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Abstract Cardiac rhythms are related to heart elec-
trical activity, being an essential aspect of the cardio-
vascular physiology. Usually, these rhythms are repre-
sented by electrocardiograms (ECGs) that are useful
to detect cardiac pathologies. This paper investigates
the control of cardiac rhythms in order to induce nor-
mal rhythms from pathological responses. The strat-
egy is based on the electrocardiograms and considers
different pathologies. An intelligent controller is pro-
posed considering the ECG as the observable variable.
In order to allow the assessment of the control perfor-
mance, synthetic ECGs are produced from a reduced-
order mathematical model that presents close agree-
ment with experimental measurements. The adopted
model comprises a network of oscillators formed by
sinoatrial node, atrioventricular node and His-Purkinje
complex. Three nonlinear oscillators are employed to
represent each one of these nodes that are connected by
delayed couplings. The controller considers the con-
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trol variable at the His-Purkinje complex. To evalu-
ate the ability of the control law to deal with both
intra- and interpatient variability, the heart model is
assumed to be not available to the controller designer,
being used only in the simulator to assess the control
performance. The incorporation of artificial neural net-
works into aLyapunov-based control scheme, however,
allows the presented intelligent approach to compen-
sate for unknown cardiac dynamics. Results show that
abnormal rhythms can be avoided by applying the pro-
posed control scheme, turning the electrocardiogram
closer to the expected normal behavior and preventing
critical cardiac responses.

Keywords Artificial neural networks · Cardiac
rhythms · Heart dynamics · Intelligent control ·
Nonlinear systems

1 Introduction

The physiological functioning of the cardiac system is
essentially based on the electrical activity of the heart,
and on this basis, the electrocardiogram (ECG) is a
classic measurement that characterizes the heart func-
tioning. In fact, the ECG allows one to analyze the heart
behavior, evaluating normal and pathological rhythms.
Figure1 presents a schematic picture of an ECG mea-
surement related to a normal cardiac cycle. P wave,
QRS complex and T wave can be identified, and each
of them is associated with a specific activity of heart
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Fig. 1 Schematic view of the heart, with its distinct waveforms for the corresponding specialized cells, and a normal ECG, in which
the T and P waves, PQ and ST segments, RR interval and QRS complex are represented

physiology. The Pwave is associatedwith the sinoatrial
node (SA), the natural pacemaker; the QRS complex is
related to the ventricular contraction, being character-
ized by the atrioventricular node (AV) activity; and the
T wave reflects ventricular repolarization, correspond-
ing to the His-Purkinje complex (HP) activity.

In this regard, the behavior of the cardiac system can
be understood as a complex network and itsmathemati-
cal modeling is a challenging topic, being the objective
of different research efforts. The use of coupled nonlin-
ear oscillators is an interesting approach for a reduced-
order description. The description of the behavior of
the natural pacemaker is based on the pioneering work
of van der Pol and van der Mark [39], who showed the
importance of considering a nonlinear dissipation rep-
resented by the classical van der Pol oscillator (vdP).
Afterward, Grudziński and Żebrowski [23] proposed a
modified van der Pol (mvdP) oscillator including stiff-
ness nonlinearities.

Furthermore, concerning the description of cardiac
physiology, it is essential to consider the adoption of
coupled nonlinear oscillators. Dos Santos et al. [14]
for instance took two asymmetrically coupled mvdP
oscillators [23] into account to represent sinoatrial and
atrioventricular nodes. The characterization of theECG

signal is possible by considering three-coupled oscil-
lators, as proposed by Gois and Savi [22] who consid-
ered three heart nodes: SA, AV and HP. Once again,
modified van der Pol oscillators are employed, assum-
ing bidirectional and asymmetric time-delayed cou-
plings. Recently, Cheffer et al. [13] improved the three-
coupled oscillator model considering different cou-
pling terms. Thesemodels are able to describe different
heart rhythms, from normal to pathological behaviors.
Moreover, the transitions between different rhythms
can be explained by non-deterministic aspects. In this
case, it is important to mention the analysis of random
connections between oscillators [10–12].

It is noteworthy that mathematical models of heart
dynamics can play a key role in the development of
rhythm management devices such as artificial pace-
makers and implantable cardioverter-defibrillators. In
this regard, the control of cardiac rhythms has been
investigatedbymeansof different approaches.Garfinkel
et al. [19,20] presented the classical chaos controlOGY
method [32] on rabbit cardiac muscle. Afterward, more
sophisticated chaos controlmethodswere employed for
this purpose. Ferreira et al. [17] employed time-delayed
feedback control for a natural pacemaker described by
the modified van der Pol oscillator [22]. A more com-
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plete analysis was developed by Ferreira et al. [18] who
treated ECG signals described by the three-coupled
oscillator model [22]. The results showed the possi-
bility of avoiding critical physiological situations by
promoting the stabilization of unstable periodic orbits
embedded in chaotic attractors.

In addition, Lounis et al. [30] employed a high-order
control method to treat a heartbeat dynamics described
by the model proposed by Quiroz-Juarez et al. [35].
Khan andNigar [27] proposed aLyapunov-based active
controller considering synchronization by means of a
fractional-order chaotic system model.

The controller design represents a major challenge
since it must deal with all nonlinearities inherent in the
cardiac system, as well as modeling inaccuracies and
external disturbances. State observers can handle the
first task [21] but may not be a suitable choice for the
other issues. Machine learning, in turn, can offer some
appealing options to deal with it. Artificial neural net-
works (ANNs), for instance, have been used to iden-
tify and classify heart rhythm diseases [1,16,37,40].
Due to their learning and approximation capabilities,
neural networks have also been used in control appli-
cations to compensate model uncertainties and distur-
bances [3,15,26,28].

This paper deals with the intelligent control of car-
diac rhythms by means of the feedback linearization
approach with an embedded artificial neural network.
The boundedness and convergence properties of the
control error are proven by means of the Lyapunov sta-
bility theory. Following reference [3], a radial basis
function (RBF) network with a single hidden layer and
only one input neuron is adopted. The chosen network
architecture allows universal approximation [33] and
avoids the issues related to the curse of dimension-
ality [2]. The aforementioned features minimize the
computational complexity of the resulting intelligent
controller, making it light enough to be deployed in
cardiac rhythm management devices. Furthermore, by
assuming that the mathematical model is not available
to the control system designer and adopting an online
approach to update the weights of the ANNs, the neu-
ral network is able to adapt to different individuals
and continuously approximate their cardiac dynam-
ics, denoting the capacity of the proposed scheme to
deal with both inter- and intrapatient variability. Heart
dynamics is represented by synthetic electrocardio-
grams (ECGs) produced by a reduced-ordermodel con-
sidering a three-oscillatormodel with delayed coupling

SA

AV HP

FSA

FAV FHP

Fig. 2 Conceptual diagramof the cardiac system, including both
sinoatrial and atrioventricular nodes, the His-Purkinje complex,
all possible couplings and corresponding external excitations

terms [13,22]. In this regard, it should be pointed out
that the mathematical model is only employed to simu-
late the cardiac response to the control signal. Different
pathological responses are investigated showing that
the intelligent controller is able to stabilize a desired
rhythm and avoid undesired ones.

2 Mathematical modeling

Heart rhythms are commonly inferred from the elec-
trical activity of the cardiac system, which in turn
can be described by means of three coupled oscil-
lators [13,22]. This work investigates the control of
heart electrical activity considering synthetic ECGs
produced by this mathematical model. Figure2 shows
the conceptual diagram adopted for the cardiac system,
including the HP complex and both sinoatrial and atri-
oventricular nodes, as well as all possible couplings
and external excitations.

Now, modified van der Pol oscillators [23] are cho-
sen to represent the HP complex and the sinoatrial and
atrioventricular nodes, with time-delayed couplings
being assumed to properly tune the transmission time
between these oscillators. Each coupling can be indi-
vidually defined, which allows for asymmetrical and
bidirectional characteristics. The introduction of exter-
nal stimuli in the model enables the representation of
abnormal rhythms, in addition to the self-excitatory
behavior typically generated by the central nervous sys-
tem. The resulting cardiac system is then described by
the following equations [12]:

üSA = FSA(t) − αSA u̇SA(uSA − νSA1)(uSA − νSA2)

+ −uSA(uSA + dSA)(uSA + eSA)

dSA eSA
− kAV−SA uSA + kτ

AV−SA uτAV−SA
AV

+ −kHP−SA uSA + kτ
HP−SA uτHP−SA

HP (1)
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üAV = FAV(t) − αAV u̇AV(uAV − νAV1)(uAV − νAV2)

+ −uAV(uAV + dAV)(uAV + eAV )

dAV eAV
− kSA−AV uAV + kτ

SA−AV uτSA−AV
SA

+ −kHP−AV uAV + kτ
HP−AV uτHP−AV

HP (2)

üHP = FHP(t) − αHP u̇HP(uHP − νHP1)(uHP − νHP2)

v − uHP(uHP + dHP)(uHP + eHP)

dHP eHP
− kSA−HP uHP + kτ

SA−HP u
τSA−HP
SA

+ −kAV−HP uHP + kτ
AV−HP u

τAV−HP
AV (3)

where km−n and kτ
m−n are the coupling coefficients

between m and n nodes, with m and n standing for
SA, AV or HP; xτm−n

i = xi (t − τm−n) represent the
delayed terms, with τm−n being the time delay; and the
external excitation Fm(t) = ρm sin(ωmt) is introduced
as a lumped model of spatiotemporal aspects.

Moreover, it is worth noting that the periodic behav-
ior associated with atrial fibrillation (AF) is captured
by the harmonic form of Fm [25,36], which in fact, due
to its explicit dependence on time, ends up increasing
the dimension of the system.

The ECG can be represented by incorporating the
signals of the three oscillators, being expressed as a
linear combination of the state variables [22]:

x = ECG = β0 + β1 uSA + β2 uAV + β3 uHP (4)

with β0, β1, β2 and β3 being parameters, so that the
derivative of the ECG with respect to t becomes

ẋ = d

dt
(ECG) = β1 u̇SA + β2 u̇AV + β3 u̇HP (5)

Equations (4) and (5) can be used to represent the
ECG phase space, favoring a qualitative assessment of
cardiac cycle.

Since governing equations are presented in dimen-
sionless form, it is interesting to define a dimensional
time t̄[s]: t̄ = βt t , where βt is expressed in seconds
and can be estimated by the ratio between real RR
interval, RRexp, and numerical RR interval, RRnum,
βt = mean(RRexp)/mean(RRnum).

2.1 Cardiac rhythms

In order to assess the model’s ability to represent car-
diac dynamics, six different rhythms are investigated:
normal rhythm, ventricular flutter, two different ven-
tricular fibrillation (with and without external stimu-
lus), atrial flutter, and atrial fibrillation. The dynamic
model is numerically implemented in C++ using the
fourth order Runge–Kutta method with sampling rate
of 1 kHz. The model parameters are presented in
the Table 1. The numerical results obtained with the
adopted model are compared with the real ECG data
and are shown in Figs. 3,4, 5, 6, 7 and 8, with the
real data provided by the PhysioNet Databases [34].
For all simulations, it is considered that β0 = 1 mV,
β1 = 0.06 mV, β2 = 0.1 mV, and β3 = 0.3 mV. Initial
conditions are defined as u0 = [−0.1 − 0.6 − 3.3]�
and u̇0 = [0.025 0.1 2/3]�, with u = [uSA uAV uHP]�.
Bothmodel parameters and initial conditionswere cho-
sen according to [11,13] in order to ensure the proper
emulation of typical cardiac rhythms.

The expected normal heart rhythm is presented in
Fig. 3 showing a close agreement between the real ECG
signal and the simulated one, respectively (Fig. 3a and
b). It should be pointed out that simulations capture the
main features of the real ECG signal, characterized by
the P and T waves and the QRS complex. Numerical
results can also be easily represented in phase space
form (Fig. 3c), allowing a better visualization of nor-
mal cardiac cycle, which facilitates comparison with
abnormal rhythms.

Ventricular flutter is a pathological rhythm associ-
ated with high-frequency (300 bpm) ventricular con-
traction and typically without clear distinction between
QRS complex, ST segment and T wave, as seen in
actual ECGdata (Fig. 4a), and corresponding simulated
signal (Fig. 4b).

Figures 5 and 6 are related to the ventricular fibrilla-
tion pathology. Their irregular and chaotic behavior can
be manifested in several variations with the P waves,
QRS complex, and T waves that are not recognized.
Regarding its mathematical description, basically, two
different approaches can be employed [12]. The first
one takes into account an external stimulus in the HP
oscillator, as shown in Fig. 5, and the second does not
consider it, as shown in Fig. 6. In both cases, it is notice-
able that the model is capable of representing this type
of arrhythmia.
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Table 1 Cardiac system parameters [11,13]

Normal rhythm Atrial flutter Atrial fibrillation Ventricular flutter Ventricular fibrillation (1) Ventricular fibrillation (2)

SA

αSA 3 3 3 3 3 3

νSA1 1 1.65 1 1 1 1

νSA2 −1.9 −4.2 −1.9 −1.9 −1.9 −1.9

dSA 1.9 1.9 1.9 1.9 1.9 1.9

eSA 0.55 0.55 0.55 0.55 0.55 0.55

AV

αAV 3 7 7 3 3 3

νAV1 0.5 0.5 0.5 0.5 0.5 0.5

νAV2 −0.5 −0.5 −0.5 −0.5 −0.5 −0.5

dAV 4 4 4 4 4 4

eAV 0.67 0.67 0.67 0.67 0.67 0.67

HP

αHP 7 7 7 7 0.5 0.5

νHP1 1.65 1.65 1.65 1.65 1.65 1.65

νHP2 −2 −2 −2 −2 −2 −2

dHP 7 7 7 7 7 7

eHP 0.67 0.67 0.67 0.67 0.67 0.67

ρSA 0 0 8 0 0 0

ρHP 0 0 0 0 30 0

ωSA 0 0 2.1 0 0 0

ωHP 0 0 0 0 0.8 0

kSA-AV 3 0.66 0.66 3 3 3

kAV-HP 55 14 14 45 30 14

kτ
SA-AV 3 0.02 0.09 3 3 0.4

kτ
AV-HP 55 60 38 20 30 38

τSA-AV 0.8 0.66 0.8 0.8 0.8 0.8

τAV-HP 0.1 0.1 0.1 0.1 0.1 0.1

βt 0.1048 0.0809 0.023 0.1111 0.1048 0.1057

The ventricular fibrillation with and without stimulus are labeled as (1) and (2), respectively

Atrial flutter is a rhythmic disorder characterized by
an increase in heart rate, usually 300 bpm, but which
can range from 240 to 430 bpm [9]. Figure7 presents
typical results related to this pathology, such as a com-
parison between the real ECG signal (Fig. 7a), and the
corresponding simulation results (Fig. 7b), as well as
the numerically obtained phase space (Fig. 7c). Note
the qualitative agreement between the real and simu-
lated results, particularly seen in typical f waves and
clear “sawtooth” shaped P waves.

Atrial fibrillation is a pathology characterized by an
irregular RR interval and multiple random impulses

[31]. Figure8 shows this abnormal rhythm, present-
ing a comparative analysis between real and simulated
ECG data, respectively, as shown in Fig. 8(a) and (b).
It is worth mentioning that once again the numerical
model is able to capture the general behavior of the real
ECG signal. The numerically obtained phase space is
depicted in Fig. 8(c).

In the next section, in order to turn these pathological
rhythms into normal ones, an intelligent controller is
introduced. Nevertheless, it is important to emphasize
that, even though the adopted model has an essential
role in the simulation of heart rhythms, it is assumed
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Fig. 3 Normal cardiac rhythm: a real ECG signal [34]; b simulated time series; c phase space representation of the simulated time
series. Note the close agreement between real and simulated ECG signals, especially the P and T waves and the QRS complex
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Fig. 4 Ventricular flutter: a real ECG signal [34]; b simulated time series; c phase space representation of the simulated time series.
Both real and simulated ECG signals show no clear distinction between QRS complex, ST segment and T wave

to be not known by the controller’s designer. Thus, the
equations (1)–(3) and their corresponding parameters
are not used in the control law, but only in the simulator,
which in turn is needed to evaluate the performance of
the control.

3 Intelligent controller

Intelligent control schemes are able to adapt, learn from
experience and predict plant dynamics. They have been
successfully employed in the control of chaotic [4,6],

robotic [7,29], underactuated [8,28] and other uncer-
tain nonlinear systems [5,15].

Thus, in view of the design of a control system for
the heart dynamics, the adopted mathematical model is
rewritten in the following form

ẍ = f + v + d (6)

where v is the control signal, assumed to be applied to
the HP complex, f represents the part of the vector
field (1)–(3) that is assumed to be known by the con-
troller designer, d stands for unmodeled dynamics and
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Fig. 5 Ventricular fibrillation with external stimulus: a real ECG signal [34]; b simulated time series; c phase space representation of
the simulated time series clearly revealing its chaotic behavior
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Fig. 6 Ventricular fibrillation without external stimulus: a real ECG signal [34]; b simulated time series; c phase space representation
of the simulated time series clearly revealing its chaotic behavior

occasional perturbations, and (x, ẋ) are the states to be
controlled.

Following the feedback linearization approach [38],
the control law for a system represented by equation (6)
can be designed as follows:

v = − f̂ − d̂ + ẍd − 2λ ˙̃x − λ2 x̃ (7)

with f̂ and d̂ being, respectively, estimates for f and d,
x̃ = x − xd representing the tracking error associated
with the desired state xd, and λ being a strictly positive
constant.

Applying the control law (7) to (6) and assuming that
all modeling uncertainties are properly represented by
d, i.e. f = f̂ is well known, we get

¨̃x + 2λ ˙̃x + λ2 x̃ = d̃ (8)

with d̃ = d − d̂ being the approximation error.
Now, by defining a combined error signal inspired

by the sliding mode method s(x, ẋ) = ˙̃x + λx̃ , the
closed-loop dynamics (8) becomes

ṡ + λs = d̃ (9)
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Fig. 7 Atrial flutter: a real ECG signal [34]; b simulated time series; c phase space representation of the simulated time series. Both
real and simulated ECG signals show the typical f waves and “sawtooth” P waves
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Fig. 8 Atrial fibrillation: a real ECG signal [34]; b simulated time series; c phase space representation of the simulated time series.
Note that both real and simulated ECG signals have irregular RR intervals

From (9), it can be seen that in the case of perfect
estimation, i.e. d̂ = d, the combined error s and there-
fore the tracking error x̃ converges to zero. Perfect esti-
mation, however, is quite hard to obtain in real-world
applications. In these cases, the closed-loop dynamics
is driven by the approximation error d̃ . As a matter of
fact, it suggests that the signal s may also represent
a reasonable metric and help to compute an estimate
d̂(s).

Recalling that radial basis function (RBF) networks
can perform universal approximation [33], it can be
used to estimate d with to any desired degree of accu-

racy ε, i.e. d(x, ẋ, t) = d̂∗(s(x, ẋ)) + ε(t), with d̂∗(s)
being the optimal estimate and |ε(t)| ≤ ε.

Thus, a RBF network, as depicted in Fig. 9, is
adopted to compute d̂:

d̂ = w�ψ(s) (10)

where w = [w1 . . . wn] is the weight vector and
ψ = [ψ1 . . . ψn] represents the vector of activation
functions ψi , with n being the number of neurons in
the hidden layer.
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Fig. 9 Radial basis function network with one input, n neurons
in the hidden layer and one output

The chosen input to the neural network is the com-
bined error measure s, which merges the error x̃ and
its time derivative ˙̃x into a single signal. By adopting s
as the single input, instead of the two state errors, we
are able to reduce the complexity order of the neural
network and make it light enough to be deployed in
cardiac rhythm management devices.

The boundedness and convergence properties of the
closed-loop signals s and w can be investigated by
means of a Lyapunov-like stability analysis. First, let
the difference between the actual and optimal weight
vector, respectively, w and w∗, be defined as δ =
w − w∗.

Remembering that d̃ = d − d̂, with d = d̂∗ + ε and
d̂ = w�ψ , Eq. (9) becomes

ṡ + λs = d − d̂

= d̂∗ + ε − d̂

= −[w − w∗]�ψ + ε

= −δ�ψ + ε

By conveniently rewriting the above equation, we
get

ṡ = −λs − δ�ψ + ε (11)

which clearly shows that the closed-loop dynamics
is driven by approximation errors. This confirms the
importance of adopting a neural network with univer-
sal approximation capability [33] and whose weights
can be learned online.

Now, let a positive-definite function V be defined as

V (t) = 1

2
s2 + 1

2η
δ�δ (12)

where η is a strictly positive constant.
It is important to note that the adopted Lyapunov

function is globally positive definite, V ≥ 0, being
equal to zero when s = 0 and δ = 0 (w = w∗).

Now, since δ̇ = ẇ, the time derivative of V becomes

V̇ (t) = sṡ + η−1δ�ẇ

= −s[λs + δ�ψ − ε] + η−1δ�ẇ

= −s[λs − ε] + η−1δ�[ẇ − ηsψ]

Hence, by updating w according to ẇ = ηsψ , V̇
becomes

V̇ (t) = −[λs − ε]s ≤ −[λ|s| − ε]|s| (13)

However, Eq. (13) implies that the bounds of w
cannot be guaranteed when |s| ≤ ε/λ. To overcome
this issue, the projection algorithm [24] can be evoked
to ensure that w will remain within a convex region
W = {w ∈ R

n : w�w ≤ μ2}:

ẇ =

⎧
⎪⎨

⎪⎩

ηsψ if ‖w‖2 < μ or
if ‖w‖2 = μ and ηsw�ψ < 0(

I − ww�
w�w

)
ηsψ otherwise

(14)

where μ is the desired upper bound of ‖w‖2.
Since ‖w(0)‖2 ≤ μ, it follows that |s| ≤ ε/λ and

‖w(t)‖2 ≤ μ as t → ∞. Hence, remembering that
s = ˙̃x + λx̃ , we have

−λ−1ε ≤ ˙̃x + λx̃ ≤ λ−1ε (15)

Thus, multiplying (15) by eλt gives

−λ−1ε eλt ≤ d

dt

(
x̃eλt) ≤ λ−1ε eλt (16)

Integrating (16) between 0 and t yields

− ε

λ2
eλt −

[
|x̃(0)| + ε

λ2

]

≤ x̃eλt ≤ ε

λ2
eλt +

[
|x̃(0)| + ε

λ2

]
(17)

By dividing (17) by eλt

− ε

λ2
−

[
|x̃(0)| + ε

λ2

]
e−λt
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≤ x̃ ≤ ε

λ2
+

[
|x̃(0)| + ε

λ2

]
e−λt (18)

it follows, for t → ∞, that

− ε

λ2
≤ x̃ ≤ ε

λ2
(19)

Applying (19) to (15), it can be verified that

−2
ε

λ
≤ ˙̃x ≤ 2

ε

λ
(20)

Therefore, it is possible to conclude that the con-
troller ensures the exponential convergence of the
tracking error to the closed region X = {(x̃, ˙̃x) ∈ R

2 :
|x̃ | ≤ ελ−2 and | ˙̃x | ≤ 2ελ−1}.

4 Rhythm control

The proposed intelligent controller is now evaluated
by means of numerical simulations at a sampling rate
of 100 Hz. The desired states are extracted from a
expected normal heart cycle, whichmeans that the con-
troller’s main goal is to achieve a normal rhythm while
avoiding pathological behavior. Equations (1)–(5) are
used to simulate heart dynamics by computing x and
ẋ . Four different pathologies are investigated: ventric-
ular flutter, two different ventricular fibrillation cases,
atrial flutter, and atrial fibrillation. First, the intelligent
control law is compared to the conventional one in the
case of ventricular flutter. Afterward, the intelligent
controller is employed to prevent the other abnormal
rhythms. Figures10, 11, 12, 13, 14, and 15 show the
obtained results.

The controller parameter is set to λ = 10. Assum-
ing that no prior knowledge about the heart model is
available to the control system designer, i.e. f̂ = 0,
the ability of d̂ to handle all neglected dynamical
effects is investigated. Six neurons with Gaussian func-
tions are chosen for the RBF network: ψi (s; ci , σi ) =
exp{−0.5[(s − ci )/σi ]2}, with i = 1, . . . , 6. The cen-
ters and widths are chosen as follows c = [−φ/2;
−φ/8; −φ/16;φ/16;φ/8;φ/2] and σ = [φ/2;φ/3;
φ/6;φ/6;φ/3;φ/2], respectively, with φ = 20 being
a tuning parameter. The weight vector is initialized as
w = 0 and updated according to (14), with a learning
rate η = 100. It is worth mentioning that the conven-
tional controller used in comparative analysis is eas-
ily obtained by setting the learning rate to zero, which

completely eliminates the neural network contribution
to the control law.

Figures 10 and 11 show a comparison between con-
ventional and intelligent schemes applied to the con-
trol of ventricular flutter pathology. As can be seen,
after turning on the controller at t = 16 s, the intel-
ligent approach is able to stabilize the expected nor-
mal rhythm (Fig. 10b), while the conventional one
fails (Fig. 10a). The intelligent controller (Fig. 10(b)),
allows the expected normal rhythm to be achieved, con-
siderably decreasing the heart rate to around 70 bpm.
It should also be noted that the proposed scheme dras-
tically reduces the control error (Fig. 10c), being able
to provide an ECG signal with clearly evident QRS
complex and both P and T waves (Fig. 10b), while in
the conventional approach these characteristics are not
properly distinguishable (Fig. 10a), although it seems
to at least try to approximate the PQ segment. Another
point to be highlighted is that the intelligent scheme,
due to the capacity of the adaptive neural network to
approximate heart dynamics, provides a very reduced
level of control effort (Fig. 10d), when compared to the
conventional approach.

The phase spaces depicted in Fig. 11 for both
conventional and intelligent approaches also clearly
emphasize the strongly improved performance of the
proposed control scheme and its ability to turn a patho-
logical cardiac rhythm into a normal one. Therefore,
considering the inefficacy of the conventional con-
troller to stabilize the expected normal rhythm, only
the proposed intelligent scheme is considered for the
other pathologies.

The control of ventricular fibrillation is evaluated
by taking into account two different situations: with
and without external stimulus, as shown in Fig. 12
and Fig. 13, respectively. As can be seen in Figs. 12(a)
and 13(a), the intelligent controller is once again able to
stabilize an expected normal rhythm from a pathologi-
cal one. In both circumstances, with and without exter-
nal stimulus, the QRS complex and both P and Twaves
can be clearly observed, as expected in normal behav-
ior. It is also important to highlight the ability of the
proposed scheme to deal with the R and S peaks, even
if it requires a stronger response from the controller, as
can be seen in Figs. 12(b) and 13(b). The corresponding
phase spaces, shown in Figs. 12(c) and 13(c), confirm
the ability of the proposed scheme to stabilize a normal
rhythm. It is worth noting the accurate tracking of the
inner loop around the origin, which indeed agrees with
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Fig. 10 Control of ventricular flutter: a ECGwith conventional scheme, b ECGwith intelligent scheme, c control error x̃ , and d control
signal v. Note that the intelligent controller is able to stabilize the expected normal rhythm, while the conventional one fails
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Fig. 11 Control of ventricular flutter: Phase space with a conventional scheme and b intelligent scheme. The improved performance
of the intelligent controller can be clearly observed in the phase space on the left

what can be observed in the stabilization of P and T
waves.

Atrial flutter arrhythmia is now in focus (Fig. 14),
showing that the proposed intelligent controller is able
to normalize heart rate. By inspecting Fig. 14(a), it can
be seen that the Q–S time duration is reduced, the RR
interval is regulated and the f waves are eliminated.
TheQRS complex is easily recognized, evenwith over-

shoots at the R vertices, but with irregular peaks asso-
ciated with P and T waves. In fact, due to this behavior,
the controller is quite demanded (Fig. 14b), making its
actuation more pronounced when compared to other
simulations. When considering the phase plane repre-
sentation, Fig. 14(c), it can be observed that the intel-
ligent controller changes the loop detected on the left
side in the pathological behavior, reducing its ampli-
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Fig. 12 Control of ventricular fibrillation with external stimulus: a ECG with intelligent scheme, b control signal v, and c phase space.
The intelligent controller is able to quickly turn a pathological rhythm into a normal one
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Fig. 13 Control of ventricular fibrillation without external stimulus: a ECG with intelligent scheme, b control signal v, and c phase
space. Normal rhythm stabilized by the intelligent controller showing QRS complex and P and T waves

tude and tending to attract the external loop to a normal
rhythm.

Finally, atrial fibrillation is also taken into account,
with results shown in Fig. 15. This abnormal rhythm is
characterized by an irregular RR interval, but the intel-
ligent controller is able to turn it into normal behavior,
Fig. 15(a). The stabilized ECG shows P, QRS and T
waves, but some overshoots are recognized in the R

peaks, which can be correlated with the corresponding
peaks in the control signal, Fig. 15(b). The phase plane
is shown in Fig. 15(c), showing that the controller is
able to approximate the inner loop, which emphasizes
the tracking of P and Twaves. The outer loop, however,
is not perfectly captured,which can be confirmed by the
small residual error associated with the QRS complex.
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Fig. 14 Control of atrial flutter: a ECG with intelligent scheme, b control signal v, and c phase space. The intelligent controller is able
to stabilize the heart rate by eliminating the f waves and regulating both Q–S time and RR interval
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Fig. 15 Control of atrial fibrillation: a ECG with intelligent scheme, b control signal v, and c phase space. Despite the overshoots in
the R peaks, the intelligent controller is again able to settle into a normal heart rate

It is also worth mentioning that, by setting f̂ = 0 in
the control law, it is assumed that the heart dynamics is
fully compensated by d̂ , the output of the artificial neu-
ral network. As a matter of fact, since the Eqs. (1)–(3)
and their corresponding parameters are not considered
in the control law, the robustness of the proposed intel-
ligent controller against unmodeled dynamics can be
corroborated by the presented results. For healthcare

applications, a robust controller is crucial to deal with
both inter- and intrapatient variability.

5 Concluding remarks

This paper investigates the control of the electrical
activity of the heart. A mathematical model based
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on three coupled nonlinear oscillators is employed to
describe cardiac rhythms, being able to represent both
normal and pathological behaviors. An intelligent con-
troller is then proposed to avoid pathological behav-
iors, by stabilizing the heart dynamics in a normal
rhythm. Considering its universal approximation prop-
erty, a radial basis function network is embedded in
the control law to compensate for unmodeled dynam-
ics. Furthermore, a learning scheme designed bymeans
of the Lyapunov stability analysis allows the weights
of the neural network to be adjusted online. These fea-
tures, in fact, allow the adopted neural network to adapt
to different individuals and continuously approach their
cardiac dynamics,which confers the ability to dealwith
intra- and interpatient variability. Numerical simula-
tions are carried out considering four different patholo-
gies: ventricular flutter, two different ventricular fibril-
lation cases, atrial flutter, and atrial fibrillation. The
obtained results show that the controller is able to per-
form rhythm control, avoiding critical cardiac behav-
iors.
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