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Abstract This study is focused on a critical issue

related to the direct and consistent application of

Newton’s law of motion to a special but large class of

mechanical systems, involving equality motion con-

straints. For these systems, it is advantageous to

employ the general analytical dynamics framework,

where their motion is represented by a curve on a non-

flat configuration manifold. The geometric properties

of this manifold, providing the information needed for

setting up the equations of motion of the system

examined, are fully determined by two mathematical

entities. The first of them is the metric tensor, whose

components at each point of the manifold are obtained

by considering the kinetic energy of the system. The

second geometric entity is known as the connection of

the manifold. In dynamics, the components of the

connection are established by using the set of the

motion constraints imposed on the original system and

provide the torsion and curvature properties of the

manifold. Despite its critical role in the dynamics of

constrained systems, the significance of the connec-

tion has not been investigated yet at a sufficient level

in the current engineering literature. The main objec-

tive of the present work is to first provide a systematic

way for selecting this geometric entity and then

illustrate its role and importance in describing the

dynamics of constrained systems.

Keywords Analytical dynamics � Rigid body

dynamics � Multibody dynamics � Metric compatible

connection � Left-invariant connection � Poincare and

Greenwood equations

1 Introduction

In many engineering applications (e.g., ground, sea

and air vehicles, machines, mechanisms, robots), the

mechanical systems examined possess several com-

ponents, which are interconnected together through

special joints. These joints impose equality con-

straints, which affect the motion of the overall system

in a significant way. The study of such systems is most

conveniently performed by employing principles of

analytical dynamics [1, 2]. Specifically, adopting the

classical viewpoint of analytical dynamics, the motion

of a mechanical system in the three-dimensional

physical space can be described by the motion of a

fictitious point on a multi-dimensional abstract man-

ifold, known as the configuration manifold [3–5]. The

location of this point is determined by a suitable set of

coordinates. In general, the geometry of the configu-

ration manifold is fully described by the set of points

forming the manifold, together with two geometric
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entities, known as the metric tensor and the connection

of the manifold [6–8]. More specifically, the metric

provides the means to measure lengths of and angles

between vectors lying on the tangent space of a

configuration point, known as generalized velocities.

In dynamics, its components are fully determined by

expressing the kinetic energy of the system in terms of

the generalized velocities [9, 10]. On the other hand,

the connection is another indispensable geometric tool

that specifies the transition from a tangent space to a

neighboring tangent space of the configuration man-

ifold, taking into account its curvature and torsion

properties [6, 7]. In general, the components of the

connection in a selected basis of the tangent space

(known as affinities) are determined in terms of the

components of the metric tensor in the same basis in

conjunction with the set of motion constraints imposed

on the original (unconstrained) system.

While the selection of the metric components is a

straightforward and well-performed task in the exist-

ing literature, there is still some confusion in recog-

nizing the role and in choosing an appropriate set of

affinities for constrained mechanical systems. This can

be attributed to the fact that most of the well-known

methods for deriving the equations of motion of

constrained systems (e.g., Lagrange’s equations,

Maggi’s equations, Boltzmann–Hamel equations)

employ a variational rather than a direct formalism

[1–4]. This means that their derivation is essentially

based on the Lagrangian form of D’Alembert’s

principle, which employs scalar (energy) quantities

and there is no direct need for employing the concept

of the connection of the configuration manifold in the

process of deriving the equations of motion. More-

over, the standard selection of the connection in earlier

theoretical studies, when needed, is the classical

connection employed in general Riemannian geome-

try, known as the Levi–Civita connection [6, 7]. This

connection is fully compatible with and derivable

from the metric and is torsion free. However, its

determination is based on a condition that is actually

stronger than the physically necessary condition, at

least for the class of systems examined. In addition,

this choice does not lead to the correct equations of

motion when the coordinates selected are

nonholonomic.

In the present work, a direct application of New-

ton’s law of motion is employed. Consequently, a

necessary step is to select a suitable connection, which

is appropriate for describing the dynamics of con-

strained systems, as suggested in a previous study of

the authors [11]. This selection is more natural for

dynamic systems, since its derivation is founded on

basic principles of dynamics. Namely, the connection

on the constrained manifold is determined by requir-

ing that the form of Newton’s law of motion on the

constrained manifold is identical with its form in the

original manifold. This provides a condition involving

some valuable freedom in choosing the affinities.

Specifically, it allows an infinity of acceptable sets of

affinities, representing the same essential dynamics of

the system. Also, the new connection is not derived by

simple differentiation of the metric components in the

constrained configuration space, which is done in

obtaining the classical Levi–Civita connection.

Instead, the motion constraints play a more explicit

role in determining the new connection. In addition, it

is shown that a suitable generalization of the Levi–

Civita connection is a special case of and belongs to

the new class of connections.

The derivation of the equations of motion for the

class of systems examined through a direct application

of Newton’s law of motion was performed in earlier

work of the authors (e.g., [11, 12]). Instead, the central

theme and focus of this study is to provide more

insight in the underlying dynamics, by investigating

the properties of the admissible class of connections

and their effect on the resulting set of equations of

motion. Moreover, through comparison with a number

of well-known mechanical examples, it is demon-

strated that the new class of connections leads to the

correct set of equations of motion, indeed. Finally, the

effect of the connection on the geometry (e.g., torsion,

curvature, geodesics, autoparallel curves) of the

configuration manifold, is investigated in depth.

Special emphasis is put on the autoparallel curves,

since they govern the parallel translation of a vector

along a curve of the manifold and their determination

provides significant advantages in the process of

solving numerically the equations of motion on the

manifold.

A brief outline of the present work is as follows.

First, some introductory material is presented in

Sect. 2, in order to set up the notation and provide a

general theoretical background on establishing a

suitable connection for constrained mechanical sys-

tems. Next, the new class of connections is employed

in Sect. 3 and a systematic methodology is presented
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for deriving the equations of motion of the constrained

system. Then, in Sect. 4, it is verified that an

appropriate generalization of the classical Riemannian

connection is an admissible connection and leads to a

correct set of equations of motion, when applied in a

consistent way. Furthermore, the effect of the new

class of connections on the geometric properties of the

configuration space and the final form of the equations

of motion is explored in Sect. 5. In particular, a

selection and critical comparison of admissible con-

nections for spherical and general spatial motion of a

rigid body is performed. Moreover, the effect of the

connection selection on the form and the geometric

interpretation of the autoparallel curves of the config-

uration manifold is investigated in Sect. 6. Then, a

detailed comparison of the present work with earlier

approaches is performed in Sect. 7. Finally, the main

conclusions of this work, together with a presentation

of possible future extensions, are summarized in the

last section.

2 Theoretical background

Discrete mechanical systems arise quite frequently as

models in engineering problems and may consist of a

combination of several particles, rigid bodies and

geometrically discretized (e.g., through the finite

element method) deformable components. According

to the general analytical dynamics framework, the

position of such a system at any time can be fully

described by a point p of an n-dimensional manifold

M, known as the configuration manifold of the system

[1–4]. She location of p on manifold M is specified by

a set of generalized coordinates, say q ¼ ðq1. . . qnÞ,
obtained through a local smooth map

q ¼ uðpÞ; ð1Þ

known as chart, which maps a neighborhood of point p

to an n-dimensional Euclidean manifold [6, 7]. Then,

the motion of the system in the three-dimensional

physical space is represented by the motion of point p

along a curve of manifold M, parameterized by time t

[8, 9]. Moreover, the tangent vector to the motion

curve at point p is known as a generalized velocity and

belongs to an n-dimensional vector space TpM. By

using the usual summation convention on repeated

indices [7], any element v of the tangent space TpM

can be put in the form

v ¼ vi e i; ð2Þ

where Be ¼ f e 1 . . . e ng is a basis of TpM. This

basis is characterized by a set of coefficients ckij, which

are defined by

½e i; e j� ¼ ckij e k; ð3Þ

through the Lie bracket of two vectors, denoted by

½�; ��, with ckij ¼ �ckj i [6]. In the special case, where the

basis vectors are selected to be tangent to the

coordinate lines at each point p, all these coefficients

are equal to zero and the basis is called holonomic or

chart-induced [7]. However, in some cases, (e.g., in

rigid body motion), it is often more convenient to

select anholonomic bases, instead, with some nonzero

coefficients ckij [9, 10, 13].

For each element u of TpM, there exists an element

u
s

� of a companion vector space at point p, known as

the cotangent (or dual) space T�
pM. This element is

known as a covector and is determined through the

duality pairing

u
s

�ðwÞ � hu;wi; 8w 2 TpM; ð4Þ

where h�; �i is the inner product on TpM. In this way, a

basis B�
e ¼ f e

s

1 . . . e
s

ng can be created for each

T�
pM, which is dual to Be, through application of the

condition e
s

iðe jÞ ¼ dij, where dij is a Kronecker’s delta

[6]. Then, the inner product on each tangent space TpM

is expressed in terms of the components

gij ¼ he i; e ji ð5Þ

of the metric tensor g � gij e
s

i � e
s

j, which is useful for

measuring lengths of and angles between vectors of

TpM. These components are determined through the

kinetic energy of the system, so that

T � 1

2
hv; vi ¼ 1

2
vigijv

j; ð6Þ

with gij ¼ gj i and units depending on the velocity

components. For instance, if vi and v j represent

components of a linear or angular velocity, then gij
has the units of a mass or a mass moment of inertia,
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respectively. In addition, the covector corresponding

to a generalized velocity v, expressed by

p
s

�
M ¼ pi e

s

i; ð7Þ

is a generalized momentum [9]. Utilizing Eqs. (2), (4)

and (5), its components are easily found in the form

pi ¼ gij v
j:

Consequently, if vi represents component of a linear or

angular velocity, then pi has the units of a linear or an

angular momentum, respectively.

In investigating the dynamics of a mechanical

system, the first main objective is to derive a set of

equations governing the motion of the system under an

applied loading. Traditionally, most of the available

methods in this area are based on variational formu-

lations and originate from the extended D’Alembert’s

principle [1–4]. In the present approach, an alternate

route is selected to achieve this objective. Namely,

since motion of a fictitious point is considered on the

configuration manifold, it is natural to resort to

application of Newton’s second law in a direct fashion

as the fundamental mechanical axiom. Specifically,

due to the complex geometric form of the configura-

tion manifold M, this law expresses a dynamic balance

of the generalized momenta and the applied general-

ized forces and appears in the form

rv p
s

�
M ¼ f

s

�
M; ð8Þ

yielding the solution path on M, when there exist no

motion constraints [11]. Here, covector f
s

�
M ¼ fi e

s

i

represents the applied forces, while the term in the left-

hand side is known as the covariant derivative of the

generalized momentum p
s

�
M along a path on M with

tangent vector v. The latter term can be expressed in

the following component form

rv p
s

�
MðtÞ ¼ ð _pi � Kk

j iv
jpkÞ e

s

i; ð9Þ

with i; j; k ¼ 1; . . .; n [6]. In particular, the last term in

Eq. (9) originates from differentiation of the base

vectors e
s

i in Eq. (7) and involves the quantities Kk
j i.

These are the components of the affine connection r
of the manifold and play a quite important role in

dynamics. They are known as affinities and satisfy the

definition

re i
e j ¼ Kk

ije k; ð10Þ

or equivalently

re i
e
s

j ¼ �K j
i k es

k: ð11Þ

These definitions show clearly that the terms Kk
j i

dictate the transition from a tangent space to a

neighboring tangent space of manifold M. In this

respect, they give rise to the last term in Eq. (9) [11].

They also determine some vital geometric properties

of the configuration manifold M, like its torsion and

curvature [6]. More specifically, the components of

the torsion and curvature of the connection appear in

the form

skij ¼ Kk
ij � Kk

j i � ckij ð12Þ

and

Ri
j k l ¼ Ki

l j;k � Ki
kj;l þ Ki

k mK
m
lj � Ki

lmK
m
kj � cmk lK

i
m j;

ð13Þ

respectively (for more details on the definition and the

geometric interpretation of these quantities, see [7]).

In summary, the connection, together with the metric

tensor g and the abstract set of points p forming the

configuration manifold M, provides a complete picture

of the geometry of M. In turn, this provides all the

necessary information for deriving the equations of

motion by applying Eq. (8).

When a mechanical system is subjected to an

additional set of motion constraints, drastic changes

occur in the geometry of the new configuration

manifold, say MA, possessing metric components gab
and affinities Kc

ab [11, 12]. For simplicity in the

presentation of the main ideas, consider next a system

that is subject to a set of k scleronomic and linearly

independent constraints, with form

_wR � aRi ðqÞvi ¼ 0; ð14Þ

where R ¼ 1; . . .; k. In many cases, the equation of a

constraint can be integrated and put in the holonomic

form

/RðqÞ ¼ 0: ð15Þ

These constraint equations help in decomposing the

original configuration manifold M locally into an m-

dimensional manifoldMA, with m ¼ n� k, plus k one-

dimensional manifolds MR, one for each constraint.
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This is achieved by first using Eq. (14) to derive a

linear relation

v ¼ N vA; ð16Þ

between the generalized velocities v and vA, belonging

to the vector spaces TpM and TpAMA, respectively,

where point pA corresponds to point p but lies on

manifold MA, described by a set of m minimal

coordinates, h ¼ ðh1. . . hmÞ [12]. Moreover,

vA ¼ va e a;

where a ¼ 1; . . .;m, while va ¼ _ha and e a is an

element of a basis of TpAMA. In the last expression

and in the sequel, Latin and Greek lowercase indices

correspond to components of entities defined on

manifold M and MA, respectively.

Next, determination of the components of the

metric tensor and the affinities on the constrained

manifold MA is based on satisfaction of an invariance

condition, which is complementary to the law of

motion. More specifically, if the motion on the original

manifold M is governed by the generalized Newton’s

law, in the form of Eq. (8), then it is required that this

form should remain invariant on the constrained

manifold MA. This means that Newton’s law on MA

must appear in the form

rv A
p
s

�
A ¼ f

s

�
A;

where covectors p
s

�
A and f

s

�
A represent the generalized

momenta and the applied forces on manifold MA,

respectively. As was shown in a previous study [11],

this invariance condition is satisfied only when the

components of the metric and connection on MA

satisfy the relations

gab ¼ Ni
agijN

j
b ð17Þ

and

ðKq
cagqb � Ni

a;cN
j
bgij � Ni

aN
j
bN

k
cK

‘
jig‘ kÞ vbvc ¼ 0;

ð18Þ

respectively. The first condition fixes the metric on

manifold MA completely, given the metric compo-

nents of M and the elements of the n� m transforma-

tion matrix N ¼ ½Ni
a�, defined by Eq. (16). In fact, the

same condition can also be obtained by just equating

the expression of the kinetic energy of the system on

manifolds MA and M, by employing Eqs. (6) and (16).

Moreover, this condition can be seen as a pull-back

operation on the metric from M to MA, imposed by the

motion constraints expressed by Eq. (16) [6, 7].

Likewise, Eq. (18) could be interpreted as a similar

operation on the affinities. More specifically, relation

(18) provides a condition on the selection of the

connection on manifold MA, given the elements of

matrix N together with the affinities and the metric

components on M. In contrast to Eq. (17), Eq. (18)

involves some freedom, which is quite useful. Specif-

ically, due to the presence of the quadratic term vbvc,

the admissible affinities on MA can be split in the form

Kq
ca ¼ K

q
ca þ K

_
q
ca ð19Þ

The component K
q
ca is determined by requesting that

the term inside the parentheses of Eq. (18) is equal to

zero. It is easy to show that this leads to

K
q
ca ¼ gqbN j

bðN
i
a;cgij þ Ni

aN
k
cK

‘
k ig‘jÞ; ð20Þ

where the terms gqb are components of the inverse

metric matrix [11]. Obviously, the part K
q
ca can be

obtained completely, given the set of additional

motion constraints and the geometric properties of

the original manifold M. In addition, the component

K
_
q
ca has to just satisfy the condition

K
_
q
cagqbv

bvc ¼ 0: ð21Þ

Then, it can easily be verified that the terms K
_
q
ca do not

affect the equations of motion. That is, combination of

Eqs. (8), (9) and (21) verifies that the simplest form of

the equations of motion on the constrained manifold

MA is the following

_pa � pq K
q
cav

c ¼ fa; ð22Þ

with a ¼ 1; . . .;m: This demonstrates that an infinity

of acceptable choices of the affinities is possible,

depending on the selection of the K
_
q
ca’s, leading to the

same essential dynamics. However, the choice of the

K
_
q
ca’s affects some crucial geometric properties of MA,

like its curvature and torsion. It also affects the form of

its autoparallel curves as well as the parallel transla-

tion of vectors along a curve of MA. In the sequel,

Eqs. (18) and (20) will be referred to as weak and
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strong connection compatibility conditions,

respectively.

In earlier studies, the connection on manifold M is

usually selected by adopting the common choice in

abstract Riemannian geometries, so that it is fully

compatible with its metric [7, 8]. Essentially, this

means that the components of the connection are

determined by imposing the condition

ðrvgÞðu;wÞ ¼ 0 )
ðgij;k � g‘ iK

‘
kj � g‘jK

‘
k iÞvkuiw j ¼ 0;

ð23Þ

for all vectors v, u and w of TpM [11]. This leads to the

well-known Levi–Civita connection and implies that

the corresponding affinities satisfy the metric com-

patibility conditions

Dkgij � gij;k � g‘iK
‘
kj � g‘jK

‘
k i ¼ 0: ð24Þ

Therefore, they depend solely on the components of

the metric tensor on M. Consequently, a full determi-

nation of the affinities can be achieved by assuming

that the connection is also torsionless [6]. Moreover,

the same selection is also performed on the con-

strained manifold MA.

Clearly, the weak and strong connection compat-

ibility conditions (18) and (20) are imposed from

manifold M to MA, while the metric compatibility

conditions (24) are imposed from M to M. In addition,

it can easily be shown that the equations of motion on

manifold M can be rewritten in the form

Dpi
D t

� fi ¼ 0 ) gij
Dv j

D t
þ Dkgijv

kv j � fi ¼ 0;

ð25Þ

where the total derivative of a covector and a vector

component are evaluated by

Dpi
D t

¼ _pi � Kk
j iv

jpk and
Dv j

D t
¼ _v j þ K j

k‘v
kv‘; ð26Þ

respectively [6]. This derivation indicates that the first

term in the metric compatibility term Dkgij of Eq. (24)

results by a change of the metric components with

respect to time, while the other two terms arise by a

change of the metric components with respect to

position on the manifold.

3 Derivation of the equations of motion

for constrained systems

In analytical dynamics, the archetypal configuration

manifold is chosen to coincide with the Euclidean

configuration manifold E3N [1–3]. This manifold is

appropriate for the description of the motion of N

unconstrained particles in the three-dimensional phys-

ical space, which requires a set of 3N Cartesian

coordinates x ¼ ðx1. . . x3NÞ. Then, selecting the clas-

sical Cartesian basis, all the corresponding structure

constants, as defined by Eq. (3), turn out to be zero

(i.e., ckij ¼ 0). Moreover, the components of the metric

tensor on this basis form a diagonal metric matrix with

constant elements. In addition, a trivial connection can

always be selected, so that

Kk
ij ¼ 0: ð27Þ

Consequently, it can easily be verified from Eqs. (12)

and (13) that the space examined is flat. That is, it has

zero torsion and zero curvature and one can utilize the

same basis at every point of the manifold [11].

Next, imposing a set of holonomic motion con-

straints leads to a new system, whose configuration

manifold, say M, is described by a new set of

coordinates, q ¼ ðq1. . . qnÞ. Therefore, the metric

and the affinities on the new configuration manifold

can be established by imposing the compatibility

conditions expressed by Eqs. (17) and (18). Due to

Eq. (27), the latter condition appears in the simpler

form

ðKcab � Ni
a;cN

j
bgijÞ v

bvc ¼ 0; ð28Þ

with

Kcab � gbqK
q
ca: ð29Þ

Then, assume that the motion constraints are imposed

through a velocity transformation, expressed by

Eq. (16). In component form, this means that

vi ¼ Ni
a v

a ð30Þ

and makes available all the information needed in

order to set up the equations of motion on the

constrained manifold. More specifically, after intro-

ducing the total derivative of the generalized momen-

tum by
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Dpa
D t

¼ _pa � pdK
d
cav

c; ð31Þ

direct application of Newton’s second law on the

constrained manifold yields that

Dpa
D t

¼ fa: ð32Þ

By employing the definitions and a symmetry

property of the indices, the first term in the right-hand

side of Eq. (31) is written successively as

_pa ¼ ðgabvbÞ� ¼ gab _v
b þ ðgab;cvcÞvb

¼ gab _v
b þ 1

2
ðgab;c þ gac;bÞvbvc: ð33Þ

Similar manipulation of the second term in the right-

hand side of Eq. (31), taking into account Eq. (29),

yields first

Kd
cav

cpd ¼ Kd
c av

cgbdv
b ¼ Kcabv

bvc;

which upon substitution of the weak compatibility

condition (28) leads to

Kd
cav

cpd ¼ Ni
a;cN

j
bgij v

bvc: ð34Þ

Next, assuming for simplicity in the subsequent

manipulations that the transformation equations (from

the original Cartesian coordinates xi to the system

coordinates qa) are actually on the coordinate level,

i.e., xi ¼ xiðqÞ, it turns out that

Ni
a ¼ oxi

�
oqa ð35Þ

in Eq. (30). Then, using Eqs. (3) and (30), it is

straightforward to show that

Ni
a;c ¼ Ni

c;a þ cdcaN
i
d; ð36Þ

so that Eq. (34) is put in the form

Kd
cav

cpd ¼ ðNi
c;a þ cdcaN

i
dÞN

j
bgij v

bvc

or eventually

Kd
cav

cpd ¼ ½1
2
ðN j

c;aN
i
b þ Ni

b;aN
j
c Þ þ cdcaN

i
dN

j
b� gij v

bvc:

ð37Þ

Next, by employing Eq. (17), it turns out that

gbc;a ¼ ðNi
b;aN

j
c þ Ni

bN
j
c;aÞ gij;

so that Eq. (37) becomes

Kd
cav

cpd ¼ ð1

2
gbc;a þ cdcagdbÞ vbvc: ð38Þ

Consequently, combination of Eqs. (31)–(33) and (38)

leads to the following form of the equations of motion

gab _v
b þ Cbcav

bvc þ cdac gdb v
bvc ¼ fa; ð39Þ

with

Cbca � 1

2
ðgab;c þ gac;b � gbc;aÞ: ð40Þ

By inspection of Eqs. (33) and (38), it becomes

clear that the first two terms of Cbca result by changes

of the momentum component pa with respect to time,

while the third term arises from changes of pa with

respect to space, represented by the affinities. Like-

wise, the third term of Eq. (39) arises when an

anholonomic basis (i.e., when some of the cdac’s are

nonzero) is employed. In earlier (variational)

approaches, similar correction terms appear and lead

to the so-called Poincare equations [14]. Moreover,

when the basis is holonomic, these terms disappear

and the final set of equations becomes identical with

the set obtained by Greenwood, instead [4, 15].

According to theory presented in earlier work, both

of these results are expected, since the connection of

the original manifold E3N satisfies the metric compat-

ibility condition (24) and is torsionless [11].

The results presented in this section verify that the

set of equations of motion obtained by direct appli-

cation of the generalized Newton’s law is identical to

that derived by earlier approaches, using the classical

Lagrange’s equations and including appropriate cor-

rection terms when the selected basis is anholonomic.

For this, one of the simplest routes was followed, since

the objective was to illustrate the main ideas and not

the derivation of the set of equations of motion per se.

However, these results can easily be extended to more

complex situations, where the motion constraints are

more general than those represented by Eq. (35) or

even Eq. (14). In particular, rheonomic and acatastatic

or inequality constraints need a little more involved

but similar treatment, as was demonstrated in earlier

work of the authors [16, 17]. Finally, if additional

constraints are imposed on the motion of the system on

the configuration manifold M, the components of the

metric tensor and the affinities on the new constrained

manifold, say MA, can similarly be determined by
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satisfaction of conditions (17) and (18), through

application of the new set of constraints.

4 The generalized Christoffel connection

In the existing literature on constrained systems, a

specific connection is selected frequently, known as

the Levi–Civita connection [6]. This selection is based

on theory of classical Riemannian geometry and may

be appropriate when a holonomic basis is utilized in

the tangent space of each point of the configuration

manifold. By definition, this connection satisfies the

metric compatibility condition Eq. (24) and is torsion

free [7].

Here, a similar but more general connection is

introduced first, which is appropriate even when an

anholonomic basis is used. Specifically, a connection

having the generalized Christoffel symbols Ck
ij as

affinities is chosen [11]. Geometrically, these quanti-

ties appear in the system of ordinary differential

equations (ODEs)

_uk þ Ck
iju

iu j ¼ 0; ð41Þ

which yield a special set of curves on a manifold,

known as geodesics and possessing the shortest length

between two points of the manifold [18]. Based on this

property, these affinities are determined in a form

which is a bit more involved than the classical Levi–

Civita form but is suitable even in cases where the

basis of TpM is anholonomic (e.g., when motion of

rigid bodies or nonholonomic motion constraints are

considered [8, 19]). More specifically,

Ck
ij ¼ Ck

ij þ Ĉk
ij; ð42Þ

where the quantities

Ck
ij ¼ gk‘Cij‘ with Cij‘ � 1

2
g‘ i;j þ g‘j;i � gij;‘
� �

;

ð43Þ

are known as the nonholonomic Christoffel-like

symbols of the second and first kind, respectively

[7]. Using their definition, it is easy to show that they

possess the symmetry property

Cij k ¼ Cj i k ) Ck
ij ¼ Ck

j i: ð44Þ

This part of Ck
ij remains when a holonomic basis is

selected and satisfies the metric compatibility condi-

tion, as expressed by Eq. (24), in the sense that

gij;k � g‘ iC
‘
kj � g‘jC

‘
k i ¼ 0: ð45Þ

In this respect, this part of the generalized Christoffel

connection coincides with the Levi–Civita connection,

which is employed in classical Riemannian theory [6].

Moreover, the part

Ĉk
ij ¼ gk‘Ĉij‘ with Ĉij ‘ ¼

1

2
ðcm‘ igjm þ cm‘jgim þ cmij g‘mÞ

ð46Þ

arises when the basis selected is anholonomic.

Next, it is shown that the Christoffel symbols, as

defined by Eq. (42), represent a special set of the

affinities satisfying the weak compatibility condition

(18). To prove this, assume that the original config-

uration manifold coincides with the archetypal

Euclidean configuration manifold E3N . Then, this task

is reduced to showing that

ðCcab � Ni
a;cN

j
b gijÞ v

bvc ¼ 0: ð47Þ

First, employing Eq. (40) in combination with

Eq. (17), it turns out that

Ccab ¼ 1

2
½ðNi

b;aN
j
c þ Ni

bN
j
c;aÞ þ ðNi

b;cN
j
a þ Ni

bN
j
a;cÞ

� ðNi
c;bN

j
a þ Ni

cN
j
a;bÞ� gij:

Then, application of Eq. (35) yields eventually

Ccab ¼ Ni
a;cN

j
b gij �

1

2
ðcdbagdc þ cdbcgda þ cdcagdbÞ:

ð48Þ

Finally, employing Eq. (46), it turns out that

Ccab ¼ Ccab þ Ĉcab ¼ Ni
a;cN

j
b gij: ð49Þ

This result shows that the term of Eq. (47) inside the

parentheses is equal to zero. Therefore, the Christoffel

connection satisfies a condition which is stronger than

the weak compatibility condition (18). In fact, starting

from the definition

Dcgab ¼ gab;c � gkaC
k
cb � gkbC

k
ca

and using Eq. (42) yields

Dcgab ¼ gab;c � gkaðCk
cb þ Ĉk

cbÞ � gkbðCk
ca þ Ĉk

caÞ:
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Next, by first employing Eq. (24) and then utilizing

the definition (46), it turns out that

Dcgab ¼ �Ĉcba � Ĉcab

¼ �1

2
ðcdacgdb þ cdabgdc þ cdcbgdaÞ

� 1

2
ðcdbcgda þ cdbagdc þ cdcagdbÞ:

Finally, using the anti-symmetry property ccba ¼ �ccab,

it is obvious that the connection examined satisfies the

metric compatibility condition

Dcgab ¼ 0: ð50Þ

These results demonstrate that the generalized

Christoffel connection, defined by Eq. (42), satisfies

the metric compatibility condition (20), which is

actually stronger than the weak compatibility condi-

tion (18). Therefore, it is an acceptable connection for

deriving the equations of motion of a constrained

mechanical system.

Proceeding in a similar fashion, it can also be

shown that the generalized Christoffel connection is

torsion free. First, combination of Eqs. (12) and (42)

yields

scab ¼ Cc
ab � Cc

ba � ccab
¼ ðCc

ab þ Ĉc
abÞ � ðCc

ba þ Ĉc
baÞ � ccab: ð51Þ

Then, using the symmetry property (44) and the

definition (46), it turns out that

scab ¼ 1

2
gceðcdeagdb þ cdebgda þ cdabgdeÞ

� 1

2
gceðcdebgda þ cdeagdb þ cdbagdeÞ � ccab;

or

scab ¼ 1

2
gcegdec

d
ab �

1

2
gcegdec

d
ba � ccab: ð52Þ

Finally, using the metric identity

gcegde ¼ dcd

and the anti-symmetry property ccba ¼ �ccab, it is

obvious that

scab ¼ 1

2
gcegdec

d
ab �

1

2
gcegdec

d
ba � ccab

¼ 1

2
dcdc

d
ab þ

1

2
dedc

d
ab � ccab;

or eventually

scab ¼ 0: ð53Þ

This verifies that the generalized Christoffel connec-

tion, defined by Eq. (42), is always torsionless, indeed.

5 Effect of connection on configuration space

and equations of motion

In this section, the main ideas and results presented in

the previous three sections are illustrated and rein-

forced further by applying them to a selected set of

mechanical examples. The emphasis is placed on

clarifying the overall process, leading to the final set of

equations of motion. The objective is twofold. First, to

derive an original set of intermediate results, referring

to the connection properties, which affect the geom-

etry of the configuration space in a significant way but

were not investigated before. Second, to verify that the

set of equations obtained for some well-studied

examples is identical to that obtained using earlier

(variational) methods, when the appropriate correction

terms are added in the latter. Specifically, spherical

motion of a rigid body is considered first, followed by

an investigation of general spatial motion of a rigid

body. In fact, the rigid body belongs to the class of

constrained systems examined, since it can be con-

sidered as a system of N particles, with N	 3,

interconnected with massless rigid constraints, keep-

ing constant their distance (see Sect. 5.2 of [11]).

Therefore, the original (unconstrained) configuration

manifold for general spatial rigid body motion is the

Euclidean manifold E3N . In particular, for spherical

motion, in addition to the rigidity constraints, one of

the particles (representing the fixed point of the rigid

body) should be kept fixed.

In the first example, a left-invariant canonical

connection is chosen and the equations of motion are

derived for two characteristic coordinate sets. The first

set of (quasi) coordinates corresponds to the classical

body frame, while the second set corresponds to the

3–1-3 Euler angles [20]. Then, the Christoffel con-

nection is selected in the second example and the same

steps are repeated. In both examples, emphasis is

placed on the effect of the connection on the geometric

properties of the configuration space and the final form

of the equations of motion. Finally, a difference

arising in the form of the equations describing the

spatial motion of a rigid body, obtained by employing
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a direct and a semi-direct group product, is justified in

a third example.

5.1 Spherical motion of a rigid body: left-

invariant canonical connection

Consider motion of a rigid body, which is restricted to

rotate about a fixed point O, as shown in Fig. 1. This

motion is observed from an inertial coordinate frame

OX1X2X3, while a second frame Ox1x2x3 is fixed on

the body. It is a well-studied motion in the literature.

For instance, it has been analyzed in depth by many

previous studies, exploiting the Lie group structure of

the configuration manifold [9, 10, 13]. In such a case,

the points p of the configuration manifold correspond

to the set of 3 � 3 orthogonal matrices R with

determinant equal to þ1. Therefore, they belong to

the special orthogonal group SOð3Þ [6].

As usual, the first act in the effort to provide a

complete description of the configuration manifold

geometry is to choose an appropriate coordinate chart.

Then, the coordinates of a point p of this manifold are

obtained through a local smooth map, as expressed by

Eq. (1) [7]. Next, for a given set of generalized (or

Lagrangian) coordinates q, a holonomic or chart-

induced basis, say Bg ¼ f g
1

g
2

g
3
g , can always

be constructed in the corresponding tangent space at p

(for instance, the basis corresponding to Euler angles)

[7]. However, it is frequently more convenient to

utilize an anholonomic basis, instead. In particular,

taking into account that the configuration manifold of

the spherical motion possesses group properties, a left-

translated basis can also be constructed, say Be ¼
f e 1 e 2 e 3g [13]. In simple terms, this means that

e i ¼ REi; i ¼ 1; 2; 3ð Þ; ð54Þ

where BE ¼ fE1 E2 E3g is an orthonormal basis

attached to the inertial Cartesian frame OX1X2X3 and

R is a rotation matrix, providing the orientation of the

body with respect to this frame [20, 21]. This makes

sure that Be is also orthonormal and is attached to the

body frame Ox1x2x3. Then, using the definition (3), all

the coefficients cij k of this basis are found to be zero,

except for

c1
23 ¼ �c1

32 ¼ c2
31 ¼ �c2

13 ¼ c3
12 ¼ �c3

21 ¼ 1; ð55Þ

and are known as structure constants (or Hamel

transitivity coefficients) [13]. Moreover, by consider-

ing the expression of the kinetic energy of the body in

the same frame, it is easily found that the components

of the metric tensor are also constant and equal to the

mass moment of inertia matrix of the body with

respect to the fixed point O. This means that

G ¼ IO; ð56Þ

with G ¼ ½gij� and IO ¼ ½Iij�, so that gij ¼ Iij. Further-

more, according to the approach developed in an

earlier study of the authors [13], it is convenient to

select a special connection, known as a left-invariant

canonical connection [22], through the choice

Kk
ij ¼ ckij; ði; j; k ¼ 1; 2; 3Þ: ð57Þ

Therefore, based on Eq. (55), all the affinities are

selected to be zero, except for

K1
23 ¼ �K1

32 ¼ K2
31 ¼ �K2

13 ¼ K3
12 ¼ �K3

21 ¼ 1:

ð58Þ

Moreover, by substituting the choices expressed by

Eqs. (55) and (58) into Eqs. (12) and (13), it was shown

that these choices lead to

skij ¼ Kk
ij and R‘

ij k ¼ 0: ð59Þ

These mean that the connection selected introduces

torsion but no curvature effects on the configuration

manifold. Finally, it was also shown that the above set

of affinities satisfies the weak compatibility condition

(18) and it therefore forms an eligible set of affinities

(see Sect. 5.3 of [11]).

Fig. 1 Spherical motion of a rigid body
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Establishment of the metric and connection com-

ponents opens the way to derive the equations

governing the motion examined. Namely, this infor-

mation is sufficient to set up the equations of motion,

by direct application of the generalized Newton’s law

in the form of Eq. (8). In fact, these equations were

found in the form

Jij _X
j þ ~X j

iJj kX
k ¼ Mi; i; j; k ¼ 1; 2; 3ð Þ; ð60Þ

where Mi represents the components of the applied

moment on the body with respect to point O, X
includes the components of the angular velocity of the

body with respect to the body frame, while

spinðXÞ � ~X ¼ ½ ~X j
i� ¼ ½K j

k iX
k�

¼
0 �X3 X2

X3 0 �X1

�X2 X1 0

2

4

3

5 ð61Þ

is a skew-symmetric matrix, with ~X � RT _R [20].

Moreover, the quantities

Hi ¼ JijX
j

represent the components of the angular momentum of

the body with respect to point O, in the same frame.

Finally, in the special case where a principal coordi-

nate system is considered, which means that

IO ¼ diagð I11 I22 I33 Þ;

the equations of motion (60) yield eventually the

classical Euler equations

I11
_X1 þ ðI33 � I22ÞX2X3 ¼ M1; ð62Þ

I22
_X2 þ ðI11 � I33ÞX3 X1 ¼ M2; ð63Þ

I33
_X3 þ ðI22 � I11ÞX1X2 ¼ M3: ð64Þ

In contrast to the approach applied here, it is well

known that the direct application of Lagrange’s

equations misses the quadratic velocity terms in the

last set of equations, since the X’s represent quasi-

velocities rather than true velocities [4]. These terms

are recovered by adding the correction arising from the

structure constants of the basis, as in Eq. (39). In

addition, it is interesting to note that the chosen

connection is not metric compatible. In fact, with

reference to Eq. (25), it can easily be shown that the

quadratic velocity terms in Eqs. (62)–(64), or

equivalently in Eq. (60), are solely due to the

Dkgijv
kv j term in Eq. (25). This is so because the

quadratic velocity terms in the total derivative of the

velocity disappear due to the anti-symmetry property

of the affinities (i.e., Kk
ij ¼ �Kk

j i). More specifically, in

case of a principal set of axes, the Dkgijv
kv j terms (for

i ¼ 1; 2; 3) are found to be

Dkg1jv
kv j ¼ ðI33 � I22Þ X2X3;

Dkg2jv
kv j ¼ ðI11 � I33Þ X3X1;

Dkg3jv
kv j ¼ ðI22 � I11Þ X1X2: ð65Þ

Obviously, these terms are zero only in the trivial case

with

I11 ¼ I22 ¼ I33 ð66Þ

or in pure rotation (when two components of X are

identically equal to zero).

Next, an investigation is performed on how things

change due to a change of the original basis. In

general, if the elements of a basis Be are related to the

elements of another basis Be0 ¼ f e 10 e 20 e 30 g
through the transformation

e i0 ¼ Ai
i0 e i or e i ¼ Bi0

i e i0 ; ð67Þ

with Ai
i0B

j0

i ¼ dj
0

i0 [7], then the components of any

vector in these two bases, expressed by

v ¼ vi e i ¼ vi
0
e i0 ;

are related by

vi ¼ Ai
i0 v

i0 or vi
0 ¼ Bi0

i v
i: ð68Þ

Moreover, the affinities in the new basis are found by

Kk0

i0j0 ¼ Bk0

k A
i
i0A

j
j0 K

k
ij þ Bk0

k A
k
j0;i0 : ð69Þ

In a similar fashion, by performing lengthy but

straightforward manipulations, it eventually turns out

that

Dk0gi0j0 ¼ Ai
i0A

j
j0A

k
k0 Dkgij

þ ½Ai
i0 ðA

j
j0;k0 � Aj

k0;j0 Þ þ Aj
j0 ðAi

i0;k0 � Ai
k0;i0 Þ� gij:

ð70Þ
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This reveals that the metric compatibility term

possesses a tensor-like part, while a non-tensorial part

may also develop when an anholonomic basis is

involved in the basis transformation expressed by

Eq. (67).

Among all the possible alternative charts for

spherical motion, the one corresponding to the clas-

sical 3–1-3 Euler angle coordinates hE ¼
ðu h w ÞT is selected next as the new chart, where

u, h and w represent precession, nutation and spin

angles, respectively [20, 23]. Then, there exists a

velocity transformation between the examined sets of

coordinates, with form

X ¼ T _hE; ð71Þ

where T represents the transformation matrix between
_hE and X [20]. Also, since the new basis, correspond-

ing to the Euler angles, is holonomic, it is true that

ckij ¼ 0: ð72Þ

Next, the new mass (metric) matrix is obtained by

employing the formula

G ¼ TTIO T:

For simplicity in the calculations, the axisymmetric

case with

I11 ¼ I22 ¼ I; I33 ¼ J; ð73Þ

is considered next (similar results are also obtained in

the general case, with unequal mass moments of

inertia, with the penalty of just increasing the

complexity of the calculations). Then, the metric

matrix is obtained eventually in the form

G ¼
J þ ðI � JÞ sin2 h 0 J cos h

0 I 0

J cos h 0 J

2

4

3

5; ð74Þ

which reveals that it is a function of the nutation angle

h. In addition, the affinities corresponding to the new

basis are determined by direct application of Eq. (69),

with A ¼ T and B ¼ T �1. More specifically, by

utilizing Eqs. (58) and (69), it turns out that the only

nonzero affinities in the new basis are the following

K1
12 ¼ K3

23 ¼ cot h; K3
12 ¼ K1

23 ¼ �1=sin h;

K2
13 ¼ sin h:

ð75Þ

Consequently, by using Eqs. (12) and (13) it can be

verified that the system possesses torsion but not

curvature, which is in accordance with Eq. (59). This

is expected, since both the torsion and the curvature

are tensorial quantities [7]. In addition, all the

connection compatibility terms are zero, except for

D1g12 ¼ D1g21 ¼ �1

2
D2g11 ¼ 1

2
ðJ � IÞ sin 2h ð76Þ

and

D1g23 ¼ D1g32 ¼ �D2g13 ¼ �D2g31 ¼ ðJ � IÞ sin h:

ð77Þ

This verifies that the connection is not metric

compatible even in the new frame. In addition, lengthy

but straightforward calculations lead eventually to the

following results

Dkg1j u
juk ¼ ðI � JÞ _u _h sin 2h � J _h _w sin h

þ sin hðI _w� I _u cos hþ J _u cos hÞ _h;
ð78Þ

Dkg2j u
juk ¼ _u sin hðJ _w� I _u cos hþ J _u cos hÞ

� I _u _w sin h

ð79Þ

and

Dkg3j u
juk ¼ 0: ð80Þ

Consequently, the equations of motion in the new

basis are finally cast in the form

½J þ ðI � JÞ sin2 h� €uþ J cos h €wþ ðI � JÞ _u _h sin 2h

� J _h _w sin h ¼ Mu;

ð81Þ

I €hþ sin h ½J _wþ ðJ � IÞ _u cos h� _u ¼ Mh; ð82Þ

J cos h €uþ J €w� J _u _h sin h ¼ Mw: ð83Þ

These equations have a very different form than

Eqs. (62)–(64), obtained in the body frame. However,

they express the same essential dynamics. For
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instance, it is easy to verify that the last set of

equations accepts solutions of steady precession, in the

torque-free case. These represent special motions with

h ¼ h0; _u ¼ _u0;
_w ¼ _w0;

for constant h0, _u0 and _w0, which arise when the

axisymmetry condition expressed by Eq. (73) is

satisfied.

Finally, with reference to Eq. (25), it can easily be

shown that the quadratic velocity terms in the set of

Eqs. (81–83) are partly due to the Dkgijv
kv j term and

partly due to the term K j
k iv

kvi in the total derivative

Dv j=D t. Obviously, this result is in contrast to the

corresponding result obtained for the body frame. The

presence of the latter terms is justified by the fact that

the new set of affinities, given by Eq. (75), do not

possess the anti-symmetry property Kk
ij ¼ �Kk

j i.

5.2 Spherical motion of a rigid body: Christoffel

connection

Consider spherical motion of a rigid body, again. In

addition, the basis corresponding to the classical body

frame is selected first. Then, the corresponding

nonzero structure constants are evaluated in the form

shown by Eq. (55), while the metric matrix is chosen

according to Eq. (56). However, the connection is now

selected according to

Kk
ij ¼ Ck

ij; i; j; k ¼ 1; 2; 3ð Þ; ð84Þ

instead of the choice expressed by Eq. (57).

Since the metric selected has constant components,

it is concluded from Eq. (43) that Ck
ij ¼ 0. Then, using

Eq. (42), this leads immediately to

Ck
ij ¼ Ĉk

ij: ð85Þ

This result demonstrates that the generalized Christof-

fel connection, as defined by Eq. (42), includes only

the correction terms arising in the presence of an

anholonomic basis. This illustrates that the classical

Levi–Civita connection is not appropriate in the case

examined. Moreover, substitution of the structure

constants and the metric components from Eq. (55)

and (56), respectively, in Eq. (46) and carrying out the

algebra yields the following set of nonzero affinities

C1
23 ¼ 1

2
ðI11 � I22 þ I33Þ=I11;

C1
32 ¼ 1

2
ð�I11 � I22 þ I33Þ=I11;

C2
31 ¼ 1

2
ðI11 þ I22 � I33Þ=I22;

C2
13 ¼ 1

2
ðI11 � I22 � I33Þ=I22;

C3
12 ¼ 1

2
ð�I11 þ I22 þ I33Þ=I33;

C3
21 ¼ 1

2
ð�I11 þ I22 � I33Þ=I33:

ð86Þ

Next, by substituting these values into Eqs. (12) and

(13) it can easily be shown that the connection selected

is torsionless, that is, skij ¼ 0, in accordance with the

general findings of Sect. 4 (Eq. (53)). However, it

provides curvature to the configuration manifold,

instead. That is, there exist twelve components of the

curvature tensor with

R‘
ij k 6¼ 0:

For example,

R1
221 ¼ ðI11 � I22 þ I33Þð�I11 þ I22 þ I33Þ

4I33I11

� I11 þ I22 � I33

2I11

;

which, in fact, is a constant.

The above results mean that the connection selected

is torsion free but introduces (constant) curvature

effects on the corresponding configuration manifold.

This is in sharp contrast to the properties of the left-

invariant canonical connection, selected in the previ-

ous example, which introduces torsion but no curva-

ture effects on the configuration manifold.

In the special case expressed by Eq. (66), it can be

shown that all the nonzero generalized Christoffel

symbols are also constant and equal in magnitude, i.e.,

C1
23 ¼ �C1

32 ¼ C2
31 ¼ �C2

13 ¼ C3
12 ¼ �C3

21 ¼ 1=2:

ð87Þ

Likewise, all the nonzero components of the curvature

tensor are also constant and equal in magnitude, i.e.,

R1
212 ¼ R1

313 ¼ R2
121 ¼ R2

323 ¼ R3
131 ¼ R3

232 ¼ 1=4;

R1
221 ¼ R1

331 ¼ R2
112 ¼ R2

332 ¼ R3
113 ¼ R3

223 ¼ �1=4:

ð88Þ
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Comparing these results with similar results presented

in an earlier publication [13], reveals that the

symmetric canonical connection, represented by

Eq. (87), leads to the correct set of equations of

motion only in the equimomental case [24], expressed

by Eq. (66).

Finally, in accordance with a general result, proved

in Sect. 4, the above set of affinities satisfies the weak

compatibility condition and it therefore forms an

eligible set of affinities [11]. In fact, the resulting

equations of motion have identical form to that

obtained in Sect. 5.1. For instance, in the special case

where a principal coordinate system is considered, that

is when IO ¼ diagð I11 I22 I33 Þ, the equations of

motion appear in the classical Euler form expressed by

Eqs. (62–64).

As was shown in Sect. 4, the chosen connection is

metric compatible, in the sense Dkgij ¼ 0. Then,

Eq. (25) is simplified to

Dpi
Dt

¼ gij
Dv j

Dt
¼ fi ) gijð _v j þ K j

k‘v
kv‘Þ ¼ fi:

ð89Þ

Here, the quadratic velocity terms in the equations of

motion are solely due to the quadratic velocity terms in

the total derivative of the velocity. This is in sharp

contrast to the result obtained for the case where the

left-invariant canonical connection was chosen,

instead of the Christoffel connection.

Next, the calculations are repeated by keeping the

Christoffel connection but selecting the classical 3–1-

3 Euler angles hE ¼ ðu h w ÞT , instead of the

quasi-coordinates corresponding to the body frame.

First, all the structure constants are zero, as indicated

by Eq. (72), since the basis corresponding to the Euler

angles is holonomic. Moreover, the focus is placed on

the axisymmetric case, expressed by Eq. (73), again,

in order to avoid unnecessary complications in the

presentation. Consequently, the metric matrix is given

by Eq. (74). Then, the corresponding affinities are

determined by first combining Eqs. (46) and (72),

which reveals that Ĉ k
ij ¼ 0. Next, by combining

Eqs. (42), (43) and (74), it eventually turns out that

the only nonzero affinities are the following

C1
21 ¼ C1

12 ¼ �ðI � J=2Þ sin 2h
Iðcos 2h� 1Þ ;

C1
32 ¼ C1

23 ¼ � J

2I sin h
;

C2
11 ¼ �ðI � JÞ sin 2h

2I
; C2

31 ¼ C2
13 ¼ J sin h

2I
;

C3
21 ¼ C3

12 ¼ J � 2I þ ðI � JÞ sin2 h
2I sin h

;

C3
32 ¼ C3

23 ¼ � J sin 2h
2Iðcos 2h� 1Þ :

ð90Þ

Again, noticing that all the structure constants are

zero, while the affinities obtained are symmetric in the

lower two indices, it is easy to verify by using Eq. (12)

that the connection chosen is torsionless (i.e., skij ¼ 0).

Likewise, by substituting the same quantities in

Eq. (13), it can be shown that some (precisely twenty

two) components of the curvature tensor are nonzero

(i.e., R‘
ij k 6¼ 0). For example,

R1
221 ¼ � 4I � 3J

4I
and R3

313 ¼ � J2

4I2
cos h:

Both of these results are in accordance with the fact

that the torsion and curvature of the connection are

tensorial quantities [6, 7].

Finally, the equations of motion are derived in a

form which is identical to that of Eqs. (81–83),

presented at the end of Sect. 5.1. Again, since the

chosen connection is metric compatible, the quadratic

velocity terms in the equations of motion are solely

due to the quadratic velocity terms in the total

derivative of the velocity. In fact, these equations are

identical to those derived by direct application of the

classical Lagrange equations [23, 24]. This is justified

because the connection is metric compatible and

torsionless, while the basis employed is holonomic,

according to theoretical results presented in an earlier

study (see Sect. 6.2 of [11]).

Critical comparison with the results presented in

Sect. 5.1 has revealed already that the final form of the

equations of motion depends on the selection of the

coordinate set, but it is not affected by the choice of the

connection. Of course, the connection affects the

shape and properties of the configuration manifold,

because it governs its torsion and curvature charac-

teristics. These findings suggest that a proper selection

of the connection can lead to significant analytical and
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computational benefits. For instance, it was shown in

an earlier study of the authors that selection of a left-

invariant canonical connection causes a coincidence

of the special curves representing one-parameter Lie

subgroups as well as the curves resulting by their left

translation (which are defined by using group proper-

ties only) with the autoparallel curves (which are

determined by using manifold properties only) [13]. In

addition, the same selection makes the parallel transfer

of a vector on the manifold to be equivalent to a right

translation of it [6, 7]. More importantly, for a given

set of coordinates, the difference in the values of

different but admissible affinities yields a K
_

term, as

defined by Eq. (19) and satisfying the condition (21),

which does not affect the equations of motion. For

example, selecting the body frame and denoting by
LKq

ca and CKq
ca the affinities selected according to

Eq. (57) and (84), respectively, it immediately turns

out that

LKq
ca � CKq

ca ¼ cqca �
1

2
gqdĈcad:

Then, using Eq. (46) and performing trivial algebraic

manipulations leads eventually to

ðLKq
ca � CKq

caÞgqbvbvc ¼ 0; ð91Þ

which satisfies condition (21). In this sense, it is

obvious that

LKq
ca � CKq

ca ¼ K
_q

ca:

Likewise, selecting the Euler angles as generalized

coordinates and denoting by LK̂q
ca and CK̂q

ca the

affinities selected according to Eq. (75) and (90),

respectively, it turns out that the terms defined by

LK � LK̂q
cagqbv

bvc and CK � CK̂q
cagqbv

bvc; ð92Þ

take the form

LK ¼ gab _v
b þ gab;cv

bvc

and

CK ¼ gab;c � Cbca
� �

vbvc;

after performing lengthy but trivial manipulations.

Then, combination of the last two equations and use of

Eq. (39) for a holonomic basis, according to Eq. (72),

yields eventually that

LK� CK ¼ gab _v
b þ Cbcav

bvc ¼ 0:

Finally, the last result in conjunction with the defini-

tions introduced by Eq. (92) leads to

ðLK̂q
ca � CK̂q

caÞgqbvbvc ¼ 0; ð93Þ

which proves that the difference in the affinities LK̂q
ca

and CK̂q
ca corresponds to a K

_
q
ca term, again. In turn, this

provides an explanation for the earlier observation that

the selection of the affinities does not affect the final

form of the equations of motion.

5.3 Spatial motion of a rigid body

In this subsection, general spatial motion of a rigid

body is considered, as depicted in Fig. 2. Again, the

coordinate frame OX1X2X3 is inertial, while the frame

Cx1x2x3 is fixed on the body, with origin at its center of

mass C. This is also a well-studied motion and has

been analyzed extensively in the past [9, 10, 20, 21].

Here, in addition to the need to describe the rotational

part of the motion, there arises an extra need to

determine the translational part of the motion of the

body, as well, represented by the motion of point C.

Therefore, a complete description of this motion

requires consideration of a six-dimensional configu-

ration manifold. Again, the most natural and conve-

nient selection for describing the rotational part of this

motion is the classical body frame, while two options

are available for the translational part. Based on

classical Lie group theory, the points of the new

configuration manifold belong to the special

Fig. 2 Spatial motion of a rigid body
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Euclidean group SEð3Þ, treated as the Cartesian

product space R3 � SOð3Þ [9, 10]. In the first option,

a direct group product is selected, while a typical semi-

direct group product is chosen in the second option

[25]. The choice of the group product affects the

definition of the left translation on the group. It

therefore affects the selection of the left-invariant

basis and consequently the components of the left-

invariant canonical connection. In the remainder of

this section, the emphasis is put on investigating the

effect of these group products on the equations

governing the spatial motion of a rigid body.

First, when a direct group product is employed, it

turns out that a left-translated basis of the tangent

space TpM, say Be ¼ f e 1 . . . e 6g , can be con-

structed, so that

e i ¼ Ei and e iþ3 ¼ REi; i ¼ 1; 2; 3ð Þ: ð94Þ

This is equivalent to locating the position of the center

of mass C of the body with respect to its components in

the inertial coordinate system OX1X2X3, while the

components of the angular velocity of the body are

expressed with respect to the body frame Cx1x2x3

[20, 25]. Specifically, the velocity vector appears in

the form

v ¼ ð vTC XTÞT ; ð95Þ

with. v C ¼ viEi. Then, using Eqs. (3) and (94), the

nonzero structure constants of the selected basis Be

are evaluated in the form

c4
56 ¼ �c4

65 ¼ c5
64 ¼ �c5

46 ¼ c6
45 ¼ �c6

54 ¼ 1: ð96Þ

Moreover, through consideration of the kinetic energy

of the body, the metric matrix G ¼ ½gij� in the same

basis is found to be constant and equal to

G ¼ mI3 0

0 IC

� �
; ð97Þ

where I3 is the 3 � 3 identity matrix, while m is the

mass of the body and IC is its centroidal mass moment

of inertia matrix. Finally, selecting a left-invariant

canonical connection through

Kk
ij ¼ ckij; i; j; k ¼ 1; 2; 3ð Þ ð98Þ

it turns out that all the affinities are zero, except for

K4
56 ¼ �K4

65 ¼ K5
64 ¼ �K5

46 ¼ K6
45 ¼ �K6

54 ¼ 1:

ð99Þ

By substituting the choices expressed by Eqs. (96)

and (99) into Eqs. (12) and (13) it can be shown that

they lead to

skij ¼ Kk
ij and R‘

ij k ¼ 0: ð100Þ

These mean that the connection selected introduces

torsion but no curvature effects on the corresponding

configuration manifold. Finally, the above set of

affinities was shown to satisfy the weak compatibility

condition (18) and it is therefore an acceptable set of

affinities (see Sect. 5.3 of [11]). Based on this

information, direct application of the generalized

Newton’s law (8) leads to determination of the set of

equations of motion in the form

m _v C ¼ f ; ð101Þ

where f represents the resultant applied force

expressed in the inertial frame and

IC _Xþ ~X ICX ¼ M: ð102Þ

These equations are decoupled, since there are no

affinities relating the rotational to the translational part

of the motion, as can be seen by Eq. (99). This is a

consequence of choosing a direct group product.

According to an alternative option, based on

selection of a semi-direct group product, employed

frequently in rigid body dynamics [9, 10], a new left-

translated basis of the tangent space TpM, say

Bê ¼ f ê 1 . . . ê 6g , can be constructed, so that

ê i ¼ REi and ê iþ3 ¼ REi; i ¼ 1; 2; 3ð Þ: ð103Þ

This means that the position of the center of mass C of

the body is now expressed with respect to the body

frame as well. Then, the velocity vector appears in the

form

v̂ ¼ ðVT
C XTÞT ; ð104Þ

with

v C ¼ RV C; ð105Þ

where R is the corresponding rotation matrix, provid-

ing the orientation of the rigid body with respect to the

inertial frame [20]. Then, combination of Eqs. (95),

(104) and (105) leads to the velocity transformation
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v ¼ A v̂ or v̂ ¼ B v; ð106Þ

with 6 � 6 matrices

A ¼ R 0

0 I3

� �
and B ¼ RT 0

0 I3

� �
ð107Þ

In addition, taking into account that the Lie bracket for

left-invariant vector fields is defined by

½X; Y � ¼ X Y � Y X; ð108Þ

the corresponding structure constants of the new basis

Bê are evaluated by using the definition (3). For this,

the base vectors of Bê are first expressed in the

following 4 � 4 matrix representation [9, 10]

Ê1 ¼
� ~E1 0

0
s

0

�
; . . .; Ê6 ¼

�
03�3 E3

0
s

0

�
; ð109Þ

where the three-dimensional vectors Ei, with

i ¼ 1; 2; 3, are the columns of the 3 � 3 identity

matrix I3. Then, through application of Eq. (3), the

nonzero structure constants of the new basis Bê are

found in the form

ĉ1
26 ¼ ĉ1

53 ¼ ĉ2
34 ¼ ĉ2

61 ¼ ĉ3
15 ¼ ĉ3

42 ¼ ĉ4
56 ¼ ĉ5

64 ¼ ĉ6
45

¼ 1;

ĉ1
62 ¼ ĉ1

35 ¼ ĉ2
43 ¼ ĉ2

16 ¼ ĉ3
51 ¼ ĉ3

24 ¼ ĉ4
65 ¼ ĉ5

46 ¼ ĉ6
54

¼ �1:

ð110Þ

These terms reflect a coupling between the translation

and rotation coordinates, induced by the semi-direct

product selected. Moreover, by using Eqs. (97) and

(107), the metric matrix in the new basis is found to

remain the same. That is,

Ĝ ¼ ATGA ¼ G: ð111Þ

Finally, a left-invariant canonical connection is

selected [22], through

K̂k
ij ¼ ĉkij; i; j; k ¼ 1; 2; 3ð Þ: ð112Þ

Then, through direct application of Eq. (8), the set of

equations of motion are determined in the new form

m ð _V C þ ~X V CÞ ¼ F; ð113Þ

with F ¼ RTf and

IC _Xþ ~X ICX ¼ M: ð114Þ

Here, the second set of these equations, describing the

rotational part of the motion, is decoupled from the

translational part, exactly as in Eq. (102). However, a

coupling term arises now in the first equation. This is

due to the new set of affinities, including mixed

rotation and translation components, according to

Eqs. (112) and (110), which is a consequence of

choosing the semi-direct group product.

The affinities produced by the semi-direct group

product, through Eqs. (112) and (110), appear to be

different than the affinities expressed by Eq. (99),

obtained by the direct group product. This suggests

that the change of the group product may correspond

to different dynamics, but this is not true. In fact, the

equations of motion appear in a different form because

there is a basis change, as explained next.

First, the former set of affinities is transformed to

the basis Be through the formula

eK̂k
ij ¼ Bk

‘A
m
i A

n
j K̂

‘
mn þ Bk

‘A
m
i A

‘
j;m: ð115Þ

Next, define the 6 � 6 matrices

eKj � ½eKk
�ij� and eK̂j � ½eK̂k

�ij� ð116Þ

where eKk
�ij denotes the affinities given by Eq. (99),

while the dot indicates that the indices k and i represent

the row and column number, respectively. Then, by

performing lengthy but direct evaluations, based on

Eqs. (107), (112) and (115), yields eventually the

following form of the matrices defined by Eq. (116)

eKj ¼ 0; j ¼ 1; 2; 3ð Þ and

eKj ¼
0 0

0 � ~Ej�3

� �
; j ¼ 4; 5; 6ð Þ

ð117Þ

and

eK̂j ¼ 0; j ¼ 1; 2; 3ð Þ and

eK̂j ¼
� ~Rj�3 0

0 � ~Ej�3

" #

; j ¼ 4; 5; 6ð Þ;
ð118Þ

where

~Ei ¼ spinðEiÞ with I3 ¼ ½E1 E2 E3 � ð119Þ

and
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~Ri ¼ spinðRiÞ with R ¼ R 1 R 2 R 3½ �: ð120Þ

Finally, using the above results, it can be shown

through a straightforward calculation that the

quantities

K
_
k
ij � eK̂k

ij � eKk
ij

satisfy Eq. (21), in the sense

K
_
k
ijgk‘v

‘vi ¼ 0: ð121Þ

This result is of large importance, since it verifies that

the affinities obtained by the direct and the semi-direct

group product of SEð3Þ lead to the same essential

dynamics.

6 Effect of connection on autoparallel curves

In general, the parallel transfer of a tensorial quantity

over a non-flat manifold depends on the connection

selected [6, 7]. This is a consequence of the fact that

the base vectors at each tangent space change when

moving from a point to another point of the config-

uration manifold, as indicated by Eqs. (10) and (11).

For instance, the parallel translation of a vector u along

a curve of the manifold with tangent vector v is defined

by the condition

rv u ¼ 0 ) _uk þ Kk
ijv

iu j ¼ 0: ð122Þ

This illustrates that the parallel transfer depends solely

on the set of affinities of the manifold. Moreover, the

special curves with

rn n ¼ 0 ) _nk þ Kk
ijn

in j ¼ 0 ð123Þ

are known as autoparallel and represent the ‘‘straight-

est curves’’ on the manifold [18]. It is interesting that

the form of Eq. (123) remains invariant under a

change of basis. For example, by applying the basis

transformation represented by Eq. (67), it is straight-

forward to show that the components of the autopar-

allel in the new basis satisfy the following set of ODEs

_nk
0 þ Kk0

i0j0 n
i0nj

0 ¼ 0; ð124Þ

which has an identical form with that of Eq. (123).

Depending on the choice of the connection, the

autoparallel curves may have a clear and elegant

geometric interpretation. First, focusing on spherical

motion, selection of a left-invariant canonical con-

nection, according to Eq. (58), leads from Eq. (123) to

_nk ¼ 0 ) nk ¼ constant; ð125Þ

since Kk
ij ¼ �Kk

j i. This means that the components of

the tangent vector n to an autoparallel remain constant

over the corresponding left-translated basis. More-

over, using Eq. (61), it turns out that

Kk
ij n

i ¼ ~nk
j : ð126Þ

Then, taking into account Eq. (122), it is concluded

that the parallel transport of a vector along an

autoparallel with tangent vector n leads to

_uk ¼ �~nk
j u

j ) uðtÞ ¼ expð�t ~nÞ u 0; ð127Þ

with u ¼ ð u1 u2 u3 ÞT . In terms of classical rigid

body dynamics terminology, the last equation can be

written in the more familiar form

X ¼ RTx ) x ¼ RX; ð128Þ

while

RTðtÞ ¼ expð�t ~nÞ ) RðtÞ ¼ expðt ~nÞ ð129Þ

is the corresponding rotation matrix, which coincides

with the exponential matrix of the group [9, 10]. This

result verifies that the choice of the left-invariant

canonical connection leads to a coincidence of the

autoparallel curves (which are a manifold property)

with the one-parameter subgroups (which are a group

property), as was first shown in [13]. Furthermore, it is

a natural choice, since these curves represent motion

corresponding to pure rotation of the rigid body along

the direction of vector n. In fact, this vector is

determined by solving the eigenvalue problem

expðt ~nÞ n ¼ n; ð130Þ

in accordance with the classical Euler theorem for

rotation of a rigid body around a fixed point [23, 24].

Next, the attention is shifted to determining the

autoparallel curves corresponding to spatial motion of

a rigid body. Now, selecting a left-invariant canonical

connection, according to Eq. (112), and proceeding as

in Eq. (125), it is found that the components of the

tangent vector to an autoparallel remain constant over

the corresponding left-translated basis, again. In this

case, the vectors u and n are six-dimensional and can

be split in the form
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u ¼ ð u 1 u 2Þ
T and n ¼ ð n 1 n 2Þ

T ; ð131Þ

with the three-dimensional vectors u 1, n 1 accounting

for the translational part and u 2, n 2 representing the

rotational part of the motion. Then, it turns out that

~n ¼ ½~nk
j � ¼ ½Kk

ijn
i� ¼ ~n2 ~n1

0 ~n2

� �
: ð132Þ

Therefore, by employing Eqs. (122) and (132), it is

concluded that the parallel transport of a vector along

an autoparallel with tangent vector n satisfies the

following set of linear ODEs

_u 1 ¼ �~n2 u 1 � ~n1 u 2 ð133Þ

and

_u 2 ¼ �~n2 u 2: ð134Þ

First, solution of the last equation yields

u 2ðtÞ ¼ expð�t ~n2Þ u 20: ð135Þ

Next, after substituting the last result as a forcing term

in the right-hand side of Eq. (133) and solving the

resulting new ODE, gives eventually

u 1ðtÞ ¼ expð�t ~n2Þ u 10 � BðtÞ u 20½ �; ð136Þ

with

BðtÞ ¼
Z t

0

expðs ~n2Þ ~n1 expð�s ~n2Þds: ð137Þ

Then, combination of Eqs. (136) and (135 leads to

uðtÞ ¼ u 1

u 2

� �
¼ RTðtÞ �RTðtÞBðtÞ

0 RTðtÞ

� �
u 10

u 20

� �
;

ð138Þ

with

RTðtÞ ¼ expð�t ~n2Þ ) RðtÞ ¼ expðt ~n2Þ: ð139Þ

In terms of classical Lie group terminology [9, 10],

inversion of the matrix involved in Eq. (138) provides

the corresponding exponential matrix in the form

expðt ~nÞ ¼ RðtÞ BðtÞRðtÞ
0 RðtÞ

� �
: ð140Þ

Then, requiring that

expðt ~nÞ n ¼ n ð141Þ

gives rise to a new eigenvalue problem. Based on the

form of the exponential matrix, given by Eq. (140), it

can easily be verified that this problem accepts as a

solution a unit eigenvalue and the corresponding

eigenvector has the form

n ¼ kn 2

n 2

� �
; ð142Þ

where n 2 is solution of the smaller size eigenvalue

problem

RðtÞn 2 ¼ expðt ~n2Þn 2 ¼ n 2 ð143Þ

and k is an arbitrary nonzero constant. The proof is

based on a combination of Eqs. (137) and (140–143) in

conjunction with performing the following

manipulations

BðtÞRðtÞn 2 ¼ BðtÞn 2 ¼
Z t

0

RðsÞ k ~n2R
TðsÞ n 2ds

¼ k

Z t

0

~n2 n 2ds ¼ 0;

ð144Þ

which in turn are based on Eqs. (143), (137) and the

identities

R ~n2R
T ¼ ~n2 and ~n2 n 2 ¼ 0: ð145Þ

The last result is a manifestation of the classical

Chasle’s theorem [9, 10]. Namely, in the special

motion corresponding to an autoparallel curve repre-

sented by Eq. (142), the translational part is along the

direction of rotation n 2, obtained by solving Eq. (143).

Obviously, this corresponds to a screw motion. The

form of the autoparallel represented by Eq. (142)

arose by using a semi-direct product for defining the

left translation. On the other hand, when the direct

group product is used, the autoparallel curves repre-

sent motions arising by a superposition of a translation

about an arbitrary direction plus a rigid body rotation

around the Euler axis n 2, determined by Eq. (143).

This result demonstrates that an appropriate choice of

the connection may lead to significant analytical

advantages, providing an enhanced understanding of

the geometry of the motion of a mechanical system.

Shese advantages can then be exploited when devel-

oping numerical schemes for solving the equations of

motion, so that the temporal discretization is
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performed along such special curves of the configu-

ration manifold [17, 26, 27].

7 Comparison with earlier approaches

This work focuses on the selection of an appropriate

connection on the configuration manifold for setting

up the equations of motion of a class of mechanical

systems involving bilateral motion constraints. This

selection is a necessary and critical step of the overall

process, since a direct application of Newton’s law of

motion was performed in the present study. Just like in

the traditional approaches, the classical framework of

analytical dynamics was also adopted here. Namely,

the motion of the system examined is represented by a

fictitious point moving on a generally non-flat man-

ifold, whose position is determined by a set of

coordinates. Moreover, due to the nature of the

resulting mathematical problem, tensor notation is

also utilized because it brings significant benefits in

handling some issues related to the complex geometry

of the manifold.

The largest deviation between the present and the

traditional approaches appears on the starting physical

principle. In particular, the classical variational for-

mulations (e.g., Lagrange’s equations, Maggi’s equa-

tions, Boltzmann–Hamel equations, Gibbs–Appell

equations) are founded on the extended D’Alembert’s

principle and yield a number of different sets of

equations of motion. This is accomplished through the

use of some fundamental results of the calculus of

variations, since a central task of these formulations is

the selection of appropriate variations [1, 4]. Instead,

the direct approach adopted in this work goes a little

deeper into some basic theory of differential geometry,

which can be seen as an extension of the theory

employed in engineering for handling problems in the

theory of surfaces and shells. In turn, this provides a

deeper and clearer physical understanding in several

issues related to the dynamics of constrained systems,

as explained next.

The direct application of Newton’s law of motion

performed in the present study is a quite natural

choice, since the dynamics of a fictitious particle

moving on the configuration manifold is considered.

In general, this manifold is non-flat. Therefore,

Newton’s law is expressed by Eq. (8), where the

derivative term in its left-hand side is given by Eq. (9).

This illustrates the way the affinities are introduced in

and become a necessary ingredient of the direct

Newtonian formulation. Instead, in the traditional

variational formulations, the derivation of the equa-

tions of motion starts from the extended D’Alembert’s

principle. This allows determination of the equations

of motion by considering scalar, instead of vectorial,

quantities. For instance, in many cases, the Lagrange’s

equations can be set up by considering the kinetic

energy and the potential energy of the system only. In

such cases, the derivative of a scalar function, say f ðqÞ,
along a path on the manifold with tangent vector v, is

given by

vðf Þ ¼ of

oqi
vi;

which does not involve any of the affinities [7].

Therefore, it appears that there is no need to use these

quantities in deriving the equations of motion by using

a variational formulation. However, it is well known

that the variational formulations should be used with

care, since they do not lead to the correct equations of

motion in several cases. For instance, direct applica-

tion of the classical Euler–Lagrange operator, defined

by

Li �
d

d t

oT

ovi

� �
� oT

oqi
;

does not produce the correct set of equations of motion

when the kinetic energy of the system is evaluated by

using quasi-velocities rather than true generalized

coordinates (e.g., equations of motion for rigid body

expressed in the body frame). Likewise, correct

application of the Boltzmann–Hamel equations

requires that the kinetic energy must be written for

the constrained system. The usual practice is to add

correction terms to accommodate such cases [4].

The direct Newtonian approach does not suffer

from such restrictions. In fact, another advantage of

the new formulation is that it can start from any

configuration manifold M and not from the classical

Euclidean manifold E3N , which is the original man-

ifold where the extended D’Alembert’s principle is

founded. Among other things, this can provide suffi-

cient clarification for the reasons that a variational

formulation may fail to yield the correct equations. For

instance, the difference between the results obtained

by the direct Newtonian approach and the method of
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Lagrange’s equations has become transparent in

earlier work of the authors. Namely, it was shown

that direct application of the classical Euler–Lagrange

operator produces the correct set of equations of

motion provided that three geometric conditions are

satisfied simultaneously. Specifically, the connection

of the original manifold M satisfies the metric

compatibility condition (24) and is torsionless (i.e.,

skij ¼ 0), while the basis employed in the tangent space

is holonomic (i.e., ckij ¼ 0). For more details, see

Sect. 6.2 of [11]. Obviously, when the classical

manifold E3N is utilized as a base configuration

manifold M, only the last correction may be needed,

since it is metric compatible and torsionless, as was

illustrated in Sect. 3.

Besides providing a systematic method for a proper

selection and a deeper explanation for the role of the

connection, the new theoretical results can be easily

extended to more complex situations, where the

motion constraints are more general than those

represented by Eq. (14). In particular, rheonomic

and acatastatic or inequality constraints need a similar

but a little more involved treatment, as was demon-

strated in earlier work of the authors [16, 17]. More-

over, the clearer physical insight provided by the

direct approach leads to a better theoretical handling

of some problems, compared to earlier approaches.

For instance, an important such problem is the

derivation of a set of equations of motion in a pure

ODE form rather than the typical differential–alge-

braic equation form, when expressed in the original

configuration manifold, through the use of a suit-

able set of vectors [12].

Finally, although all admissible connections yield

eventually the same set of equations of motion, and are

in this sense equivalent, they alter some key properties

of the configuration manifold. Specifically, the curva-

ture and torsion characteristics as well as the autopar-

allel curves of this manifold depend strongly on this

choice. Therefore, a proper selection of the connection

is crucial in choosing a suitable set of curves of the

configuration manifold, when a numerical method is

employed for solving the equations of motion. These

curves should have special geometric properties (e.g.,

the autoparallel curves are the straightest curves of the

manifold) and should remain on the manifold during

the discretization. This in turn leads to significant

computational benefits [17, 26, 27]. Further numerical

benefits can also be gained by exploiting the fact that

the connection selection involves some valuable

freedom, as indicated by Eq. (19).

8 Synopsis and extensions

The main focus of this study was placed on the

selection of a proper connection, which is necessary

for determining the geometric properties of the

configuration space and for setting up the equations

of motion of mechanical systems subject to equality

motion constraints, when a direct application of

Newton’s law is performed. First, some crucial

compatibility conditions on the connection were

recalled, derived in earlier work of the authors, which

are expressed in terms of the motion constraints

imposed, in conjunction with the metric components

and the affinities of the original system. These

conditions ensure that the equations of motion

obtained in the constrained configuration manifold

keep satisfying the generalized Newton’s law of

motion. Then, starting from the archetypal Euclidean

configuration manifold E3N , representing motion of N

unconstrained particles in the three-dimensional phys-

ical space, it was verified that the new class of

admissible connections leads to the correct set of

equations of motion. In particular, these equations

were put in the Poincare or Greenwood forms, as they

are determined through application of Lagrange’s

equations and selection of an anholonomic or a

holonomic basis, respectively. Next, it was shown

that the Christoffel connection, which arises in the

study of the geodesic curves of a manifold and is a

generalization of the classical Levi–Civita connection

to anholonomic bases, belongs to the new class of

admissible connections. Moreover, this special con-

nection provides always curvature to the configuration

space but it is torsion free.

Then, the attention was shifted to a detailed

investigation of the effect of the new class of

connections on the geometric properties of the

configuration space and the final form of the equations

of motion. For this, rigid body dynamics was exam-

ined, since it provides examples involving all the

essential ingredients of the analysis presented at a

manageable level. Among other things, it was shown

that different admissible connections may lead to
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sharply different torsion and curvature properties of

the configuration space. However, they leave unaf-

fected the final form of the equations of motion, which

is dictated by the set of coordinates selected. In

addition, choosing a proper connection leads to

significant analytical advantages, by providing

autoparallel curves with a clear geometric interpreta-

tion. For instance, when a left-invariant canonical

connection is employed in spherical and spatial rigid

body motion, the autoparallel curves correspond to

pure rotation and screw motion of the body, respec-

tively. This is in accordance with the classical Euler

and Chasle theorems for rigid body motion, respec-

tively. Furthermore, these choices are expected to

yield significant computational advantages, since they

provide the ground to use special curves, which remain

on the manifold, when a temporal discretization of the

equations of motion is performed. Likewise, the

equations of motion obtained for general spatial rigid

body motion appear in a different form when a direct

or a semi-direct group product is selected. However, it

was proved that this is due to the different left-

translated basis obtained by using the direct or the

semi-direct group product. Even in this case, trans-

formation to the same basis of the tangent space

revealed that the essential dynamics is identical.

All the specific examples examined in this study

refer to rigid body dynamics. This was sufficient to

illustrate the basic effect of the affinities on the

dynamics of a mechanical system in the simplest way

possible. In some respect, this was assisted by the Lie

group structure of the corresponding configuration

manifolds. However, in general, this is not a necessary

property. In fact, the only real requirement on the set

of affinities selected is that they satisfy the weak

compatibility condition (18), presented in Sect. 2. In

principle, extension to spatial motion of deformable

bodies will be a straightforward task, taking into

account the inevitable increase in the complexity of

the mathematical operations needed for deriving the

corresponding equations of motion. In that case, it will

be interesting to investigate how is the set of the

eligible affinities affected when starting from a

continuous (infinite-dimensional) formulation and

producing a discrete model (e.g., through a finite

element discretization [28]). Of equal importance is

the examination of how the conditions leading from a

general three-dimensional to a simpler two- or single-

dimensional continuous model affect the set of

admissible affinities [29]. Resolving these issues will

be useful in the systematic analytical and numerical

study of general flexible multibody dynamics [30–32].
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