
Nonlinear Dyn (2023) 111:11297–11313
https://doi.org/10.1007/s11071-023-08433-7

ORIGINAL PAPER

Recursive inverse dynamics sensitivity analysis of
open-tree-type multibody systems

Altay Zhakatayev · Yuriy Rogovchenko ·
Matthias Pätzold

Received: 14 October 2022 / Accepted: 17 March 2023 / Published online: 13 April 2023
© The Author(s) 2023

Abstract We present a first-order recursive approach
to sensitivity analysis based on the application of the
direct differentiation method to the inverse Lagrangian
dynamics of rigid multibody systems. Our method
is simple and efficient and is characterized by the
following features. Firstly, it describes the kinemat-
ics of multibody systems using branch connectivity
graphs and joint-branch connectivity matrices. For
most mechanical systems with an open-tree kinematic
structure, this method turns out to be more efficient
compared to other kinematic descriptions employing
joint or link connectivity graphs. Secondly, a recur-
sive sensitivity analysis is presented for a dynamic
system with an open-tree kinematic structure and
inverse dynamic equations described in terms of the
Lagrangian formalism. Thirdly, known approaches to
recursive inverse dynamic and sensitivity analyses are
modified to include dynamic systems with external
forces and torques acting simultaneously at all joints.
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Finally, the proposed method for sensitivity analysis is
easy to implement and computationally efficient. It can
be utilized to evaluate the derivatives of the dynamic
equations of multibody systems in gradient-based opti-
mization algorithms. It also allows less experienced
users to perform sensitivity analyses using the power
of high-level programming languages such as MAT-
LAB. To illustrate the method, simulation results for a
human bodymodel are discussed. The shortcomings of
the method and possible directions for future work are
outlined.
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1 Introduction

Recent advancements in the analysis of nonlinear
dynamics of mechanical systems has been significantly
facilitated by the progress in numerical methods, opti-
mal control, nonlinear control, optimal design, sys-
tem identification, and related fields. Combination of
new efficient techniques with a rapidly growing com-
putational power enables researchers to tackle prob-
lems deemed unattainable a decade ago. The prob-
lem of optimal control of a nonlinear dynamic sys-
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tem such as human body is one such example. Our
main motivation in this paper is the implementation
of the dynamic and sensitivity analysis of the human
body.

Equations of motion for multibody systems can be
rough-ly divided into two large classes in terms of
their mathematical appearance or form: closed-form
and recursive equations [24] .1 In the closed form, also
called a bulk form, dynamic equations of motion are
written as a single vector differential equation con-
taining all generalized coordinates. In the recursive
form, all terms in the dynamic equations for general-
ized coordinates of one joint are presented as functions
of generalized coordinates of neighboring joint. The
main advantage of the closed form is that is it easier
to handle and analyze with analytical tools, primarily
for the design of controllers in the state space. How-
ever, in this case equations of motion become compli-
cated and highly nonlinear, especially as the degrees
of freedom (DOF) of the system increase. The attrac-
tive advantages of the recursive formulation are its
computational efficiency and the ease of coding. The
main disadvantage is the “distortion” of the structure
of the dynamic model to the form that excludes the
possibility of gaining the insight into the dynamics of
the system and exploiting it efficiently [24]. However,
some recursive formulations do not have this short-
coming and still allow to gain insight into dynamics
[33,48].

Multibody dynamics can be also classified as for-
ward dynamics (kinematic variables are not known)
and inverse dynamics (force/torque variables are not
known) [12,26,51]. However, in applied problems
neither positions and velocities nor input forces and
torques are known in advance; these variables should
be determined during simulation. The problems where
both kinematic and dynamic variables are not known
fall into the third category; they are formulated as
optimization problems and solved using optimization
tools. In various engineering fields this class of prob-
lems is called trajectory optimization, motion synthe-
sis, motion control, or predictive dynamics [1]. Effi-
cient solution of optimization problems with gradient-
based methods depends largely on the gradients of the
objective function and constraints. Calculation of gra-

1 We do not discuss in this paper different formulations of multi-
body dynamics, such as Newton-Euler, Lagrangian, Hamilto-
nian, Kane’s formulations, Maggi’s equations, etc. [38].

dient matrices and vectors is called sensitivity anal-
ysis. In essence, sensitivity analysis is the inverse of
the optimization problem. In the optimization prob-
lem, the task is to minimize the objective function.
This is equivalent to the following problem: given
the value for the gradient of the objective function,
find the value of the independent variable which sat-
isfies it. In the sensitivity analysis the problem is the
opposite: given the value for the independent vari-
able, evaluate the gradient of the objective function.
Sensitivity analysis can be performed with respect to
states (generalized coordinates, velocities, and acceler-
ations) [1,57]. Sensitivity analysiswith respect to phys-
ical system parameters (mass, inertia terms, lengths,
etc.) or any other design parameters (such as initial
conditions) is termed design sensitivity [27,53,55].
Sensitivity analysis is important for problems involv-
ing design optimization, parameter estimation, and
model correlation. It is also crucial for implicit numer-
ical integration of differential-algebraic systems and
kinematic workspace analysis of multibody systems
[49].

Sensitivity analysis can be performed using ana-
lytical, semi-analytical, and numerical methods [10].
Methods for numerical sensitivity analysis can be fur-
ther classified as finite difference and automatic differ-
entiation methods. Analytical methods include direct
differentiation and adjoint variable method [5]. We
draw the reader’s attention to the fact that the above
classification is not standardized and accurate, because
there are hybrid methods that combine the aforemen-
tioned techniques. For example, there might be direct
and/or adjoint variable method combined with numer-
ical and/or automatic differentiation [9,10,37]. The
above classification is provided only for information
purposes. The finite difference method is commonly
employed for evaluating sensitivity matrices. It is sim-
ple and easy to implement, but its accuracy depends
on the magnitude of the perturbation and is affected by
truncation and rounding errors. Therefore, finite dif-
ference method may lead to ill-conditioned problems
and unreliable results; its computational costs are pro-
hibitively high for large DOF systems [19]. The auto-
matic differentiation method is based on the applica-
tion of the symbolic chain rule of differentiation; its
accuracy and speed are superior to the finite difference
method. Open-source software based on automatic
differentiation method and written in C++ (DRAKE
[52], MBSlib [56], and RobCoGen [45]) can be used
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to perform sensitivity analysis of dynamic equations
with respect to generalized coordinates, velocities, and
parameters. The advantages of the automatic differ-
entiation method include possibilities to simulate for-
ward, inverse, and hybrid dynamics, parameter esti-
mations, and trajectory optimization. The main limi-
tation is the need to couple automatic differentiation
software with that employed by the user; this might
require additional learning. For instance, it is known
that the wrong application of the chain rule of dif-
ferentiation can lead to erroneous results [16]. Fur-
thermore, computation of implicit derivatives often
requires costly time integration. The direct differen-
tiation method is based on a straightforward applica-
tion of differentiation rules in the equations of motion
[17,49]. Its advantages include easiness of implemen-
tation, accuracy, and higher numerical stability [10];
the method is especially efficient when the number of
sensitivity variables is small. Examples of the appli-
cation of the direct differentiation method for sensi-
tivity analysis of multibody mechanical systems can
be found in [6,15,47]. In the adjoint variable method,
the objective function is modified with dynamic equa-
tions and constraints and additional adjoint conditions
that simplify the computation of the Jacobian of the
objective function are obtained [28,44]. This method
is accurate and numerically efficient, but can become
complex and lengthy since it requires backward inte-
gration in time [7,46]; it is efficient when the num-
ber of objective functions is small. Relevant exam-
ples of the application of the adjoint variable method
for sensitivity analysis of multibody mechanical sys-
tems can be found in [4,7,16,29,44]. One can also
find in the literature approaches based on the com-
bination of existing methods. For instance, a semi-
analytical sensitivity analysis replaces symbolic deriva-
tiveswith respect to design variables in analytic expres-
sions by finite differences combining the simplicity of
the finite difference method with the accuracy of the
adjoint variable and direct differentiation methods in
[46].

Most research on the sensitivity analysis uses a
closed-form dynamic formulation where all equations
are written using a single vector–matrix form [6,7,10,
15–18,29,44,46,47,49]. To the best of our knowledge,
only a few papers on the recursive sensitivity analysis
of mechanical systems with open-tree topology struc-
ture are available, although it is often computation-
ally more efficient compared to “bulk” formulations

for large multibody systems [5].2 Closed-form expres-
sions for the sensitivity of multibody system dynamics
equations using the spatial notation provided in [25]
are abstract and their correct implementation requires
substantial user effort. A useful framework for gen-
erating motion sequences in musculoskeletal systems
was designed by combining the computational tools of
MATLAB with the modeling capabilities of OpenSim
[39]. However, the sensitivity analysis is not presented
there; it was performed numerically using forward
finite differences. As expected, the authors noted that
the fmincon solver was very slow. Sensitivity anal-
ysis for simple open-chain multibody structures using
inverse recursive Newton-Euler dynamic formulation
and spatial notation (as in [21]) was performed in [20].
Using the aggregate force and momentum expressions
(changing the order in which terms are computed),
linear time analytical first derivatives of the objective
functionwere obtained.However, thismethod provides
true values not for all joint momenta and torques but
only for the base joint.Wewould like to emphasize that
the direct differentiation sensitivity analysis using the
inverse recursive Lagrangian formulation [1,57], for-
ward recursive Kane’s notation [3], and transfer matrix
method [54] are valid for simple open-chain structures.

WeuseLagrange’s formulationof the systemdynam-
ics for improving the sensitivity analysis method sug-
gested in [1,57] for open-tree topological structures.
Our work complements the recursive sensitivity anal-
ysis techniques based on the Kane’s method [8,31,43]
and on the Newton-Euler method with the spatial
notation [33,50]. Contrary to the sensitivity analysis
derived in [8,31,43] for forward recursive dynamics,
we perform it for inverse recursive dynamics. In com-
parison with the forward dynamics formulation, the
inverse dynamics does not require time integration
and increases the efficiency of the sensitivity analysis.
The main differences between our proposed method
to describe system topology and the method used in
[33] are the following. Firstly, we propose a simple
method to describe system topology using the branch
connectivity graph and the joint-branch connectivity
matrix. In contrast, the square adjacency matrix and
the block-weighted adjacency matrix are used in [33].
The adjacency matrix carries the same information as

2 In fact, there are specific “bulk” formulations of multibody
system dynamics, which result in very efficient computational
codes. For example, using natural Cartesian coordinates [13,36].
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the branch connectivity graph and the joint-branch con-
nectivity matrix but requires more space and so is less
efficient. The block-weighted adjacency matrix has a
larger size than the adjacency matrix. Secondly, in this
work, a homogeneous transformation matrix is used
rather than the spatial operator algebra notation (6-D
vector formulation) as in [33,50]. Our work extends
the possibilities of recursive dynamics and sensitivity
analysis presented in [1,57] by allowing the inclusion
of external forces and torques acting simultaneously
at all joints and/or links. This is necessary, for exam-
ple, for the modeling of two reaction forces acting on
both feet during the double support phase of walk-
ing. We expect that the proposed sensitivity analysis
will reduce the time to evaluate sensitivity informa-
tion compared to traditional numerical methods. This
in turn might reduce the time required by the conven-
tional fmincon solver for computations required in
optimization problems for nonlinear dynamic systems
with many DOF, such as the human body. Since using
MATLAB for testing and debugging is easier than, for
instance, employing the interior point optimizer IPOPT
[39], our contribution should positively impact research
on multibody dynamics.

In summary, we present a first-order recursive sensi-
tivity analysis based on the application of the direct dif-
ferentiation method to the inverse Lagrangian dynam-
ics of rigid multibody systems which is not affected by
the perturbations of design variables. Major contribu-
tions in this paper are:

- a new method for describing the topology of
mechanical systems with an open-tree structure is pro-
posed;

- known recursive dynamic and sensitivity analyses
are modified for the use with dynamic systems hav-
ing an open-tree structure where external forces and
torques act simultaneously on all joints;

- the proposed algorithm can be easily implemented
in MATLAB thus allowing the use of high-level pro-
gramming capabilities for the humanmotion synthesis.

The paper is organized as follows. Section2 intro-
duces kinematics of the multibody mechanical system.
Dynamic equations of motion are defined in Sect. 3,
followed by the sensitivity analysis in Sect. 4. Simula-
tionmodel is presented in Sect. 5 and simulation results
are discussed in Sect. 6.

2 Kinematics

2.1 Joint connectivity graph

A mechanical system can be represented as a finite
number of connected links and joints. A graph, on the
other hand, is a collection of nodes and edges [32]. To
correctly represent the kinematics of a mechanical sys-
tem, the connectivity of the joints should be described.
To this end, we utilize the joint connectivity graph,
an undirected graph similar to the one used in [22,23]
where a node represents a link and an arc represents
a joint. Since every type of joint (prismatic, revolute,
spherical, universal joint, etc.) has to be defined sepa-
rately, this approach is less efficient in practice. Simi-
larly, each joint type requires its ownkinematic descrip-
tion in [33]. Our modification of the connectivity graph
employs nodes (vertices) for representing joints, while
the arcs (edges) represent connections between neigh-
boring joints. If a mechanical system has an open-tree
structure (that is, it does not have closed-loop chains),
then its joint connectivity graph is a joint topological
tree. On a joint connectivity graph, all joints are num-
bered so that a given joint i ∈ N has a lower number
than any of its children, and a higher number than any
of its parents, see Fig. 1a. In other words, if a number
λ j (i) denotes a parent and ν j (i) denotes a child of a
joint i , then

1 ≤ λ j (i) < i < ν j (i). (1)

This indexing is opposite to (or inverse of) the canon-
ical tree notation used in [33,34]. It follows from (1)
that the root node (joint) has the number 1, while in
[22,23] the root node (link) starts with number 0. For a
joint topological tree, a joint has only a single parent but
can have multiple children. Let the number of children
of the node i be denoted by κ j (i). We call a node that
has at most one child a simple node and the one that
has more than one child a complex node (also called
junction node in [32] ). A simple node that does not
have children nodes will be called an external node.
For example, nodes 3 and 5 in Fig. 1a are complex,
nodes 6, 7, 9 and 11 are external, and all remaining
nodes are simple. For a root node (joint) λ j (i) = 0,
and for an external node ν j (i) = 0. A joint numbering
system is not unique, and a given joint topological tree
can have multiple correct ways of doing this. Ideally,
the knowledge of λ j (i) for each i furnishes complete
information about the topological structure of the sys-
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Fig. 1 Topological tree of a mechanical system with 11 joints
and 6 branches: a joint connectivity graph with node numbers
representing joints, b branches of the joint connectivity graph,
c branch connectivity graph with node numbers representing
branches

temwhich can be expressed, for example, in the formof
the so-called joint parent matrix Υ ∈ R

n j×2, where n j

is the total number of joints. The first column Υ (i, 1)
would specify the current joint number i , and the sec-
ond column would specify the number of its parent
joint Υ (i, 2) = λ j (i). Similarly, complete informa-
tion is provided if a set of ν j (i) is specified for each
joint i . Compared to other descriptions of the system
topology in terms of adjacency and incidencematrices3

[32,34,35,42], the joint parent matrix is already com-
pact. However, the description of the information in the
joint parent matrix form can be further compressed and
made more efficient.

2.2 Branch connectivity graph and joint-branch
connectivity matrix

In this section, we suggest a more efficient (compact)
way to describe the topological structure of a mechan-
ical system. Analyzing joint topological trees, we con-
clude that most nodes (joints) are simple and their
description within the joint connectivity graph is rather
straightforward, whereas difficulties usually arise in
the description of complex nodes. For this purpose, a
branch of the joint connectivity graph is defined as a
set of its nodes that have simple linear connections,
Fig. 1b. One might notice that any branch starts either
with a root node or with a child of a complex node and
ends either with an external node or with a complex
node. Definitions of nodes and branches are analogous
to those used in electric circuit theory. A branch con-

3 The adjacencymatrix is a squarematrixwith a dimension equal
to the number of nodes, while the number of rows and columns
in the incidence matrix is equal to the number of nodes and arcs,
respectively.

nectivity graph is defined similarly to the joint con-
nectivity graph, but the difference is that each node
represents a single branch, Fig. 1c, that is, a node in
the former graph represents a single graph branch of
the latter one. If a mechanical system has an open-
tree structure, its branch connectivity graph is a branch
topological tree. Similarly to the process of joint num-
bering, nodes of a branch connectivity graph (open-tree
branches of a mechanical system) are numbered so that
a given tree branch i ∈ N has a lower number than any
of its child branches and a higher number than any of
its parent branches. For a branch k with a parent λb(k)
and a child νb(k), the identity similar to (1) holds,

1 ≤ λb(k) < k < νb(k). (2)

For a root node (branch) one has λb(k) = 0 and for an
external node νb(k) = 0. Simply speaking, a branch
connectivity graph is a “lighter” version of a joint con-
nectivity graph where all simple nodes are removed.
Therefore, for any node in a branch connectivity graph,
one has νb(k) �= 1, which also implies that the branch
connectivity graph cannot be further simplified by a
similar procedure. In other words, a branch connectiv-
ity graph is the simplest representation of the joint con-
nectivity graph which preserves all information about
complex nodes. Unless stated otherwise, in what fol-
lows the index i refers to the joint number and the
index k denotes the branch number. Let κb(k) denote
the number of children of a node in a branch connectiv-
ity tree. From the definition of a branch, κb(k) = κ j (i)
where i is the last node of the branch k in the joint
connectivity graph, that is, the number of children of
the branch k is equal to the number of children of its
last joint. In general, i �= k, because the number of
joints is not equal to the number of branches. Since
our focus is on a branch connectivity graph and not
on simple joint nodes, for the sake of simplicity, we
slightly abuse the notation denoting by κ(i) the number
of children of a node. Complete information about the
branch topological tree of a given system is provided if
for each branch either λb(k) or νb(k) is specified. This
can be achieved by specifying a branch parent matrix
Φ ∈ R

nb×2, where nb is the total number of branches
in the branch topological tree for the given system. The
first column of the matrix shows that the current branch
number Φ(k, 1) = k, and the second column specifies
its parent branch numberΦ(k, 2) = λb(k). The branch
numbering is not unique and can be performed in mul-
tiple ways.
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When the branch connectivity graph is specified,
one cannot construct the kinematic tree of the dynamic
system yet because the knowledge about the joints
that compose each branch is missing. This information
can be provided in a joint-branch connectivity matrix
Ψ ∈ R

nb×2. Under the assumption that the joints in a
given branch are numbered consecutively, the first col-
umn in Ψ (k, 1) specifies the joint number where the
branch k starts, whereas the second column Ψ (k, 2)
specifies the joint number where it terminates. There
are two alternative ways to describe system’s kinemat-
ics structure, using either the joint connectivity graph
(this requires a single matrix Υ ) or the branch con-
nectivity graph in conjunction with the joint-branch
connectivity matrix (this requires two matrices Φ and
Ψ ). If a mechanical system possesses many joints and
a few branches, using the latter approach is simpler
and more efficient whereas for a system with many
branches and joints the former description is prefer-
able. For example, for a system with one hundred DOF
and only four branches, the branch topological tree has
four nodes, and the joint-branch connectivity matrix is
a 4 × 2 matrix. Recall that a node represents a joint
in a joint connectivity graph and a branch in a branch
connectivity graph.Therefore, for a systemwhosekine-
matic structure is represented by a full binary tree, the
joint connectivity graph requires less information. Our
method to describe the system’s topology is also differ-
ent (simpler) than in [33]. However, this simplicity is
only related to the description of the system’s topology,
and it does not affect the sensitivity analysis. In other
words, the sensitivity analysis does not depend much
on the method to describe the topology of the system.

2.3 Denavit–Hartenberg convention

The Denavit-Hartenberg (D-H) convention is used to
formulate the kinematics of the model. It specifies four
parameters for each DOF, θi , di , ai , and αi , where the
variables θi and di are associated with the cases where
the joint is revolute or prismatic, respectively. We note
that there aremultiple variations of theD-Hconvention.
In this paper, the distal version of theD-H convention is
utilized. This means that the i-th local frame is attached
to the distal end of the link i [24], and a joint i is located
at the proximal end of the same link. Alternatively, the
same local frame can be attached to the proximal end of
the link [12]. Even though allD-Hconventions describe
the kinematics of arbitrary mechanical systems equally

well, care should be taken when working with the D-H
convention because of the aforementioned notational
differences.

3 Dynamics

Assume that we have a mechanical nq -DOF system,
then the number of joints nq = n j . For a fully actuated
system, the number of input (driving) torques is equal
to the number of DOF. If the number of input torques is
less than the number of joints, then one has an under-
actuated system; otherwise the system isover-actuated.
A human body is an over-actuated system, which is a
beneficial feature in terms of redundancy, because a
single muscle can actuate multiple joints and a single
joint can be actuated by multiple muscles. However,
this redundancy is difficult to model, especially when
our goal is to generate a dynamically feasible human
body motion. To achieve this, it suffices to consider
a fully actuated human body model which determines
our main focus on fully actuated multibody systems.
The detailed derivation of the dynamic equations of
motion is outside the scope of this paper. Our work
is based on the Lagrangian formulation, so a reader
interested in more details about the derivation (such as
Lagrangian function), can consult [1]. Dynamic equa-
tions of motion for a mechanical nq -DOF system are
often represented in the form

M(q)q̈ + K (q, q̇) + W (q) = Q, (3)

where q = [q1 q2 . . . qnq ]T ∈ R
nq and q̇ =

[q̇1 q̇2 . . . q̇nq ]T ∈ R
nq are the vectors of generalized

coordinates and generalized velocities, respectively,
M(q) ∈ R

nq×nq is the inertia matrix, K (q, q̇) ∈ R
nq

is the vector of Coriolis and normal inertial forces,
W (q) ∈ R

nq is the vector of gravitational forces, and
Q = [Q1 Q2 . . . Qnq ]T ∈ R

nq is the vector of general-
ized forces. The superscript (·)T denotes the transpose
operator. These equations can be referred to as “bulk”
form, because all DOF are included in the equation, and
are therefore computed simultaneously [24]. However,
the direct computation of this set of equations is bur-
densome, especially for high-DOF systems with many
joints and links. Instead, there are efficient “recursive”
techniques of calculation where each DOF is com-
puted recursively from the previous DOF [11,30,41].
We use the recursive Lagrangian formulation to derive
the dynamic equations ofmotionbasedon the extension
of ideas reported in [1,57,58] to the case of multiple
external loads and topological tree structures.
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3.1 Recursive kinematics

For each DOF, the corresponding homogeneous trans-
formation matrix Ai ∈ R

4×4 is defined as

Ai=

⎡
⎢⎢⎣
cos θi − cosαi sin θi sin αi sin θi ai cos θi
sin θi cosαi cos θi − sin αi cos θi ai sin θi
0 sin αi cosαi di
0 0 0 1.

⎤
⎥⎥⎦,

(4)

where i = 1, . . . , nq [1]. Thematrix transforms homo-

geneous coordinates from the frame i to its parent
frame i − 1. The first, second and third-order deriva-
tives of Ai with respect to qi are defined accordingly
as Bi = d Ai/dqi , Ci = dBi/dqi and Di = dCi/dqi .
The matrices Ai , Bi , Ci , and Di are related by the
equations Bi = Z Ai , Ci = Z Bi , Di = ZCi [24]
where the matrix Z ∈ R

4×4 has all zero entries except
for the following: Z(1, 2) = −1 and Z(2, 1) = 1
for a revolute joint, and Z(3, 4) = 1 for a prismatic
joint. The global homogeneous transformation matrix
is introduced using the local transformationmatrices as
Ti = A1 · . . . · Ai ∈ R

4×4. The first and second-order
time derivatives of the global transformationmatrix are
Si = dTi/dt = Ṫi ∈ R

4×4 and Ri = dSi/dt = Ṡi ∈
R
4×4. These matrices can be calculated in recursive

form starting from the first, root joint, until the last,
end-effector joint, in the kinematic chain:

Ti = Tp Ai ,

Si = Sp Ai + TpBi q̇i , i = 1, . . . , nq

Ri = Rp Ai + 2SpBi q̇i + TpCi q̇
2
i + TpBi q̈i .

(5)

where q̈i = dq̇i/dt . For a system which has only sim-
ple nodes in the joint topological tree or for a single
branch within the joint topological tree, the subscript
p = i−1. For a node that has a complex node parent, if
the joint connectivity graph is used, the subscript p =
λ j (i) = Υ (i, 2) and if the branch connectivity graph
is used, p = Ψ (λb(k), 2) = Ψ (Φ(k, 2), 2), where k is
the index of the branch to which the joint i belongs. For
thefirst joint (i = 1), one sets p = 0. In summary, if i =
Ψ (k, 1) ∧ λb(k) �= 0, then p = Ψ (Φ(k, 2), 2), if i =
Ψ (k, 1)∧λb(k) = 0, then p = 0, otherwise, p = i−1.
The initial values of the global transformationmatrix Ti
and its time derivatives are T0 = I , S0 = 0, and R0 =
0, where I ∈ R

4×4 and 0 ∈ R
4×4 are, correspond-

ingly, the identity and zero matrices. With the help of

homogeneousmatrices, the position rg , velocityvg , and
acceleration ag of any point of the mechanical system
with respect to the global frame can be specified as

rg = Tiri , vg = Siri , ag = Riri , (6)

where ri is the position of the point in the local coordi-
nate system i . The set of equations in (5) defines what
is called the recursive forward kinematics.

3.2 Recursive dynamics

After the forward kinematics matrices are computed,
dynamic matrices can be obtained. Firstly, we define
the mass mi ∈ R and inertia matrix Ji ∈ R

4×4 of the
link associated with a joint i and expressed in the local
frame i . The inertia matrix is defined as

Ji =

⎡
⎢⎢⎣

J ∗
xx −Jxy −Jxz mi

cxi
−Jxy J ∗

yy −Jyz mi
c yi

−Jxz −Jyz J ∗
zz mi

czi
mi

cxi mi
c yi mi

czi mi .

⎤
⎥⎥⎦ , (7)

where J ∗
xx = 1

2 (−Jxx+Jyy+Jzz), J ∗
yy = 1

2 (Jxx−Jyy+
Jzz), J ∗

zz = 1
2 (Jxx + Jyy − Jzz). Ji j , i, j ∈ x, y, z, are

the moments and products of inertia of link i in its local
frame of reference, while cxi , c yi , and czi denote the
location of the center of mass of link i in the coordinate
system i . Secondly, the inertia Hi ∈ R

4×4 and the exter-
nal force Fi ∈ R

4×nq matrices, the gravity Ei ∈ R
4 and

the external torque Gi ∈ R
4 vectors are defined. For

simplicity, we refer to these matrices as dynamic trans-
formation matrices, because they transform dynamic
quantities from a given joint to the next one. These
matrices are also defined recursively, but this time from
the last joint (end-effector) to the first joint (root)

Hi = Ji R
T
i +

κ(i)∑
p=1

ApHp,

Ei = mi
cr i +

κ(i)∑
p=1

ApEp, i = 1, . . . , nq ,

Fi = f Ri +
κ(i)∑
p=1

ApFp,Gi = hi +
κ(i)∑
p=1

Gp. (8)

If a system does not have complex nodes in its joint
topological tree or within a branch κ(i) = 1, the sub-
script p = i + 1. For a complex node in the joint
topological tree p = ν j (i), and in the branch topo-
logical tree p = Ψ (νb(k), 1) = Ψ (Φ( j (k), 1), 1),
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where, as above, k is the index of the branch to which
the joint i belongs. The index notation j (k) is used
for the children of the branch k found through the
branch parentmatrix by using the identity k = Φ( j, 2).
For the last joint in the branch without child joints,
κ(i) = 0; we can also assume that the initial values of
the dynamic matrices and vectors are Dnq+1 = 0 and
Enq+1 = Fnq+1 = Gnq+1 = 0. The same initial values
are used for any external node in the joint connectivity
graph. In summary, if i = Ψ (k, 2) ∧ νb(k) �= 0, then
p = Ψ (Φ( j (k), 1), 1), if i = Ψ (k, 2) ∧ νb(k) = 0,
then κ(i) = 0, and if i �= Ψ (k, 2), then p = i + 1 and
κ(i) = 1. Furthermore, cr i = [cxi c yi czi 1]T is the
location of the center of mass of link i with respect
to frame i , where the matrix f Ri ∈ R

4×nq has all
zero entries except for those in the only non-zero col-
umn i, f Ri (:, i) = f r i = [ f x i f yi f zi 1]T . This is
the location of the point of application of an external
point force fi acting on the link i expressed in the local
frame i . The net external force fi = [ fi,x fi,y fi,z 0]T
and torque hi = [hi,x hi,y hi,z 0]T acting on the
link i are expressed in the global frame.4 The net
external forces and torques acting on all links can be
grouped into matrices V = [ f1 f2 · · · fnq ] ∈ R

4×nq

and U = [h1 h2 · · · hnq ] ∈ R
4×nq .

The generalized force Qi acting on the link i (i-th
component of the vector Q from (3)) can be found by
a similar recursive process starting from the last link to
the first link,

Qi = tr

[
∂Ti
∂qi

Hi

]
− gT

∂Ti
∂qi

Ei − tr

[
V T ∂Ti

∂qi
Fi

]

i :nq
−GT

i Tpw0, (9)

for i = 1, . . . , nq , tr[·] is the trace operator, and tr[·]i :nq
denotes the sum of diagonal matrix elements from i
until nq , g = [gx gy gz 0]T is the gravity vector
expressed in the global frame of reference,5 the vec-
torw0 is defined asw0 = [0 0 1 0]T for a revolute joint
and asw0 = 0 ∈ R

4 for a prismatic joint. The subscript
p in (9) is defined as in (5): if i = Ψ (k, 1)∧λb(k) �= 0,
then p = Ψ (Φ(k, 2), 2), if i = Ψ (k, 1) ∧ λb(k) = 0,
then p = 0, otherwise p = i −1. The external force fi
and the torque hi are both expressed in the global coor-
dinate system.Theprocess of calculating the torque and

4 If there are multiple contact and/or distributed forces and
torques acting on the link, then we can always find their net
resultants.
5 in our case g = [0 0 − 9.81 0]T .

the terms defined in (8) is called the recursive backward
dynamics.

4 Sensitivity analysis

In gradient-based optimization algorithms, conver-
gence to the local minimum is highly dependent on the
gradient information. It is known that the computation
of the derivatives of the objective function and con-
straints in some cases consumes over 90% of the CPU
time required for each iteration of the algorithm [2].
The computation time depends on the selection of the
set of generalized coordinates, constraints, constraints
enforcement schemes, the set of sensitivity parame-
ters, differentiation methods, and other factors. Thus,
for solving anNLP problem efficiently, it is desirable to
provide gradients of the object function and constrains
with respect to optimization variables. Furthermore,
the gradient and Jacobian information enable a coher-
ent and easy extension of algorithms to more complex
models making algorithms well scalable. To this end,
a sensitivity analysis is performed, i.e., partial deriva-
tives of the desired expressions with respect to the gen-
eralized coordinates, velocities, and accelerations are
determined. There are two reasons for the utilization of
the direct differentiation method for sensitivity analy-
sis in this paper. The first is that the adjoint variable
method requires integration of the adjoint sensitivity
equations. However, we use the inverse dynamics for-
mulation to avoid the integration of dynamic equations
of motion. Thus, the adjoint variable method would
neutralize our effort to avoid the time integration. Sec-
ondly, as already mentioned, our work is extension of
the work in [1], and so we continue to use the direct
differentiation methods as they did.

4.1 Kinematic sensitivity analysis

The sensitivity of homogeneous transformation matri-
ces with respect to the generalized coordinates, veloc-
ities and accelerations is written as

∂Ti
∂qm

,
∂Si
∂qm

,
∂Si
∂ q̇m

,
∂Ri
∂qm

,
∂Ri
∂ q̇m

,
∂Ri
∂ q̈m

,
∂2Ti

∂qm∂qi
∈ R

4×4,

where i = 1, . . . , nq ,m = 1, . . . , nq . Since Ti depends
only on the generalized coordinates, its partial deriva-
tives with respect to generalized velocities and accel-
erations are zeros. Similarly, partial derivatives of Si
with respect to generalized accelerations are zeros. The
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homogeneous transformation matrices can be found
from the following relations. For m < i,

∂Ti
∂qm

= ∂Tp
∂qm

Ai ,

∂Si
∂qm

= ∂Sp
∂qm

Ai + ∂Tp
∂qm

Bi q̇i ,

∂Si
∂ q̇m

= ∂Sp
∂ q̇m

Ai ,

∂Ri
∂qm

= ∂Rp

∂qm
Ai + 2

∂Sp
∂qm

Bi q̇i + ∂Tp
∂qm

Ci q̇
2
i + ∂Tp

∂qm
Bi q̈i ,

∂Ri
∂ q̇m

= ∂Rp

∂ q̇m
Ai + 2

∂Sp
∂ q̇m

Bi q̇i ,

∂Ri
∂ q̈m

= ∂Rp

∂ q̈m
Ai ,

∂2Ti
∂qm∂qi

= ∂Tp
∂qm

Bi .

(10)

For the case (m = i):

∂Ti
∂qm

= TpBi ,

∂Si
∂qm

= Sp Bi + TpCi q̇i ,

∂Si
∂ q̇m

= TpBi ,

∂Ri
∂qm

= RpBi + 2SpCi q̇i + TpDi q̇
2
i + TpCi q̈i ,

∂Ri
∂ q̇m

= 2Sp Bi + 2TpCi q̇i ,

∂Ri
∂ q̈m

= TpBi ,

∂2Ti
∂qm∂qi

= TpCi .

(11)

For the case (m > i) ∨ (m < i ∧ i = Ψ (k, 1) ∧ λb(k) = 0):

∂Ti
∂qm

= ∂Si
∂qm

= ∂Si
∂ q̇m

= ∂Ri
∂qm

= ∂Ri
∂ q̇m

= ∂Ri
∂ q̈m

= ∂2Ti
∂qm∂qi

= 0

(12)

Note that p = Ψ (λb(k), 2) = Ψ (Φ(k, 2), 2) in (10)
and (11) if, in addition to the conditions imposed at the
beginning of each equation, i = Ψ (k, 1) ∧ λb(k) �=
0. These additional conditions are used to determine
whether a parent branch exists. The index k refers to
the branch number associated with the joint number i ,
e.g., it is understood that the joint i is located within the
branch k. If i = Ψ (k, 1)∧λb(k) = 0, then p = 0 in (11)
for m = i , but for m < i (12) applies. If i �= Ψ (k, 1),
then p = i − 1. Alternatively, in the joint connectivity
graph notation, p = λ j (i) = Υ (i, 2).

4.2 Dynamic sensitivity analysis

Similarly to the kinematics sensitivity analysis, sen-
sitivity of the dynamic transformation matrices with
respect to generalized coordinates, velocities and accel-
erations is written as
∂Hi

∂qm
,
∂Hi

∂ q̇m
,

∂Hi

∂ q̈m
∈ R

4×4,
∂Ei

∂qm
,
∂Gi

∂qm
∈ R

4×1,

∂Fi
∂qm

∈ R
4×nq

where i = 1, . . . , nq , m = 1, . . . , nq . These matrices
can be found from the following relations. For m ≤ i,

∂Hi

∂qm
= Ji

∂RT
i

∂qm
+

κ(i)∑
p=1

Ap
∂Hp

∂qm
,

∂Hi

∂ q̇m
= Ji

∂RT
i

∂ q̇m
+

κ(i)∑
p=1

Ap
∂Hp

∂ q̇m
,

∂Hi

∂ q̈m
= Ji

∂RT
i

∂ q̈m
+

κ(i)∑
p=1

Ap
∂Hp

∂ q̈m
,

∂Ei

∂qm
= 0,

∂Fi
∂qm

= 0,

∂Gi

∂qm
= 0.

(13)

For m ≥ i + 1,

∂Hi

∂qm
=

κ(i)∑
p=1

Ap
∂Hp

∂qm
+ βBpHp,

∂Hi

∂ q̇m
=

κ(i)∑
p=1

Ap
∂Hp

∂q̇m
,

∂Hi

∂ q̈m
=

κ(i)∑
p=1

Ap
∂Hp

∂ q̈m
,

∂Ei

∂qm
=

κ(i)∑
p=1

Ap
∂Ep

∂qm
+ βBpEp,

∂Fi
∂qm

=
κ(i)∑
p=1

Ap
∂Fp

∂qm
+ βBpFp,

∂Gi

∂qm
= 0.

(14)

For the case m ≥ i + 1 ∧ Ψ (k, 2) ∧ νb(k) = 0,
∂Hi

∂qm
= ∂Hi

∂q̇m
= ∂Hi

∂ q̈m
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= ∂Ei

∂qm
= ∂Fi

∂qm
= ∂Gi

∂qm
= 0 (15)

where p = Ψ (νb(k), 1) = Ψ (Φ( j (k), 1), 1) provided
that, in addition to the conditions imposed at the begin-
ning of each equation, i = Ψ (k, 2)∧νb(k) �= 0. These
conditions verify the existence of children of the branch
k and the sum includes all its child branches κ(i). If
i = Ψ (k, 2) ∧ νb(k) = 0, then κ(i) = 0 in (13) for
m ≤ i , but for m ≥ i + 1 (15) applies. In the case
i �= Ψ (k, 2), one has p = i + 1 and κ(i) = 1. The
coefficient β = 1 if m = p, which means that m =
Ψ (νb(k), 1) for the case i = Ψ (k, 2) and m = i + 1
for the case i �= Ψ (k, 2), otherwise, β = 0. In the joint
connectivity graph notation, the index p = ν j (i).

Finally, the torque sensitivity can be found as fol-
lows.

∂Qi

∂qm
= tr

[
∂2Ti

∂qm∂qi
Hi + ∂Ti

∂qi

∂Hi

∂qm

]
− gT

∂2Ti
∂qm∂qi

Ei

− tr

[
V T ∂2Ti

∂qm∂qi
Fi

]

i :nq
− GT

i
∂Tp
∂qm

w0, m ≤ i,

∂Qi

∂qm
= tr

[
∂Ti
∂qi

∂Hi

∂qm

]
− gT

∂Ti
∂qi

∂Ei
∂qm

− tr

[
V T ∂Ti

∂qi

∂Fi
∂qm

]

i :nq
,

m ≥ i + 1,

(16)

∂Qi

∂ q̇m
= tr

[
∂Ti
∂qi

∂Hi

∂ q̇m

]
,

∂Qi

∂ q̈m
= tr

[
∂Ti
∂qi

∂Hi

∂ q̈m

] (17)

where, as in (9), p = Ψ (Φ(k, 2), 2) if i = Ψ (k, 1) ∧
λb(k) �= 0 and p = 0 if i = Ψ (k, 1) ∧ λb(k) = 0,
otherwise, p = i − 1. Equations (10)-(17 ) define a
recursive kinematics and dynamic sensitivity analysis.
The corresponding pseudo-algorithms are summarized
in Algorithms 1 -3, which require three loops, the kine-
matic loop from the root to the external nodes, the
dynamic loop from external nodes to the root, and,
finally, the torque loop back again from the root to
external nodes. It is possible to include computations in
Algorithm 3 in Algorithm 2 so that only two loops are
required. For the sake of clarity, however, we present
the sensitivity analysis in three loops.

5 Simulation

5.1 Human model

A rigid human bodymodel consisting of rigid links and
revolute joints is used to test the proposed sensitivity
method. A complete human body has about 350 joints

[40]. For our purposes, the human model has 43 DOF
and 20 links. The number of joints exceeds the number
of links due to the presence of virtual links which have
zero length and mass. For example, a spherical joint
is represented as a combination of three consecutive
rotational joints. The 43-DOF human model is shown
schematically in Fig. 2 where the green dot indicates
the origin of the global coordinate system. The red dot
indicates the pelvis point used as the reference point for
the human body model. The global coordinate system
has axes x0-y0-z0, and the local coordinate system i ,
associated with the joint i and attached to the distal end
of the link i , has the unit vectors xi -yi -zi . The mobility
of the human model with respect to the global frame
of reference is achieved by the global virtual DOF of
the joints connected to the pelvis point. Global virtual
DOF consists of three translational and three rotational
DOF. All other human links and joints are referenced
through the pelvis point. The joint and branch con-
nectivity graphs for the human model are shown in
Fig. 3. There are 43 joints and 7 branches. The cor-
responding joint parent matrix Υ ∈ R

43×2, the branch
parent matrix Φ ∈ R

7×2, and the joint-branch connec-
tivity matrix Ψ ∈ R

7×2 are defined by (18)-(20). Even
for this modestly-sized system, the branch connectivity
graph allows a more compact and efficient description
of the system topology in comparison with the joint
connectivity graph. The values of D-H parameters for
the humanmodel are collected in Table 1. The values of
the physical parameters for the 43 DOF human model
are provided inTable 2.Note that the neutral position of

Algorithm 1 Forward Recursive Kinematic and Sensi-
tivity Analysis
1: for kI = 1, . . . , nb do
2: for i = Ψ (kI , 1), . . . , Ψ (kI , 2) do
3: For a given time t , obtain the generalized coordinates,

velocities, and accelerations q, q̇ and q̈.
4: Evaluate local homogeneous transformation matrices

Ai , Bi , Ci , and Di .
5: Evaluate recursively the global homogeneous transfor-

mation matrices Ti , Si , and Ri using (5).
6: for kI I = 1, . . . , nb do
7: for m = Ψ (kI I , 1), . . . , Ψ (kI I , 2) do
8: Evaluate kinematic sensitivitymatrices ∂Ti

∂qm
, ∂Si

∂qm
,

∂Si
∂q̇m

, ∂Ri
∂qm

, ∂Ri
∂q̇m

, ∂Ri
∂q̈m

, ∂2Ti
∂qm∂qi

using (10)-(12).
9: end for
10: end for
11: end for
12: end for
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Algorithm 2 Backward Recursive Dynamic and Sen-
sitivity Analysis
1: for kI = nb, . . . , 1 do
2: for i = Ψ (kI , 2), . . . , Ψ (kI , 1) do
3: For a given time t , obtain the generalized coordinates,

velocities, and accelerations q, q̇ and q̈ .
4: Evaluate recursively the dynamic transformationmatri-

ces Hi , Ei , Fi , and Gi using (8).
5: for kI I = nb, . . . , 1 do
6: for m = Ψ (kI I , 2), . . . , Ψ (kI I , 1) do
7: Evaluate dynamic sensitivity matrices ∂Hi

∂qm
, ∂Hi

∂q̇m
,

∂Hi
∂q̈m

, ∂Ei
∂qm

, ∂Fi
∂qm

, ∂Gi
∂qm

using (13)-(15).
8: end for
9: end for
10: end for
11: end for

Algorithm 3 Forward Recursive Torque and its Sensi-
tivity Analysis
1: for kI = 1, . . . , nb do
2: for i = Ψ (kI , 1), . . . , Ψ (kI , 2) do
3: Evaluate torque Qi values from (9).
4: for kI I = 1, . . . , nb do
5: for m = Ψ (kI I , 1), . . . , Ψ (kI I , 2) do
6: Evaluate torque sensitivity matrices ∂Qi

∂qm
, ∂Qi

∂q̇m
,

∂Qi
∂q̈m

using (16)-(17).
7: end for
8: end for
9: end for
10: end for

the human model corresponds to the vertical rest posi-
tion (the human model stands vertically straight with
both arms stretched along the sides, as shown in Fig. 2).

Υ T =

[
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 1 2 3 4 5 6 7 8 9 10 11 12 5 14 15 16 17 18

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
19 20 5 22 23 24 25 26 27 28 29 30 22 32 33 34

35 36 37 38 39 40 41 42 43
34 35 36 37 38 39 22 41 42

]
.

(18)

ΦT =
[
1 2 3 4 5 6 7
0 1 1 1 4 4 4

]
. (19)

Ψ T =
[
1 6 14 22 23 32 41
5 13 21 22 31 40 43

]
. (20)

5.2 Implementation

We performed the sensitivity analysis using the MAT-
LAB software. Due to the inverse dynamics formu-
lation utilized in this work, the reference trajectories

Fig. 2 Schematic diagram of the humanoid model with 43 DOF
and ten links. For clarity, only the z-axes of the local coordinate
systems are shown

Fig. 3 Joint (a) andbranch (b) connectivity graphs for the human
model

for generalized coordinates, velocities, and accelera-
tions are required for the sensitivity analysis. As ref-
erence trajectories for the joints, we simply imposed
the sinusoidal function qi = sin 2π f t , where f = 1
and t are frequency and time, respectively. The gener-
alized velocities and accelerations can be obtained by
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Table 1 D-H table for the 43 DOF humanoid model. Index i
refers to the joint (DOF) number, while index k refers to the
branch number

D-H Table

i k θi di ai αi

1 1 0 q1 0 − π
2

2 1 π
2 q2 0 − π

2

3 1 0 −q3 0 0

4 1 q4+ π
2 0 0 − π

2

5 1 q5+ π
2 0 0 − π

2

6 2 q6 0 L1
π
2

7 2 q7 0 0 − π
2

8 2 q8+ π
2 0 0 − π

2

9 2 q9 0 L2 0

10 2 q10 0 L3 0

11 2 q11 0 0 π
2

12 2 q12 L4 0 − π
2

13 2 q13− π
2 0 L5 0

14 3 q14 0 −L6
π
2

15 3 q15 0 0 − π
2

16 3 q16+ π
2 0 0 − π

2

17 3 q17 0 L7 0

18 3 q18 0 L8 0

19 3 q19 0 0 π
2

20 3 q20 L9 0 − π
2

21 3 q21− π
2 0 L10 0

22 4 q22+ π
2 0 −L11 0

23 5 q23− π
2 0 0 π

2

24 5 q24 0 L12 0

25 5 q25 0 0 − π
2

26 5 q26+ π
2 0 0 − π

2

27 5 q27 0 L13 0

Table 1 continued

D-H Table

28 5 q28− π
2 0 0 − π

2

29 5 q29 L14 0 π
2

30 5 q30+ π
2 0 0 π

2

31 5 q31 0 L15 0

32 6 q32− π
2 0 0 π

2

33 6 q33 0 −L16 0

34 6 q34 0 0 − π
2

35 6 q35+ π
2 0 0 − π

2

36 6 q36 0 L17 0

37 6 q37− π
2 0 0 − π

2

38 6 q38 L18 0 π
2

39 6 q39+ π
2 0 0 π

2

40 6 q40 0 L19 0

41 7 q41− π
2 0 0 π

2

42 7 q42+ π
2 0 0 − π

2

43 7 q43+ π
2 0 −L20 0

a simple time differentiation of the generalized coor-
dinates. These reference trajectories were discretized
with a sampling time of 10 ms, whereas the duration of
the simulation was set to 3 s, resulting in a total of 301
sampling instances. At each sampling instance, both
numerical and suggested analytical sensitivity values
were evaluated. Numerical sensitivity was estimated
from (9) using the jacobianest function of MAT-
LAB, which is a fully adaptive and robust numerical
differentiation tool [14]. The analytical sensitivity was
obtained from (16)-(17 ). Note that for a system with
43 DOF, the total number of different torque sensitivity
values ∂Qi

∂qm
, i,m = 1, . . . , 43, is equal to 432 = 1849.

Similarly for the torque sensitivity values with respect
to velocities and accelerations, but some values would

Table 2 Values of physical parameters. m j is the link mass [kg], L j is the link length [cm]

Human model parameter values

j 1, 6 2, 7 3, 8 4, 9 5, 10 11

m j 4.5 9.5 3.7 1.2 0.2 12.3

L j 9 44 43 16 6 49

j 12, 16 13, 17 14, 18 15, 19 20

m j 5.8 1.9 1.3 0.5 8

L j 17 28 26 19 35

Note that the index j in this table corresponds to the indexes in columns four-five in Table 1
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be zero. For example, for torque and joint angles from
different branches, such as i = 42 andm = 18 in Fig. 3,
the torque sensitivity is zero because these branches do
not influence each other. The rootmean squared (RMS)
error was also calculated. The simulations were per-
formed on a ThinkPad notebook with an Intel Core
i5-10310U CPU processor and 16 GB RAM. The sen-
sitivity analysis results are provided in the next section.

6 Results

The results for randomly selected torque sensitivity val-
ues ∂Q20/∂q5, ∂Q30/∂q̇25, and ∂Q42/∂q̈22 are shown
in Fig. 4 with the obtained sensitivity trajectories in the
left column and the difference between the numerical
and analytical methods in the right column. In other
words, the error plots on the right show a simple dif-
ference between analytical and numerical sensitivities.
The results obtained by using the analytical method
agree well with the numerical results. The example
where the numerical and analytical results differ is
shown in Fig. 5. Observe that there are spikes in the
numerical torque sensitivity values for ∂Q18/∂q14 at
t = 0.5 and t = 1 s, but similar spikes are not notice-
able for ∂Q18/∂q̇14 and ∂Q18/∂q̈14. This indicates that
the observed spike is due to the inaccuracy in the numer-
ical estimation of the sensitivity ∂Q18/∂q14. Other-
wise, similar spikes should have been also observed in
the plots of velocity and acceleration sensitivities. To
further analyze the numerical behavior, we plotted the
trajectories of the generalized coordinates q5 and q14,
as well as computed the torques Q20 and Q18 in Fig. 6.
One can see that the numerical errors observed in the
sensitivity ∂Q18/∂q14 occur exactly when q14 = 0 and
Q18 = 0. Thus, numerical errors occur exactly when
both the numerator and the denominator vanish. From
the trajectories ofq5 andQ20,weobserve that,when the
coordinate q5 = 0, the torque Q20 �= 0. Similarly, the
trajectories of q̇25 and Q30 demonstrate that at times
when the former (angular velocity) is zero, the latter
(torque) differs from zero, (see Fig. 6). As expected, the
correspondingnumerical sensitivity ∂Q30/∂q̇25, Fig. 4,
is computed correctly. Thus, the numerical algorithm
copes well with the sensitivity calculation when only
the denominator vanishes or is close to zero, but itmight
give erroneous results when both the numerator and the
denominator are close to zero. Therefore, numerical
evaluation of the sensitivity values close to a singular-

ity should be exercised with care. The cumulative time
for obtaining all of the analytical sensitivity expressions
(measured usingtic and toc commands at each sam-
pling time and summed up for all 301 sampling times)
was 16.6 ms, whereas the cumulative time for comput-
ing the numerical sensitivitywas 2.62·105 s, amounting
roughly to 3 days and 48min. Thus, the numerical sen-
sitivity analysis takes seven orders of magnitude more
time than its analytical counterpart. We expect that for
more complex, nonlinear systems with a larger num-
ber of DOF the magnitude of errors and the computa-
tional time for the numerical sensitivity analysis would
be even larger. These results suggest that the numeri-
cal sensitivity analysis is error-prone, time-consuming,
and computationally expensive. As a result, the numer-
ical sensitivity analysis should be used only as the very
last option when other methods are not available for
some reason. Our proposed recursive sensitivity anal-
ysis is accurate and efficient.

7 Conclusions

The first-order recursive sensitivity analysis based on
the application of the direct differentiation method to
the inverse Lagrangian dynamics of rigid multibody
systemswas presented.We suggested a newdescription
of the system topology based on the branch connectiv-
ity graph. The inverse dynamic algorithm based on the
Lagrangian formulation was extended to systems with
external forces and torques acting at each joint. The
advantages of the proposed sensitivity analysis are the
following. The method does not suffer from numeri-
cal issues associated with the perturbation magnitude
in design variables. It has low computational costs and
is easy to implement in high-level programming lan-
guages such as MATLAB which makes programming
and debugging easy. Themethod is valid for open-chain
and open-tree type topological systems. Finally, it is
stable, accurate, and numerically efficient. As a result,
the proposed algorithm becomes a useful tool in the
sensitivity analysis of mechanical multibody systems.

Future work could include the incorporation of the
divide-and-conquer algorithm into the sensitivity anal-
ysis to speed up computation time through paralleliza-
tion.An extension of our sensitivity analysis for closed-
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Fig. 4 Results of the sensitivity analysis for ∂Q20
∂q5

, ∂Q30
∂q̇25

, and ∂Q42
∂q̈22

Fig. 5 Results of the sensitivity analysis for ∂Q18
∂q14

, ∂Q18
∂q̇14

, and ∂Q18
∂q̈14
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Fig. 6 Time variation of the generalized coordinates q5, q14,
velocity q̇25, and torques Q18, Q20, Q30

loop mechanical systems and its application to the
human body motion synthesis problem are pending.
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