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Ratchet universality in the directed motion of spheres
by unbiased driving forces in viscous fluids

Pedro J. Martı́nez . Ricardo Chacón

Received: 3 November 2022 / Accepted: 20 April 2023 / Published online: 3 May 2023

� The Author(s) 2023

Abstract Directed motion of a sphere immersed in a

viscous fluid and subjected solely to a nonlinear drag

force and zero-average biharmonic forces is studied in

the absence of any periodic substrate potential. We

consider the case of two mutually perpendicular

sinusoidal forces of periods T and T/2, respectively,

which cannot yield any ratchet effect when acting

separately, while inducing directed motion by acting

simultaneously. Remarkably and unexpectedly, the

dependence on the relative amplitude of the two

sinusoidal forces of the average terminal velocity is

theoretically explained from the theory of ratchet

universality, while extensive numerical simulations

confirmed its predictions in the adiabatic limit.

Additionally, the dependence on the dimensionless

driving frequency of the dimensionless average

terminal velocity far from the adiabatic limit is

qualitatively explained with the aid of the vibrational

mechanics approach.

Keywords Ratchet effect � Viscous fluid � Spheres �
Ratchet universality

1 Introduction

Nature’s symmetry principles play a subtle and deep

role in the sense that many physical phenomena

ultimately come to be explained in terms of mecha-

nisms of symmetry breaking. A ubiquitous instance is

the so-called ratchet effect [1–3], i.e., the possibility of

generating directed transport from a fluctuating envi-

ronment without any net external force. Indeed, it has

been a fundamental research topic in diverse areas of

science and technology since the last few decades

partly because of its potential applications for manip-

ulating such systems as coupled Josephson junctions

[4] and molecular motors [5], as well as for designing

micro- and nano-devices suitable for on-chip imple-

mentation. Directed ratchet transport (DRT) is now

qualitatively understood to be a result of the interplay

of nonlinearity, symmetry breaking [6], and non-

equilibrium fluctuations including temporal noise [2],

spatial disorder [7], and quenched temporal disorder

[8]. The symmetry analysis alone, however, is insuf-

ficient to predict the strength and direction of the DRT.
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Recently, some of such fundamental aspects, includ-

ing current reversals [9] and the quantitative depen-

dence of DRT strength on the system’s parameters

[10], have begun to be elucidated. In this regard, the

theory of ratchet universality (RU) [11–13, 13] pre-

dicts that there exists a universal force waveform

which optimally enhances directed transport by sym-

metry breaking. The theory of RU is based on a

scenario of criticality that emerges when the general-

ized parity symmetry and the generalized time-rever-

sal symmetry are broken, regardless of the nature of

the dynamic equation in which the breaking of such

symmetries results in DRT. For noiseless ratchets, the

effectiveness of this theory has been demonstrated in

quite different physical contexts in which the driving

forces are chosen to be biharmonic, such as in the

cases of topological solitons [8], Bose–Einstein con-

densates exposed to a sawtooth-like optical lattice

potential [14], matter-wave solitons [10], one-dimen-

sional granular chains [15], and Bose–Einstein con-

densates under an unbiased periodic driving potential

[16]. Thus, the effectiveness of RU in quantum

systems has been previously demonstrated, including

the cases of directed transport of atoms in a Hamil-

tonian quantum ratchet (the values of the parameters

used, which were chosen to maximize the directed

transport, correspond to those of the universal bihar-

monic waveform, cf. Ref. [14]) and driven Bose–

Einstein condensates (the authors show that the ratchet

current is maximum for the values of the parameters

that correspond to those of the ratchet potential

associated with the universal biharmonic waveform,

cf. Ref. [16]). There have also been quantitative

explanations in coherence with the degree-of-symme-

try-breaking mechanism, as predicted by the theory of

RU [11, 12], of the interplay between thermal noise

and symmetry breaking in the DRT of a Brownian

particle moving on a periodic substrate subjected to a

homogeneous temporal biharmonic force [17–19] and

of a driven Brownian particle subjected to a vibrating

periodic potential [20]. Numerical analyses of a driven

Brownian particle in the presence of non-Gaussian

noise [21], coupled Brownian motors with stochastic

interactions in a crowded environment [22], and Stark

control of electrons at interfaces [23] have confirmed

the RU predictions. Additionally, RU has recently

been demonstrated in the bidirectional escape from a

symmetric potential well [24], coupled dissipative

oscillators without external bias [25] as well as in

directed ratchet transport of cold atoms and fluxons

driven by biharmonic fields [26].

2 Theoretical approach and numerical simulation

Here, we investigate the effects of nonlinear dissipa-

tive (drag) forces on DRT in the absence of any

periodic substrate potential through the recently

considered example of spheres immersed in a viscous

fluid of viscosity g and density qf , and subjected to

time-periodic forces of period T and zero average [27].

In dimensionless variables, the equation of motion

reads

xs
dt hð Þ
dh

¼ � 1

24
Cd t hð Þj j½ � t hð Þj jt hð Þ þ f0f hð Þ; ð1Þ

f hð Þ ¼ f cos hð Þe1 þ a 1� fð Þ cos 2hþ uð Þe2; ð2Þ

where h � xt, x � 2p=T , s � m= 6prgð Þ is a charac-
teristic timescale, t hð Þ � 2rqf v h=xð Þ=g, Cd t hð Þj j½ � is
the steady drag coefficient, f hð Þ � F h=xð Þ=F0 with

F tð Þ being a T-periodic biharmonic force, f0 �
qf F0= 3pg2ð Þ is a dimensionless parameter accounting

for the strength of the driving force, e1 and e2 are two

mutually perpendicular versors, f 2 0; 1½ � and u 2
0; 2p½ � accounts for the relative amplitude and initial

phase difference of the two harmonic components,

respectively, while the value a ¼ 1 is the only one

considered in Ref. [27]. Note that the dimensionless

driving frequency, xs ¼ 2pðs=TÞ, accounts for the

relative strength of the two timescales involved. An

experimental realization of Eq. (1) can be imple-

mented by applying alternating magnetic fields to

magnetizable spherical particles in a similar way to the

case studied in Ref. [28] (see also Ref. [29]). In the

adiabatic limit xs � 1ð Þ, the average terminal veloc-

ity, Vad, is given by the integral

Vad ¼
d20g

16prqf

Z 2p

0

dh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0 f hð Þj j

p
d0

s
� 1

2
4

3
5
2

f hð Þ
f hð Þj j ;

ð3Þ

with d0 ¼ 9:06 [27]. Also, the numerical results

discussed in Ref. [27] indicated that, for fixed values
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of the other parameters, there exists an optimal value

of f which maximizes the second component of the

dimensionless average terminal velocity, while the

maximum velocity decreases asxs is increased and its
location shifts toward lower values of f. This present
paper aims to provide an explanation of these numer-

ical results for a ¼ 1 as well as our own numerical

results for any a[ 0. Specifically, we shall show that

the maximum velocity is reached for f ¼ 2a=ð1þ 2aÞ
in the adiabatic limit, as predicted by the theory of RU.

Indeed, it has been demonstrated for temporal and

spatial biharmonic forces that optimal enhancement of

directed ratchet transport is achieved when maximally

effective (i.e., critical) symmetry breaking occurs,

which implies the existence of a particular universal

waveform [11–13]. Specifically, the optimal value of

the relative amplitude f comes from the condition that

the amplitude of the odd harmonic component must be

twice that of the even harmonic component in Eq. (2),

i.e.,

fopt ¼ fopt að Þ � 2a=ð1þ 2aÞ: ð4Þ

Importantly, this finding is in sharp contrast to the

prediction coming from the general formalism men-

tioned in Ref. [27], namely, that the dependence of the

average terminal velocity should scale as

V2 fð Þ � Cf2a 1� fð Þ;

where C is independent of f. This equation indicates

that V2 fð Þ presents a single maximum at fmax ¼ 2=3,

irrespective of the particular value of the prefactor a.
Note that the coincidence of fmax ¼ 2=3 with

fopt a ¼ 1ð Þ is purely accidental (see Appendix A). In

contrast, both the theoretical estimate given by Eq. (3)

and numerical simulations of Eq. (1) confirm the RU

prediction [Eq. (4)] over a wide range of a values (cf.

Figures 1 top and bottom, respectively).

Figure 2 is the same as Fig. 1 but for a much lower

dimensionless driving strength f0 ¼ 1ð Þ. One sees that
the theoretical estimate given by Eq. (3) and numer-

ical simulations of Eq. (1) again confirm the RU

prediction [Eq. (4)] over the same range of a values

(cf. Figures 2 top and bottom, respectively). Note that

the average terminal velocity increases as the prefactor

a is increased, while keeping the remaining parameters

constant (cf. Figures 1 and 2), because the condition

f hð Þj j 6 1 is no longer satisfied for a[ 1 and the

particular value of F0 considered in Ref. [27] for

a ¼ 1.

For the sake of making a legitimate comparison,

Fig. 3 shows the corresponding results after the

substitution f hð Þ ! f hð Þ=M with

M ¼ f hð Þj jmax�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ a2 1� fð Þ2

q
ð5Þ

such that f hð Þj j=M 6 1. Clearly, the RU prediction

presents excellent agreement with the results from

numerical simulations for quite disparate values of f0
(cf. Figures 3 middle and bottom) as well as with the

theoretical estimate [Eq. (3); Fig. 3 top]. Note, how-

ever, that such an excellent agreement between RU

prediction and numerical results would not be

expected a priori in the present case of two mutually
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Fig. 1 Dimensionless average terminal velocity versus relative

amplitude f and prefactor a [cf. Equation (2)] for f0 ¼
100;xs ¼ 0:1, and u ¼ p. Top: Theoretical prediction from

Eq. (3). Bottom: Numerical results from Eqs. (1) and (2). Also

plotted is the theoretical prediction for the maximum velocity

[cf. Equation (4); solid curve]
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perpendicular sinusoidal forces, one with twice the

period of the other.

The effectiveness of the RU prediction [Eq. (4)]

can be understood as follows. In the adiabatic limit

xs � 1ð Þ, after substituting

tad hð Þ ¼ d20
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0 f hð Þj j

p
d0

s
� 1

2
4

3
5
2

f hð Þ
f hð Þj j

ð6Þ

(cf. Equation (11) of Ref. [27]) into the expression

Cd tad hð Þj j½ � tad hð Þj jtad hð Þ with the assumption

tad hð Þ / f hð Þ, and Taylor- and Fourier-expanding

the nonlinear part of this friction force, for instance

for u ¼ uopt � p (see Appendix B), Eq. (1) can be

written as

xs
dv1
dh

¼ �v1 � A
X1
n¼1

b2n�1 cos 2n� 1ð Þh½ �

þ f0f cos h;

ð7Þ

xs
dv2
dh

¼ �v2 � A
X1
n¼0

a2n cos 2nhð Þ

� f0að1� fÞ cos 2hð Þ;
ð8Þ

where A ¼ A d0; f0ð Þ / 2f
1=4
0 d�1=2

0 , while the Fourier

coefficients a2n � a2n f; að Þ, b2n�1 � b2n�1 f; að Þ can

be calculated explicitly by using MATHEMATICA,

but their size and algebraic complexity prevent us
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Fig. 2 The same as Fig. 1, but now f0 ¼ 1
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Fig. 3 Dimensionless average terminal velocity versus relative

amplitude f and prefactor a [cf. Equation (2)] for xs ¼ 0:1 and
u ¼ p. Top: Theoretical prediction from Eq. (3) for f0 ¼ 100.

Middle: Numerical results from Eqs. (1) and (2) after the

substitution f hð Þ ! f hð Þ=M [cf. Equation (5)] for f0 ¼ 100.

Bottom: Numerical results from Eqs. (1) and (2) after the

substitution f hð Þ ! f hð Þ=M [cf. Equation (5)] for f0 ¼ 1. Also

plotted is the theoretical prediction for the maximum velocity

[cf. Equation (4); solid curve]
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from showing them easily. One sees that the net

periodic force in Eq. (7) only presents odd harmonics

and hence satisfies the shift symmetry, which means

that, as expected from the symmetry analysis in Ref.

[27], such a periodic force by itself cannot yield

directed ratchet motion in the e1 direction. Also, the

net force in Eq. (8) only presents even harmonics and a

constant force term

� Aa0 �
2f

1=4
0ffiffiffiffiffi
d0

p
X1
k¼0

Xk
n¼0

k

n

� �
f2k�2na2nþ1 1� fð Þ2nþ1c k; nð Þ

C 1
8
� k þ 1

� �
k! f2 þ a2 1� fð Þ2
h ik ;

ð9Þ

with

c k; nð Þ � Dk;n

ffiffiffi
p

p
2
eF1

1

2
;
k þ nþ 3

2
; nþ 3

2
;�1

� ��

þ �1ð Þn2 eF1

k � nþ 2

2
;
k þ nþ 3

2
;

�

k þ nþ 4

2
;�1

�
C

k � nþ 2

2

� ��

ð10Þ

where Dk;n � �1ð Þ�n �1ð Þn� �1ð Þk
h i

C nþ 1ð Þ while

C �ð Þ and 2
eF1 �; �; �; �ð Þ are the gamma and the regular-

ized hypergeometric functions, respectively. Since the

waveform of any pair of even harmonics

a2n cos 2nhð Þ þ a2nþ2 cos 2nþ 2ð Þh½ � in Eq. (8) does

not fit, for any value of f; a, that of one of the four

equivalent expressions of the biharmonic universal

excitation [11]

f0 sin h� 1

2
sin 2hð Þ

� �
;

f0 cos h� 1

2
sin 2hð Þ

� �
;

ð11Þ

this means that the emergence of directed ratchet

motion in the e2 direction is exclusively due to the

constant force �Aa0 which is given approximately by

Eq. (9) for the parameters used in Fig. 3 of Ref. [27].

Indeed, the RU prediction [Eq. (4)] presents good

agreement with the theoretical estimate of the constant

force arising from the Fourier analysis of the net force

[cf. Equation (9); see Fig. 4] because the universal

biharmonic waveform is effectively present to pro-

duce the term of constant force once f hð Þ has been

suitably normalized as in the criticality scenario

leading to ratchet universality [12]. Mathematically,

Eqs. (7) and (8) are two nonautonomous (decoupled)

linear equations, and hence the expected average

terminal velocities are v1 ¼ 0; v2 ¼ �Aa0, thus

explaining the aforementioned agreement.

Next, the aforementioned dependence of the loca-

tion of the maximum velocity onxs can be understood
as follows. First, we rewrite Eq. (1) as

dt Xtsð Þ
dts

¼� 1

24
Cd t Xtsð Þj j½ � t Xtsð Þj jt Xtsð Þ

þ f0 f cos Xtsð Þe1½
þa 1� fð Þ cos 2Xts þ uð Þe2�;

ð12Þ

where X � xs; ts � t=s. For sufficiently large X, i.e.,
when 2p\T=s\4p, the v2 dynamics of Eq. (12) can

be analyzed using the vibrational mechanics approach

[30] by assuming that the X-force is ‘‘slow’’ (X\1)

while the 2X-force is ‘‘fast’’ (2X[ 1). Thus, one

separates v2 tsð Þ ¼ V2 tsð Þ þ w tsð Þ, where V2 tsð Þ repre-
sents the slow dynamics while w tsð Þ is the fast

oscillating term (see Appendix B): w tsð Þ ¼
w0 cos 2Xts þ Uð Þ with

w0 � f0a 1� fð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4X2

p
;

U � arctan
tg u� 2X

1þ 2X tg u

� �
:

ð13Þ

On averaging out w tsð Þ over time 2Xts, the slow

reduced dynamics of v2 becomes

dV2

dts
þ V2 1þ 4p

d0

ffiffiffiffiffiffiffiffi
V2j j

p� �
¼ 0: ð14Þ

Thus, the asymptotic v2 dynamics when X � xs 	
1=2 could well be described by Eq. (14), which

indicates that the (terminal) velocity V2 
 e�t=s as

t ! 1. This scenario is coherent with the gradual

decrease of the maximum second component of the

dimensionless average terminal velocity (cf. Figure 3

in Ref. [27]) as xs is increased from the adiabatic

limit, i.e., as the relevant symmetries are gradually

restored. This phenomenon of competing timescales

leads to the 2X-force losing ratchet effectiveness, but

without deactivating the degree-of-symmetry-break-

ing mechanism [11, 12]. Clearly, this loss of effec-

tiveness can only be compensated by increasing its
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amplitude a 1� fð Þ to generate maximum velocity,

thereby explaining the shift of the location of the

maximum velocity to lower values of f as xs is

increased from the adiabatic limit (cf. Figure 3 in Ref.

[27]). Importantly, this does not mean that the

predictions of the theory of RU are not universal but

there is another phenomenon that affects directed

transport and interacts with the breaking of the

relevant symmetries. A similar situation occurs when

thermal noise is present in a directed transport scenario

(see Refs. [17–19]).

3 Conclusions

In summary, we have investigated directed ratchet

motion of a sphere immersed in a viscous fluid and

subjected solely to a nonlinear drag force and zero-

average biharmonic forces in the absence of any

periodic substrate potential. The dependence on the

relative amplitude of two mutually perpendicular

sinusoidal forces of the average terminal velocity

was theoretically explained from the theory of ratchet

universality, while extensive numerical simulations

fully confirmed its predictions in the adiabatic limit.

Also, the dependence on the dimensionless driving

frequency of the dimensionless average terminal

velocity far from the adiabatic limit was qualitatively

explained with the aid of the vibrational mechanics

approach, while a quantitative explanation for such

behavior is still lacking. The theoretical findings of

this article could stimulate further experimental work

on directed ratchet transport of particles in non-

Newtonian fluids. Finally, following the present

Fourier series expansion approach, we expect that

the theory of RU will explain other different imple-

mentations of the ratchet effect, such as gating ratchets

[31] and skyrmion ratchets [32]. Our current work is

aimed at exploring these cases.
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Appendix A

Let us consider the following reparameterization of

the biharmonic force [cf. Equations (1) and (2)]:

f0 f cos hð Þe1 þ a 1� fð Þ cos 2hþ uð Þe2½ �
¼ f 00 f

0 cos hð Þe1 þ 1� f0ð Þ cos 2hþ uð Þe2½ �;
ðA1Þ

i.e.,

f 00 � f0 fþ a 1� fð Þ½ �; ðA2Þ

f0 � 1þ a 1� fð Þ=f½ ��1: ðA3Þ

The general formalismmentioned in Ref. [27] predicts

that the dependence of the average terminal velocity

should scale as

V2 fð Þ � f 3
0 af2 1� fð Þ ðA4Þ

and

V2 f0ð Þ � f 3
0

a3ð1� f0Þf02

1þ ða� 1Þf0½ �3
ðA5Þ

as a function of f and f0, respectively. Clearly, V2 f0ð Þ
presents a single maximum at

f0 ¼ f0max að Þ � 2=ð2þ aÞ; ðA6Þ

which only matches the correct dependence 2a=ð1þ
2aÞ [cf. Equation (4), see Fig. 3] when a ¼ 1 (see

Fig. 5).

Appendix B

For the parameters considered in Ref. [27]

(d0 ¼ 9:06; f0 ¼ 100), one readily obtains

tad hð Þj j � d0
ffiffiffiffi
f0

p
f hð Þj j1=2 ðB1Þ

from Eq. (6), and hence Eq. (1) can be approximated in

the adiabatic limit as

xs
dtad hð Þ
dh

¼� tad hð Þ � 2f
1=4
0ffiffiffiffiffi
d0

p f hð Þj j1=4tad hð Þ

þ f0f hð Þ;
ðB2Þ

where f hð Þ is given by Eq. (2). Thus, after assuming

tad hð Þ ¼ jf hð Þ=M1=4 ðB3Þ

[cf. Equation (5)] in the nonlinear friction term

2f
1=4
0 d�1=2

0 f hð Þj j1=4tad hð Þ with j being a fitting con-

stant (see Fig. 6) and, for instance, u ¼ uopt � p,
Eq. (B2) can be recast into the form

xs
dv1
dh

¼ �v1 �
2jf 1=40ffiffiffiffiffi

d0
p F1 h; f; að Þ

þ f0f cos h;

ðB4Þ

xs
dv2
dh

¼ �v2 �
2jf 1=40ffiffiffiffiffi

d0
p F2 h; f; að Þ

� f0að1� fÞ cos 2hð Þ;
ðB5Þ

with

F1 h; f; að Þ � f cos h

21=8
1þ f2 cos 2hð Þ þ a2 1� fð Þ2cos 4hð Þ

f2 þ a2 1� fð Þ2

" #1=8

;

ðB6Þ
Fig. 5 Functions fopt að Þ [Eq. (4), solid line] and f0max að Þ
[Eq. (A6), dashed line] vs prefactor a
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F2 h; f; að Þ � � að1� fÞ cosð2hÞ
21=8

1þ f2 cos 2hð Þ þ a2 1� fð Þ2cos 4hð Þ
f2 þ a2 1� fð Þ2

" #1=8

:

ðB7Þ

Finally, after Taylor- and Fourier-expanding

F1;2 h; f; að Þ in Eqs. (B4) and (B5) with the aid of

MATHEMATICA, one straightforwardly obtains

Eqs. (7) and (8), respectively. Since the fitting constant

j [cf. Equation (B3)] decreases very slowly with a
( j a ¼ 1ð Þ � j a ¼ 4ð Þð Þ=j a ¼ 1ð Þ ’ 0:082 for the

cases shown in Fig. 6), the right-hand side of Eq. (9)

effectively account for the dependence on a of the

constant force term, which is indeed confirmed by the

estimate shown in Fig. 4.

Next, we discuss the application of the vibrational

mechanics approach [30] to the v2 dynamics of

Eq. (12). For the aforementioned parameters consid-

ered in Ref. [27], the respective equation of motion can

be approximated as

dv2
dts

þ 1þ 2

d0

ffiffiffiffiffi
tj j

p� �
v2 ¼ �f0að1� fÞ cos 2Xtsð Þ:

ðB8Þ

After assuming 2p\T=s\4p, i.e. that the X-force is
‘‘slow’’ while the 2X-force is ‘‘fast’’, one separates

v2 tsð Þ ¼ V2 tsð Þ þ w tsð Þ; ðB9Þ

where V2 tsð Þ represents the slow dynamics while w tsð Þ
is the fast oscillating term. Note that V2 tsð Þ is the main

component, while w tsð Þ satisfies the condition

Fig. 6 Dimensionless terminal velocity in the adiabatic limit

tad versus relative amplitude f and phase h from a, c Eq. (6) and
b, d Eq. (B3) for f0 ¼ 100, d ¼ 9:06, u ¼ p, and two values of

the prefactor a: a, b a ¼ 1 and c, d a ¼ 4. Fitting constant [cf.

Equation (B3)]: b j ¼ 36:6, d j ¼ 33:6
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wh i �
Z 2p

0

w tsð Þd 2Xtsð Þ ¼ 0 ðB10Þ

and it is considered small as compared to V2 tsð Þ. Thus,
after substituting Eq. (B9) in Eq. (B8), the equations of

fast and slow motions read

dw
dts

þ w ¼ �f0að1� fÞ cos 2Xtsð Þ þ O 2=d0ð Þ;

ðB11Þ

dV2

dts
þ V2 ¼ � 2

d0
v21 þ V2 þ wð Þ2
		 		1=4 V2 þ wð Þ

D E
;

ðB12Þ

respectively. Since 2=d0 is sufficiently small, the 2p-
periodic solution of Eq. (B11) becomes

w tsð Þ ¼ w0 cos 2Xts þ Uð Þ ðB13Þ

with w0 and U given by Eq. (13). After substituting

Eq. (B13) in Eq. (B12), on averaging out w tsð Þ over
time 2Xts, and taking into account that v1; w2


 �
� V2,

one obtains Eq. (14).
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