of scheme (55)

For the purposes of this section, it is convenient to recast
scheme (55) in the form

qn+1 − qn = hvn + hD2gv(q̄, pn+1)Tγ n+1 ,
(145a)

pn+1 − pn = hD1L(qn, vn) − hG(qn)Tλn (145b)

− hD1gv(q̄, pn+1)Tγ n+1

D2L(qn, vn) = pn+1 + hD1gv(q̄, pn+1)Tγ n+1 ,
(145c)

g(qn+1) = 0 , (145d)

gv(q̄, pn+1) = 0 , (145e)

where gv(q̄, pn+1) = G(q̄)M−1pn+1 has been used,
which is in line with (29). Next, we demonstrate the
structure-preserving properties of this scheme.

A.6.1 Symplecticness

To show that scheme (55) is symplectic, we calculate
the differentials of (145a) to (145c). This yields

dqn+1 − dqn = h dvn

+ h d
(
D2gv(q̄, pn+1)Tγ n+1) ,

(146a)

dpn+1 − dpn = h D2
11L(qn, vn) dqn

+D2
12L(qn, vn) dvn−h d

(
G(qn)Tλn)

− h d
(
D1gv(q̄, pn+1)Tγ n+1

)
,

(146b)

D2
21L(qn, vn) dqn + D2

22L(qn, vn) dvn =
dpn+1+h d

(
D1gv(q̄, pn+1)Tγ n+1

)
.

(146c)
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The differential forms of the constraint equations
(145d) and (145e) read

dg(qn+1) = G(qn+1) dqn+1 = 0 , (147a)

dgv(q̄, pn+1) = D1gv(q̄, pn+1) dq̄

+ D2gv(q̄, pn+1) dpn+1 = 0 .
(147b)

Now,makinguse of the skewsymmetry of thewedge
product, property (129a), one can deduce that

dqn∧ dpn − dqn+1 ∧ dpn+1 =
dpn+1∧( dqn+1− dqn)+ ( dpn+1 − dpn) ∧ dqn .

(148)

Substituting from (146a) and (146b) into the last equa-
tion, we obtain

dqn ∧ dpn − dqn+1 ∧ dpn+1 = dpn+1 ∧ h dvn

+ h dpn+1 ∧ d
(
D2gv(q̄, pn+1)Tγ n+1

)

+ h D2
11L(qn, vn) dqn ∧ dqn

+ h D2
12L(qn, vn) dvn ∧ dqn

− h d
(

G(qn)Tλn
)

∧ dqn

− h d
( m∑

k=1

γ n+1
k D1gv

k(q̄, pn+1)
) ∧ dqn . (149)

We next insert dpn+1 from (146c) into the first term on
the right-hand side of (149). Moreover, the third term
on the right-hand side of (149) vanishes due to property
(129d) of the wedge product. The fourth one vanishes
in analogy to relation (135). Consequently, we obtain

dqn ∧ dpn − dqn+1 ∧ dpn+1

=
(
D2
21L(qnvn) dqn + D2

22L(qnvn) dvn

− h d
( m∑

k=1

γ n+1
k D1gv

k(q̄, pn+1)
)) ∧ h dvn

+ h dpn+1 ∧ d
(
D2gv(q̄, pn+1)Tγ n+1

)

+ h D2
12L(qn, vn) dvn ∧ dqn

− h d
( m∑

k=1

γ n+1
k D1gv

k(q̄, pn+1)
) ∧ dqn . (150)

Next, it is possible to cancel the first and fifth term on
the right-hand side of (150) due to properties (129a) and
(129c) of the wedge product since (D2

12L)T = D2
21L .

The symmetric matrix multiplication property of the
wedge product (129d) can be used once more to cancel
the second term. Moreover, it is possible to collect the
third and last term by using (53), yielding

dqn ∧ dpn − dqn+1 ∧ dpn+1

= −h d
( m∑

k=1

γ n+1
k D1gv

k(q̄, pn+1)
) ∧ dq̄

+ h dpn+1 ∧ d
(
D2gv(q̄, pn+1)Tγ n+1

)
.

(151)

Executing the remaining differentials leads to the
expression

dqn ∧ dpn − dqn+1 ∧ dpn+1 =(
D1gv(q̄, pn+1) dq̄

)
∧ h dγ n+1

+
(
D2gv(q̄, pn+1) dpn+1

)
∧ h dγ n+1

− h
m∑

k=1

γ n+1
k D2

12gv
k (q̄, pn+1) dpn+1 ∧ dq̄

+ h dpn+1 ∧
m∑

k=1

γ n+1
k D2

21gv
k (q̄, pn+1) dq̄ .

(152)

The last two termson the right-hand side of (152) cancel
each other due to (129c) since (D2

12gv
k )T = D2

21gv
k . The

first two terms on the right-hand side of (152) can be
collected such that (147b) can be taken into account.
Accordingly, (152) gives rise to

dqn ∧ dpn = dqn+1 ∧ dpn+1 , (153)

which shows that the present scheme is indeed sym-
plectic.

A.6.2 Conservation of momentum maps

To verify that scheme (55) is capable of conserving
momentum maps of the form (45), scalar multiply
(145a) by ξTpn+1, (145b) by ξqn , (145c) by −hξvn ,
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and subsequently add the resulting equations to obtain

pn+1 · ξqn+1 − pn · ξqn

= h
(
D1L(qn, vn) · ξqn + D2L(qn, vn) · ξvn)

− hγ n+1 ·
(
D1gv(q̄, pn+1)ξ q̄

−D2gv(q̄, pn+1)ξpn+1
)

− hλn · G(qn)ξqn , (154)

where relation (53) has been used. Accordingly, algo-
rithmic conservation of momentum maps holds in the
sense that

pn+1 · ξqn+1 = pn · ξqn , (155)

provided that the symmetry conditions (41) are satis-
fied.

A.7 Structure preservation of scheme (62)

Apart from the constraints, general scheme (62) can be
recast in the form

qn+1 − qn = hvn+1 + (D3gv
d)

Tγ n , (156a)

pn+1 − pn + Pn = D1Ld − D1gTdλn − (D1gv
d)

Tγ n ,
(156b)

− Pn = D2Ld − D2gTdλn − (D2gv
d)

Tγ n , (156c)

h
(

pn+1 + Pn
)

= D3Ld . (156d)

A.7.1 Symplecticness

To verify symplecticness of the general scheme (62),
we start with the identity

dqn ∧ dpn − dqn+1 ∧ dpn+1

=
(
dpn+1 + dPn

)
∧ ( dqn+1 − dqn)

+( dpn+1 + dPn − dpn) ∧ dqn

− dPn ∧ dqn+1 . (157)

The differentials of (62a) through (62c) take the form

dqn+1 − dqn = h dvn+1 + d
(
(D3gv

d)
Tγ n

)
,

(158a)

dpn+1 − dpn + dPn (158b)

= D2
11Ld dqn + D2

12Ld dqn+1 + D2
13Ld dvn+1

− d
(
D1gTdλn

)
− d

(
(D1gv

d)
Tγ n

)
,

− dPn = D2
21Ld dqn + D2

22Ld dqn+1 + D2
23Ld dvn+1

− d
(
D2gTdλn

)
− d

(
(D2gv

d)
Tγ n

)
. (158c)

The last three equations can be inserted consecu-
tively into the right-hand side of (157). Now, a tedious
but straightforward calculation along the lines of
Appendix A.6, taking into account the differential of
(62d) given by

0 = D2
31Ld dqn + D2

32Ld dqn+1 + D2
33Ld dvn+1

− h
(
dpn+1 + dPn

)
, (159)

leads to

dqn ∧ dpn − dqn+1 ∧ dpn+1 =
− dλn ∧

(
D1gd dqn + D2gd dqn+1

)

− dγ n ∧ (
D1gv

d dqn + D2gv
d dqn+1

+ D3gv
d( dpn+1 + dPn)

)
. (160)

The right-hand side of the last equation is zero, which
can be seen by taking the differentials of the constraints
(62e) and (62f). Accordingly,

dqn+1 ∧ dpn+1 = dqn ∧ dpn . (161)

A.7.2 Conservation of momentum maps

To show algorithmic conservation of momentum maps
of the form (45), scalarmultiplying (156a) by ξT(pn+1+
Pn), (156b) by ξqn , (156c) by ξqn+1, (156d) by ξvn+1,
and subsequently adding the resulting equations, a
straightforward calculation yields

pn+1 · ξqn+1 − pn · ξqn =
D1Ld · ξqn + D2Ld · ξqn+1 + D3Ld · ξvn+1
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− γ n ·
(
D1gv

dξqn + D2gv
dξqn+1

−D3gv
dξ

T
(

pn+1 + Pn
))

− λn ·
(

D1gdξqn + D2gdξqn+1
)

= 0 . (162)

Accordingly, conservation of momentum maps holds
in the sense that

pn+1 · ξqn+1 = pn · ξqn , (163)

provided that the discrete symmetry conditions (64) are
satisfied.

A.8 Scheme “BS99” for the Lagrange top

For comparison, in the numerical example of the gyro-
scopic top in Sect. 6.2we apply the schemeproposed by
Bobenko and Suris [41]. In particular, we adopt scheme
(1.17) from [41], which is related to the equations of
motion given by

ṁ = mgl e3 × d3 , (164a)

ḋ3 = J̃−1
1 m × d3 , (164b)

wherem = Jω is the angularmomentumof the topwith
respect to the origin of the inertial frame (cf. Figure16),
ω = ωi ei is the angular velocity and

J =
3∑

A=1

J̃AdA ⊗ dA (165)

is the spectral representation of the inertia tensor of the
top with respect to the pivot point. Note that (164a) is
the balance of angular momentum with respect to the
origin. Furthermore, (164b) emanates from the kine-
matic relationship ḋ3 = (J−1m) × d3 by taking into
account the specific form of inertia tensor (165) per-
taining to the top given by J̃1 = I1 + ml2 = J̃2 and
J̃3 = I3, where, as outlined in Sect. 6.2, Ii (i = 1, 2, 3)
are the principal moments of inertia about the center of
mass of the top. The equations of motion (164) coin-
cide with those in [41, (1.10)], where J̃1 = J̃2 = 1 and
mgl = 1 have been chosen.

The time discretization of (164) proposed in [41]
reads

mn+1 − mn = h mgl e3 × dn
3 , (166a)

dn+1
3 − dn

3 = h J̃−1
1 mn+1 × dn+1/2

3 , (166b)

The height of the center of mass follows from con-
straint function (104) and thus is given by

ϕ3 = l d3 · e3 . (167)

This formula has been used to obtain the results in
Figs. 17 and 18. Similarly, in Fig. 19 the convergence
of the momentum vector of the center of mass

p1 = l J̃−1
1 m × d3 (168)

has been analyzed.
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