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Abstract We infer the parameters of fractional dis-
crete Wu Baleanu time series by using machine learn-
ing architectures based on recurrent neural networks.
Our results shed light on how clearly one can determine
that a given trajectory comes from a specific fractional
discrete dynamical system by estimating the fractional
exponent and the growth parameter μ. With this exam-

JAC acknowledges funding from grant
PID2021-124618NB-C21 funded by MCIN/AEI/ 10.13039
/501100011033 and by “ERDF A way of making Europe,” by
the “European Union.” We also thank funding for the
open-access charges from CRUE-Universitat Politècnica de
València.
CL was partially supported by ANID under FONDECYT Grant
Number 1220036.

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/
s11071-023-08463-1.

J. A. Conejero (B)
Instituto Universitario de Matemática Pura y Aplicada, Univer-
sitat Politècnica de València, Camí de Vera, s/n, 46022 València,
Spain
e-mail: aconejero@upv.es

Ò. Garibo-i-Orts
GRID - Grupo de Investigación en Ciencia de Datos, Valencian
International University - VIU, Carrer Pintor Sorolla 21, 46002
València, Spain
e-mail: oscar.garibo@campusviu.es

C. Lizama
Departamento deMatemática y Ciencia de la Computación, Uni-
versidad de Santiago de Chile, Las Sophoras 173, Estación Cen-
tral, Santiago, Chile
e-mail: carlos.lizama@usach.cl

ple, we also show how machine learning methods can
be incorporated into the study of fractional dynamical
systems.
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1 Introduction

The logistic equation introduced by May [27] mod-
els the behavior of a population that grows exponen-
tially, but some constraints of the environment limit this
growth. We can express it as

v(n + 1) = ηv(n)(1 − v(n)), for n ∈ N0, (1)

where v(0) ∈ [0, 1] and η ∈ R. This equation pro-
vides the simplest example of a one-parameter nonlin-
ear dynamical system with nontrivial dynamics. It is
very well-known that if 0 ≤ η ≤ 4, we have a well-
defined dynamical system on [0, 1]. For η > 4, we still
can have a discrete dynamical system, but this will only
be defined on the complementary of a particular Cantor
set in [0, 1]; see for instance [34].

In order to incorporate some difference operator that
we can later extend naturally with a discrete fractional
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derivative, we can transform the logistic equation by
applying the change of variable v(n) = η

η−1u(n). In
this way, instead of having a formula for computing
the term u(n + 1) by recurrence, we express that the
forward Euler operator� is equal to the nonlinear right
term of the logistic, that is

�u(n) := u(n + 1) − u(n). (2)

So, we obtain the logistic equation of parameter
μ := η − 1 with the initial condition rescaled by a
factor μ+1

μ
. More precisely, we have

�u(n) = μu(n)(1 − u(n)), u(0) = μ + 1

μ
v(0).

(3)

Wu and Baleanu [36] considered a fractional ver-
sion of the dynamical system generated by replacing
the Euler operator by the left Caputo-like discrete dif-
ference operator �ν defined as follows

�νu(n) :=
n∑

j=0

k−ν(n − j)u( j), n ∈ N0, (4)

where k−ν( j) is defined by the generating series

∞∑

j=0

k−ν( j)z j = (1 − z)ν, ν ∈ R. (5)

In the last years, this definition of the difference oper-
ator �ν has proven to be very useful due to its convo-
lutional form and for being equivalent, up to transla-
tion, with others more commonly used in the literature.
See [11,12,22,23] for an overview and properties. It is
worth noting that for any ν ∈ R that is not a positive
integer, we have the explicit formula [3]

k−ν( j) = �( j − ν)

�(−ν) j ! , j ∈ N0. (6)

See also the references [35,37] for recent works
showing the applications of discrete fractional calculus.
It is interesting to observe that with the given definition

of �ν , the fractional version of the logistic equation
adopts a convolutional form and reads as follows

u(n) = μ

n∑

j=1

kν(n − j)u( j − 1)(1 − u( j − 1)). (7)

This representation gives an interpretation of the
fractional version of the logistic equation as the one
that incorporates amemory kernel in terms of a discrete
parameter, thus incorporating a differentmeasure of the
trajectories. Given an arbitrary condition u(0) ∈ [0, 1],
the trajectory {u(n)}Nn=1 obtainedwith (7)will be called
a Wu Baleanu trajectory. It is worth to mention that for
ν = 1 and n = 1 we have �u(0) = μu(0)(1 − u(0)),
recovering (2) for n = 0. Fixing an initial condition
and a fractional parameter ν, we can generate Feigen-
baum diagrams in order to illustrate the dynamics of
this dynamical system in terms of the parameter μ, see
Figs. 1 and 2.

Anomalous diffusion trajectories {u(n)}Nn=1 are those
whose average width or variance, computed as the
mean square displacement (MSD) 〈u(n) − u(0)〉 do
not grow linearly respect to n, that is 〈u2〉 ∼ nν ,
with ν �= 1. The exponent ν is known as the anoma-
lous diffusion exponent. Examples of models gener-
ating anomalous diffusion trajectories are: Annealed
Transient Time Motion (ATTM) [26], Continuous-
Time Random Walk (CTRW) [33], Fractional Brown-
ian Motion (FBM) [15,25], Lévy Walks (LW) [16,29],
and Scaled Brownian Motion (SBM) [20].

Recently, within the frame of the Andi Challenge
[30], machine learning methods, alone or combined
with some statisticalmeasures, have demonstrated their
efficiency in (i) classifying anomalous diffusion noisy
trajectories according to one of the previous five gener-
ative models and (ii) inferring the anomalous diffusion
exponent. We refer the reader to [29] and some sub-
sequent works in which some of these models were
fully developed [1,7,9]; see also [6,8,28]. It is also
worth mentioning the recent interest in incorporating
machine learningmethods and intelligent algorithms in
studying formal mathematical problems. We can find
some examples of this approach incorporating these
techniques for solving nonlinear models, such as artifi-
cial neural networks, swarm optimization, and active-
set algorithms [31], or neuro-swarming heuristics [32].

Therefore, we wonder if this approach lets us infer
some fractional-related trajectories’ characteristics. In
this work, we study if we can infer theμ parameter and
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Fig. 1 Feigenbaum plots for the dynamical system given by (7) for u0 = 0.3 and ν = 0.01 (top left), ν = 0.2 (top right), ν = 0.6
(bottom left), and ν = 1 (bottom right). For each value μ, we compute 200 terms of the sequence, and we plot the last 100 values

the fractional derivative order ν ofWuBaleanu trajecto-
ries.We have chosen an architecture based on recurrent
neural networks (RNN), the same that provided the best
results in inferring the exponent α of one-dimensional
trajectories in the Andi Challenge [7,29], for trying
to infer these parameters and measuring up to which
point there is a straightforward relation any given tra-
jectory of this type and the corresponding parameters
μ and ν involved in generating it. To the best of our
knowledge, this paper is the first to seek this type of
approach. In Sect. 2, we give some details of the model
architecture, revisiting some basic fundamentals of our
machine learning models. We set the training, valida-
tion, and test data sets, as long as the results, in Sect. 3.
Finally, we draw some conclusions in Sect. 4.

2 Architecture of the method

We propose the architecture shown in Fig. 3 to infer
the parameters μ and ν of a given trajectory are intro-

duced as input. Such architecture has been successfully
applied for analyzing trajectories [7] and time series
[24]. It is a mixture of convolutional and recurrent neu-
ral networks. It consists of three parts.

1. First, we have two convolutional layers that per-
mit the extraction of spatial features from the tra-
jectories. The first convolutional layer is set with
32 filters and a sliding window (kernel) of size 5,
which slides through each trajectory extracting spa-
tial features from them. The second convolutional
layer has 64 filters to extract higher-level features.

2. Second, the output of the convolutional layers feeds
three stacked bidirectional LSTMs layers that per-
mit learning the sequential information. After each
of these layers, we include a dropout layer of the
10% neurons to avoid over-fitting. We tested sev-
eral dropout levels, from 5% to 20%, being 10%
the one with the best performance.

3. Finally, we use two fully connected dense layers:
the first one with 20 units and the second one with
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Fig. 2 Feigenbaum plots for the dynamical system given by (7) for u0 = 0.8 and ν = 0.01 (top left), ν = 0.2 (top right), ν = 0.6
(bottom left), and ν = 1 (bottom right). For each value μ, we compute 200 terms of the sequence, and we plot the last 100 values

1 or 2 units. This last choice depends if we want
to predict a single parameter or both of them at the
same time.

Our model will be fed with trajectories of length
between 10 and 50, which are the most frequent in
experiments and the hardest to be classified [29]. Let
us briefly describe each part of the model:

2.1 Convolutional neural networks (CNN)

Convolutional neural networks preserve the spatial
structure of data. They do so by connecting a patch
(or section) from data to single neurons, so every neu-
ron learns the properties from this single patch, whose
size is defined by the kernel size (5 in our model). By
doing so, spatially close portions of data are likely to
be related and correlated to each other since only a
small region of the input data influences the output from
each neuron [4,19]. The patch is slid across the input
sequence, and each time we slide it, we have a new

output neuron in the following layer. This lets us con-
sider the spatial structure inherent to the input sequence
[17,18]. Through these layers, we are able to learn tra-
jectory features by weighting the connections between
the patches and the neurons so that particular features
can be extracted by each patch. By usingmultiple filters
(32 and 64 in our case) the CNN layers are extracting
multiple different features (linear and nonlinear) that
feed our LSTM layers.

2.2 Recurrent neural networks (RNN)

Sequential information can be decomposed in single-
time steps, such as words or characters in language,
notes in music, codons in DNA sequences. So, if one
considers sequential data, it is very likely that the output
at a later time step will depend on the inputs at prior
time steps. In practice,we need to relate the information
from a particular time step also with prior time steps
and pass this information to future times.
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Fig. 3 Machine learning used for inferring the generating μ and ν parameters of Wu Baleanu trajectories

Recurrent neural networks (RNN) address this prob-
lem by adding an internal memory or cell state, denoted
by h, which is passed from the time t to the time t + 1,
that is from ht to ht+1. This recurrent relation is captur-
ing some notion of memory of what the sequence looks
like. Therefore, the RNN output is not only a function
of the input at a particular time step but also a function
of the past memory of the cell state. In other words, the
output yt = f (xt , ht−1) depends on the current input
xt and the previous inputs to the RNN ht−1, as it can
be seen in Fig. 4.

An RNN adapts the internal hidden state (or mem-
ory state) ht through the result of multiplying two
weight matrices Whh and Wxh to the previous cell
state ht−1 and the current input xt , respectively. The
weight matrix Whh is modified at each time step to
let the cell learn how to fit the desired output, and
Wxh is the weight matrix that modules the contribu-
tion of the input at each time step to the learning pro-
cess. The result is passed to an activation function tanh
that modifies the current state at each time step, i.e.,
ht = tanh

(
WT

hhht−1 + WT
xhxt

)
.

The problem with RNNs arises when dealing with
long sequences since composing multiple tanh func-
tions entails that the hidden state tends to extinguish
by reaching values very close or equal to zero. In prac-
tice, this means that only recent cell states will modify
the current cell state or, in other words, that RNNs have
short-term memory.

2.3 Long short-term memory (LSTM)

Long short-term memory (LSTM) [14,21] amends the
aforementioned short-term memory problem implicit
to RNN by including gated cells that allow them
to maintain long-term dependencies in the data and
to track information across multiple time steps. This
improves the sequential data modeling. LSTM struc-
ture is shown in Fig. 4 where σ and tanh stand for

the sigmoid and the hyperbolic tangent activation func-
tions. The circles in red represent matrix multiplication
and additions. An LSTM incorporates a new cell state
channel c which can be seen as a transportation band
where the info is selectively updated by the new gates
and is independent of the previously defined hidden
state h and, therefore, independent of what is outputted
in the form of hidden state or current time step out.

One LSTM cell’s composition can be seen in Fig. 4
(right), and the gates are used to control the flow of
information as follows:

– The first sigmoid gate decides what information is
kept or rid of. Since the sigmoid output ranges from
0 to 1, this can be seen as a switch that modulates
how much information from the previous state has
to be kept.

– The second gate, consisting of a sigmoid and a tanh
functions store relevant information to the newly
added cell state channel (c).

– Then, the outputs of the two previous gates are used
to update the cell state (c) selectively.

– And the last sigmoid and tanh functions produce
two different outputs; the new cell state (c), which
is forwarded to the next LSTM cell, and the current
time step output, which is a filtered version of the
cell hidden state (h).

Further details about LSTM functioning and imple-
mentation can be found in [2,13].

3 A general model for inferring μ and ν

parameters

We have built three independent data sets to infer both
μ and ν simultaneously. The train, validation, and test
data sets have been built with the following parameters:

– μ ∈ [2, 3.2] with increments of 0.001.
– ν ∈ [0.01, 1] with increments of 0.01.
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Fig. 4 Basic representation
of a general RNN (left). An
RNN with an inner tanh
activation function (center).
A scheme of an LSTM layer
(right)

– trajectory length N , with N ∈ [10, 50] randomly
selected.

– u0 ∈ [0, 1] randomly chosen with a resolution of
10−2.

We visit the μ range with higher accuracy, in order
to capture the chaotic dynamics that appears in some
regions, see Figs. 1 and 2. We iterate over the values of
μ and ν for building the aforementioned data sets. At
each iteration, per each combination of μ and ν values
we randomly select 5 length value N and 5 different
values of u0, one in each one of these intervals [0.0,
0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], and (0.8, 1.0],
thus producing 5 trajectories of different lengths.When
computing the trajectories, if we attain a value lower
than −0.5 or greater than 2.0 in the trajectory, we stop
the trajectory generation and save the trajectory as it is,
provided it has a length greater than 10. Thewhole pool
of trajectories is split into training (65%), validation
(15%), and test (20%). As a result of this procedure, we
get a training data set containing 618199 trajectories,
a validation data set of 142822 trajectories, and a test
data set with 190334 trajectories. The data sets can be
found in supplementary material.

In all data sets, we pad each trajectory with 0’s at its
beginning to make them of a fixed length equal to 50.
This permits homogenizing the lengths and feeding the
first convolutional layer of our proposed architecture,
see [10, Ch. 5 & Ch. 9]. We used an early stopping
callback with a patience value of 20, which in practice
means that the model stops training when validation
mean average error (MAE) does not improve after 20
consecutive epochs. We have used a computer with 16
cores configured with 128 GB RAM and Nvidia RTX
3090 GPU with 22 GB RAM, running Ubuntu 20.10.
The complete training process took less than 2h, run-
ning up to 23 epochs.

First, we provide a description of the MAE distribu-
tion in terms of the true value to be predicted in Fig. 5.
A point (μ,μ) in the diagonal represents that one tra-

jectory was generated with μ as a parameter (x coor-
dinate), and the model infers μ as the potential value
used for generating the trajectory (y-coordinate). The
color bar represents the density of points in the picture.
Therefore, the accumulation of spots along the diag-
onal represents that the model predicts very well the
parameters μ and ν. On the one hand, when inferring
the parameter μ, the darker region along the diagonal
indicates that the best results are given for medium val-
ues ofμ, between 2.24 and 2.96; on the other hand, the
results behave more homogeneously when predicting
ν.

Wepoint out that the results inFig. 5 donot shed light
on the importance of the trajectory length to improve
the accuracy of the predictions. It is expected that the
longer the trajectories are, the lower the MAE is. In
order to check it, we compare the MAE results for the
shortest trajectories, lengths between 10 and 19, and the
longest ones, lengths between 40 and 50, in Fig. 6. We
see that for long trajectories (lengths between 40 and
50), the spots concentrate along the diagonal, which
indicates that the model improves its accuracy when
predicting values of long trajectories. We also appre-
ciate that in the μ case, the model improves quite a
lot when predicting values of μ higher than 2.96. In
contrast, in the ν case, the long trajectories show a per-
formance improvement for values lower than 0.5.

Here, it is not easy to appreciate at first sight; how-
ever, looking at Table 1, we can see that it really
holds. We can see that, except in the last case, as we
increase the trajectory length, the results improve since
the parameters can be better identified. In all cases, we
are inMAEs of the order of 10−2, that is the same order
of magnitude of the ν parameter discretization, and one
order less than the μ one. This justifies our choice of a
thinner discretization for μ with respect to ν.

In order to look for more insightful descriptions of
the MAE, for each truth value of μ and ν we have
represented the quartiles Q1, Q2, and Q3 of the MAE
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Fig. 5 Truth versus predicted values of μ and ν in the validation data set

Fig. 6 Truth versus predicted values for μ and ν in the validation data sets for trajectory lengths [10–19] (left) and [40–50] (right)
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Table 1 μ and ν MAE in
the test data set

Length MAE (μ) MAE (ν)

10–19 0.0276 0.0211

20–29 0.0234 0.0173

30–39 0.0233 0.0164

40–50 0.0262 0.0186

All 0.0253 0.0186

Fig. 7 Quartiles Q1 (red), Q2 (blue), and Q3 (green) of the MAE distribution on the evaluation data for μ (left) and ν (right)

Fig. 8 Quartiles Q1 (red), Q2 (blue), and Q3 (green) of the MAE distribution on the evaluation data set associated with every single
value of μ and ν for trajectory lengths [10–19] (left) and [40–50] (right)
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Fig. 9 MAE of μ (left) and ν (right) on the evaluation data set as a function of u0. The darkest region coincides with the boxes, the
medium gray stands for the whiskers, and the light gray for the outliers

Fig. 10 MAE of μ (up) and ν (down) on the evaluation data set as a function of u0 for trajectory lengths [10–19] (left) and [40–50]
(right). The darkest region coincides with the boxes, the medium gray stands for the whiskers, and the light gray for the outliers

error distribution in Fig. 7. Looking at the quartile val-
ues for each value of μ and ν, and especially to Q3
(green), we can see that the predictions for μ are less
accurate at the extremes for μ ∈ [2.0, 2.2] ∪ [2.8, 3.2]
and ν ∈ [0, 0.2] ∪ [0.8, 1] than in the complemen-
tary of these sets, as we have already noticed in Fig. 5.

However, we see here more clearly that the models are
less accurate close to the extreme values of ν = 0 and
1 due to the strong connection existing between both
fractional derivative values. We provide a comparison
of these MAE distributions for short and long trajecto-
ries in Fig. 8.
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Due to the fractional nature of equation (7), the
model has amemory component that is strongly depen-
dent on the initial condition u(0). We show boxplots of
the MAE distribution in terms of u(0) in Fig. 9. We
can see that initial conditions are more influential forμ
predictions since boxes (green) and whiskers (gray) are
higher than for ν. Despite this, in both cases, the results
are slightly worse for initial conditions closer to 1, due
also to the nonlinear term of the logistic terms of (7).
The same conclusion can be extracted when evaluating
trajectories by length, as shown in Fig. 10, where we
can see that the impact is of initial conditions close to
1 leads to much higher values of MAE for short trajec-
tories, either for boxes and for whiskers.

4 Conclusions

The success of machine learning and deep learning
models has arrived in almost all scientific fields. The
development of mathematical proofs and arguments
seems to be one of the most difficult challenges. Nev-
ertheless, some barriers have already fallen with the
discovery of new multiplication algorithms [5].

Machine learning methods can also help us in mod-
eling tasks and in the search and fitting of parameters.
In this line, we have shown these methods permit us
to infer the fractional nature of a given trajectory. In
particular, we have seen that such a model permits us
to elucidate if, given a set of trajectories, we can pro-
pose a fractional model based on the logistic equation
that would represent the underlying process with relia-
bility. Moreover, with reasonable use of resources, we
can tune the model in order to estimate the parameter
of the model μ and the parameter ν of the fractional
discretization, within a similar order of magnitude.

We expect that this study will foster the incorpora-
tion of machine learning tools into the study of dynam-
ical systems and the modeling of real-life problems.
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