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Abstract In this work, a simulation model of a vibra-
tory conveying system is presented. The simulation
model is based on a continuous contact formulation in
vertical direction which is extended by a friction force
in horizontal direction to simulate a conveying process.
In contrastwith complex 3D simulation tools, it enables
the understanding of previously unexplained phenom-
ena such asmultiple feeding velocities at the same exci-
tation amplitude, which are observed in practical mea-
surements. The parameters that have an influence on
this effect are investigated, and a method for predict-
ing and adjusting the occurrence ofmultiple solutions is
developed. It is shown that the calibration of the system
is very difficult in practice, as it depends significantly
on the initial conditionswhich are difficult to reproduce
and predict. It is also shown that the system can exhibit
chaotic behavior in some configurations. These chaotic
states are shown with the simulation model by means
of parameter studies, and the point at which the system
becomes chaotic is predicted with the method of Lya-
punov exponents and fractal dimensions.Knowledge of
the chaotic states can be used to calibrate the conveyor,
as they depend only on the excitation and not on the
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initial conditions. The interdependencies of the initial
conditions are also discussed in more detail. Therefore,
this work provides a deeper understanding of complex
conveying processes using a simple simulation model.

Keywords Vibratory conveying systems · Nonlinear
dynamics ·Non-smooth systems ·Mechanical contact ·
Chaotic systems · Sensitivity analysis

1 Introduction

In modern automation industry, vibratory conveying
systems play a crucial role. Therefore, the performance
of these systems becomes more and more important.
As a main tool to improve these processes, dynamic
simulation can be used. However, there are many open
questions in conveying processes that are difficult to
answer even with 3D simulation models. In particular,
an effect has been observed inmeasurements where the
parts are transported with different conveying speeds
although the excitation of the conveyor is the same. Fur-
thermore, trajectories are observed that suggest chaotic
behavior. The major challenges addressed in this paper
are the description of these effects and the interpreta-
tion of the results; especially, the transferability of the
results into practical application is of high importance.
Therefore, remarks about this transferability are given
throughout different sections.

The design of linear feeding systems in indus-
trial automation is mostly based on experimental
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results. However, this leads to a number of problems
because many effects of the complex feeding pro-
cess are not understood. Therefore, simplified calcu-
lation approaches were developed, e.g., in [1,2]. In
[3], a numerical simulation model is presented which
describes the feeding process with a discrete element
method. A main challenge in modeling a conveying
process is the contact between part and conveyor. In
[4], a contact model for rigid bodies is developed
which allows to model this contact with different types
of damping and stiffness. The implementation of the
contact model is based on the fundamentals of con-
tact mechanics in [5,6]. The work of Czubak in [7]
explores alternatives for a vibratory conveyor by uti-
lizing a cost-effective electro-vibrator. This conveyor
is able to efficiently transport small, loose materials at
varying speeds and can also temporarily halt material
flow without shutting down the drive. The analysis and
simulation results of the conveyor’s performance are
encouraging and pave the way for additional laboratory
testing. In [8], a new vibratory conveyor is investigated
that focuses on precise material dosage. Its transport
abilities in the resonance zone are analyzed using ana-
lytical and simulation methods. Furthermore, an opti-
mal operating point is determined through simulation
and verified with an industrial conveyor. Regarding the
vertical component of a conveying process with a sim-
ple point mass, it is obvious that this has the same
characteristic than the so-called bouncing ball problem.
This problem is treated in [9–12], and many dynamic
effects as period doubling or bifurcation are analyzed.
More general investigations of nonlinear dynamic sys-
tems are presented in [13,14] and [15]. In [16], the non-
linear dynamic of ultrasonic transducers with impact
contact is analyzed which is very close to the problem
in this work.

A very complex field of nonlinear systems is the
chaos research [17,18]. Chaotic states can also occur
inmechanical systems, for example, in connectionwith
liquid pumps [19,20]. In [21], the chaotic dynamics of
repeated impacts in vibratory bowl feeders are treated.
A stability analysis of a vibratory feeder and differ-
ent states of motion is performed in [22]. A main
challenge is to predict the states in which the system
shows chaotic behavior. Therefore, many methods are
developed, e.g., the Lyapunov exponent [23]. A further
method to evaluate chaotic systems is fractal dimen-
sions. These are known from the analysis of geome-
tries, e.g., the Sierpinski triangle [24]. An extension

to dynamical systems is presented in [25] where the
change of the fractal dimension in time is evaluated. An
overview of different methods to compute and evaluate
fractal dimensions is found in [26,27]. In [28], meth-
ods for evaluating stability and chaos are analyzed in
general. However, the importance of neural networks
and machine learning has increased recently. In [29],
an artificial neural network is trained that could dis-
tinguish chaotic and regular dynamics. The superiority
over traditional methods and the robustness to varying
control parameters is shown. In [30], the algebraic and
spectral properties of horizontal visibility graphs asso-
ciated with periodic and chaotic time series are investi-
gated. In this work, measures for the quantification of
the chaoticity of the process are investigated.

In Sect. 2, a reduced simulation model is presented
that describes a point mass which is conveyed on a
rigid plate. The contact between point mass and con-
veyor is modeled with a continuous contact formula-
tion. The couplingwith the horizontal direction for sim-
ulating the conveying process is representedwith a fric-
tion force. A special feature of the simulation model is
that the point mass switches between flight and con-
tact phase. The solution of the non-smooth differential
equation is performed using time integration.

A main effect observed in measurements of con-
veying processes is the occurrence of multiple feeding
velocities at the same excitation amplitude. This effect
is studied in Sect. 3. First, the occurrence of differ-
ent states of motion is shown on a numerical example.
Next, the simultaneous appearance of multiple solu-
tions at the same excitation is reproduced. This effect is
analyzed deeply, and amethod is developed how to con-
trol the appearance of the respective state of motion by
calibrating the initial conditions. This is a major chal-
lenge for practical applications because it is usually not
possible to adjust the initial conditions as accurate as
necessary.

A further challenge of studying the behavior of
vibratory conveyors is the apparently chaotic behavior
of the parts. In Sect. 4, methods are presented how to
assess and proof the presence of chaotic states. The first
method is the Lyapunov exponent which is discussed
for discrete and continuous systems [25]. The second
method is based on fractal dimensions which can be
used to characterize special geometric shapes as the
Cantor Set [31] or Sierpinsky triangle [32]. Thesemeth-
ods are applied to the presented simulationmodel of the
conveying system, and the chaotic behavior is assessed.
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Fig. 1 Transport of a 3D object in feeding direction (x-
coordinate) by a vibratory conveyor moving in x- and z-direction

However, the chaotic behavior has been observed in
practice and 3D simulation already [33], but a proof is
pending, which is part of Sect. 4. In addition, parameter
sensitivity is investigated for assessing the transferabil-
ity in practice.

2 A 2D-model for the simulation of linear feeding
systems

In vibratory conveying systems, parts are transported
on a vibrating channel as can be seen in Fig. 1. The
conveyorN is excited in x- and z-directionwhich results
in a movement of the part O in x-direction. In general,
this conveying procedure can be applied to parts with
complex 3D geometries.

Due to increasing requirements, the simulation of
such conveying systems becomes more and more
important. In [4], a 3D simulation model was devel-
oped which allows the prediction of the behavior of
the conveying parts. However, there appear some non-
linear effects which can be simulated but cannot be
understood well using the complex simulation model.
Therefore, a simplified model of a conveying process
with a point mass is developed, see Fig. 2. This model
should be able to describe the characteristics of effects
appearing in measurements and 3D simulation.

2.1 Modeling of contact process in normal direction

In the following, the index p refers to the feeding part
and the index s refers to the conveyor. The system
distinguishes between two states, either the part is in
contact (z p ≤ zs) or not (z p > zs). The mathemati-
cal distinction is modeled with the Heaviside-function
θ(z p−zs ) which switches between 0 and 1 depending on
the sign of the argument z p − zs . Assuming a gravity
force with Fg = −mg in z-direction, a stiffness force

Fig. 2 Vertical position z p(t) of point mass mp on vibratory
conveyor moving with zs(t)

Fk and a damping force Fd , the differential equation
for the conveying process can be written in general as

mpz̈ p = −mpg + (
1 − θ(z p−zs )

)
[Fk + Fd ] . (1)

The conveyor is generally excited with an acceler-
ation amplitude â, with the angle of throw ϕ and a
time-dependent cosine oscillation with the frequency
f and a initial phase shift ψ0. The amplitude can be
separated into the horizontal and vertical component
with âx = â cos(ϕ) and âz = â sin(ϕ). Therefore, the
full excitation in vertical direction reads

z̈s = â sin(ϕ)︸ ︷︷ ︸
âz

cos(2π f
︸︷︷︸

ω

t + ψ0). (2)

The knowledge of the acceleration signal z̈s enables
expressing the velocity and position signal with

żs = âz
ω

sin(ωt + ψ0) (3)

and

zs = − âz
ω2 cos(ωt + ψ0). (4)

Next, the contact stiffness force Fk and the contact
damping force Fd are investigated more closely. These
forces are based on the implementation of the contact
in the multibody simulation tool HOTINT, see [4].

The contact stiffness force Fk is generally expressed
with

Fk = −kc(z p − zs)
p, (5)

where kc denotes the stiffness. The exponent p enables
to switch between Hooke’s law (p = 1) and Hertz’ law
(p = 1.5), see [34].

123



9802 S. Schiller et al.

The contact damping force Fd is assumed as a veloc-
ity dependent force with

Fd = dc(ż p − żs), (6)

where dc denotes the damping coefficient. This formu-
lation is equivalent to a viscous damping, see [35]. The
respective differential equation for the feeding part in
vertical direction reads

z̈ p = −g − (
1 − θ(z p−zs )

)

[
dc
m p

(ż p − żs) + kc
m p

(z p − zs)
p
]

. (7)

2.2 Motion in translational direction

The modeling of the contact in Sect. 2.1 only considers
the vertical movement of the part. However, the aim of
a conveyor system is tomove a part horizontally. There-
fore, the vertical movement of the part from Sect. 2.1
has to be coupled with the horizontal direction. This
coupling is realized with a friction coefficient μ which
relates the contact force Fc to the friction force Fr ,
where

|Fr | = μFc. (8)

The contact force Fc in Eq. (8) is defined as the sum
of stiffness and damping forces in the normal direction
with

Fc = Fk + Fd . (9)

It is not possible to evaluate Eq. (8) analytically
because the differential equation Eq. (7) cannot be
solved explicitly. As mentioned above, these differen-
tial equations are solved with a numerical time integra-
tion scheme. Therefore, the contact force Fc is evalu-
ated at every time step ti which enables to evaluate the
norm of the friction force |Fr | at every time step ti . For
the consideration of the direction of the friction force,
the velocity difference between part and conveyor in
horizontal direction is used. The horizontal movement
of the conveyor can be calculated analogously toEq. (2)
and (3) with

ẋs = âx
ω

sin(ωt + ψ0) = â cos(ϕ)

ω
sin(ωt + ψ0). (10)

The sign of the friction force is equivalent to the
sign of the velocity difference of conveyor and part in
feeding direction. This results in

Fr = |Fr | sign(ẋs − ẋ p) = μFc sign(ẋs − ẋ p). (11)

Dividing the resulting friction force in Eq. (11) by
the mass of the part mp results in the acceleration in
feeding direction

ẍ p = Fr
m p

. (12)

The numerical integration during the time integra-
tion process yields the feeding velocity ẋ p which is a
major quantity of a conveyor, see [36,37]. A further
integration yields the position xp which is also suitable
for some evaluations, especially sorting efficiency, see
[38].

3 Analysis of multiple feeding velocities

In the following, investigations are performed with the
presented simulation model. For the analyses, Hertz’
law with p = 1.5 is used for modeling the stiffness
force Fk . The default set of excitation parameters is
defined with the acceleration amplitude â = 40m/s2,
the angle of throw ϕ = 12◦, the frequency f = 50Hz
and the initial phase shift ψ0 = 0 rad. The default set
of contact parameters is defined with the stiffness coef-
ficient kc = 5 · 105 N/m1.5, the damping coefficient
dc = 0.3Ns/m and the friction coefficient μ = 0.15.
The mass of the part is mp = 0.7 · 10−3 kg, and it
starts at an initial position of z0 = 0mm with an initial
velocity ż0 = 0mm/s.

The code for the simulation of the conveying process
presented in Sect. 2 is implemented in the Python pro-
gramming language. The equations are integrated with
Euler’s method and a step size ofΔt = 5·10−7 s which
should guarantee convergent results. In the code, it is
checked at each time step whether the part penetrates
the conveyor. If this is the case, the contact algorithm
is applied. If this is not the case, only gravity is applied
and the part continues to fall down.

3.1 States of motion

In [33], it has been shown in measurement and simula-
tion that difference states of motion of a part on a vibra-
tory conveyor exist. The simplified model presented
in Sect. 2 should represent this effect which enables
a deeper consideration. First, parameter variations are
performed to understand the principle behavior of the
simulationmodel. As output variable, themean feeding
velocity is used. This mean value is calculated about
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Fig. 3 Multiple states of motion depending on acceleration
amplitude

the last 25 % of the measuring distance which should
ensure a steady state of the part.

In Fig. 3, the mean conveying velocity is computed
for different acceleration amplitudes â. It can be seen
that the behavior changes significantly above a criti-
cal amplitude â = 50m/s2 where the second state of
motion appears. This is equivalent to a vertical accel-
eration amplitude of âz = 50 sin(12◦) = 10.40m/s2

which exceeds the gravitational acceleration.
In this work, the solutions below the critical accel-

eration amplitude are called first states of motion. The
solutions above the critical acceleration amplitude are
called second states of motion as long as the solutions
are in a steady state and do not show chaotic behav-
ior, which is analyzed in Sect. 4. Different acceleration
amplitudes â will also be called operating points.

In Fig. 4, the mean feeding velocity and the posi-
tions of conveyor and point mass in z-direction are
shown, respectively, below and above the critical value.
It is obvious that the feeding characteristic is changing
between these two states of motion. Below the critical
acceleration amplitude, the point mass moves period-
ically with the conveyor. Above the critical accelera-
tion amplitude, the point mass has a jumping transport
behavior.

In Fig. 5, the contact and friction forces of two states
of motion are shown. It can be seen that the coupling
between vertical and horizontal force results in chang-
ing the sign. This is caused by the relative velocities
between part and conveyor, see Eq. (11).

For understandingdifferent states ofmotion, anFFT-
transformation of the velocity in vertical direction ż p is
applied. The results are shown in Fig. 6. It can be seen

that multiple frequencies exist after the change to the
higher velocity which is due to the hopping of the part.

In Fig. 7, the results of the same investigation with
the velocity in horizontal direction are shown. It is
shown that the first state of motion consists of more fre-
quency components because the friction force is able to
accelerate and decelerate the part. The second state of
motion is dominated by a constant component because
it is only a line with a few deflections during the contact
process, see Fig. 4.

The differential equation in Eq. (7) leads to the
assumption that the parametersmassmp , stiffness coef-
ficient kc, damping coefficient dc and friction coeffi-
cientμ have an influence on the behavior of the system.
Variations in the respective parameters have shown that
they also influence the critical acceleration amplitude
at which the system changes to another state of motion.
However, these parameters are constant in practical
application, which is why a variation in these is not
analyzed further.

An interesting behavior is shown by a variation in
the initial position z0. This parameter is very sensi-
tive with respect to the output variable. A variation in
the initial position at a constant acceleration amplitude
may result in another state of motion. This means that
several solutions exist at this operating point depend-
ing on the initial position. Furthermore, in practice, the
initial position z0 is the parameter that is most difficult
to adjust accurately. Therefore, it is investigated more
in detail in the following.

3.2 Results for different states of motion

In Sect. 3.1, it is shown that the simplified simulation
model is able to represent different states of motion.
A special effect discovered in [33] is that there occur
multiple feeding velocities at the same operating point.
It is assumed that these result from inaccuracies of
the initial configurations which has been shown with
the 3D simulation tool HOTINT in [33]. Therefore,
the same investigations are performed with the sim-
ulation model, presented in Sect. 2. Simulations are
performed at several operating points where the initial
position is varied at every operating point in N steps.
In Fig. 8, the results of the investigation are shown.
The initial position was varied in N = 10 steps from
z0 = 0mm to z0 = 0.5mm. It is obvious that in the
range from 29 to 47m/s2, multiple solutions exist. Fur-
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Fig. 4 Time signals of mean feeding velocity and z-position of part/conveyor below (left) and above (right) the critical acceleration
amplitude

Fig. 5 Time signals of contact and friction force below (left) and above (right) the critical acceleration amplitude

thermore, the maximum velocity of the conveyor in
x-direction is shown for comparing the feeding veloc-
ity of the part. However, it has to be mentioned that
there appears chaotic behavior above â ≈ 55m/s2. The
chaotic behavior is studied in Sect. 4.

Next, the domain between 29 and 47m/s2 where two
states of motion appear simultaneously is investigated

in more detail. In Fig. 8, it can be seen that the vari-
ation in the initial position z0 is responsible for the
change of the state of motion at the respective accel-
eration amplitude. Figure9 shows the dependency of
the mean feeding velocity on the initial position z0 for
different acceleration amplitudes â. It is obvious that
the conveying speed increases abruptly at a critical ini-
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Fig. 6 Fast Fourier transformation of velocity in vertical direction below (left) and above (right) the critical acceleration amplitude

Fig. 7 Fast Fourier transformation of velocity in horizontal direction below (left) and above (right) the critical acceleration amplitude

Fig. 8 Multiple feeding velocities by varying the initial position
z0 at every acceleration amplitude â

tial position z0. This increase in conveying speed also
means a change to the second state of motion. Further-

more, it can be seen in Fig. 9 that the maximum criti-
cal initial position is 0.31 mm. If the initial position is
larger than 0.31 mm, only the second state of motion
occurs.

With regard to the occurring conveying speeds, it
is also noticeable that the velocities of the first state of
motion increase from 1 to 2cm/s within an acceleration
range of 18m/s2. Looking at the velocities of the second
state of motion, it can be seen that they are decreasing,
although the accelerations are increasing. However, it
must be noted that they only decrease by approximately
0.4 cm/s.

It is also noticeable that the critical initial position
does not depend linearly on the acceleration ampli-
tudes, see Fig. 9. This is also obvious because of the
horizontal distances between the curves which become
smaller and smallerwith increasing acceleration ampli-
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Fig. 9 Dependency ofmean feeding velocity on initial condition
z0 for several acceleration amplitudes â

Fig. 10 Dependency of critical initial position z0 and critical
acceleration amplitude â

tude. Therefore, the relation between the critical accel-
eration amplitude â and the respective critical initial
position z0 is investigated.

In Fig. 10, the critical initial position z0 is plotted
over the critical acceleration amplitude â. The nonlin-
ear relationship which was determined with the inter-
pretation of Fig. 9 is confirmed with this illustration.

Thenonlinear relationship inFig. 10 canbedescribed
with a function in the form

z0 = A

B + â
+ C, (13)

where A, B and C are unknown parameters for the
scaling of the regression curve. The parameters of the
curve in Fig. 10 are identified with the Python pack-
age Pymoo which is based on machine learning algo-
rithms. The resulting values are A = 0.004116m2/s2,
B = −19.54145m/s2 and C = −0.0001354m. The
objective function is the mean squared error of For-

mula 13 and the data points in Fig. 10. The value of the
error function is 4.14×10−11 m2 after the optimization.

An essential question is how to choose the param-
eters such that the start and end of the respective state
of motion in Fig. 8 can be controlled. In general, the
initial condition z0 is varied in an interval of the form

z0 ε [zL , zR]. (14)

From the previous investigation in Fig. 10, we know
that a decreasing acceleration amplitude results in an
increasing critical initial position. Therefore, it can be
stated that an increase in the lower interval limit zL
results in a lower critical acceleration amplitude which
means that the first state of motion is no longer present
at a lower acceleration amplitude.

With the upper interval limit zR , the acceleration
amplitude, where the second state of motion appears,
can be controlled. If zR increases, the second state of
motion appears at a lower acceleration amplitudewhich
means that the domain where two solutions exists has
been extended.

For the verification of these assertions, a numerical
example is performed where the end of the first and the
start of the second state of motion should be modified.
The requirement is that the first state of motion van-
ishes at 40m/s2 and the second state of motion begins
at 35m/s2. Therefore, the domain with multiple states
of motion should be between 35 and 40m/s2. To deter-
mine the interval limits of z0, Fig. 10 has to be evalu-
ated. The end of the first state of motion should be at
40m/s2. Therefore, the lower interval limit has to be at
z0(40m/s2) = 0.07mm, see Fig. 10. The second state
of motion should start at 35m/s2, so the upper inter-
val limit has to be at z0(35m/s2) = 0.13mm, see also
Fig. 10.

The simulationwith the initial conditions z0 ε [0.07,
0.13]mm is shown in Fig. 11. It is obvious that the
desired states of motion have occurred.

In this subsection, the nonlinear effect of multiple
states of motion has been investigated and shown on
different examples. The influence of the initial posi-
tion z0 is the focus of these analyses. This is due to
the fact that z0 has a practical relevance and has also
been varied in [33]. However, there are also other initial
conditions whose influences and interrelationships are
investigated in the following.
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Fig. 11 Verification of the occurrence of the states of motion by
specifying interval limits of varied initial position z0

3.3 Variation in initial conditions

In Fig. 12, the dependency of the states of motion on
the initial position and vertical acceleration is shown.
The colors distinguish between the first state of motion
(blue), second state of motion (orange) and chaotic
state ofmotion (green). Figure12 summarizes the state-
ments from Figs. 8, 9 and 10; especially, the frequency
of the existence of solutions at lower and upper veloc-
ity between a = 28m/s2 and a = 47m/s2 (compare
Fig. 9) and the nonlinear characteristic of it (compare
Fig. 10) are illustrated. A novel information is that the
initial position has no influence on the beginning of the
chaotic states. Therefore, there exists a critical acceler-
ation amplitude for switching to chaos which is inde-
pendent of the initial position z0.

For a generalization of the possible states of motion,
the phase shift of the conveyorψ0 is varied additionally

Fig. 13 States of motion in phase space ψ0 over z0 with ż0 = 0
(first state ofmotion: blue, second state ofmotion: orange, chaos:
green). (Color figure online)

to the initial position z0. The initial velocity ż0 is set
equal to zero. In Fig. 13, the results at an acceleration
amplitude of â = 40m/s2 are shown.

The initial conditions of the analysis in Fig. 13 are
the position z0, the velocity ż0 and the phase shift of the
conveyor ψ0. It has to be mentioned that these initial
conditions are not independent because a variation in
the initial position z0 has an influence on the time of
the first impact t1 and the velocity at the time of the first
impact v1. Therefore, the initial position of the part is
set equal to the initial position of the conveyor with

z p(0) = zs(0) = − â sin(ϕ)

ω2 . (15)

Consequently, the initial velocity ż0 and the initial
phase shift ψ0 can be varied independently from each
other and the whole phase space in 2D is covered. The
results of the variation in the independent variables ż0

Fig. 12 States of motion over initial height and acceleration (first state of motion: blue, second state of motion: orange, chaos: green).
(Color figure online)

123



9808 S. Schiller et al.

Fig. 14 States of motion in phase space ψ over ż0 with z0 =
zs(0) (first state of motion: blue, second state of motion: orange,
chaos: green). (Color figure online)

andψ0 with the condition that the initial position of the
part is equal to the initial position of the conveyor are
shown in Fig. 14.

However, a transformation of the initial conditions
from Figs. 13 to 14 is possible. The interesting variable
is the point in time at the first impact t1 which can be
calculated with the equation

− â sin(ϕ)

ω2 cos(ωt1 + ψ0)

︸ ︷︷ ︸
zs (t1)

= −gt21
2

+ ż0t1 + z0
︸ ︷︷ ︸

z p(t1)

. (16)

With the point in time of the first impact t1, the cor-
responding velocity

ż1 = −gt1 (17)

and the corresponding phase of the conveyor

ψ1 = ωt1 + ψ0 (18)

can be computed. In order to use independent variables,
ż1 and ψ1 are set as initial conditions ż0 and ψ0. Addi-
tionally, the initial position of the part z0 has to be set
equal to the initial position of the conveyor zs(0).

In the investigations concerning the occurrence of
multiple solutions, the initial position has been var-
ied, see Fig. 8. However, the relations in Eqs. (17) and
(18) make it possible to investigate which variations in
the phase space result from the variations in the initial
position z0. In Fig. 15, it is shown that a variation in
the initial position z0 at a constant initial velocity ż0
and phase shift ψ0 results in a straight line in the phase
space.

Fig. 15 Dependency of phase shift ψ1 on initial velocity ż1 by
variation in initial position z0 at several acceleration amplitudes
â

In the next section, the chaotic behavior of the con-
veying process is analyzed. With the criteria developed
in Sect. 3.2, it is only possible to control the occurrence
of the states of motion in a steady state, see Fig. 11.
However, the investigations regarding the initial condi-
tions in this subsection are significant for the analysis
of chaotic behavior. This is the topic of the next section.

4 Analysis of chaotic behavior

The chaos theory refers to a subfield of nonlinear
dynamics or dynamical systems that is not clearly
defined. Essentially, it deals with special dynamical
systemswhich evolution in time appears unpredictable,
although the underlying equations are actually deter-
ministic. This behavior is called deterministic chaos
and arises when systems depend sensitively on the
initial conditions [17,18]. Repetitions of an experi-
ment can thereby lead to highly different measurement
results due to minimal, hardly distinguishable initial
conditions in the long-term behavior. However, chaos
theory does not state that actually identical initial con-
ditions would lead to different results.

An essential question is how to investigate and char-
acterize dynamical chaotic systems. One possibility is
to use the Poincaré map [39,40]. The Poincaré map
is also used for describing the bouncing ball problem.
Regarding the bouncing ball problem, a few typical
chaotic phenomenons can be shown. One of it is the
doubling of periods, investigated, e.g., in [41]. This
effect describes that toward the chaotic range the oscil-
lation period increases stepwise by a factor of two. Dif-
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Fig. 16 Time signals of feeding process: feeding velocity (upper left), vertical position part and conveyor (lower left), contact force
(upper right), friction force (lower right)

ferent states in the bouncing ball problem are investi-
gated in [9–12]. A special result of the investigations
in [12] is that there exists a sufficient condition for the
existence of a period one orbit.

A method to show the evidence of chaotic behavior
of dynamical systems is the computation of Lyapunov
exponents. One advantage of the method is that the
indicator for the presence of chaotic behavior is only the
sign of the Lyapunov exponent. A disadvantage is that
the initial condition of the system has to be perturbed
for getting a statement about the sensitivity [23]. A
summary of the application of Lyapunov exponents can
also be found in [42].

A further possibility to describe chaotic states is
fractal dimensions. There exist several approaches to
describe fractal dimensions. The basic idea is to reduce
a set of n-dimensional points to a scalar value [43]. This
is applied for example to images which show complex
geometric behavior, e.g., theCantor Set [31] or Sierpin-
ski triangle [32]. In this work, it is used as an indicator
for chaotic behavior.

In the following, the chaotic behavior of the con-
veyor is analyzed.

4.1 Observation of chaotic behavior of vibratory
conveying systems

In Fig. 8, it can be seen that the simulationmodel shows
a chaotic behavior if the acceleration amplitude is above
â ≈ 60m/s2. In Fig. 16, the time signals of a simula-
tion with an acceleration amplitude of â = 80m/s2 are
shown. Compared to the investigations in Fig. 4, it is
obvious that the characteristic of the trajectory is equiv-
alent to a state of the second state of motion. However,
even with a longer simulation time, no steady state is
achieved which is the first indication of chaos. Further-
more, inFig. 16 the associated contact and friction force
are shown. It can also be recognized that no periodic
behavior is evident.

Next, the sensitivity of the solution to the initial con-
dition is investigated. In Fig. 17, the dependency of the
mean velocity on the initial position z0 is shown for
several acceleration amplitudes âi . It is obvious that
chaotic behavior occurs, especially if it is compared
with Fig. 9.

In Fig. 18, the possible states of motion are visual-
ized over the phase shift ψ and the initial position z0.
It can be seen that the contours are similar to Fig. 13
with the difference that chaotic states may appear.
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Fig. 17 Mean feeding velocity over initial position z0 for accel-
eration amplitude a = 80m/s2

Fig. 18 States of motion in phase space ψ0 over z0 with ż0 = 0
(first state ofmotion: blue, second state ofmotion: orange, chaos:
green). (Color figure online)

Due to the dependency of the initial position z0, the
independent parameters ψ0 and ż0 are chosen for the
variation. The necessary condition that the initial posi-
tion of the conveyor z0 has to be equal to the initial
position of the conveyor zs(0) is considered. Compar-
ing Figs. 19 to 14, it is obvious that the characteristic is
again very similar. The difference is the appearance of
chaos in Fig19. Furthermore, it can be seen in Fig. 19
that the phase shift may significantly determine which
state the system reaches. The results from Fig. 18 could
be converted with the relations described in Eq. (17)
and (18) to the representation in Fig. 19. It is not possi-
ble to convert Fig. 19 into the representation in Fig. 18
because in Fig. 18 it is assumed that the initial veloc-
ity ż0 is equal to zero. Therefore, a conversion from
x0 = (ż0, ψ0) to x0 = (z0, ψ0) is only meaningful for
some configurations.

Fig. 19 States of motion in phase space ψ over ż0 (first state
of motion: blue, second state of motion: orange, chaos: green).
(Color figure online)

However, the evidence of chaotic behavior is still
pending. This is performed with Lyapunov exponents
and fractal dimensions in the following.

4.2 Evidence of chaotic behavior

A method to assess the existence of chaotic behavior
of dynamical systems is the method of Lyapunov expo-
nents. The Lyapunov exponent for a discrete dynamical
system xn+1 = f (xn) is defined as

λ = lim
n→∞

1

n

n−1∑

i=0

log
(| f ′(xi )|

)
(19)

and describes the exponential separation of two nearby
trajectories originally separated by distance ε [42]. For
a continuous system, the definition of the Lyapunov
exponent in Eq. (19) has to be extended. In general, a
continuous dynamical system is written as

ẋ = f (x, t) (20)

with x(0) = x0 and ẋ(0) = ẋ0. Explicitly considering
the initial condition x0 and assuming ẋ0 = 0, the dif-
ferential equation in Eq. (20) has the solution x(t, x0).
Therefore, the Lyapunov exponent from Eq. (19) is
redefined as

λx0 = lim
t→∞

1

t
log

( |∂x(t, x0)|
∂x0

)
. (21)

The derivative term in Eq. (21) may be written as

∂x(t, x0)

∂x0
= lim

ε→0

(
x(t, x0 + ε) − x(t, x0)

ε

)
. (22)
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Fig. 20 Lyapunov exponent of output variable z p(t)with varied
initial position z0 for every acceleration amplitude â

Therefore, the Lyapunov exponent for continuous
dynamical systems is defined as

λ = lim
t→∞ lim

ε→0

1

t
log

( |x(t, x0 + ε) − x(t, x0)|
ε

)
. (23)

For a numerical calculation of the Lyapunov exponent
of continuous dynamical systems, the perturbation in
the initial conditions ε has to be chosen very small for
evaluating Eq. (23). Furthermore, the run-up process of
the transient procedure is skipped for the computation
of the Lyapunov exponents. This is ensured by using
only the last 25 % of the measuring distance, compare
Sect. 3.

First, the Lyapunov exponent of the system is cal-
culated with Eq. (21), where x(t, x0) is chosen as the
position of the point mass in z-direction z p(t, z0). For
this analysis, the data from Fig. 8 are used to compute
the numerical derivative ∂z p(t,z0)

∂z0
at z0 = 0.

With this approach, the perturbation is equal to

ε = Δz0
Nz

= 5 · 10−5 m, (24)

where Δz0 is the interval of initial conditions and Nz

is the number of steps in this interval. The resulting
Lyapunov exponent, evaluated at several acceleration
amplitudes âi , is shown in Fig. 20. It is recognizable
that the Lyapunov exponent becomes greater than zero
at â = 42m/s2. We know from Fig. 8 that the sys-
tem does not show a chaotic behavior at this operating
point but only the occurrence of two states of motion.
Between â = 50 and â = 60m/s2, the Lyapunov expo-
nent changes the sign repeatedly, although the behavior
is already chaotic, see Fig. 8. Therefore, the assessment
of chaos with the already existing data is not enough.

Fig. 21 Time signals in horizontal direction of xp and ẋ p with
perturbation of independent parameter ψ

Furthermore, it has to be mentioned that the initial
position z0 of the system in Fig. 20 is used as perturba-
tion parameter. As shown in Fig. 15, the initial condi-
tion is not an independent variable wherefore it should
not be used as perturbation parameter. Therefore, the
independent phase shift of the conveyor ψ0 is chosen
as perturbation parameter. The respective initial veloc-
ity is chosen as a constant value and the initial position
of the point mass is equal to the initial position of the
conveyor.

Next, the Lyapunov exponent of the time continuous
system is calculated with a small perturbation ε in the
phase shift ψ0 with the forward difference quotient in
Eq. (23). In Fig. 21, the influence of the perturbation ε

on the time signals of the measures in horizontal direc-
tion is shown.

The results of the calculation of the Lyapunov expo-
nent of the output variable ẋ p are shown in Fig. 22 for
several acceleration amplitudes âi . It is obvious that the
Lyapunov exponent is greater zero above a = 50m/s2

which is the assessment criterion for chaotic behavior.
This statement is consistent with the observations in
Fig. 8. Therefore, chaos has been demonstrated using
the presented method. The reason for the deviations in
Fig. 20 is the size of the perturbation ε and the chosen
perturbation variable z0 which is not independent as
shown in Sect. 3.3.

After verifying the chaotic behavior with the Lya-
punov exponent, the method of fractal dimensions is
presented. In general, the fractal dimension of a set is a
generalization of the dimension concept of geometric
objects such as curves and surfaces. The special prop-
erty is that the fractal dimension does not have to be an
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Fig. 22 Lyapunov exponent of output variable ẋ p with perturba-
tion of independent parameterψ for every acceleration amplitude
â

integer. In this work, the fractal dimension is described
as Minkowski–Bouligand dimension, also called box-
counting dimension [44].

For calculating the Minkowski–Bouligand dimen-
sion D2 for a set E given by the points {Xi |i =
1, ..., N }, a correlation integralC(R) has to be defined.
This correlation integral describes the number of setsC
which have a smaller distance to each other than R. The
evaluation ofC(R) is donewith grids of space, which is
where the name box-counting comes from. The deriva-
tive of the correlation integral C(R) corresponds to the
fractal dimension D2 [25] which is defined as

D2(E) = lim
R→0

logC(R)

log R
. (25)

In Fig. 23, the phase portraits at the three states
of motion (lower velocity, upper velocity, chaos) are
shown. It has to be mentioned that the vertical position
z p(t) and vertical velocity vz(t) are used for the phase
portrait. The reason is that the position in horizontal
direction x(t) increases with time because of the feed-
ing process (see Fig. 1). Therefore, a closed trajectory
is not possible. The time t = 1 s has been chosen as the

Fig. 24 Minkowski–Bouligand dimension of phase portraits ż p
over z p for every acceleration amplitudes â

end time of the trajectories in Fig. 23. It can be seen in
Fig. 23 that the phase portraits of the states with lower
(left) and upper velocity (middle) have closed contours
which means that they should have the dimension 1.
The phase portrait of the chaotic states does not consist
of closed contours. Therefore, the longer the simula-
tion time, the more the space is filled and the fractal
dimension should be between 1 and 2.

In Fig. 24, the fractal dimension of the phase por-
trait at several acceleration amplitudes is shown. It is
obvious that the beginning of the chaotic behavior can
be predicted with this method, compare Fig. 22. It can
be seen that the fractal dimension fluctuates a lot. This
is also a disadvantage in comparison to the Lyapunov
exponent, since with the latter the sign is sufficient for
an assessment. However, for assessing the beginning
of the chaotic behavior, this method is suitable.

5 Conclusion and outlook

The simulation of vibratory conveying systems is a
main challenge, especially due to the nonlinear effects.

Fig. 23 Phase portraits of ż p over z p from first state of motion (left), second state of motion (middle) and chaos (right)
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In [4] and [8], some approaches for simulating and opti-
mizing vibratory conveying systems are presented. A
special challenge here is the correct modeling of var-
ious effects. In this work, the dynamic behavior of a
vibratory conveying system is analyzed in general. The
presented simulationmodel of a vibratory feeder allows
a deeper understanding of the effects which occur in a
conveying process. The first effect is the occurrence of
multiple feeding velocities at the same operating point.
The dependencies of the model parameters are investi-
gated and a procedure is presented which allows to cal-
ibrate the appearance of the respective state of motion.
It is shown that the initial conditions are very sensitive
and aremainly responsible for this effect. However, it is
very difficult to use this in practice because the initial
conditions cannot be reproduced and adjusted in the
measurement as accurately as necessary. The second
effect is the occurrence of chaotic behavior if the exci-
tation exceeds a critical value. The chaotic behavior is
observed in the simulation results and is proved with
suitablemethods, theLyapunov exponent [16] and frac-
tal dimensions [25]. A further result is that the critical
point at which the system changes to chaos is mainly
depending on the excitation amplitude. This enables
the adjustment of the vibratory feeder in practice.

In future work, the understanding of the sensitiv-
ity of the states of motion is to be expanded. For
this purpose, analytical approaches based on simple
models will also be developed. The results from these
approaches will be verified in practice together with the
results from this work. It has to be mentioned that the
presented simulation model contains only a point mass
which is an obvious limitation of the presented work.
However, if rigid bodies would be used, there may be
additional effects that we can not investigate with this
model. Therefore, the developedmethods will be trans-
ferred to the multibody simulation tool HOTINT [45]
and used for parameter identification of vibratory con-
veyors [33]. This is intended to generalize the knowl-
edge gained.
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