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Abstract This study aims at modeling the univer-
sal failure in preventing the outbreak of COVID-19
via real-world data from the perspective of complex-
ity and network science. Through formalizing informa-
tion heterogeneity and government intervention in the
coupled dynamics of epidemic and infodemic spread-
ing, first, we find that information heterogeneity and
its induced variation in human responses significantly
increase the complexity of the government interven-
tion decision. The complexity results in a dilemma
between the socially optimal intervention that is risky
for the government and the privately optimal interven-
tion that is safer for the government but harmful to
the social welfare. Second, via counterfactual analysis
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against the COVID-19 crisis in Wuhan, 2020, we find
that the intervention dilemma becomes even worse if
the initial decision time and the decision horizon vary.
In the short horizon, both socially and privately opti-
mal interventions agree with each other and require
blocking the spread of all COVID-19-related informa-
tion, leading to a negligible infection ratio 30 days after
the initial reporting time. However, if the time hori-
zon is prolonged to 180 days, only the privately opti-
mal intervention requires information blocking, which
would induce a catastrophically higher infection ratio
than that in the counterfactual world where the socially
optimal intervention encourages early-stage informa-
tion spread. These findings contribute to the literature
by revealing the complexity incurred by the coupled
infodemic–epidemic dynamics and information het-
erogeneity to the governmental intervention decision,
which also sheds insight into the design of an effective
early warning system against the epidemic crisis in the
future.

Keywords COVID-19 · Coupled dynamics · Govern-
ment response dilemma · Information heterogeneity ·
Information injection · Information blocking

1 Introduction

Since the outbreak of COVID-19, a variety of major
national governments have failed tomanipulate preven-
tive strategies against the pandemic one after another.
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As shown in Fig. 1, no matter whether the countries
made a fast official warning to the public, whether their
first domestic case ofCOVID-19was reported before or
after the government’s warning statement, whether or
not the government had a strict restriction on its domes-
tic information spreading media, almost all countries
suffered from the failure of controlling the pandemics
of COVID-19 [1]. Figure1 suggests a counterexample
to the theory that free information spreading and fast
warning are helpful in containing the outbreak of an
epidemic crisis. We believe that the worldwide failure
in front of the COVID-19 crisis reflects some system-
atic incapability of tackling the unknown infectious dis-
eases by modern government; one source of the inca-
pability is the policy dilemma: remedy or overkill.

On the one hand, the government may choose an
inactive move (remedy), such as blocking information
spreading in the early stage of an epidemic crisis so as
to keep the public away from panic, by which the infec-
tion ratio may not grow too fast in the early stage while
the government suffers the least public pressure. On
the other hand, the government can choose a socially
optimal strategy (overkill), by which the government
encourages information spreading and even discloses
asmuch classified information to the public as possible.
By doing so, a fast accumulation of infectious cases is
witnessed by the public, which may effectively send
warning signals but also increase public pressure, and,
therefore, is not optimal from the government’s angle.
The conflict between the government’s private optimal
and social optimalmakes it almost unlikely for the gov-
ernment tomake the right decision for the public,which
triggers the outbreak of the public health crisis. There-
fore, we need to understand how this conflict arises
during an epidemic crisis and whether and how it is
avoidable. To this end, information is one key factor as
it is believed to be critical for the early-stage control of
any infectious disease.

It is demonstrated that the key factor in control-
ling the spread of epidemics successfully is to under-
stand the complex two-way interaction between dis-
ease dynamics and human social behavior[4]. First,
the epidemic spreads can stimulate information spread-
ing about the disease, leading to people’s awareness
of the crisis[5–7]. Some people will take preventive
measures to protect themselves from the disease[8,9].
From this perspective, the epidemic dynamics expe-
rience an endogenous negative feedback[10–14], by
which the disease might be self-contained. Second,

Fig. 1 Timeline of COVID-19 outbreak and government
responses in 21 countries Timelines of COVID-19 outbreak in
the top 20 countries ranked according to the number of their
cumulative infectious cases of COVID-19 by Jun. 30, 2020, and
China, the country with the first confirmed infectious case of
COVID-19. The event time data come from Wikipedia [2], and
the infection number comes from the COVID-19 dashboard at
the JohnHopkinsUniversity [3]. Using the blue and red color bar,
we mark three milestones on the timeline of each country that
are the time when the first confirmed case was reported, the time
when the central government first published an official statement
regarding COVID-19, and the time when the country first seri-
ously executed non-pharmaceutical intervention. The left half of
the annular (with blue background) corresponds to those coun-
tries that have their first official statement made ahead of the first
domestic infectious case, and the right half of the annular (with
red background) corresponds to the countries that have their first
domestic case reported ahead of the official statement. The time
difference (days) from the first domestic infectious case to the
next event (the first official statement or the first execution of
NPIs) is measured by the length of the red bar, while the time
difference from the first official statement to the next event (the
first domestic cases or the first NPIs) is measured by the length of
the blue bar. The two-time differences measure the speed of gov-
ernment response toward the outbreak of COVID-19. For each
country, the exact occurrence date of every event is marked at
the ends of the blue and red bars with the date marked toward the
center of the annular representing date of the earlier event. We
also sketch the number of cumulative infectious cases at the time
of the first NPIs with the black bar and mark the exact number
on the top of the black bar. The comparison of the relative length
of three color bars across countries provides a measure for the
relative speed of COVID-19 spreading versus the government
response. (Color figure online)
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information propagation may not always induce pre-
ventive behavior; it can oppositely stimulatemore risky
behavior and accelerate the spread of disease[15]. The
positive feedback exists because information does not
only come from people’s own observations and expe-
riences (source information), but also mingles unreli-
able second-hand information from social media[16–
18], where people can get information and interactive
views[19,20]. On social media, there is a spontaneous
trend of turning information into rumors with strong
emotional tendency[21,22], which increases anxiety
feelings and magnifies irrational behavior[23–26]. As
an example, it is observed that 41.3% of diagnosed
patients of COVID-19 have contracted the disease dur-
ing hospital visits in Wuhan [27].

As the main body of social governance, the gov-
ernment is also the most critical information node in
the entire social network. Although the government is
often asked to disclose the “truth” to the public as soon
as possible, it shares the same kind of uncertainty as
the public when facing such an unprecedented virus
as COVID-19, there is no “truth” to disclose at least
at the early stage. Restricted by this real constraint,
the effectiveness of any government responses may
be questionable. Therefore, this study aims to theo-
rize the role of government intervention within a cou-
pled infodemic–epidemic dynamic model where both
positive and negative feedback are allowed. We fur-
ther conducted the counterfactual analysis on both the
synthetic settings and the parameters calibrated from
real-world pandemic data in order to reveal the hetero-
geneous impact of information on epidemic spreading
and its incurred decision complexity faced by govern-
ment. We believe they are critical to the outbreak of the
COVID-19 pandemic and hence should be paid more
attention in the future design of warning systems for a
public health crisis.

The remaining sections are organized as follows.
Section2 introduces the coupled dynamic model of
information and epidemic spreading and formalizes the
government intervention decision problem through the
model. Section3 analyzes the mechanism that leads to
the government response dilemma by numerical exper-
iments on both the synthetic model setting and the cal-
ibrated setting derived from the early-stage epidemic
data of Wuhan, China. We also briefly discuss the
potential solution to the government response dilemma
from the perspective of an information network. Sec-

tion4 concludes the findings and discusses the direction
of future research.

2 Literature review

2.1 Infodemic and epidemic spreading

The current study is closely related to the literature
on the co-evolution dynamics of epidemics and info-
demics [28–30]. It has been widely acknowledged
that the complex two-way interaction between disease
dynamics and human social behavior is critical to the
outbreak of an epidemic crisis and its prevention. The
information on the epidemicmay induce fear effect [31]
and intrigue self-protection behavior, which helps con-
tain the outbreak of epidemic crisis [31,32]. Despite
the positive effect, studies [33–36] found that informa-
tion may not always be kept real, mis-information is
inevitable andwill reduce the scientific trust of the pub-
lic, which incurs negative impact on the containment
of epidemic crisis. More recent studies jump out of the
dichotomy between information and mis-information,
the heterogeneity in information literacy [32], sources
[29] channels by which information is propagated [30],
and their impact on the epidemic spreading are thor-
oughly investigated.

Despite the persistent discussions on the co-
evolution of infodemic and epidemic, the focus of the
literature was inclined to theoretically model the co-
evolution process itself and/or empirically estimate the
extent of infodemic–epidemic interaction. It was rarely
studied whether and how the co-evolution process can
be intervened and/or utilized for governance purposes.
Particularly, whether or not the control of information
propagation by the government can be supported by the
coupled infodemic–epidemic dynamics [37] and facil-
itate the containment of the outbreak of the epidemic
crisis is still an open question, to which we attempt to
give a formal discussion.

2.2 Prevention and control

Our study is also connected to the literature on the opti-
mal control and prevention strategies against epidemic
crisis [38–42]. Existing studies have extensively dis-
cussed a long list of the preventive measures, includ-
ing but not limited to the social distancing [41], traf-

123



22058 X. Zhang et al.

fic jam and lockdown [38,43], vaccination [39], mask-
use [44], and the effectiveness and potential trade-offs
incurred by them. It is worthwhile noting that these dis-
cussions focus almost exclusively on the late stage of
the epidemic crisis. Unless the outbreak of infectious
diseases has persisted for long or the spreading can-
not be contained, it is not really needed to adopt any
social distancing measure [45]. On the other hand, dur-
ing the early stage of an epidemic outbreak, the lack of
knowledge and awareness on infectious diseases, such
as COVID-19 [46], makes it also reluctant to adopt any
prevention measure in the aforementioned list. From
this perspective, information might be the only way in
the early-stage epidemic crisis that the government can
intervene to affect and guide the public to protect them-
selves [46]. However, to the information intervention
and its effectiveness and trade-offs in the early-stage
coupled dynamics of infodemic and epidemic crisis,
the existing studies paid very little attention, to which
a formal investigation will be carried out in this study.

From the brief review, we identify our main contri-
bution to the literature as bridging the two branches of
research on the coupled infodemic–epidemic dynam-
ics and the optimal intervention, which is critical to the
early-stagewarning andprevention against an epidemic
crisis.

3 Methods

3.1 SI-NLH model: setup and properties

To capture the heterogeneous response to different
types of information and the induced impact on dis-
ease dynamics, in this section, we propose an SI-NLH
dynamic model where the SI component is the classi-
cal susceptible–infection model capturing the disease
dynamics. The NLH component reflects the dynamic
transition of individuals among three information sta-
tuses: No information, with Low-quality information
and High-quality information.

Compared with the SIR/SIS model, the SI model
excludes the recovery dynamics and is, therefore, more
appropriate to model the early-stage disease dynam-
ics in the real world, such as the pandemic of SARS
and COVID-19. As in the early stage of epidemic
spreading, the number of recovered cases is completely
negligible in relation to the newly infected cases[47].
In fact, a rigorous mathematical analysis[48] shows

that when the infection/recovery ratio, i.e., the ratio
of infected/recovered cases versus the population size,
is very small, the infection dynamics derived from
a SI model and a SIR model are equivalent. At the
early stage of the epidemic crisis, the small infec-
tion/recovery ratio always holds (for instance, in the
COVID-19 pandemic in China, even in the epicenter,
Wuhan, the greatest infection/recovery ratio has never
exceeded 0.8%); therefore, it is safe to consider the sim-
pler SI model for the epidemic spreading. (In the sup-
plementary material to this study, we conduct a simula-
tion study similar to the one discussed in the following
sections, but based on a SIR-NLH model where the SI
component is replaced with the SIR model, the result
is similar; the details can be found in Supplementary
Fig. 1.)

The differentiation of information quality in the
NLH component is critical, as the quality often deter-
mines the response behavior of individuals toward
infectious diseases. High-quality information consists
of that which is officially issued by truth holders, such
as the government or specialists in infectious diseases.
The contents of this information are correct, and the
description is complete; therefore, they can intrigue
self-protection behavior and lower the infection risk.
In contrast, low-quality information is rumors and/or
that whose contents are not completely wrong, but the
description is incomplete. This information can eas-
ily trigger incorrect interpretations and be converted
to rumors in later-stage propagation. Consequently,
low-quality information is likely to intrigue panic and
irrational behaviors that rise up the infection risk[49].
However, the existing literature on coupled infodemic–
epidemic dynamics focuses on the positive side of
the information [4,50,51]; the low-quality informa-
tion and the induced higher infection risk are often
missed.Although some recent studies start to pay atten-
tion to the negative side of information[30,46], they
mainly focus on empirical and/or simulation studies on
the epidemic consequences of rumor spreading rather
than theoreticallymodeling the underlyingmechanism.
In the SI-NLH model, we integrate both the positive
and negative sides of information and their interaction
mechanism, which provides a more unified view of the
coupled infodemic–epidemic dynamics.

According to the joint of the information and disease
status, the population in the SI-NLH model is divided
into six groups, namely the susceptible without infor-
mation (SN ), the susceptible with low-quality informa-
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Fig. 2 Coupled SI-NLH model and trajectories of infection
ratios generated under different information parameters a Illus-
tration of the six compartments and their interconnection within
the SI-NLH model. b Evolution of infection ratio for a vari-
ety of information parameters and initial conditions. Given the
benchmark trajectory of the infection ratio growth (bold red),
trajectories are plotted against a variety of modifications on the
model set-up, including (1) a decrease in the initial infection ratio
I (0) (dashed red); (2) decrease in the information transition rate
γ1 (black), γ2 (purple) and the decay rate β2 (light blue); (3)
high-quality information dominates the information dynamics,
β1 = 0 (green) and β1 < 0 (blue). (Color figure online)

tion (SL ) and the susceptible with high-quality infor-
mation (SH ), the infected without information (IN ),
the infected with low-quality information (IL ), and the
infected with high-quality information (IH ). The frac-
tion of the six groups and their dynamic transitions are
formally described via the following ordinary differen-
tial equation system and illustrated in Fig. 2a,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′
N = −γ1SN L(1−I )−γ2SN H(1−I )−bmSN I

S′
L = γ1SN L · (1−I )+SH (1−I )(β1L+β2)

−bh SL I (I+θ SL)−bmSL I (1−I−θ SL)

S′
H = −SH (1 − I )(β1L + β2) + γ2SN H(1 − I ),

I ′
N = −γ1 IN L − γ2 IN H + bmSN I

I ′
L = γ1 IN L+IH (β1L+β2)+bh SL I (I+θ SL)

+bmSL I (1−I−θ SL)

I ′
H = −IH (β1L + β2) + γ2 IN H

(1)

where the fractions L , H , I , and S satisfy the relations
that L = IL + SL , H = IH + SH , I = IN + IL + IH ,
S = SN + SL + SH , and I + SN + SL + SH ≡ 1.
Based on Eq. (1) and Fig. 2a, there are three classes
of parameters governing the SI-NLH dynamics, which
are (1) information parameters: γ = (γ1, γ2), charac-
terizing the rate of transition from No information to
Low- and High-information, and β = (β1, β2), the rate
of transition between L- and High-information; (2) the
transmission rates to disease b = (bm, bh) for suscep-

tible people under unawareness (bm) and panic (bh),
respectively; and (3) the panic parameter θ quantify-
ing the susceptibility to panic. For the convenience of
reading, a full list of the notations and meanings for
our model parameters and endogenous variables are
presented in Appendix Table 1.

For the three classes of parameters, we made the
following assumptions in order to reflect the real-
world interaction mechanism between infodemic and
epidemic spreading. First, for information parameters,
we suppose that information spreading is irreversible,
whichmeans the rate γ1/γ2 of N -type individuals trans-
mitting to L-/H -type is nonnegative. For the transmis-
sion between L-type and H -type, we let the sign of β1

characterize which direction of transmission is dom-
inant, a positive β1 implies the transmission from H
to L is prevalent, the negative β1 implies the contrary.
To capture the natural trend of the information decay
during propagation, we set a nonnegative rate β2 to
capture the transmission from H to L due to quality
decay. Second, for disease dynamics, we assume that
individuals with different types of information would
react differently to the disease, which leads to different
transmission rates. SH owns high-quality information
and tends to self-protect which leads to a low transmis-
sion rate, which is set to 0 for the sake of simplicity
(this assumption does not significantly affect the result
of this paper; we relax it in the supplementary mate-
rial and report the simulation results in supplementary
Fig. 2 in which SH is allowed be infected in a positive
rate bl that is lower than the rate of the S individu-
als with the other types of information). Because of no
information, SN is unaware of the disease and likely to
maintain their regular behavioral patterns, which yields
a middle-level transmission rate bm > 0. SL behaves
more complicatedly. On the one side, they intend to
ignore their information due to its low quality. In this
case, they behave as if being unaware of the disease,
yielding the transmission rate bm . On the other side,
the low quality might stimulate panic or other kinds of
irrational behaviors for SL , such as gathering in hos-
pitals and supermarkets, which leads to a much higher
infection risk bh � bm . Finally, panic during an epi-
demic crisis always results from the increasing infec-
tious cases and the self-exciting property that the more
people already in a panicmood, themore likely they are
to entail panic among the remaining people. Therefore,
we assume SL has the probability I + θ SL of turning
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to panic, where θ is the panic parameter measuring the
self-exciting degree of panic.

Based on the aforementioned model setup, the dis-
ease propagation following a SI model implies that as
t → ∞ the infection ratio I (t) would always con-
verge, while the limit ratio depends on the choice of
information parametersβ. As shown in Fig. 2b, the ulti-
mate infection ratio would almost always converge to
1, i.e., the entire population will be infected, provided
that β1 ≥ −β2, no matter where the dynamic system
starts. On the contrary, whenβ1 < −β2, the limit infec-
tion ratio is possible to be strictly less than 1, the limit
depends on both the initial condition and the parameter
β1 and β2. Especially, when the configuration is fixed,
the infection ratio increases with both β2 and β1. The
remaining information parameter γ , the transmission
rate, and the panic parameter have no impact on the
ultimate infection ratio, but would significantly impact
the convergence speed as shown in Fig. 2b. In partic-
ular, it can be proved that the temporal infection ratio
I (t) is monotonically increasingwith the parameter γ1,
β1, β2 and decreasing with parameter γ2 when all oth-
ers keep constant (Fig. 2b shows a few examples of the
general relation).

Figure2b shows a different perspective for thinking
of information governance during the early stage of
epidemic spreading. Once the heterogeneity of infor-
mation is introduced, it is no longer correct as claimed
in the literature [10–14] that more information can
help better contain disease outbreaks. The low-quality
information cannot help mitigate the infection risk, but
even increase the risk exposure of susceptible individ-
uals. The heterogeneity of information is neither static
nor external to the disease dynamics, but co-evolves
with it. This fact makes the underlying structure of the
information market extraordinarily important because
it shapes the propagation process and determineswhich
type of information will be prevalent and which type
will be thrown away. The information filtered by prop-
agation will feed back again to affect disease dynam-
ics. In the situation that β1 > 0 (the solid red line in
Fig. 2b) and/or β1 = 0 meanwhile β2 > 0 (solid green
line in Fig. 2b), an information market admitting free
propagation of all information typeswould intrinsically
squeeze out the high-quality information and gradually
make all people exposed to the rumors and diseases. In
this situation, government intervention in the informa-
tion market will become indispensable.

3.2 Government intervention in SI-NLP model:
classification and trade off

During the disease pandemic in the real world, such
as the pandemic of COVID-19, it is often the case that
information about the disease passes through a hierar-
chical network in the direction from the bottom to the
top. As to be discussed in later sections, such a network
structure and information flowdirectionmake informa-
tion quality decay inevitable which further stimulates
the outbreak of disease. Therefore, external interven-
tion from an independent third party is indispensable.
Government can intervene in the infodemic–epidemic
co-evolution process to achieve a lowultimate infection
ratio. However, it is not so easy for the government to
figure out the correct time and the correct intervention
methods. To better interpret the trade-off and dilemma
faced by the government, we theorize the role of gov-
ernment intervention in the SI-NLH model.

To be more concentrated, we focus only on the
interventionmeasures on information dynamics, which
means the government can only have an impact on the
values of the information parameters γ and β. This
assumption is reasonable as the transmission rates and
the panic parameter are determined essentially by the
virus and the cultural background of a society that is out
of control by the government. Without loss of general-
ity,we concentrate on two classes of intervention strate-
gies: (1) information injection strategy[52,53] and (2)
the blocking strategy[54,55].

Information injection and blocking impact the cou-
pled dynamics in different ways, which are summa-
rized in Fig. 3a. By injecting more high-quality infor-
mation into the public, the government can acceler-
ate the conversion of SN and SL to SH and avoid the
decayof high-quality informationH to L ,which lowers
the population-level transmission rate into infection,
resulting in that the infection ratio trajectory decreases
from the green-line level to the blue line level in Fig. 3b.
However, before the government can provide high-
quality information for the public, it takes time to col-
lect and preprocess tons of noisy information. The eas-
ier the government can collect highly accurate informa-
tion about the disease, the more effective the injection
can be, which implies the execution and effectiveness
of information injection rely on time and accumula-
tion of information and particularly the high-quality
information in the system. In contrast, by informa-
tion blocking, government controls the speed of infor-
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Fig. 3 Effect of blocking and information injection. (a, b) Illus-
tration of the mechanism that blocking and information injec-
tion influence the coupled infodemic–epidemic dynamics. Plot a
shows their direct impact on information parameters. Plot b illus-
trates their ultimate impact on the trajectory of infection ratio.
(c, d) Trade-offs incurred by delayed information injection and
blocking. Plot c reveals the decomposition of positive (A2) and
negative (A1) impact of delayed information injection on sup-
pressing infection ratio; plot d decomposes the positive (B1) and
negative (B2) impact induced by increasing the degree of block-
ing. (Color figure online)

mation spreading in the system, while does not have
to provide any processed information for the system.
Therefore, blocking can slow down the rumor spread-
ing which helps lower the population-level transmis-
sion rate to infection, resulting in the infection ratio tra-
jectory decreasing from the red line level to the green-
line level in Fig. 3b. However, on the other hand, with-
out extra information being provided, blocking cannot
stop the decay of high-quality information, while its
effectiveness does not depend on the execution time
and the accumulation of information in the system.

To formalize the difference between information
injection and blocking in the SI-NLH model, we
assume that the epidemic crisis breaks out at time t∗
since then the government decideswhether or not and to
what degree to inject and block information. The gov-
ernment made the intervention decision in an attempt
to minimize the cumulative impact of the epidemic cri-
sis by a decision time horizon T ∗ with T ∗ > t∗. To
reflect the time-dependence of information injection,
we assume it takes effect since a given injection time
τ ∈ [t∗, T ∗) and induces the increase in rate γ1 and
decrease in rate γ2, β1 and β2 during the time interval

(τ, T ∗] by the degree gτ = g(Hτ , Lτ + Hτ ) as shown
in Fig. 3a. To reflect the information dependence, we
let gτ = g(Hτ , Lτ + Hτ ) monotonically increase in
both the ratio of high-quality information Hτ and the
ratio of all informed individuals Lτ + Hτ . Since the
impact of information injection depends on the injec-
tion time τ via the degree function gτ , the government
needs to select the injection time so as to optimize the
intervention effect.

For information blocking, we suppose that it induces
the decrease in the absolute value of parameter γ1, γ2
and β1 to the degree s since the very beginning t∗ of the
epidemic crisis, but cannot affect the decay rate β2, as
shown in Fig. 3a. In addition, we suppose that blocking
can take effect only if it can be maintained for a while;
frequent changes in the blocking degree s would inter-
rupt the normal order in the information market and are
forbidden by assumption. Without loss of generality,
we assume the degree s of the information block is held
constant for the entire period from t∗ to T ∗. To general-
ize the scope of analysis, we allow the blocking degree
s to take zero and even negative values, which corre-
sponds to no blocking strategy the government does
not block any information at all and maintains the cur-
rent information spreading speed, and the “negative”
blocking strategies by which government attempts to
accelerate information spreading among the public.

Both information injection and blocking can gener-
ate positive and negative impacts on the control of the
final infection ratio, I (T ∗), at the decision horizon T ∗.
Figure3c and Fig. 3d sketch those conflicted impacts
in detail. In Fig. 3d, the effect of information injec-
tion depends on the injection time; a delayed injection
from τ to τ ′ > τ firstly induces a positive structural
effect associating with a greater gτ which leads to a
faster transition from SL/SN to SH and a lower ultimate
infection ratio, which is represented as the gap term A1.
On the other hand, as shown in Fig. 3c, the later injec-
tion makes the infection ratio grow in its original speed
during the period [τ, τ ′) that is faster than the speed
induced by injection at τ . Although the faster growth of
infectious cases is temporal, it increases the cumulative
infection ratio by time τ ′, which further increases the
transmissibility of the disease after τ ′ due to a greater
initial infectious population at τ ′. This negative tem-
poral effect is represented as the term A2 as shown in
Fig. 3c.

In Fig. 3d, the impact of blocking on I (T ∗) is also
decomposed into two conflicted parts. First, a positive
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structural effect that is purely attributable to the change
of information parameters, represented by the gap B1,
which slows down the transition to SL from SH and
SN , therefore suppresses the panic-induced infection
risk and lowers the overall infection ratio in the end.
Second, the negative injection effect, B2, by which the
decrease in information spreading speed would reduce
the portion of informed people, represented as Hτ and
Lτ +Hτ , for every time τ after the initial decision time
t∗ for blocking that further reduces the effectiveness of
information injection, gτ , and facilitate the growth of
ultimate infection ratio.

Note that the four marginal effects, A1, A2 and
B1, B2, are not separable in practice, combining
them together would disturb the coupled infodemic–
epidemic dynamics in a complicated way that induces
a joint trade-off effect for the government when facing
strategy selection.

3.3 Setups for synthetic analysis and model
calibration

We will numerically analyze the effect of both inter-
vention strategies on the final infection ratio for a
wide range of synthetic settings. For fixed initial deci-
sion time t∗ and decision horizon T ∗, we will cal-
culate the variation trend of the intervention effect
(measured by I (T ∗), the infection ratio at the end
of the decision horizon) along with the joint adjust-
ment of injection time τ and blocking degree s. We
let τ range within (t∗, T ∗) and let s vary within [0, 2]
such that the three information parameters are deter-
mined via γ1 = γ2 = β1 = s. We also test the
sensitivity of our analytic results against the change
of both t∗ and T ∗, for which the benchmark set-
ting is represented by the initial distribution of popula-
tion within the six groups (SN , SL , SH , IN , IL , IH ) =
(0.99, 0, 0.009, 0.001, 0, 0) and the decision horizon
T ∗ = 4 weeks (or 28 days). To capture the impact
of delayed t∗, we consider the delayed initial set-
ting by which we change the initial distribution to
(SN , SL , SH , IN , IL , IH ) = (0.93, 0.4, 0.02, 0.01,
0, 0)with a higher ratio of the infectious cases and both
low- and high-quality information holders. The worse
initial always associates with a delayed government
intervention (a greater t∗), as under delayed interven-
tion the infodemic–epidemic dynamics will be kept on
their original track to evolve for a longer time, which

leads to a greater infection ratio and a greater propor-
tion of both low- and high-quality information holders.
To capture the impact of a shorter decision horizon, we
consider the shorter-horizon setting where we shrink
T ∗ from 4weeks in the benchmark setting to 1week (or
7 days) in the comparison setting. Throughout all syn-
thetic set-ups above, the remaining model parameters
are kept constant.

To align our synthetic analysis with the real-world
infodemic–epidemic dynamics, we calibrate ourmodel
with the COVID-19 infection data reported in the earli-
est epicenter,Wuhan, China. The data collection period
is from Jan. 10 2020, when theWuhan government and
the CDC in China started the daily report of COVID-
19 infectious cases in Wuhan, to Jan. 24, 2020, when
Wuhan was officially locked down. There was not any
external intervention conducted within Wuhan during
these two weeks; therefore, the epidemic spreading
of COVID-19 can be approximately viewed as occur-
ring at its natural speed within this period. Counter-
factual analysis based on the model parameters trained
during this period can better reflect reality. Since the
entire population is susceptible to COVID-19[56,57],
N = 11 million, the official population size in Wuhan,
is taken as the base number to calculate the infection
ratio. Without loss of generality, we suppose that at
the initial time, all the initially reported 41 infectious
cases had no information regarding COVID-19, i.e.,
IL(0) = IH (0) = 0. Then, the initial ratio of low- and
high-quality information holders, SL(0) and SH (0),
together with four information parameters γ and β,
transmission rate bm and bh , and the panic parameter θ

are unknown and need to be calibrated with the infec-
tion data. To calibrate the unknowns, we suppose the
reported infection number at day t is a random num-
ber generated from the Poisson distribution with mean
parameter N · I (t); then, the unknowns can be trained
as the minimum of the square-sum loss function:

loss (SL(0), SH (0), γ, β, bm, bh, θ) =
∑

t

(I(t) − I (t; SL(0), SH (0), γ, β, bm, bh, θ) · N )2

(2)

where I(t) is the reported infection number at day t in
the data.

I (·; SL(0), SH (0), γ, β, bm, bh, θ) is the infection
ratio trajectory that solves the ordinary differential
equation system subject to the given set of parameters.
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Based on the calibrated model parameters, a set
of counterfactual analyses is carried out to detect
whether there exists an alternative information inter-
vention strategy that can help better contain the out-
break of COVID-19 in China. In the counterfactual
world, we still focus on the two classes of strategies,
information injection and information blocking. Simi-
lar to the synthetic setting, we consider the joint adjust-
ment of alternative injection time τ within the range
(t∗, T ∗) and alternative blocking degree s ranging from
0 to 2 such that the information parameters adjusted
by s are given by γ s

1 = γ̂1 · s, γ s
2 = γ̂2 · s and

βs
1 = sign(β̂1)|β̂1| · s where x̂ denotes the estimated

value of parameter x . For the adjustment of blocking, to
avoid the scale effect, we re-scale the blocking degree
s by the absolute value of the estimated information
parameters. Due to the potential negativity of β1, we
let sign(a) represent the sign of a and use the multi-
plier sign(β̂1)|β̂1| to preserve both scale and the sign
of β̂1. Also analogous to the synthetic setting, we con-
sider the impact of different decision time parameters,
(t∗, T ∗) = (0, 30), (0, 180), (30, 210), where the unit
of time is day and day 0 is naturally identified with the
initial reporting time, Jan. 10, 2020.

For both synthetic analysis and the counterfactual
analysis based on model calibration, the functional
form of gτ = g(Hτ , Hτ + Lτ ) is fixed as follows

gτ =
{

(|γ1|, |γ2|, |β1|, |β2|) · Hτ (Lτ +Hτ ), Lτ +Hτ>0.1

0, else

(3)

where · stands for the product between constant and
vector. The discontinuity in (3) captures the threshold
effect that without a sufficient amount of information
permeable in the system, the government even cannot
notice the existence of viral infection, nor is possible
to offer higher-quality information.

4 Results

4.1 Government decision complexity and intervention
dilemma

Figure4 presents the results of our synthetic analysis.
In Fig. 4, the complexity behind the government’s deci-
sion on the optimal intervention strategy emerges, from

Fig. 4 Joint effects of government intervention. (a–f) Variation
trend of final infection ratio I (T ∗) in response to the joint adjust-
ment of blocking s and injection time τ . The variation trend is
characterized through the gradient field of I (T ∗) with respect
to s and τ under fixed initial conditions. In a-f, the gradient

field ∇ = −
(

∂ I (T ∗)
∂τ

,
∂ I (T ∗)

∂s

)
is represented as the background

arrows. Plots a, d, b, e, and c, f associate with the simulation
result for the benchmark, delayed initial, shorter-horizon set-
ting, respectively. Throughout a–c, we give the heat maps of
I (T ∗), marking the value of I (T ∗) at each pair (τ, s) through
the darkness of background color. Throughout d–f, we mark,
by dark dots(curves), those (τ, s) satisfying ∂ I (T ∗)

∂s = 0 and
∂ I (T ∗)

∂τ
≥ 0. They are the steady states under the forward-looking

gradient field
−→∇ f = −

(
∂ I (T ∗)

∂τ
· 1

(
∂ I (T ∗)

∂τ
≥ 0

)
,

∂ I (T ∗)
∂s

)
by

which the injection time can only be adjusted forwardly; the
backward adjustment is not allowed. Restricting the adjustment
direction of injection time reflects the fact that the decision on
injection time is irreversible in time. (g–i) Aggregated infec-
tion ratios over different injection time τ against fixed blocking
degree s. The aggregated I (T ∗) is considered as the pay-off for
the government adopting action s at the initial decision time t∗
in the dynamical game discussed in the main text. The variation
in this pay-off against s is plotted in g–i with respect to vari-
ous aggregation functions, including the “max”,“min”, “mean”,
“median”, and “75-quantile” functions. g(/h/i) shares the same
set of initial conditions and initial decision time t∗ with a, d(/b,
e/c, f). Finally, in alignment with each aggregated pay-off func-
tion in g/h/i, the induced Nash equilibrium (NE) combinations
of blocking degree and injection time are plotted a, d/b, e/c, f.
(Color figure online)

which we witness quite a few interesting but counter-
intuitive phenomena as below.
Waiting period exists between the time when govern-
ment becomes capable of information injection and
the optimal injection time. The set of all steady states
under the forward-looking gradient field of I (T ∗) (dark
dots in Fig. 4d–f) are naturally clustered around two
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separated curves, where the horizontally straight line
on the left is locally attractive via the gradient field
(gray arrows in Fig. 4a–f). By the discontinuous design
of gτ in Sec. Method, the injection time τ ∗

1 associ-
ated with the right end of the horizontal dark line is
the earliest time when information injection can effec-
tively impact the disease dynamics. Apparently from
Fig. 4d–f, a gap exists between τ ∗

1 and the optimal time
τ ∗
2 associatedwith the red “X” in Fig. 4a–c (for easiness
of comparison, the red “X” is also marked at the same
location in Fig. 4d–f), where the red “X” represents the
globally optimal combination of blocking degree and
information injection time in terms of minimizing the
final infection ratio. Also remarkably in Fig. 4d, the
gradient field, projected to the dimension of injection
time, points away from τ ∗

1 to the right at τ ∗
1 and points

toward τ ∗
2 from the left at τ ∗

2 . This observation implies
government should wait and hold the information for a
gap period τ ∗

2 −τ ∗
1 , rather than release them to the pub-

lic immediately since releasing becomes feasible. The
existence of a waiting period contradicts to the com-
mon belief that the best strategy for the government is
to publish high-quality information as soon as possi-
ble. Although counterintuitive, the existence of a wait-
ing period is deeply rooted in the trade-off expressed
in Fig. 3c and d. No waiting period suggests an ear-
lier information injection which leads to an immediate
drop-down of the current infection ratio I (τ + �τ)

during the short time after injection (the gap between
the green and red line in the interval from τ to τ ′ in
Fig. 3c). A lower infection ratio at the later injection
time τ ′ would also shrink the risk of a further outbreak,
measured by the gap between the green line and red
line in the horizon time T ∗ in Fig. 3c. Therefore, the
delayed injection induces a negative A1 and a higher
final infection ratio. From this perspective, we can con-
firm the positive immediate effect of early injection
on containing virus outbreaks. However, on the other
hand, compared to injection after waiting, earlier infor-
mation injection cannot generate a substantial struc-
tural impact on the information propagation process
and hence has limited restriction on the virus outbreak
speed in the later time, leading to a positive A2 in Fig. 3c
and a greater final infection ratio. Such a negative struc-
tural effect offsets the positive immediate effect of early
injection and leads to an overall negative impact on the
final infection. The existing literature often neglects
the negative structural impact induced by earlier infor-

mation injection, leading to an over-optimistic attitude
toward the functionality of quick information release.
Government faces the dilemma between the optimal
strategy that minimizes the cost of its own mistakes
and the socially optimal strategy that minimizes the
final infection ratio.Figure4a also indicates a temporal
inconsistency in the joint decision of blocking degree
and injection time. In fact, the global optimality (the red
“X”) in Fig. 4a can be reached if and only if the follow-
ing latent assumption holds: (1) the decision of block-
ing degree ismade simultaneouslywith that of informa-
tion injection; (2) the government have complete infor-
mation on the form of injection function gτ . However,
none of the two conditions can really hold in practice.
The decision of blocking degree is always made ahead
of the injection time.Meanwhile, at the decision time of
blocking degree (t∗), the information in Fig. 4a regard-
ing how the degree would affect the effectiveness of
information injection at different future injection times
is completely absent for the government. The incom-
plete information induces a conflict. On the one hand,
the optimal injection time can reach its optimal con-
tainment effect if and only if the blocking can hold on
a fairly low level. On the other hand, given such a low-
level blocking, the infection ratio could be much worse
than that on a higher blocking level in case the real
injection time deviates from its theoretical optimum.
This uncertainty leads to a choice dilemma that can be
perfectly reformulated as a two-player dynamical game
with incomplete information, in which the first player
is the government at the decision time of blocking, t∗,
while the second player is the future government fac-
ing the decision of injection time. The pay-off matrix is
given by Fig. 4a, the vertical axis (blocking degree) cor-
responds to all feasible actions of player 1, and the hor-
izontal axis (injection time) corresponds to all feasible
actions of player 2. Player 2 has complete information
on the blocking degree taken by player 1 at its deci-
sion time; therefore, its pay-off is exactly equal to the
infection ratio colored in Fig. 4a, while due to incom-
plete information regarding the actual injection time of
player 2 at t∗, for every blocking degree s, the pay-off
for player 1 is only an aggregation of infection ratios
for all different τ s and the fixed s. If both the two gov-
ernment players behave rationally, the final decision on
blocking degree s and injection time τ should achieve a
Nash equilibrium (NE). In Fig. 4g–i, we plot the aggre-
gated pay-off for government at t∗ against the blocking
degree s under a variety of aggregation principles. The
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resulting Nash equilibrium joint decision on τ and s
is plotted in Fig. 4a–d. This game-theoretical interpre-
tation of the government decision dilemma provides a
different way to think of the failure of government in
the early-stage fighting with infectious diseases. Fig-
ure4d shows if government at t∗ is prudent and takes the
max aggregation, i.e., following thewell-known “mini-
max” decision principle[58,59], the optimal blocking
degree exactly coincideswith the degree under the local
steady states of the gradient field for small injection
time (the horizontal dark line in Fig. 4d), which is dis-
tant from the global optimal blocking degree associated
with the red “X” in Fig. 4a and d. In real-world catas-
trophes, such as the pandemic of SARS, H1N1, and
COVID-19, the “mini-max” principle is more likely to
be adopted for government decisions. Given a block-
ing degree s, the maximally aggregated infection ratio
provides an upper bound for the government’smistakes
in selecting injection time. The “mini-max” principle
attempts to minimize this upper bound, which is equiv-
alent to minimizing the responsibility of government.
In contrast, the global optimal intervention strategy is
equivalent to the Nash-equilibrium under the “mini-
min” principle, which might be optimal for the entire
society as it minimizes the final infection ratio. But
once the government makes mistakes in the second-
stage decision for injection time, the potential loss will
be giant. For instance, in Fig. 4g, at the blocking degree
s∗ associated with the minimum of the “min” curve,
the difference in the infection ratio between govern-
ment correctly and mistakenly selecting the injection
time can exceed 70% in the worst case (measured by
the difference between the “max” and “min” curves at
s∗ in Fig. 4g). Such a huge difference in infection ratio
means a giant cost for the government’s mistake, which
is not affordable for the government in the initial deci-
sion timing t∗. Consequently, the optimal intervention
strategy in the views of government has the natural
tendency to deviate from the global optimal strategy,
which partially explains the universal loss of control of
the COVID-19 pandemic by the central government in
most major countries around the world, such as China,
USA, Italy, Great Britain, and the like.
Delayed initial decision time t∗ relieves government
dilemma but leads to a much higher infection ratio.
Compared to Fig. 4a, d and 4g, government decision
under a delayed initial time t∗ is plotted in Fig. 4b,
e and 4h. Due to the delay, there are more infectious
cases andmore low-quality information holders in soci-

ety at the beginning. In the real world, it always takes
time to figure out the occurrence of the crisis; hence,
government can never be in a decision position until
the outbreak has lasted for a while. Figure4b, e and
h captures the challenges in the delayed decision set-
ting. Comparing Fig. 4b and e with Fig. a and d, sev-
eral structural changes of the gradient fields can be
observed. First, the waiting period is even prolonged
under the delayed t∗, reflecting that given more infec-
tions and more low-quality information holders, the
structural impact of information injection captured by
A2 in Fig. 3c becomes even more prevalent compared
to the effect of A1 on the immediate reduction in infec-
tion number. On the other hand, the temporal incon-
sistency between the decision of blocking degree and
injection time gets weakened in the delayed case which
reflects as the difference shrinks between the pay-off
for government at t∗ under different aggregation meth-
ods (in Fig. 4h), as well as the fact that the red “X” in
Fig. 4b and e is getting closer to the Nash-equilibrium
strategies under the other pay-off aggregationmethods,
especially under “mini-max” principle. The decreas-
ing temporal inconsistency reduces the uncertainty and
the cost of making mistakes faced by government and
makes the decision on blocking degree much easier.
But the subsequent side effect is significant as well; the
minimal infection ratio in Fig. 4b is much higher than
that in Fig. 4a, reflecting by the different scale of the
color bar associated with Fig. 4a and b, respectively. In
Fig. 4a, the global minimal infection ratio can be main-
tained below 20%, while in Fig. 4b, the global minimal
infection ratio exceeds 90% which is 70% higher than
that in the former case.As theworse final infection ratio
results from the corresponding initial condition induced
by the delayed t∗, the comparison between the first
and second column of Fig. 4 reveals a social dilemma
faced by government. On the one hand, a delayed t∗
can help reduce the inconsistency between the optimal
strategy for government measured by minimizing the
cost ofmakingmistakes and the optimal strategy for the
entire society measured by minimizing the final infec-
tion ratio; hence, government may prefer to delay so as
to reduce the difficulty of making the correct decision.
However, on the other hand, a delayed t∗ would make
the “consistently optimal” strategy no longer “good”
via significantly rising up the final infection ratio and
causing more social welfare loss.
Shortening decision horizon T ∗ relieves government
dilemma at the cost of a much higher infection ratio.

123



22066 X. Zhang et al.

Similar to delaying t∗, Fig. 4c, f and 4i shows that the
variation on the decision horizon T ∗ can also signif-
icantly impact the trade-off between the difficulty of
government decision and social optimal infection ratio.
Compared to Fig. 4a, the decision horizon T ∗ in Fig. 4c
is compressed from 4 weeks to only 1 week. The sever-
ity of the dilemma is also reduced in terms of the differ-
ence in optimal blocking degree under different aggre-
gation principles. In Fig. 4f, the difference in the opti-
mal blocking degree under the “mini-min” aggregation
principle and under the “mini-max” aggregation princi-
ple is 0.35, which is significantly lower than the differ-
ence (0.54) in Fig. 4d.Meanwhile, the optimal blocking
degrees in Fig. 4f under different aggregations are uni-
versally lower than those in Fig. 4d, reflecting that the
horizontal dark line in Fig. 4f is uniformly below that in
Fig. 4d. In the other words, viewed in a shorter horizon,
a lower final infection ratio can be achieved via a much
freer information environment, which agrees with the
widely held belief on that free information propagation
suppresses disease spreading[51]. But if we compare
the relative position of two red “X”s and the associated
infection ratio in Fig. 4a, a novel temporal inconsis-
tency appears. The global optimal strategy viewed in
a shorter decision horizon T ∗ leads to an extraordinar-
ily high infection ratio (> 80%) when the horizon is
extended. In fact, a freer information environment helps
sharply rise up the proportion of high-quality informa-
tion holders in the short run, which reduces the infec-
tion ratio within this group. But in a longer horizon, if
the trend of information decay is not reversed, “hold-
ing high-quality information” is only a temporal status.
As time passes away, the initially high-quality infor-
mation holders will ultimately decay into low-quality
information holders, which significantly enlarges their
infection risk. This observation implies that the deci-
sion horizon is critical to the effectiveness of optimal
intervention strategies. If the government ismyopic and
puts overweight on containing the disease outbreak in
the short run, it is likely to be misled by the myopic
preference and make the wrong decision that causes
huge social welfare loss viewed in a relatively longer
time horizon.

Fig. 5 Response dilemma during real-world pandemics (a–c)
Heat maps of the final infection ratio I (T ∗). The heat map
sketches the joint trade-offs faced by the Chinese government
when dealing with information control during the COVID-19
pandemic. aBenchmark settingwhere the blocking decision tim-
ing t∗ is set as the initial time of the data, i.e., Jan. 10, 2020,
the decision horizon T ∗ is 30 (days), i.e. one month. b Deci-
sion under a longer horizon with (t∗, T ∗) = (0, 180). c Deci-
sion under delayed initial decision time and longer horizon with
(t∗, T ∗) = (15, 195). Plot b, c reveals the impact of the varia-
tion of t∗ and T ∗ on government choice dilemma. Plot d sketches
the evolutionary trajectories of the fractions I , SN , SL , and SH
during the first 180 days under calibrated model parameters and
under the globally optimal intervention strategies in a and b,
respectively. All the counterfactual results in a-d are calculated
on the basis of the calibrated model parameters. The estimated
information parameters γ̂1 = 1.76, γ̂2 = 0.63, β̂1 = −2.16, and
β̂2 = 1.23, the transmission rate b̂m = 0.02, b̂h = 2.94, the
panic parameter θ̂ = 0.97, and the initial ŜL (0) = 5 × 10−6,
ŜH (0) = 1.3× 10−3. Based on calibration results and the coun-
terfactual set-ups, the government intervenes in the infodemic–
epidemic dynamics via information blocking and injection, and
the execution of intervention strategies is identical to that in the
synthetic case discussed in Fig. 4. (Color figure online)

4.2 Case study of COVID-19 pandemic in mainland
China

The model calibration result and the counterfactual
analysis based on calibration are reported in Fig. 5,
which provides us with some new insights into the
dilemma that are not covered in the synthetic settings,
but the government has to face in the real world.

Completely blocking information spreading is the
universally optimal strategy for the Wuhan govern-
ment under myopic decision horizon. Surprisingly
from Fig. 5a, the Chinese government didn’t face to the
dilemma if there is nodelay and the decision horizon T ∗
is set to 30 days. The optimal blocking should be imple-
mented to its strongest degree, i.e., cut off all contacts
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that spread information regardingCOVID-19 nomatter
whether or not the information content is high quality.
Meanwhile, the optimal injection time is zero, i.e., no
information injection at all. Remarkably, such a combi-
nation of blocking degree and injection time is univer-
sally optimal for all different ways of aggregating the
intervention pay-off. Especially, the “mini-min” and
“min-max” principles agree with each other. This sur-
prising result can be explained through the difference
between the transmission rate under different informa-
tion statuses ( b̂h/b̂m ≈ 300) and the high conversion
rate to low-quality information from no information
state (γ̂1 = 1.76), as well as from information decay
(β̂2 = 1.22). In fact, the high ratio b̂h/b̂m implies panic-
induced infection is the dominant driving force for the
accumulation of infectious cases. Since panic happens
to and only to low-quality information holders, then a
high-conversion rate from the other information status
to low-quality statusmakes thewhole population suffer
from a high risk of panic-induced infection. Compar-
atively, the infection risk due to no awareness is rela-
tively low. Consequently, the optimal strategy for the
government is to keep everyone unaware ofCOVID-19,
in exchange for a low transmission rate b̂m .

Government dilemma appears as the polarized opti-
mal intervention strategies under different decision
horizons. The “keeping unawareness” strategy is only
temporally optimal. If the decision horizon T ∗ is
extended 180 days (Fig. 5b) and/or the initial decision
timing t∗ is delayed (Fig. 5c), a restriction-free infor-
mation environment should be maintained under the
optimal, and the optimality is concurred by all dif-
ferent aggregation principles in Fig. 5b and c, espe-
cially by both the “mini-max” and “mini-min” prin-
ciples. Also remarkably, if the optimal blocking under
a 30-day horizon is actually executed, the final infec-
tion ratio viewed under the 180-day horizon is ter-
ribly high (>60%) which is more than 60% higher
than the infection ratio reached by the optimal strat-
egy under the 180-day horizon, no matter whether the
initial decision is delayed. These observations suggest
that in the real world, the choice dilemma that the Chi-
nese government faces no longer comes from the incon-
sistent temporal decision induced by different aggre-
gation principles and different risk preference behind
government decision, but arise from the temporally
inconsistent effect of the same set of strategy viewed
from different time horizons. The temporally inconsis-

tent containment effect is deeply rooted in the com-
plexity of the coupled infodemic–epidemic dynamics.
Comparing the half-a-year horizon with the one-month
horizon, the difference in the optimal blocking degree
comes mainly from that in the one-month case, due to
the low initial amount of infectious cases, the disease
dynamics are mainly driven by the high transmission
rate b̂h for low-quality information holders. But as time
pass away, as shown in Fig. 5d, the infectious cases
keep accumulating; meanwhile, the number of healthy
low-information holders is decreasing (reflected as the
decrease in the blue lines in a later time inFig. 5d); in the
second stage of disease dynamics, the infection will be
mainly driven by the infection of healthy but unaware
individuals (reflecting as the sharp decrease in the dash
yellow line accompanied with the sharp increase in the
dash red line in Fig. 5d). The switch of driving force
increases the effectiveness of free information propa-
gation and information injection while suppressing the
effect of blocking,whichmakes government once again
face a dilemma between myopic decisions versus long-
horizon decisions. As documented in the literature of
behavioral economics and psychology, human beings
are naturally inclined to over-weigh the current loss
and pretend to be blind to the loss that happened in
the longer future[60–62]. On the other hand, making
decisions for a longer horizon is a much more compli-
cated task that needsmore information to overcome the
increaseduncertainty.At the initial decision time, infor-
mation is too limited to support such a longer-horizon
decision. Therefore, driven by both the myopic pref-
erence and initial information limitation, government
when facing the contradicted optimal strategy in Fig. 5a
and Fig. 5c is more likely to select the short-run opti-
mal strategy in Fig. 5a, rather than the long-run opti-
mal in Fig. 5c, which makes the society suffer from a
much higher infection ratio. In the real world, the ini-
tial reaction of the government in the epicenter,Wuhan,
followed exactly the myopic optimal strategy, it did
not disclose any information to the public, meanwhile
hid all key information regarding the transmissibility
of COVID-19 and prohibited the public discussion on
the internet. As known, this short-run optimal reaction
leads to the outbreak of COVID-19 in China. The evi-
dence of Wuhan demonstrates that the myopic deci-
sion mode and the induced inaccurate evaluation on
the long-term infection ratio form a driving force to
mislead the government’s choice of the correct inter-
vention strategy and cause severe social welfare loss.
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The same logic applies as well to understand the failure
of many other countries in selecting the correct inter-
vention strategy during the early-stage containment of
COVID-19, such as the USA.

4.3 Fighting with government dilemma from the view
of network

In the aforementioned analysis, the dilemma faced by
the government relies on information quality decay,
i.e., β1 > 0 and/or β2 > 0. To verify this premise,
in this section, we present an example network struc-
ture through which fast information decay is unavoid-
able. Meanwhile, we discuss the potential re-structure
of the network that helps relieve the government from
the dilemma. We let the information dynamics occur
through a hierarchical network; the network topology is
illustrated in Fig. 6a. The key assumption regarding the
information dynamics is that every node, when receiv-
ing information from the others, updates his/her own
quality level via the weighted sum of the quality of
all received information with the weight of each deliv-
ery node determined by their out-degree (a rigorous
mathematical formulation of propagation mechanism
is provided inAppendix). The out-degree of every node
provides a measure of its influence on the information
propagation process, which is a widely used assump-
tion in the literature[63,64] of propagation dynamics,
such as the virtual dynamics behind the calculation of
the renownedPageRank [65]. Thehierarchical network
topology is quite realistic in describing information
propagation during the pandemic because, unlike the
propagation of general news, the government always
plays a central role in the propagation of disease-related
information. The extraordinary influence of govern-
ment on the propagation process naturally leads to an
inequality between itself and the public, resulting in
the hierarchical structure of the network. We show in
Fig. 6c and 6d that in a hierarchical network, the overall
quality level of the system is hyper-sensitive to both the
number of layers in the hierarchy and the distribution of
the source information holders. If the source informa-
tion holders are on the top level, i.e., the government
itself holds the source information, the quality level
of the whole system can be maintained at a relatively
high level which corresponds to a low infection ratio
in the end. But the increasing number of layers lying
between the government and the bottom-layer public

would offset the advantage of the government holding
source information as shown in Fig. 6c, reflecting the
importance of a flattened management structure dur-
ing a disease pandemic. On the contrary, if the source
information is held by some nodes at the bottom lay-
ers (i.e., the individuals), the quality level would decay
very fast, as shown in Fig. 6d. This result suggests that
in a hierarchical societywhere information propagation
channels are by and large shaped by the hierarchical
social structure, the coupled dynamics of information
quality decay and infectious disease outbreak would
be accelerated. This finding reveals a deep connection
between the structure of a society and its vulnerabil-
ity to infectious diseases. To restrict the negative effect
of the hierarchical network on the infodemic–epidemic
dynamics, we suggest as in Fig. 6b that (1) strengthen-
ing the links from source information holders to the top-
layer government; (2) cutting off those links that do not
affect the connectivity of the entire networkmeanwhile
can reduce the number of loops in the network (deloop).
Combining (1) and (2) can significantly decelerate the
coupled dynamics of information decay and disease
outbreak (see Fig. 6e). Method (1) is equivalent to set-
ting a direct warning system for risky infectious dis-
eases, which helps flatten the hierarchical structure and
reduce the quality decay during propagation from the
bottom to the top. Although such a warning system
has been established in most major countries around
the world, as we have seen during the pandemic of
COVID-19, it fails inmost countries to send an effective
warning signal to the central government. The failure
can be partially explained by the absence of the second
method, deloop. In fact, the existence of loops speeds
up the propagation of low-quality information.Without
a deloop, a direct warning system can only guarantee
that the government can receive information with very
high quality in the very beginning; it has nothing to do
with the information quality decay via rumors circulat-
ing around loops. Consequently, the information decay
might be delayed to some extent as shown in Fig. 6e, but
it is ultimately unavoidable together with a very high
infection ratio at the end. This suggests the importance
and complexity of information management during a
public health crisis, such as the pandemic of COVID-
19.

The effectiveness of deloop and the connection
between information circulating over loops and its
quality decay also inspire us to re-think the relation-
ship between critical public health events, such as the
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Fig. 6 Information dynamics on a hierarchical network and the
effect of deloop. a Example of the hierarchical network structure
(with three layers). The number of nodes in each layer increases
along with a rank decrease in the layer within the hierarchy.
Nodes in the top 2 layers are extraordinarily influential to those
in the next-level layers (reflecting as the thick arrows pointed
downward from the high to the lower layers in a), but nodes in
the bottom layer only have weak influence on each other and a
much weaker influence to the nodes in the top 2 layers (reflect-
ing as the thin arrows within the third layer and pointed upward
from the third layer in a). Such a hierarchical network struc-
ture captures the information propagation mechanism among the
central government (top layer), local government (intermediate
layer), and the public (bottom layer). At the bottom layer, the
red dot represents the source information holder at the initial
time. Due to the lack of a direct link from the source to the cen-
tral government, it takes much more time and more quality loss
before the information can be delivered to the central government
and passed to the public. The time and quality loss facilitate the
rumor spreading via the low-layer links and loops within the
bottom layer. b Illustration of how direct warning system and
deloop can reshape the network structure and affect the decay
process. The direct warning system works as adding an arrow
pointing toward the top from the information source, while the

deloop works as cutting off all links that facilitate loop formation
within the bottom layers. Deloop together with a direct warning
system makes the resulting network a four-layers hierarchical
network, where the top layer is replaced with the source infor-
mation holder. The renewed network structure stops the decay as
shown in e. (c–d) Trend of quality decay and infection growth
within a hierarchical information network with a different num-
ber of layers and different initial assignments of source infor-
mation. The number of nodes in c and d is fixed to 1000, the
number of layers varies from 3 to 7, and the link structure of the
network is given by a random weighted adjacency matrix with
the out-degree weight distribution determined by the real out-
degree distribution of the follower-ship network on Weibo, the
biggest Chinese online social media. In c, the source informa-
tion is always assigned to the unique top-layer node, while in d
assigned randomly to one node in the bottom layer. e Effect of
deloop on mitigating the trend of quality decay and infection. To
measure the degree of deloop, we set a parameter d ∈ [0, 1]. In
e, deloop works as changing the entry weight of the adjacency
matrixW bymultiplying d withWi j for those i js that form loops
in the network. d = 1 means no deloop, d = 0 implies complete
deloop described in b. For robustness, the simulation result in c–
e is averaged over 100 realizations for each fixed setting. (Color
figure online)

COVID-19 pandemic, and the booming of social media
in the current era. In fact, the development of online
social media, such as Twitter and Facebook, extremely
extends the freedom of individuals to join the informa-
tion propagation process, making it possible to freely
announce personal opinions to the whole world for
every single person. Social media adds tremendous
loops to the underlying information network; these
added loops might be good for society without con-
cerning the pandemic of infectious disease. But in the
special time of the COVID-19 pandemic, they may
enlarge the risk of information decay and rumor pre-
vailing, which ultimately facilitates the spreading of

COVID-19. Therefore, the discussion in this section
points out a severe conflict between the increasingly
free information environment and the enlarged risk of
loop-forming and the COVID-19 pandemic, which is
rarely mentioned in the literature and should be put
more attention in future studies.

5 Conclusion and discussion

5.1 Summary of major findings

This study sophisticates the “remedy and overkill”
response dilemma by modeling the effectiveness of an
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intervention that is restricted by information dynam-
ics. To quickly release high-quality information to the
public and maintain the overall quality level of infor-
mation among the public, the government needs a fast-
propagation information market to accelerate informa-
tion collection and pre-processing, while that increases
the risk of faster quality decay and rumor prevalence.
A more restricted information market can definitely
reduce the risk of rumor-induced panic, but it also
reduces the space for high-quality information which
will make it less likely for the government to gather and
release high-quality information. The trade-off on the
information propagation speed traps the government
into a choice dilemma, a restriction-free information
market may lead to a higher risk of panic-induced-
infection in a short time, while a restricted informa-
tion market compresses the chance of the government
releasing high-quality information and increase the risk
of long-run infection.

Facing this choice dilemma, the government has the
motive to delay the intervention decision and pretend
to be “blind” of the diseases pandemic, as the sever-
ity of the dilemma is declined as the infection ratio
has already reached a fairly high level; meanwhile, the
overall information quality level in the system becomes
stable. The less severity of choice inconsistency means
that delayed intervention will incur fewer criticisms
which might be optimal for the government but deviate
away from the social optimal as it induces a significant
rise-up in the long-term infection ratio. Therefore, one
extra social dilemma arises for the government between
the politically optimal and socially optimal intervention
timing.

Similar to delayed intervention, a myopic decision
pattern can also reduce the severity of the choice
dilemma faced by the government, because the dis-
ease dynamics might be driven by completely differ-
ent forces in a relatively shorter horizon in contrast to
in a longer horizon. Then, the reduced decision dif-
ficulty leads to “mistake” intervention strategy and a
much greater final infection ratio and social welfare
loss. We remark that compared to delayed interven-
tion, a myopic decision might be riskier for the treat-
ment of a public health crisis, such as the pandemic of
COVID-19. It has been widely studied in psychologi-
cal literature [60–62] that people are more likely to put
overweight to the current and/or short-period loss than
the long-period yield when facing cross-period deci-
sion under uncertainty. Therefore, the government is

naturally inclined to be a myopic decision maker when
facing the pandemic of viral infection and prefers the
intervention strategy that is optimal for a short horizon,
despite its detrimental ex-post loss viewed in the long
horizon. This fact also explains the real-world failure
of early-stage containment of viral infections, such as
SRAR,H1N1, and themost recentCOVID-19, formost
major countries around the world.

Limitations and future studies

This paper has some limitations. First, we only focus
on the information intervention. In the real world,
there existmanyother non-pharmaceutical intervention
(NPI) strategies, such as social distancing and condi-
tional quarantine [38], which are not considered in this
study. To this point, we claim that most parts of the
decision dilemma discussed in this study still apply to
the other NPI strategies because the effectiveness of
NPI strategies is also time-dependent and/or informa-
tion dependent. In fact, both the NPIs and information
injection attempt to convert high-susceptible individ-
uals SN/SL to low-susceptible SH so as to lower the
population-level transmission rate into infection[66].
Information injection requires the government to own
high-quality information before announcement which
takes time and positively depends on the ratio of
informed people L + H and high-quality informa-
tion H . NPI strategies are effective only if the public
chooses to cooperate [67,68]; the cooperativeness of
the public also takes time and increases with the infor-
mation amount (L + H ) and quality level H . Hence,
NPIs can be identified with information injection as a
special type of information intervention in our frame-
work; the choice dilemma government faces between
blocking and injection holds for NPIs as well. Second,
the findings of this study apply to the early stage of an
epidemic crisis. As time passes away, the public will
ultimately get sufficient information about the disease
when the difference between the different information
groups and their behavioral responses would disappear.
At that stage, the infodemic may no longer be a great
concern. However, on the other hand, we want to high-
light that even though the trade-off of information inter-
vention matters only for a relatively short period, its
induced social–economic impact could be long lasting;
therefore, its importance should not be neglected.
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The current study can also be extended in the follow-
ing directions. First, we focus only on the single direc-
tion that low-quality information could induce panic
and higher infection risk. But reversely, the panic and
fear of the disease can also impact the informationprop-
agation process and change the relative speed of prop-
agation for different types of information. This kind
of two-way feedback between information and disease
dynamics induced by panic should be added into con-
sideration. Second, combining the coupled dynamics of
information and disease with an adaptive network has
attractedwide attention [4]where nodes can select their
local link structure of the information network or the
infection network in adaptive to the change of infor-
mation or infection status. In summary, we proposed
a novel model to explain the deep systematic failure
rooted in the information/behavioral heterogeneity and
its induced dilemma behind government intervention
decisions onCOVID-19. The study highlights the com-
plexity, information heterogeneity, and disease dynam-
ics and thus calls for more collaborations from social
science and global health experts to help countries in
designing more effective crisis management systems.
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Appendix A: Notation list

Appendix B: Information propagation and decay in
network

The information propagation (decay) dynamics con-
sidered in this study is essentially the virtual dynamics

behind the calculation of Page Rank [65]. To describe
the dynamics on a given network, we firstly define
ζ ∈ [0, 1] as the initial quality level of information
for source information holders, δ ∈ (0, 1) as the one-
period decay rate of information quality, and η ∈ [0, 1]
as the quality threshold for individuals such that the i th
individual will be classified into H at time t iff at t its
information quality level ζt,i > η, classified into L iff
0 < ζt,i ≤ η, and classified into N if ζt,i = 0. Given
a network represented by its binary adjacency matrix
W , the evolution of information group size N , L , and
H is governed by the following propagation dynamics
on network W , where at time t = 0, randomly select a
set of individuals I∗

0 ⊂ {1, . . . , n} as the source infor-
mation holders and assign them with the information
with quality ζ , which yields an n dimension vector ζ · I0
where I0 is a binary-valued vector with all entry j ∈ I∗

0
taking the value 1 and the other entries taking the value
0. Then, for each time t > 0, the information quality
ζt,i for the i th individual is determined inductively via
the following updating rule:

ζt,i = δ

n
·
〈

rand

(
Wi,·

〈W̃i,·, ζ+
t−1〉

)

, ζt−1

〉

(4)

where 〈·, ·〉 is the inner product of two vectors, ζt is the
vector formed by (ζt,i , . . . , ζt,n), ζ

+
t is the binary vec-

tor derived from ζt inwhich all the entry j with ζt, j > 0
takes value 1, the other entries are 0,Wi,· is the i th row
vector of matrixW . rand(V ) is a random binary vector
drawn from the probability vector V = (V1, . . . , Vn)
(Vi ≥ 0 and

∑
i Vi = 1) where the i th entry take

value 1 in the probability Vi . W̃ is the matrix derived
from W via W̃ = diag(W · 1n)−1W where 1n is the
n-dimensional vector with all entries taking value 1,
diag(·) is the operation that converts an n-dimensional

Table 1 Notations in SI-NLH model

Types Notations Meaning

Endogeneous
variables

SN The group of susceptible
individuals without information

SL The group of susceptible
individuals with low-quality
information

SH The group of susceptible
individuals with high-quality
information
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Table 1 continued

Types Notations Meaning

IN The group of infected individuals
without information

IL The group of infected individuals
with low-quality information

IH The group of infected individuals
with high-quality information

I The group of infected individuals

S The group of susceptible
individuals

N The group of individuals without
information

L The group of individuals with
low-quality information

H The group of individuals with
high-quality information

Parameters γ := (γ1, γ2) the rate of transition
from group N to L and H ,
respectively

β := (β1, β2) the rate of transition
from between group L and H

b := (bm , bh) the rate of
transmission to disease for
susceptible individuals under
unawareness (bm ) and panic (bh)

θ Proportion of individuals being
panic within the group of
susceptible

vector to a diagonal matrix with the diagonal entries
identified with the input vector. The constructions of
W̃ and ζ+

t imply that under the information propaga-
tion dynamics (4) the information quality of individual
i at time t is the natural decay rate δ times a weighted
average of information quality of its network neigh-
bors according to the relative network influence of each
neighbor measured by their out-degree. The influence-
based information propagation mechanism is widely
used in literature [63,64]. From ζ t , the fraction of N ,
L and H can be calculated easily via comparing each
ζt,i and the threshold η as discussed before.

Given the information dynamics on a subtly struc-
tured network, the disease dynamics are still simulated
based on the assumption of a well-mixed population. In
the other words, the conversion from SN , SL , and SH to
I still follows equation (1). In the agent-based simula-
tion, this conversion is equivalent to updating a binary
vector It that stores the infection status of every node

for every time t , and can be realized via the following
steps given the initial I0:

Step 1: Given node i , if i has been infected, directly
continue to node i + 1; otherwise, randomly
match i with another node j ∈ {1, . . . , n} and
j �= i .

Step 2: If j has not been infected, directly continue to
node i + 1; otherwise, determine the informa-
tion status of i according to ζt,i and η.

Step 3: if i is in SH , directly continue to node i +
1; if i is in SN , update i’s infection status to
It,i = 1 by the probability bm ; if i is in SL ,
randomly assign bh to i in the probability of
∑

l=1n It−1,l+θ
∑n

l=1 1(ζt,l<η)

n ; if bh is assigned to
i , update i’s infection status to It,i = 1 by bh ,
otherwise, update i’s infection status to It,i =
1 by bm .

The three-step algorithm will be used to generate the
infection ratio in Fig. 6c – 6e.
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