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Abstract Moving-object tracking using a pan–tilt
camera setup is quite a well-known task in robotics.
However, the presented research addresses specific
properties of the tracked object and introduces novel
features to the pan–tilt camera control strategy. Pan–
tilt camera control does not operate in an isolated envi-
ronment. It is a part of the visual servoing system with
specific goals. The system has to fulfill certain pur-
poses, which affect its configuration and functionality.
Thepan–tilt systemaims at keeping the visually tracked
objectwithin themiddle of the image.At the same time,
the overall visual servoing efficiently recognizes and
tracks the object enabling its grasping by the robot arm.
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It uses a predictive strategy utilizing specific second-
order linearmodels for pan and tilt joints.Model predic-
tive control (MPC) introduces into the system the abil-
ity to predict camera operation over the specific hori-
zon according to the predefined tracking goals. As the
system anticipates future positions over the horizon of
operation, the setpoint prediction of the future tracked
system positions is required. Visual object recognition
and tracking system use particular strategies for prepar-
ing online tracked object extrapolation over MPC hori-
zon. Therefore, the pan–tilt camera system is intrinsi-
cally coupled to camera-based recognition and track-
ing. Predictive pan–tilt positioning keeps the tracked
system in the middle of the image, while the visual sys-
tem extrapolation improves the tracking performance.
The proposed approach is thoroughly tested in the ded-
icated Gazebo-based robot simulator. Finally, the sys-
tem is implemented and validated on the Velma robot.
The results and their comparison with other control
strategies confirm the initial assumptions, allowing fur-
ther visual servoing system development.

Keywords Visual servoing · Pan–tilt camera ·
Predictive tracking · Model predictive control ·
Setpoint extrapolation

1 Introduction

Pan–tilt camera systems are frequently utilized in
3D visual tracking. For instance, they are used by
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autonomous vehicles or robots that have a vision
head [2,5,20,27]. Such vision systems have to solve
two problems: real-time processing of visual data and
inducing the correct tracking motion of the camera.
Solving the problem of efficient visual information
processing is a significant challenge and constitutes
the majority of the research. Data acquired by an
RGB-D camera need to be processed in real time [3],
and thus the image must be segmented, target fea-
tures must be identified and extracted, useful informa-
tion must be structured into control data, and finally,
these data must be delivered to the system component
that requires them. Those calculations and data han-
dling actions are time-consuming. The majority of the
research focuses on their speed up using time-efficient
algorithms, usually through parallelization of calcula-
tions [24] or faster hardware. The task of servoposi-
tioning of the camera supporting neck is considered
separately. Control issues and very high control accu-
racy do not lie in the mainstream of research. The main
goal is to keep the object within the image.

Practical experience shows that tracking and recog-
nition are coupled. Image recognition performance
depends on proper camera tracking and vice versa.
Once we can keep the tracked object within the same
sector of the image frame, we may limit the search
and analysis space of the whole frame, what speeds
up calculations. On the contrary, if we fail to achieve
image processing within the system sampling period,
the information about the target will be lost for one
or more samples, what may cause the servomechanism
tracking degradation or even induce losing the tracked
object out of sight. Therefore, camera image process-
ing and servo tracking tasks are closely coupled, and
the correlation works in both directions. Better camera
tracking operation speeds up visual data processing and
prevents losing the object from sight. Fast visual data
evaluation prevents sampling losses and tracking prob-
lems. As the tracked object can be located quite far
away from the head and thus the cameras, even a small
improvement in tracking accuracy may help.

One may find different control strategies applied in
pan–tilt servoing. Classical PID-based feedback con-
trol is the primary choice. When the servomotor is
overrated and fast, just simple P (proportional) version
might be satisfactory, especially when the steady-state
error is allowed [44]. However, most frequently full
PID version is used [22,41], sometimes modified by
factors similar to those used in process control, such as

derivative filtering [44] or lead-lag compensation [40].
Feedback control is improved by feedforward decou-
pling [27] in situations when disturbance measurement
is available. A similar task can be solved alternately by
active disturbance rejection control [5]. If accurate con-
trol is required, feedback control is replaced by more
advanced control strategies [4]. Once system nonlin-
earities affect control performance, the multi-regional
PID strategies can be applied, such as fuzzy PID [28].

Interesting, although quite different, idea uses syn-
ergetic control [18] and the analytical design of aggre-
gated regulators (ADAR) methodology [38]. The use
of linear quadratic regulation (LQR) [14,33], improved
augmented LQR (IALQR) [29] or linear quadratic
Gaussian (LQG) control [31] forms the first steps
towards the use of the model predictive control (MPC)
techniques. AlthoughMPC strategy is quite frequently,
especially recently, used in robotic applications [10,11,
16,17,21,26], its application to a pan–tilt tracking sys-
tem is rare [6,34,43].

Visual trackers can use various algorithms to evalu-
ate and extrapolate tracked object trajectories. Kalman
filters are the most obvious choices [30,39]. How-
ever, the subject literature is much richer [36]. Interest-
ingly, deep coupling between both tasks is not popular,
although quite obvious. MPC strategy needs to have
a setpoint trajectory over the prediction horizon. And
yet the tracking algorithm allows us to evaluate it. The
relationship works in the opposite direction as well.
Accurate tracking and keeping the tracked target in the
same position of the camera image enables improv-
ing image recognition algorithm minimizing tracking
evaluation time, and minimizing the possible effect of
losing a sample due to the prolonged calculations. It
is important to stress that if the tracked object is at all
times in the center of the image frame, the whole pro-
cedure gives the best results.

Following the above observations, the proposed
research fills the observed gap. It focuses on efficient,
predictive pan–tilt camera servomechanism (neck-
MPC). The aim of the neck-MPC is high target-
object tracking accuracy within a camera image frame.
The application of predictive control algorithms, such
as DMC and GPC in the pan–tilt tracking system
enables practical realization of coupling between the
servomechanism and image recognition. TheDMCand
GPC control rules represent a relatively simple predic-
tive approach. However, their superiority lies not only
in an embeddedmodel or optimization, but in the repet-
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itive operation over a horizon. It is especially impor-
tant how the setpoint is formulated. The PID-type con-
troller uses only the current setpoint and current control
error in its rule, even if the future setpoint trajectory
is known. Predictive control enables the incorporation
of the knowledge about the future setpoint trajectory
in the evaluation of the current manipulated variable.
We acknowledge the fact that the more sophisticated
is the control algorithm, the better is its performance.
However, its robustness, sustainability and the number
of engineers that can maintain it generally diminishes.
Therefore, a simple approach, such as DMC or GPC, is
taken into account in the present research. High track-
ing performance improves visual data processing, gen-
erating a beneficial synergy effect.

The paper is organized as follows. Section2 presents
the theoretical aspects of this research, i.e., the sys-
tem kinematics (Sect. 2.1), reference PID control
(Sect. 2.2), and the servomotor predictive control strat-
egy (Sect. 2.3). The developed neck-MPC is validated
with Matlab, the Gazebo simulator and the real Velma
robot, what is described in Sect. 3. Section4 summa-
rizes the results of the work, draws conclusions, and
presents the identified open issues for further research.

2 Pan–tilt control system

This section describes two main elements of the pro-
posed contribution, i.e., the controlled pan–tilt system
and the applied control strategy.

2.1 Neck kinematics

The relevant part of the kinematic structure of the
Velma robot [35] equipped with a pan-tilt (neck) mech-
anism is presented inFig. 1. Table 1 contains the respec-
tive D-H parameters [7].

The following frames are relevant to the considera-
tions: 0 – base coordinate frame, 1 – robot torso frame, 2
– pan–tilt first link frame, 3 – pan-tilt second link frame,
C – camera frame, G – goal frame (the tracked object).
Homogeneous matrices represent those frames, e.g.,
0
CT – camera with respect to the base. A homogeneous
matrix contains the orientation submatrix, e.g., 0CR, and
the position vector, e.g., 0CP .

The task of the visual servo is to track the object of
interest G in such a way that the location of its image

Fig. 1 Coordinate frames assigned according to Denavit–
Hartenberg convention to the links of the Velma robot between
the base coordinate frame 0 and the camera frame C ; the left and
right arms are marked symbolically and only their end-effector
frames El and Er are presented

Table 1 Denavit–Hartenberg parameters of the kinematic struc-
ture between the base and the neck of the Velma robot

i ai−1 αi−1 di θi

1 0 0 0 θ1

2 a1 0 d2 θ2

3 0 π/2 0 θ3

4 a3 −π/2 0 −π/2

will be approximately at the center of the camera imag-
ing plane. For that to happen, the versor of the camera
optical axis C

C z and the vector from the camera to the
center of the object C

GP should coincide. In such a sit-
uation, the vector cross-product of those two vectors
should be 0. If this is not the case, the vector cross-
product defines the axis of rotation about which the
camera should be rotated so that the image of the object
will become centered in the camera image plane. If C

GP
is normalized the length of the resulting vector is equal

123



8386 R. Nebeluk et al.

to

∥
∥
∥
∥

C
C z × C

GP∥
∥C

GP
∥
∥

∥
∥
∥
∥

= sin φ, whereφ is the required angle

of rotation. If this value is nonzero, the versor of the
axis of rotation κ has to be derived

κ =
⎡

⎣

κx

κy

κz

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

− C
GP y

√

C
GP2

x + C
GP2

y
C
GP x

√

C
GP2

x + C
GP2

y

0

⎤

⎥
⎥
⎥
⎥
⎦

. (1)

If sin φ = 0, no camera motion is required, thus versor
κ is irrelevant. Hence, if the motion is required, the ori-
entation of the camera has to change by rotating about
κ by φ, i.e., the desired rotation is [7]:

Rκ,φ =
⎡

⎣

κxκx (1 − cφ) + cφ
κxκy(1 − cφ) + κzsφ
κxκz(1 − cφ) − κysφ

∣
∣
∣
∣
∣
∣

κyκx (1 − cφ) − κzsφ κzκx (1 − cφ) + κysφ
κyκy(1 − cφ) + cφ κzκy(1 − cφ) − κx sφ

κyκz(1 − cφ) + κx sφ κzκz(1 − cφ) + cφ

⎤

⎦ ,

(2)

where here and further s stands for sin and c for cos.
The desired orientation of the camera with respect to
the torso is: 1CR(ϕc, ψc)Rκ,φ . This has 3-DOF, while
the neck has only 2-DOF; thus an artificial angle γ is
introduced:

1
CR(θ2, θ3)Rκ,φ = 1

CR(θSP2 , θSP3 )R C z,γ (3)

where θ2 and θ3 are the current value of the neck
joint angles,while superscript SP represents the desired
value (set-point) of the angles.

The value of 1CR(θ2, θ3) is produced by solving the
direct kinematics problem:

1
CR(θ2, θ3) =

⎡

⎣

sθ2 cθ2cθ3 −cθ2sθ3
−cθ2 sθ2cθ3 −sθ2sθ3
0 sθ3 cθ3

⎤

⎦ (4)

using the current encoder readings. The value ofRκ,φ

is computed based on (2). Hence

1
CR(θ2, θ3)Rκ,φ =

⎡

⎣

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤

⎦ (5)

is a known matrix. Thus the desired orientation is:

1
CR(θSP2 , θSP3 ) = 1

CR(θ2, θ3)Rκ,φR−1
C z,γ

=
⎡

⎣

r11cγ − r12sγ r11sγ + r12cγ r13
r21cγ − r22sγ r21sγ + r22cγ r23
r31cγ − r32sγ r31sγ + r32cγ r33

⎤

⎦ .
(6)

Equating (6) and (4) and using their last columns, as
they do not depend on γ , the inverse kinematics prob-
lem for the neck is solved:

θSP3 = θSPtilt = Atan2(±
√

r213 + r223, r33),

θSP2 = θSPpan = Atan2(r23, r13) or

θSP2 = θSPpan = Atan2(−r23,−r13).

(7)

It is important to note that equations (7) assume that
sin(θ3) �= 0. Fortunately, the angle θ3 never equals to
0 + kπ , k = 0, 1, 2, . . ., due to the kinematics limita-
tions. In other words – it is physically impossible for
the camera to be pointed vertically upwards.

2.2 PID – benchmark control strategy

A PID algorithm has also been formulated to check
whether an MPC algorithm such as DMC would give
better results than this standard controller. In contin-
uous time this algorithm generates new values of the
control signal according to the following formula:

θ̂(t) = θ̂(0) + KG

(

e(t) + 1

TI

∫ t

0
e(τ)dτ + TD

de(t)
dt

)

(8)

where θ̂(0) is the initial value of control for the integral
part, e is the control error, KG is the gain, TI is the time
constant of the the integral part and TD is the time con-
stant of the derivative part. Vectors in the formulation
(8) have the following form: θ̂(t) = [θ̂pan(t) θ̂tilt(t)]T,
θ̂(0) = [θ̂pan(0) θ̂tilt(0)]T, e = [epan etilt]T. The control
error is calculated as follows:

e(t) = θSP(t) − θ(t) (9)

Formula (8) can be rewritten into discrete time (k) form,
with the sampling period Ts:

θ̂(k) = a2e(k − 2) + a1e(k − 1) + a0e(k) + θ̂(k − 1)
(10)

where

a0 = KG

(

1 + Ts
2TI

+ TD
Ts

)

(11)

a1 = KG

(
Ts
2TI

− 2
TD
Ts

− 1

)

(12)

123



Predictive tracking of an object 8387

a2 = KG
TD
Ts

(13)

Vectors in the discrete-time notation presented in (10)
have analogous form to the respective vectors in con-
tinuous time notation.

2.3 Predictive pan–tilt servoing

Model predictive control (MPC) constitutes the focal
element of the system. The considered predictive pan–
tilt camera system control is realized in a hierarchical
control structure with the MPC delivering joint angle
setpoints for the low level servomotors controlling the
joint motors. Figure 2 presents the pan–tilt control sys-
tem neck-MPC(θ ) tracking the target in the pan θpan (k)

and tilt θtilt (k) joint angle spaces.
The neck-MPC controller operates in a direct mode

with a high sampling frequency of 500 Hz. It directly
controls the pan and tilt joint angles. Its setpoint is gen-
erated by the vision system, which acquires the image
of the target. Visual object pose estimation operates
with a longer sampling rate of 20 Hz. This setpoint
value over the 50-ms interval is interpolated into the 2
ms sampling of the pan–tilt servomechanism. There-
fore, the dynamic pan–tilt controller has enough time
to realize each setpoint signal. Moreover, some time is
left for setpoint signal shaping and smoothing during
interpolation.

MPC controllers work with the sampling frequency
of 500 Hz (denoted by time instant index k). They
obtain their setpoint with 20 Hz (denoted by time
instant index τ ), which is further interpolated from
20 Hz to 500 Hz. The employed MPC algorithm and
the proposed modifications, i.e., the internal model,
cost function and constraints, are described below. The
schematic diagram of the implementation procedures
of the proposed approach is sketched in Fig. 3.

2.3.1 Model predictive control—general formulation

The process input, i.e., manipulated variable (MV),
is denoted by u and the output, controlled variable
(CV), is denoted by y. The vector of decision vari-
ables calculated at each discrete sampling moment
(k = 0, 1, 2, . . .) by the MPC [37] is

�u(k) = [�u(k|k) �u(k + 1|k) . . .

�u(k + Nu − 1|k)]T , (14)

Fig. 2 Pan–tilt neck-MPC(θ ) control in the joint space

Fig. 3 Diagram of the procedures necessary to implement the
MPC approach

where Nu is the control horizon, i.e., the number of
calculated future control increments defined as back-
ward differences, i.e., �u(k|k) = u(k|k) − u(k − 1)
and �u(k + p|k) = u(k + p|k) − u(k + p − 1|k) for
p = 1, . . . , Nu − 1. For p ≥ Nu it is assumed that

123



8388 R. Nebeluk et al.

the manipulated variable is constant, i.e., u(k + p|k) =
u(k + Nu − 1|k). The decision variables of MPC (14)
are calculated by solving the optimization problem:

min�u(k)

{ N
∑

p=1

ψp(ySP(k + p|k) − ȳ(k + p|k))2+

+
Nu−1
∑

p=0

λp(�u(k + p|k))2
}

(15)

subject to

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1,

−�umax ≤ �u(k + p|k) ≤ �umax,

p = 0, . . . , Nu − 1,

ymin ≤ ȳ(k + p|k) ≤ ymax, p = 1, . . . , N ,

ȳ(k + p|k) = fmodel(·), p = 1, . . . , N .

The role of the first part of the MPC cost function is
to minimize the predicted control errors over the pre-
diction horizon N . The setpoint (CV demand) and pre-
dicted values of the CV for the future sampling instant
k + p known or calculated at the current moment k
are denoted by ySP(k + p|k) and ȳ(k + p|k). The pre-
dictions ȳ(k + p|k) are calculated on-line using the
model of the process, described by the general func-
tion fmodel(·).

The role of the second part of the cost function is to
eliminate excessive MV changes. In general, the con-
straints may be imposed on

– future excessive values of the manipulated variable
(over the control horizon), limited by the minimal
and maximal allowed values umin and umax,

– future MV changes with its maximal value denoted
as �umax and

– predicted values of the controlled variable (over
the prediction horizon), limited by the minimal and
maximal allowed values ymin and ymax.

Although the whole sequence of decision variables
(14) is calculated at each sampling, only its first compo-
nent is applied to the process. Measurement of the pro-
cess output is updated during the next sampling period
k + 1, and the procedure is repeated. Appropriate sta-
bility proofs exist and can be found in the literature
[1,23]. The considered MPC optimization task (15) is
common in industrial practice [9].

2.3.2 Applied MPC formulation

The optimization problem (15) can be rewritten for the
neck into the following form:

min
�Θ̂(k)

{

J (k) =
∥
∥
∥ΘSP(k) − Θ̄(k)

∥
∥
∥

2

ψ
+

∥
∥
∥�Θ̂(k)

∥
∥
∥

2

λ

}

subject to (16)

− Θ̂
max ≤ Θ̂(k) ≤ Θ̂

max

− �Θ̂
max ≤ �Θ̂(k) ≤ �Θ̂

max
(17)

where

ΘSP(k) =
⎡

⎢
⎣

θSP(k + 1|k)

.

.

.

θSP(k + N |k)

⎤

⎥
⎦ , Θ̄(k) =

⎡

⎢
⎣

θ̄(k + 1|k)

.

.

.

θ̄(k + N |k)

⎤

⎥
⎦ ,

�Θ̂
max =

⎡

⎢
⎢
⎣

�θ̂
max

.

.

.

�θ̂
max

⎤

⎥
⎥
⎦

,�Θ̂(k) =

⎡

⎢
⎢
⎣

�θ̂(k|k)

.

.

.

�θ̂(k + Nu − 1|k)

⎤

⎥
⎥
⎦
,

Θ̂
max =

⎡

⎢
⎢
⎣

θ̂
max

.

.

.

θ̂
max

⎤

⎥
⎥
⎦

, Θ̂(k) =

⎡

⎢
⎢
⎣

θ̂(k|k)

.

.

.

θ̂(k + Nu − 1|k)

⎤

⎥
⎥
⎦

.

The optimization task (16) minimizes the control
error for the estimated target pan and tilt positions as
well as excessive changes of their next positions. It is
subject to a single constraint. The joints can be posi-
tioned between ±90◦, i.e., ±1.5708 radians.

The first element of the predicted target estimated
positions for both joints Θ̄(k) can be expanded into
θ̄(k + 1|k) = [θ̄pan(k + 1|k) θ̄tilt(k + 1|k)]T
and the last element into θ̄(k + N |k) = [θ̄pan(k +
N |k) θ̄tilt(k + N |k)]T. Similarly, all elements of
θSP(k), θ̂(k), �θ̂(k), θ̂

max
and �θ̂

max
are described,

where θ̂
max = [1.5708 1.5708]T and �θ̂

max =
[0.002 0.002]T. The matrix weighting the errors Ψ =
diag(ψ1, . . . ,ψ N ), where ψ i = [

ψpan ψtilt
]T, while

the matrix weighting the excessive changes of control
Λ = diag(λ0, . . . ,λNu−1), where λi = [

λpan λtilt
]T.

By manipulating the values of parameters inside the
matrix Ψ an improvement of control performance can
be obtained [25]. The result may be significantly better,
when the parameters of matrix Λ are changed. How-
ever, this approach is less effective, if the setpoint tra-
jectory constantly changes, as in our case.
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For the considered robot neck two MPC algorithms
are used: DMC and GPC.
DMC (Dynamic Matrix Control) algorithm uses a step
response model to calculate the prediction of the con-
trolled variables. First, the step response coefficients
are gathered from a dynamic model of the process.
Next, the step responses are used to create the following
matrix

mp =
[

mpan,pan
p mpan,tilt

p

mtilt,pan
p mtilt,tilt

p

]

(18)

for p = 1, . . . , D, where D denotes the horizon of
sampling intervals needed for the output to stabilize.
The step response matrix mp, in (18), is then used to
formulate the following dynamic matrix

M =
⎡

⎢
⎣

m1 0 . . . 0
...

...
. . .

...

mN mN−1 . . . mN−Nu+1

⎤

⎥
⎦ (19)

and also the past dynamic matrix

Mp =
⎡

⎢
⎣

m2 − m1 . . . mD − mD−1
...

. . .
...

mN+1 − m1 . . . mN+D−1 − mD−1

⎤

⎥
⎦ (20)

which are of dimensionality 2N ×2Nu and 2N ×2(D−
1), respectively. Finally, the vector of the predicted con-
trolled variables is calculated as follows

ˆ̄Θ(k) = M�Θ̂(k) + Θ(k) + Mp(k)�Θ̂
p
(k) (21)

where the vectors

Θ(k) =
⎡

⎢
⎣

θ(k)
...

θ(k)

⎤

⎥
⎦ , �Θ̂

p
(k) =

⎡

⎢
⎣

�θ̂(k − 1)
...

�θ̂(k − (D − 1))

⎤

⎥
⎦

(22)

are of length 2N and 2(D − 1), respectively. The min-
imized MPC cost function (16), with the use of the
prediction equation (21), can be rewritten as

JDMC(k) =
∥
∥
∥ΘSP(k) − M�Θ̂(k) − Θ(k)

− Mp(k)�Θ̂
p
(k)

∥
∥
∥

2

Ψ
+

∥
∥
∥�Θ̂(k)

∥
∥
∥

2

Λ
(23)

The cost function in (23) is quadratic with respect to
�Θ̂ . After differentiating it, we obtain

dJDMC(k)

d�Θ̂(k)
= −2MT Ψ

(

ΘSP(k) − M�Θ̂(k) − Θ(k)

− Mp�Θ̂
p
(k)

)

+ 2Λ�Θ̂(k) (24)

The optimal solution vector is found by making the
gradient vector calculated by equation (24) equal to
zero and as a result the following formula is obtained

�Θ̂(k) = K (ΘSP(k) − Θ(k) − Mp�Θ̂
p
(k)) (25)

where

K = (MTΨ M + Λ)−1MTΨ (26)

is a matrix of dimensionality 2Nu × 2N .
GPC (Generalized Predictive Control) algorithm is
the foundation of the second approach. In this control
approach, the vector of predicted controlled variables
is found using the following formula

Θ̄(k) = M�Θ̂(k) + Θ0(k) (27)

where the matrix M is the same as in the DMC
algorithm (19). The free trajectory vector, denoted as
Θ0(k), is calculated using the dynamic model of the
process

Θ0(k) =
⎡

⎢
⎣

θ0(k + 1|k)
...

θ0(k + N |k)

⎤

⎥
⎦ (28)

where the first entry θ0(k + 1|k) can be expanded into
θ0(k+1|k) = [θ0pan(k+1|k) θ0tilt(k+1|k)]T and the last
element into θ0(k + N |k) = [θ0pan(k + N |k) θ0tilt(k +
N |k)]T. The considered model, in this algorithm, is as
follows

A(q−1)Θ(k) = B(q−1)Θ̂(k) (29)

where the entries of the matrices

A(q−1) =
[

Apan(q−1) 0
0 Atilt(q−1)

]

(30)

B(q−1) =
[

Bpan,pan(q−1) Bpan,tilt(q−1)

Btilt,pan(q−1) Btilt,tilt(q−1)

]

(31)

are the polynomials in the backward shift operator q−1

Apan(q
−1) = 1 + a1,panq−1 + . . . + anA,panq−nA

Atilt(q
−1) = 1 + a1,tiltq

−1 + . . . + anA,tiltq
−nA (32)
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Bpan,pan(q
−1) = b1,panq−1 + . . . + bnB,panq−nB

Bpan,tilt(q
−1) = 0

Btilt,tilt(q
−1) = b1,tiltq

−1 + . . . + bnB,tiltq
−nB

Btilt,pan(q
−1) = 0 (33)

In GPC, the cost function (23) can be rewritten as

JGPC(k) =
∥
∥
∥ΘSP(k) − M�Θ̂(k) − Θ0(k)

∥
∥
∥

2

Ψ

+
∥
∥
∥�Θ̂(k)

∥
∥
∥

2

Λ
. (34)

Similarly to DMC, as the cost function (34) is
quadratic in terms of the decision variables, the fol-
lowing solution applies

�Θ̂(k) = K (ΘSP(k) − Θ0(k)). (35)

It is to be noted that the only difference between DMC
and GPC is in the way the free trajectory is calculated.
Respective stability analyzes can be found for DMC in
[12] and for GPC in [13,42]. Robust stability consid-
erations are addressed in [8,15].

2.3.3 Simplified pan–tilt camera model

A continuous-time model of the considered robot neck
is proposed using second-order transfer functions for
pan and tilt joints, respectively.

Gpan(s) = Kpan(T1,pans + 1)

(T2,pans + 1)(T3,pans + 1)
, (36)

G tilt(s) = Ktilt(T1,tilts + 1)

(T2,tilts + 1)(T3,tilts + 1)
, (37)

where Kpan and Ktilt are static gains and T1,pan,
T2,pan, T3,pan and T1,tilt , T2,tilt , T3,tilt are respective time
constants. Pan and tilt joint positions, denoted as θ̂ ,
measured at the current instant k of simulation form
themodel inputs. Target positions estimated for the pan
and tilt, denoted as θSP, are themodel outputs. Transfer
functions are discretized and rewritten in the form of
the following difference equations applied to the MPC
framework:

θpan(k) = − a1,pan · θpan(k − 1) − a2,pan · θpan(k − 2)

+ b1,pan · θ̂pan(k − 1), (38)

θtilt(k) = − a1,tilt · θtilt(k − 1) − a2,tilt · θtilt(k − 2)

+ b1,tilt · θ̂tilt(k − 1), (39)

Fig. 4 Step responses of the neck simplified dynamics model;
output of the pan joint – left plot, output of the tilt joint – right
plot

where k is the time instant and a1, a2, b1 are constant
coefficients for pan and tilt joints, respectively. The
following parameters of the model have been chosen
through numerous simulations: a1,pan = −1.91× 100,
a2,pan = 9.14 × 10−1, b1,pan = 3.38 × 10−3, a1,tilt =
−1.83×100, a2,tilt = 8.39×10−1 and b1,tilt = 6.09×
10−3. These models approximate very well real robot
neck joints. Their step responses are shown in Fig. 4.

Two performance indices are used to compare con-
trol strategies: integral absolute error (IAE), denoted
as EIAE (40), and mean squared error (MSE), denoted
as EMSE (41). The IAE index assigns equal weights to
errors regardless of their absolute values. This index is
robust with respect to outliers [32]. It is invaluable in
checking the overall excessive changes of joint posi-
tions. If these changes are too large harmful vibrations
of the neck of the real robot occur. This phenomenon
can lead to potential damage of the mechanical parts of
the robot. The excessive changes are minimal, so the
IAE delivers more proper measure than a MSE index
calculating a quadratic function of the control error.

EIAE = 1

N

kmax
∑

l=1

|�θ̂ (l)|, (40)

where N is the total number of samples and kmax is
the last sampling instant. MSE is used to take into
account large control errors. They are magnified by the
quadratic function.

EMSE = 1

N

kmax
∑

l=1

(�θ̂ (l))2. (41)
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3 Results

The proposed control strategy is validated in two ways.
First, the control scheme is implemented in the Gazebo
simulator and tested with the Gazebo model of the
robot. Secondly, the MPC controller is tested with a
real Velma robot. The components of the system are
implemented using the FABRIC framework (Frame-
work for Agent-Based Robot Control Systems) [35].

3.1 Validation using the Gazebo simulator

The proposed control strategy is validated using the
Gazebo simulator. All the simulations are performed
in a discrete-time form, as the predictive control for-
mulation is in a discrete-time form and the ultimate
controller implementation is done on a real robot in the
discrete-time form. The camera tracks sample recorded
object trajectory representing a circular motion in two
axes. Setpoint trajectory: θSPpan for the pan joint and

θSPtilt for the tilt joint is provided by the visual esti-
mation system. Three controllers are compared: PID,
DMC and GPC. The PID uses the following parame-
ters: KG = 0.1, TI = 0.01s TD = 0.01s. The DMC
is set up with: N = 50, Nu = 25, λpan = 100,
λtilt = 100, ψpan = 1 and ψtilt = 1, while the GPC
uses the same prediction and control horizons as well
as the penalty imposed on the control error as theDMC,
but differs in the penalty imposed on the control incre-
ments λpan = 100, λtilt = 10000.

The setpoint trajectory is circular. As the pan–tilt
predictive control is implemented in the KUKA LWR
4+ robot, which is envisaged to be used as a compan-
ion robot, it is not expected that the system will have to
track fast moving objects that rapidly change the direc-
tion of their motion. Thus, the parameters of the trajec-
tory comply with the assumed robot operating condi-
tions.

Figure 5 shows the comparison of the performance
of PID and DMC algorithms, while Fig. 6 depicts the
operation of the two MPC algorithms: DMC and GPC.
Table 2 presents respective performance indices for
both joints. The IAE obtained for PID control has low
enough values for both joints to prevent harmful effects
on the robot. DMC control provides similar results in
this regard. However, comparing the MSE, we notice
that the DMC control gives much better results. The
MSE values are much lower for both joints than in the

Fig. 5 Simulation results: trajectories of the control systemwith
the PID controller vs. trajectories of the same system, but with
the DMC controller; controlled variables of both joints – first
two top plots, manipulated variables of both joints – two bottom
plots

PID control scenario. The DMC algorithm uses set-
point trajectory prediction over the prediction horizon,
unavailable for PID.GPCalgorithm, similarly toDMC,
can utilize future changes in the setpoint trajectory.
Still, the inclusion of past values of measured signals
in the calculations tends to generate high control incre-
ments to quickly compensate for measurement noise,
disturbances, or modeling inaccuracies. Therefore, a
higher value of the penalty imposed on the control sig-
nal increments is often required to achieve stability of
the controller, as it is in this case. Unfortunately, this
causes a tradeoff with the control quality. As it is visible
in Fig. 6 and the Table 2, even though the smoothness
of the control signal is comparable to the PID andDMC
algorithms, the quality is lower.

The MSE and IAE performance measures suggest
the following interpretation. IAE index shows quite
similar values, but MSE shows the superiority of the
DMC control. It is due to the fact that each of these
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Fig. 6 Simulation results: trajectories of the control systemwith
the DMC controller vs. trajectories of the same system, but with
the GPC controller; controlled variables of both joints – first two
top plots, manipulated variables of both joints – two bottom plots

indices considers different performance aspects. IAE
compares normal operation, while MSE focuses on
the operation in the case of rapid changes and tran-
sient periods, due to the squared error. Comparison of
both measures justified the interpretation of the results.
Hence the DMC algorithm was implemented and used
in the real Velma robot.

3.2 Validation on the Velma robot

The DMC algorithm with the same parameters has
been implemented on the Velma robot. A similar tar-

get movement has been used for validation purposes.
Figure 7 presents the results for this case. The fol-
lowing values of the performance indices have been
obtained: Epan

IAE = 2.05 × 10−4, E tilt
IAE = 2.86 × 10−4,

Epan
MSE = 1.70 × 10−4 and E tilt

MSE = 6.19 × 10−3.
The IAE values for both joints are much smaller than
expected from the simulation results, what is even bet-
ter. MSE index values are also not large. The values of
these indices are close to the values obtained using the
Gazebo simulator. The setpoint tracking is very accu-
rate, also in the scenariowith the use of theVelma robot.
These results confirm that the assumed predictive con-
trol is appropriate.

We see that the obtained responses look very similar
and the level of the accuracy improvement is quite low.
However, we have to keep in mind the fact that pan–
tilt control is not used just to move the robot neck. We
use it to control the camera that tracks the object and
the object should be kept in the middle of the image.
When the tracked object is in the middle of the image
pattern recognition is improved, especially as the time
needed for object recognition becomes lower. More-
over, the tracked object can be located quite far away
from the head and therefore even small inaccuracies in
the angles start to matter. Thus, the pan–tilt head oper-
ation performance has to be kept in the visual object
tracking context, not just as simply movement.

4 Conclusions and further research

This paper describes the results of research focused
on evaluating predictive control of a pan–tilt camera
system. The issue considered in this paper is part of a
larger project related to the launch of awhole visual ser-
voing system, comprising recognition and tracking of
objects with an RGB-D camera and predictive control
of a KUKA LWR 4+ manipulator.

The algorithm evaluation and validation consist of
three steps. Matlab simulations are followed with the
simulation using the Velma robot Gazebo simulator.

Table 2 Simulation results in terms of performance indices

Algorithm Epan
IAE E tilt

IAE Epan
MSE E tilt

MSE

PID 3.58 × 10−4 4.08 × 10−4 4.18 × 10−4 1.38 × 10−3

DMC 3.60 × 10−4 4.08 × 10−4 6.95 × 10−7 9.22 × 10−4

GPC 1.24 × 10−3 3.32 × 10−4 6.56 × 10−4 2.12 × 10−2
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Fig. 7 Verification of the proposed control scheme with the
Velma robot: trajectories of the control system using the DMC
controller; controlled variables of both joints – first two top plots,
manipulated variables of both joints – two bottom plots

Finally, the selected predictive controller is imple-
mented in the real Velma robot. Initially, three control
strategies were taken into account: PID algorithm and
two predictive methods: DMC and GPC. Detailed sim-
ulations point out the superiority of the DMC predic-
tive controller, which is eventually implemented on the
Velma robot. It is interesting that it matters which pre-
dictive strategy is used. They are not equivalent. One
has to remember that both predictive algorithms are not
equivalent. There is a single difference in the type of
the model used. One cannot use one or the other with
complete freedom. In addition to the different forms of
the model, the control law is implemented differently,
what translates into their specificity and the resulting
control performance. In our case, the properties of the
DMC control are more predisposed to this application.

Real-time pan–tilt object tracking confirms initial
assumptions about the DMC predictive strategy and
enables further investigation of the entire visual ser-
voing Velma robot project. It is shown that even the

simple predictive strategy, such as the DMC, improves
tracking control. It is mostly due the fact that the
MPC approach allows to incorporate into the con-
trol rule definition the knowledge about the future
behavior of the setpoint. It is the main advantage of
any predictive control over PID-type controllers. It is
shown that we do not have to use complex predic-
tive approaches. Simple DMC algorithm, with a sim-
ple dynamical model, improves performance. More-
over, we have to be aware that practice prefers sim-
ple approaches. Simplicity probably slightly lowers
the performance, but it increases the robustness, con-
trol systemsustainability, facilitates human supervision
(simpler knowledge) and lowers maintenance require-
ments. DMC introduces improvement while being sim-
ple.

One issue that requires further analysis is the pos-
sible impact of disturbances. Actually, they virtually
have not not been considered here. Although a possi-
ble movement of the robot column can be treated as
a disturbance. During the realization of this project,
we consciously decided not to analyze this issue. We
are aware that such disturbance can be easily included
into the MPC control. But then, its comparison with
the PID control would be unfair from the PID perspec-
tive. Thus, the PID control layout should be modified
with the feedforward disturbance decoupling.Nonethe-
less, this subject is really worth to be considered and
as such is planned in the future research. Uncertainties
are harder to be considered, especially in the simula-
tion, as we cannot evaluate the risk they introduce. We
are fully aware that they exist and impact the project,
as for instance the unknown and unmodeled dynamics,
which certainly occurs.

Unmodeled dynamics and the impact of unknown
disturbances constitute two separate issues. The effect
of unmodeled dynamics has been already taken into
account. The proposed linear model, which is used as
the internal model of the predictive strategy is consid-
ered as a simplification of the real pan–tilt system. It
is shown that the controller that uses such a simpli-
fied model achieves good control performance. There-
fore, the unmodeled dynamics is considered in the
research. The other problem is the inaccurate knowl-
edge of kinematic parameters of the considered system,
e.g., Denavit–Hartenberg parameters of the kinematic
model. However, our system has been calibrated, and
thus those inaccuracies do not influence the system per-
formance to a noticeable extent.
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The aspect of unknown disturbances constitutes a
different issue. Those disturbances can be produced
by quantization effects introduced by the camera. The
position of the tracked object is determined on the basis
of its position in the image; hence the resolution is of
significance. However, this problem is solved either by
applying a camerawith sufficient resolution or by using
a second low-resolution camera mounted on the end
effector, as described in [19]. In that case the resolution
of the eye-in-hand camera does not influence signifi-
cantly, the precision of locating the object, because as
the gripper gets nearer to the object the image of the
object occupies more space in the image, thus can be
located more precisely.

Further operational validation with the robot should
be performed to observe them and to investigate their
impact. As the algorithm robustness is a significant fea-
ture of an embedded control strategy, the research on
pan–tilt robust control offers an interesting alternative
for future research.
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