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Abstract A newmulti-sensing scheme via nonlinear

weakly coupled resonators is introduced in this paper,

which can simultaneously detect two different phys-

ical stimuli by monitoring the dynamic response

around the first two lowest modes. The system consists

of a mechanically coupled bridge resonator and

cantilever resonator. The eigenvalue problem is solved

to identify the right geometry for the resonators to

optimize their resonance frequencies based on mode

localization in order to provide outstanding sensitivity.

A nonlinear equivalent model is developed using the

Euler–Bernoulli beam theory while accounting for the

geometric and electrostatic nonlinearities. The sen-

sor’s dynamics are explored using a reduced-order

model based on two-mode Galerkin discretization,

which reveals the richness of the response. To

demonstrate the proposed sensing scheme, the

dynamic response of the weakly coupled resonator is

investigated by tuning the stiffness and mass of the

bridge and cantilever resonators, respectively. With its

simple and scalable design, the proposed system

shows great potential for intelligent multi-sensing

detection in many applications.

Keywords Micro-electromechanical systems

(MEMS) � Multi-sensing � Nonlinear dynamics �
Electrostatic actuation � Mechanically coupled

resonators

1 Introduction

Over the past decades, micro-electromechanical sys-

tems (MEMS)-based sensors have proven high relia-

bility, low power consumption, and ease of

integration, possibly becoming the most suitable can-

didate for ultrasensitive sensors [1]. The small size and

high sensitivity of MEMS sensors allow their integra-

tion in a wide range of potential applications, includ-

ing gyroscopes [2–4], accelerometers [5–7], mass

sensors [8–10], and gas sensors [11–13].

The resonant MEMS sensors have gained massive

success thanks to their ultra-small physical scale and

ultra-high sensitivity. ResonantMEMS sensors rely on

the ambient environment’s influence on the res-

onators’ resonance frequencies in different ways.
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The parameters related to the resonance frequencies

include the resonator’s mass, geometric shape, axial

stress level, and stiffness. Besides, the corresponding

equipment aiming at measuring resonant frequency

shift has proven to reach a high resolution, which

further enhances the MEMS sensors’ sensitivity

[14, 15]. In addition, the structure’s nonlinearity

features appear in the frequency response [16, 17],

especially jump or bifurcation, further enhancing the

detection process [18].

Research aiming to improve the MEMS sensors

sensitivity has been conducted extensively in the past

few years. Most works assessed the approach to

miniaturize further the structure size from the micro-

scale to the nanoscale [19–21]. A grand scheme of

these sensors is the MEMS-based sensor that employs

the phenomenon of mode localization. The latter

introduces linear modal interaction behaviours, espe-

cially mode crossing and mode veering [22], which

show great potential for sensitivity improvement.

These modal interactions typically happen as the two

modal frequencies of the system approach each other.

Some research focuses on utilizing the mode coupling

phenomenon to design high-performance sensors

through mechanically and/or electrostatically coupled

resonators [23, 24]. Zhang et al. [25] reported an

acceleration sensing scheme based on electrostatically

weakly coupled resonators and reached high ampli-

tude ratio, which is 302 times higher than ratio used in

resonance frequency theory. Other types of displace-

ment sensors [26], pressure sensors [27], and ultra-

small mass sensors [28] are also credible examples.

Compared to sensors based on linear behaviours,

other designs closely related to nonlinear phenomena

received significant attention, such as utilizing bista-

bility [29] and detecting bifurcation points [30].

Although a sizeable nonlinear behaviour usually

accompanies instability, the benefit of sensitivity and

quality overwhelms the disadvantage. Electrostati-

cally actuated MEMS resonators have been designed

to detect forces [31], masses [32], and accelerations

[30, 33]. The issue of stabilizing the response in the

nonlinear regime has been widely studied. Kacem

et al. [34] researched a dynamic stabilization tech-

nique for electrostatically actuated nanoresonators

theoretically and experimentally. Their theory focused

on actuating both primary and superharmonic reso-

nances simultaneously. Besides, using the internal

resonance induced between two bending modes is

proven to be a possible solution for stabilizing

mechanical oscillators [35]. Also, bifurcation phe-

nomena have been utilized to enhance the sensitivity

of MEMS sensors. Kumar et al. [36] operated a

piezoelectric cantilever beam near the saddle-node

bifurcation at its first natural frequency and detected

the sudden jump in amplitude with the mass pertur-

bation on resonator. In addition, the nonlinear

designed MEMS resonator shows its potential in

multi-sensing applications.

In the past few years, the topic of multiple sensing

has received attention due to the increasing need for

multiple parameters monitoring applications, espe-

cially in medical treatment, aerospace, and industry

4.0 [12, 13, 17]. The conventional solutions focus on

the combination of different kinds of sensors [16]. For

instance, Clifton et al. [37] developed multifunctional

integrated sensors (MFISES) chip, combining numer-

ousMEMS sensors into an integrated chip and benefits

from the ultra-small size and high sensitivity of

MEMS devices. Their MFISES device integrates 8

MEMS sensors on a single 2 mm 9 2 mm die which

obtains high sensing performance and low power

consumption. However, the direct employment of

multiple devices inevitably increases the system

complexity and production cost. Some research stud-

ies investigated the realization the multiple sensing on

a single device, e.g., Jaber et al. [13] demonstrated a

resonant gas sensor actuated simultaneously near the

first and second vibration modes, where monitoring

the frequency shifts of these two modes due to

physical stimuli, the detection of both environmental

temperature and gas concentration is achieved.

This paper proposes a new sensing structure using

the nonlinear response of electrostatically actuated

coupled resonators. The sensor mainly consists of a

mechanically coupled cantilever and bridge resonator.

Different sensing targets are set for two resonators for

multi-sensing purposes: the micro-gravimetric sensing

for the cantilever and the stiffness sensing for the

bridge. To investigate the rich nonlinear dynamic

behaviour of the structure, a nonlinear theoretical

model is developed using the Euler–Bernoulli beam

theory while accounting for the geometric (i.e.,

dominated by cubic nonlinearity originated from the

midplane stretching effect) and electric (i.e., domi-

nated by quadratic nonlinearity) nonlinearities,

respectively. The reduced-order model based on the

two-mode Galerkin discretization and shooting
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technique are used to analyse the system. The

influence of the resonators’ geometric size, damping,

actuation voltage, and actuation scheme is detailed

and discussed theoretically. The sensor’s multi-sens-

ing ability is demonstrated by tracking the bifurcation

frequency shift and peak frequency shift in the modes’

shapes induced by mass and stiffness perturbations.

The numerical results prove that this new kind of

sensing structure could monitor concurrently two

different kinds of perturbations with high efficiency

through the nonlinear behaviour of the structure.

The present paper’s structure is organized as

follows. The geometric size of the multi-sensing

scheme and the related problem formulation are

introduced in Sect. 2. The theoretical results of the

system’s nonlinear behaviour, the sensing perfor-

mance, and the parameter analysis are included in

Sect. 3. In the end, the main conclusions of the

research are summarized in Sect. 4.

2 Structure description and model

As displayed in Fig. 1, the multi-sensing scheme com-

prises a weakly coupled resonator, including

cantilever and bridge resonators, mechanically cou-

pled by a thin beam. The coupling strength could be

controlled by changing the coupling position, the

moment of inertia, and the coupling beam’s length

[38]. The detailed geometric parameters and physical

properties of the coupled resonator system, considered

to be fabricated from silicon, are listed in Table 1.

Both cantilever and bridge resonators are driven

electrostatically by a DC polarization voltage VDC,

and the AC harmonic actuation VAC is given on one (or

both) of them depending on the actuation theory. The

system geometry is optimized to ensure that the first

and second modes are similar.

The two resonators would be used to operate

different functions. The cantilever resonator would

detect the mass perturbation while the bridge experi-

ences the stiffness perturbation. The red component on

the tip of the cantilever, as shown in Fig. 1, represents

the mass perturbation set on the cantilever, which

could be generated from the special coating in the

practical design. The stiffness of the bridge resonator

is another sensing target, which links to many factors

like the thickness, stress and stretch, and the environ-

mental temperature.

The sensor structure (Fig. 1) is composed of two

microbeams (a bridge resonator and a cantilever

resonator) with lengths L1 and L2 (L1[L2), respec-

tively, width b and thickness h. The coupling beam is

functionalized to provide weak coupling, and its

coupling strength significantly affects the sensor’s

sensitivity. Hence, quantifying and controlling the

coupling beam’s dimensions is crucial. Most of the

sensors use an overhang to connect microbeams [30].

However, this coupling approach is challenging to

model and practically control its coupling length [39].

Hence, the coupling beam with length Lc, width bc,

and same thickness with resonators is chosen and

located at distance Xc. Under this condition, the

structure of sensors could be modelled as two Euler–

Bernoulli beams coupled with a rotational spring kr
[40]. The torsional stiffness could be represented as:

kr ¼
Gbbch3

LC
ð1Þ

where G denotes the material’s shear modulus (69.3

Gpa for silicon), and b is a coefficient depending on

the coupling beam’s width bc and thickness h. By

using Hamilton’s principle and the equation of Euler–Fig. 1 a 3D schematic of the multi-sensing scheme. b Top view
of the coupled resonators
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Bernoulli beams with distributed elements [41], the

equations of motion governing the transverse deflec-

tions ~w1 (for the bridge resonator) and ~w2 (for the

cantilever resonator) are:

EI ~w0000
1 þ qA €~w1 þ ~c1 _~w1 þ ~N � EA

2L2

ZL1

0

~w0
1

� �2
dx

2
4

3
5 ~w00

1

� ~kr ~w0
1 Xcð Þ � ~w0

2 Xcð Þ
� �

d0 ~x� ~Xc

� �

¼ 1

2
e0
b VDC1 þ VAC1 � cos ~X1~t

� �� �2
d1 � ~w1ð Þ2

ð2Þ

EI ~w0000
2 þ qAþ ~md ~x� ~Xm

� �� �
€~w2 þ ~c2 _~w2

� kr ~w0
2 Xcð Þ � ~w0

1 Xcð Þ
� �

d0 ~x� ~Xc

� �

¼ 1

2
e0
b VDC2 þ VAC2 � cos ~X2~t

� �� �2
d2 � ~w2ð Þ2

ð3Þ

In Eqs. (2) and (3), the primes and dots denote the

partial differentiation of transverse deflections ewiði ¼
1; 2Þwith respect to the beam position ex and the time et,
respectively; A and I are the area and the moment of

inertia of the rectangular cross section; d is the Dirac

delta function; and ec1 and ec2 denote the viscous

damping. The parameters and corresponding values

are defined in Table 2. Note that the AC voltage is

imposed on only one resonator excitation at a time

(i.e., if VAC1 = 0 means that VAc2 = 0 V and vice

versa) to investigate the corresponding dynamic

response of the proposed structure, while the DC

polarization actuation is imposed to both resonators to

enhance the associated quadratic nonlinearity.

After non-dimensionalizing and discretizing

Eqs. (2) and (3) using the Galerkin procedure, the

governing non-dimensional equations are written as

follows:

Z1

0

u1u
0000
1 dxu1 1þ dkð Þ þ o2u1

ot2
þ c1n

ou1
ot

0
@

þkr u1 u0
1 Xcð Þ

� �2�u2u
0
1 Xcð Þu0

2 Xcð Þ
h i�

� 1� 2u1

Z1

0

u3
1dxþ u21

Z1

0

u4
1dx

0
@

1
A

� a1

Z1

0

u02
1 dx

u31

Z1

0

u00
1u1dx� 2u41

Z1

0

u00
1u

2
1dxþ u51

Z1

0

u00
1u

3
1dx

0
@

1
A

¼ a2 VDC1 þ VAC1 cos X2tð Þ½ �2
Z1

0

u1dx

ð4Þ

Table 1 Geometric

parameters of the sensor

structure

Physical parameter (units) Value

Thickness of all microbeams, hðlmÞ 3

Transduction gap of bridge, d1ðlmÞ 7

Transduction gap of cantilever d2ðlmÞ 7

Length of coupling beam, LcðlmÞ 60

Length of bridge, L1ðlmÞ 700

Length of cantilever, L2ðlmÞ To be calculated

Widths of bridge and cantilever, bðlmÞ 10

Widths of coupling beam, bcðlmÞ 3

Position of the coupling beam,XcðlmÞ 20

Mass adsorption position,XmðlmÞ 250

Bridge actuation DC voltage,VDC1ðvoltÞ 40

Cantilever actuation DC voltage,VDC2ðVÞ 10

Bridge actuation AC voltage,VAC1ðVÞ Based on actuation theory

Cantilever actuation AC voltage,VAC2ðVÞ Based on actuation theory
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ZRL

0

u2u
0000
2 dxu2 þ 1þ dm x� Xmð Þð Þ o

2u2
ot2

0
@

þc2n
ou2
ot

þ kr u2 u0
2 Xcð Þ

� �2�u1u
0
1 Xcð Þu0

2 Xcð Þ
h i�

� R2
d � 2Rdu2

ZRL

0

u3
2dxþ u22

ZRL

0

u4
2dx

0
@

1
A

¼ a2 VDC2 þ VAC2 cos X2tð Þ½ �2
ZRL

0

u2dx

ð5Þ

where the dk and dm represent the linear stiffness

variation on bridge resonator due to the external

stimulus and the mass perturbation on cantilever

resonator, respectively. The detailed derivation pro-

cess and definition of parameters appearing in Eqs. (4)

and (5) are given in Appendix.

Through Eqs. (4) and (5), the Jacobian matrix of the

system is: J ¼
k21 j
j

1þ g
k22

1þ g

2
4

3
5, where

k21 ¼
R1
0

u1u
0000
1 dx� 2a2V2

dc1 þ kr u0
1 Xcð Þ

� �2
,

k22 ¼
RRL1

0

u2u
0000
2 dx� 2a2V2

dc2

R2
d

þ kr u0
2 Xcð Þ

� �2
, j ¼

�kr � u0
1 Xcð Þu0

2 Xcð Þ and g ¼ dm x� Xmð Þ.

Table 2 Physical

parameters used in the

governing equations of

motion

Symbol Physical parameter (units) Value

E Young’s modulus of silicon ðGPaÞ 169

q Density of silicon ðkg=m3Þ 2320

e0 Dielectric constant of air ð�Þ 8.85 9 10–12

eX1
Excitation frequency of bridge actuation ðHzÞ Depends on practical situation

eX2
Excitation frequency of bridge actuation ðHzÞ Depends on practical situation

Fig. 2 a Variation of the

two lowest natural

frequencies of the coupled

system with respect to the

length of the cantilever

resonator. The DC load is

kept equal to 0 V. The lines

denote the theoretical results

while the dots denote the

FEM result from COMSOL.

b and c show the top view

and side view, respectively,

show the first two vibration

mode shapes of the

mechanically coupled

structure from COMSOL
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Solving the eigenvalue problem through the Jaco-

bian matrix gives the two lowest global resonant

frequencies of the coupled system [42]:

k21 � x2
� � k22

1þ g
� x2

� �
� j2

1þ g
¼ 0 ð6Þ

To verify the theoretical model and obtain the

vibration mode shapes of the coupled resonators, a 3D

multi-physics finite-element model in the commercial

software COMSOL is used [43]. Figure 2 depicts the

variation of the first two global natural frequencies

with respect to the length of the cantilever by solving

Eq. (6), while applying 0 V DC load to the system, as

well as FEM simulations from COMSOL. The results

show good matching between both methods validating

the adopted analytical modal. Figure 2b, c shows the

associated first two lowest mode shapes of the

structure. Figure 2a demonstrates that when the length

of the cantilever is L2 ¼ 277lm, the two curves are

close to each other, and the two lowest natural

frequencies are around 54 kHz. For the rest of the

analysis, the cantilever length will be fixed at

L2 ¼ 278lm.

We also analyse the effect of DC load on the lowest

two natural frequencies by applying the same DC load,

VDC, to both resonators. Figure 3 depicts the variation

of the first two global natural frequencies with respect

to the DC load by solving Eq. (6). It shows that both

the two lowest modes’ resonance frequency would

decrease with increasing DC polarization actuation

due to the dominance of the quadratic nonlinearity

(i.e., originated from the electrostatic force).

Figure 4 reports a parametric study of the preceding

eigenvalue problem. The different colours of the

figure represent the effect of stiffness on the bridge

resonator, while the x-axis represents the effect of

mass variation on the cantilever resonator. The light

and dark colours denote the 1st and the 2nd lowest

global natural frequencies, respectively. The results

prove that both parameters could influence the reso-

nance frequencies.

3 Results and discussion

This section discusses the nonlinear behaviour of the

weakly coupled system. Continuous analyses using

the shooting technique [38] are conducted to verify the

effect of the different physical parameters. The

referred parameters are given in Table 1.

3.1 Response dynamics of AC actuation on bridge

3.1.1 Continuous analysis for the characteristic

points

Figure 5 shows the bifurcation points of the frequency

response of global mode shapes as actuating the bridge

resonator with VDC1 ¼ 40V and VAC1 ¼ 7:3V , and the

cantilever resonator with VDC2 ¼ 10V . The solid blue

and green dotted lines represent stable and unsta-

ble branches, respectively. Three characteristic points

(notes as red in Fig. 5) should be highlighted, the peak

point in the W2 appears at 53.835 kHz, and two

corresponding bifurcation points appear at

Fig. 3 Variation of the two lowest natural frequencies of the

coupled system with respect to the DC load. The two resonators

are subjected to the same VDC

Fig. 4 The two lowest natural frequencies versus mass

perturbation on the cantilever and stiffness perturbation on the

bridge. Light-coloured lines and dark-coloured lines represent

1st and the 2nd natural frequencies, respectively
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69.966 kHz and 57.327 kHz. The hardening beha-

viour in W1 generates a saddle-node bifurcation point

at 69.966 kHz, and the peak in the W2 at 53.835 kHz

is suitable for sensing. Near these two points, the tiny

variation of perturbations could lead to an obvious

change of transverse deflections, which show great

potential to provide high sensitivity. The following

parts will provide detailed discussions of the effects of

different parameters on these two phenomena.

The phase portraits and Poincaré sections for all

three characteristic points are shown in Fig. 6. The red

curves represent the peak point of W2 at 53.835 kHz,

the blue curves represent the higher amplitude bifur-

cation point at 69.966 kHz, and the green curves

represent the lower amplitude bifurcation point at

57.327 kHz, respectively. The phase portraits, which

are generated from 200 cycles of steady-state time

response, demonstrate elliptical orbits, and all

Fig. 5 Characteristic points of the frequency response under

bridge actuating of VDC1 ¼ 40V and VAC1 ¼ 7:3V , and can-

tilever actuating of VDC2 ¼ 10V: transverse deflection of

a bridge W1 and b cantilever W2 (dotted lines represent

unstable branches). The inset of b shows the nonlinear branch

Fig. 6 Phase portrait (solid line) and Poincaré section (dots) for the three characteristic points revealed in Fig. 4; peak point at

53.835 kHz (red), bifurcation point at 69.966 kHz (blue) and bifurcation point at 57.327 kHz (green): a W1; b W2
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Poincaré sections converge to a single point, proving

that the response is periodic motion of period-1. It

could be concluded that before the peak point of W2 at

53.835 kHz, both W1 and W2 phase portraits enlarge

with increased frequency. Between 53.835 kHz (W2

peak) and 69.966 kHz (higher amplitude bifurcation

point), W1 keeps enlarging while W2 starts to shrink.

In the last stable branch larger than 57.327 kHz, the

Fig. 7 Frequency response curves at different AC bridge

actuation VAC1 while VDC1 ¼ 40V , VDC2 ¼ 10V and

VAC2 ¼ 0V: a W1 and b W2 under low AC actuation of

1.0 V, 1.5 V, 2.0 V, 2.5 V, and 3.0 V; c W1 and d W2 under

mediumAC actuation of 4 V, 5 V, 6 V, and 7 V; eW1 and fW2

under high AC actuation of 8 V, 9 V, and 10 V. Dotted lines

denote unstable branches. Amplitudes W1 and W2 are non-

dimensional
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W1 and W2 phase portraits shrink with increased

frequency. It should be pointed that the nonlinear

behaviour determines the maximum transverse deflec-

tion of W1 while the maximum transverse deflection

of W2 is further related to its natural frequency.

3.1.2 AC actuation level on bridge

In Fig. 7, the DC polarization actuation is set as

VDC1 ¼ 40V and VDC2 ¼ 10V on bridge and can-

tilever, respectively, and only AC actuation of differ-

ent amplitudes VAC1 is provided on the bridge

resonator. Figure 7 indicates the complete response

around the two lowest modes under different levels of

AC actuation. (The amplitudes W1 and W2 are non-

dimensional.) In Fig. 7a, b, the five curves are given

the actuation VAC1 of 1.0 V, 1.5 V, 2.0 V, 2.5 V, and

3.0 V. It can be noted that under low AC actuation

levels, specifically from 1:0V (purple) to 2:0V (green),

the frequency response is linear. When VAC1 increases

to 2:5V (yellow), hardening behaviour first appears,

where the dotted line denotes the unstable branch.

Additionally, the bifurcation jump frequency in W1

and the peak frequency in W2 obtain a similar value

and lead to a potential 1:1 interaction (yellow curve).

Three specific peaks are observed in the response: (i)

the main peak appears near 52.8 kHz. It shifts to the

right when the actuation VAC1 increases and finally

turns to the bifurcation jump. (ii) The small peak at

53.3 kHz, linked to the linear mode localization,

remains at the same frequency. (iii) The small peak at

26.4 kHz is due to the order two superharmonic

behaviour.

When the actuation is increased from 4 to 7V , as

shown in Fig. 7c, d, the bifurcation jump frequency in

W1 continues to increase, and the peak frequency in

W2 remains constant. When VAC1 increases further

from 8 to 10V , as Fig. 7e, f show, the 1:1 interaction

disappears, and the response leads to a new unsta-

ble softening branch with maximum value of 0.56. To

obtain the best performance in sensing through

bifurcation jump and eliminate the risk of the

unwanted unstable branch, the AC actuation of

VAC1 ¼ 7:3V is a convenient choice.

3.2 AC actuation level on cantilever

In this section, the system dynamics are simulated for

different actuating schemes. More specifically, the DC

actuation remains the same while the AC actuation is

switched on the cantilever resonator. Compared to the

response in Sect. 3.1.2, the linear behaviours of

Figs. 7a, b and 8a, b in the two parts are quite similar:

both actuating modes return two peaks, including the

central peak at 53.3 kHz and the superharmonic peak

at 26.4 kHz. Under high AC actuation, the frequency

response curve around the second mode (Fig. 8c, d)

shows a nonlinear softening behaviour as being

dominated by quadratic nonlinearity. Besides, the

level of nonlinearity is also lower than the bridge

actuating result, which is insufficient to generate a

noticeable bifurcation jump. By comparing the max-

imum amplitude of two frequency responses under

high AC actuation (Figs. 7c, d and 8c, d), it could be

found that the peak amplitude of W1 under bridge

actuation (shown as red in Fig. 7c) is near 0.37, which

is more than two times of the W1 (0.15) under

cantilever actuation (shown as red in Fig. 8c). Hence,

the AC bridge actuation is a better AC excitation

method than the AC cantilever actuation because of

the higher amplitude of the nonlinear bifurcation

jump.

3.3 Effects of damping coefficient

Investigating the effect of damping on the sensor’s

performance is vital for safe sensor operation and

calibration. As particularly for gas sensors which

represent the main direct application of the proposed

system, the damping could be influenced by the gas

type, gas concentration, temperature, and other

parameters (especially since we are aiming for mul-

ti-gas detection); hence, it is crucial to study the effect

of damping on the system dynamics.

The effects of damping coefficients (f1 and f2) on
the resonator response are depicted in Fig. 9. The

value of damping influences the AC actuation needed

to lead to nonlinear behaviour and the amplitude of the

two resonators. Note that the values of damping ratios

were chosen arbitrarily, but having the same order of

magnitude as previous research studies [38, 44], to

show the damping effect on the numerical simulations.

Under ultra-low damping conditions

(f1 ¼ f2 ¼ 2:222� 10�3) in Fig. 9a, b, the nonlinear

jump appears in low actuation VAC1 ¼ 1V , while the

softening behaviour first appears when VAC1 ¼ 3V .

When f1 ¼ f2 ¼ 1:111� 10�2, the AC actuation
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value of the first bifurcation jump and softening

branch reaches 3 V and 9 V (Fig. 9c, d). Under high

damping (f1 ¼ f2 ¼ 2:222� 10�2), 9 V AC actuation

is not sufficient for the system to exhibit all the

nonlinear features, the nonlinear jump first appears at

5 V, and the softening behaviour does not exist at such

conditions (Fig. 9e, f).

3.4 Effects of resonators’ length

We investigate the effect of the resonators’ lengths L1
and L2 on the system response. The AC actuation of

VAC1 equals to 7V in both cases, as shown in Fig. 10. It

can be noted that the bridge length influences only the

bifurcation jump frequency of the first natural fre-

quency response W1 and does not influence the peak

frequency of the second natural frequency response

W2. In contrast, the cantilever length only affects the

peak frequency of the second natural frequency

response W2 and does not change the bifurcation

jump frequency of the first natural frequency response

W1.

3.5 Effect of the resonator thickness

The thickness directly changes the stiffness of the two

resonators: the thicker the resonator, the stiffer it gets

and requires further AC actuation. The results are

depicted in Fig. 11 with AC actuation of 7 V.

Figure 11a shows that under the same AC actuation

of 7 V, the response may exhibit all possibilities: the

Fig. 8 Frequency response curves at different AC cantilever

actuation VAC2 while VDC1 ¼ 40V , VDC2 ¼ 10V and

VAC1 ¼ 0V: a W1 and b W2 under low AC actuation of 5 V,

10 V, 15 V and 20 V; cW1 and dW2 under high AC actuation

of 24 V, 26 V, 28 V, and 30 V. Dotted lines denote unsta-

ble branches. Amplitudes W1 and W2 are non-dimensional
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Fig. 9 Frequency response curves at AC bridge actuation VAC1

of 1 V, 3 V, 5 V, 7 V, and 9 Vwhile VDC1 ¼ 40V , VDC2 ¼ 10V
and VAC2 ¼ 0V: aW1 and bW2 under low damping coefficient

f1 ¼ f2 ¼ 2:222� 10�3 (f1 and f2 are chosen to keep damping

c1 ¼ c2 ¼ 0:1, where c ¼ 2fwn andxn ¼ 22:5); cW1 and dW2

under medium damping coefficient f1 ¼ f2 ¼ 1:111� 10�2 (f1

and f2 are chosen to keep damping c1 ¼ c2 ¼ 0:5); e W1 and f

W2 under high damping coefficient f1 ¼ f2 ¼ 2:222� 10�3 (f1
and f2 are chosen to keep damping c1 ¼ c2 ¼ 1:0). Dotted lines
denote unstable branches. Amplitude of W1 and W2 is non-

dimensional.
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Fig. 10 Frequency response curves at different resonator

lengths under actuation of VAC1 ¼ 7V , VDC1 ¼ 40V , VAC2 ¼
0V and VDC2 ¼ 10V : a W1 and b W2 under different bridge

lengths, L1 of 690lm, 700lm, and 710lm; c W1 and d W2

under different cantilever lengths, L2 of 267lm, 277lm, and

287lm. Dotted lines denote unstable branches. Amplitude W1

andW2 are non-dimensional. The inset of a shows the nonlinear
branch

Fig. 11 Frequency response curves at different thicknesses, h of 2:5lm, 3lm, and 3:5lm under actuation of VAC1 ¼ 7V , VDC1 ¼ 40V ,
VAC2 ¼ 0V and VDC2 ¼ 10V: aW1 and bW2. Dotted lines denote unstable branches. Amplitude of W1 and W2 are non-dimensional
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unstable softening branch (2:5lm), the bifurcation

jump (3lm), and linear response (3:5lmÞ.

3.6 Sensing scheme

The purpose of this research is simultaneously detect-

ing two different physical stimuli by monitoring the

dynamic response around the first two lowest modes of

the single coupled structure. Hence, we desire to find

that stiffness variation and mass variation change the

response of the whole system in different ways, as

Fig. 12 shows exactly. In Fig. 12a, b, the non-dimen-

sional stiffness perturbation from -0.1 to 0.1 is given

to the bridge resonator. The results show that bifur-

cation jumps in the first natural frequency response

W1 in Fig. 12a changes due to stiffness variations on

bridge resonator, while the peak value of the second

natural frequency response W2 in Fig. 12b keeps

constant. When it comes to mass perturbation on the

cantilever resonator, the nonlinear jump remains in

same largely in Fig. 12c. In contrast, the cantilever

resonator’s peak frequency and peak values in

Fig. 12d are varying. Hence, it is possible to detect

both the stiffness and mass perturbation applied on the

bridge and cantilever resonators, respectively, by

monitoring the nonlinear jump and peak frequency

of the first two natural frequency responses. Thus,

multi-sensing can be robustly performed.

Besides, the coupling between different modes of

the structure would be an exciting topic to investigate.

Fig. 12 Parametric study of the frequency response curves

under actuation of VAC1 ¼ 7:3V , VDC1 ¼ 40V , VAC2 ¼ 0V and

VDC2 ¼ 10V: aW1 and bW2 for different stiffness perturbation

dk of-0.1,-0.05, 0, 0.05, and 0.1; cW1 and dW2 for different

mass perturbation dm of 0, 0.01, 0.02, 0.03, 0.04, and 0.05.

Dotted lines denote unstable branches. Amplitude of W1 and

W2 is non-dimensional. The inset of a shows the nonlinear

branch
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In previous research, the two lowest out-of-plane

modes of vibration of the proposed structure (occur-

ring at 178.22 kHz and 189.54 kHz) have a frequency

ratio of 3.4 with the first two lowest in-plane modes,

which suggests no internal resonance activation for the

present case study among these modes. However, the

activation of the internal resonance between in-plane

and out-of-plane modes could happen for optimized

structures as proven in the literature [45, 46]. This

aspect would be addressed in future research investi-

gating the sensing sensitivity as activating such

nonlinear modal coupling.

4 Conclusions

In this paper, the nonlinear dynamics of two mechan-

ically coupled micromachined resonators (cantilever

and bridge resonators) were numerically investigated

for potential multi-sensing applications. The concept

is based on the simultaneous tracking of the resonance

frequencies of the first and second lowest vibration

modes. Stiffness and mass perturbations of the bridge

and cantilever resonators, respectively, were found to

have independent influence on the two vibration

modes, demonstrating the promising potential of

multi-sensing on a single device. Nonlinear behaviour,

including bifurcation jumps and peaks as sensing

targets, improves the accuracy and sensitivity of the

sensor. The numerical model of the coupled system

with geometric and electrostatic nonlinear terms is

developed, demonstrating the multi-sensing feasibil-

ity. The continuous simulation of the structure is

obtained, revealing the full nonlinear dynamics of the

coupled system and the effect of different parameters,

which is vital for the sensor’s design. It is worth

mentioning that the value of AC actuation directly

relates to the system’s nonlinearity. Medium levels of

AC actuation linked to the nonlinear bifurcation jumps

are suitable to gain the sensor’s best performance and

weaken the risk of unstable softening branches due to

excessive driving input. The perturbation simulations

demonstrate the response variation under two pertur-

bations. The results indicate that stiffness and mass

perturbations of the bridge and cantilever resonators

independently influence the first two vibration modes,

proving the promising performance of the multi-gas

sensing concept.

The research introduces the methodology of the

nonlinear coupled resonator in performing multi-

parameters detection, which shows its potential for

mixture gas analysis, vehicle propulsion system mon-

itoring, and any industrial setting that requires multi-

ple sensing. Future work will focus on the practical

sensor system design and fabrication, specifically, the

multi-gas sensor for binary gas mixture analysis with

the matched testing circuit and platform. Additionally,

this research chooses the first and second global modes

to perform the sensing strategy. Instead of the low-

order modes, the scheme actuating in higher-order

modes may increase the response amplitude and

improve the sensitivity, which is also a potential

research direction. The above would include the

investigation of potential activation of internal reso-

nance among in-plane modes and out-of-plane modes

of vibrations.
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Appendix

The following variables and parameters are

introduced:

w1 ¼
~w1

d1
; w2 ¼

~w2

d1
; x ¼ ~x

L1
; Xc ¼

~Xc

L1
;

Xm ¼
~Xm

L1
; RL ¼ L2

L1
; Rd ¼

d2
d1

; ~m ¼ m

qAL1
; t ¼

~t

s
;

X1 ¼ ~X1s; X2 ¼ ~X2s; s ¼
ffiffiffiffiffiffiffiffiffiffiffi
qAL41
EI

r
; I ¼ bh3

12
;

N ¼
~NL21
EI

; kr ¼
~krL1
EI

; ~ci ¼
L41ci
EIs

; a1 ¼ 6� d1
h

� �2

;

a2 ¼
e0bL41
2EId31

; kr ¼
Gbbch3

LC

ð7Þ

By substituting the new introduced parameters in

(7) into Eqs. (2) and (3), the non-dimensional equa-

tions of motion are presented as:

w0000
1 þ €w1 þ c1 _w1 þ N � a1

Z1

0

w
0

1


 �2
dx

2
4

3
5 � w00

1

þ kr w0
1 Xcð Þ � w0

2 Xcð Þ
� �

d0 x� Xcð Þ

¼ a2
VDC1 þ VAC1 cos X1tð Þ½ �2

1� w1ð Þ2

ð8Þ

w0000
2 þ 1þ dm x� Xmð Þð Þ €w2 þ c2 _w2 þ kr w0

2 Xcð Þ
�

�w0
1 Xcð Þ

�
d0 x� Xcð Þ

¼ a2
VDC2 þ VAC2 cos X2tð Þ½ �2

Rd � w2ð Þ2

ð9Þ

with the following corresponding boundary

conditions:

w1 0; tð Þ ¼ w0
1 0; tð Þ ¼ w1 1; tð Þ ¼ w0

1 1; tð Þ ¼ 0 ð10Þ

w2 0; tð Þ ¼ w0
2 0; tð Þ ¼ w2 RL; tð Þ ¼ w0

1 RL; tð Þ ¼ 0

ð11Þ

After multiplying both sides of Eqs. (8) and (9) by

the 1� wð Þ2, and applying the Galerkin method [41],

it yields:

1� w1ð Þ2w0000
1 þ 1� w1ð Þ2o

2w1

ot2
þ 1� w1ð Þ2c1

ow1

ot

� 1� w1ð Þ2a1
Z1

0

w0
1

� �2
dx � w00

1

þ 1� w1ð Þ2kr w0
1 Xcð Þ � w0

2 Xcð Þ
� �

d0 x� Xcð Þ
¼ a2 VDC1 þ VAC1 cos X2tð Þ½ �2

ð12Þ

Rd � w2ð Þ2w0000
2 þ Rd � w2ð Þ2 1þ dm x� Xmð Þð Þ o

2w2

ot2

þ Rd � w2ð Þ2c2
ow2

ot
þ Rd � w2ð Þ2kr w0

2 Xcð Þ � w0
1 Xcð Þ

� �
d0 x� Xcð Þ

¼ a2 VDC2 þ VAC2 cos X2tð Þ½ �2

ð13Þ

The solutions of Eqs. (12) and (13) can be

expressed as w1 x; tð Þ ¼
P1
i¼1

u1;i tð Þu1;i xð Þ and

w2 x; tð Þ ¼
P1
i¼1

u2;i tð Þu2;i xð Þ, where u1;i and u2;i are

the ith linear undamped mode shape of microbeams 1
and 2. Then, the linear undamped eigenvalue equa-
tions are obtained:

u0000
1;i ¼ b21;iu1;i; u

0000
2;i ¼ b22;iu2;i ð14Þ

b21 ¼
Z1

0

u1u
0000
1 dx; b22 ¼

ZRL

0

u2u
0000
2 dx ð15Þ

By substituting Eqs. (14) and (15) into Eqs. (12) and

(13), multiplying by u1;i, u2;i, and integrating from

x ¼ 0 to 1, x ¼ 0 to RL, it yields:Z1

0

u1u
0000
1 dxu1 1þdkð Þþo2u1

ot2

0
@ þ

c1n
ou1
ot

þkr u1 u0
1 Xcð Þ

� �2�u2u
0
1 Xcð Þu0

2 Xcð Þ
h i�

� 1�2u1

Z1

0

u3
1dxþu21

Z1

0

u4
1dx

0
@

1
A

�a1

Z1

0

u02
1 dx

 
u31

Z1

0

u00
1u1dx�2u41

Z1

0

u00
1u

2
1dx

þu51

Z1

0

u00
1u

3
1dx

!
¼ a2 VDC1þVAC1 cos X2tð Þ½ �2

Z1

0

u1dx

ð16Þ
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ZRL

0

u2u
0000
2 dxu2 þ 1þ dm x� Xmð Þð Þ o

2u2
ot2

0
@

þc2n
ou2
ot

þ kr u2 u0
2 Xcð Þ

� �2�u1u
0
1 Xcð Þu0

2 Xcð Þ
h i�

� R2
d � 2Rdu2

ZRL

0

u3
2dxþ u22

ZRL

0

u4
2dx

0
@

1
A

¼ a2 VDC2 þ VAC2 cos X2tð Þ½ �2
ZRL

0

u2dx

ð17Þ

where the dk and dm represents the linear stiffness

variation on bridge resonator due to the external

stimulus and the mass perturbation on cantilever

resonator, respectively.

The first and second local mode shapes for the

bridge and cantilever are:

u1 xð Þ ¼ � cos 4:73004xð Þ þ cosh 4:73004xð Þ

þ sinh 4:73004ð Þ þ sin 4:73004ð Þ
cosh 4:73004ð Þ � cos 4:73004ð Þ

sin 4:73004xð Þ � sinh 4:73004xð Þ½ �

ð18Þ

u2 xð Þ ¼ K � cos
1:8751x

RL

� �
þ cosh

1:8751x

RL

� ��

þ
sin 1:8751

RL


 �
� sinh 1:8751

RL


 �

cos 1:8751
RL


 �
� cosh 1:8751

RL


 �

sin
1:8751x

RL

� �
� sinh

1:8751x

RL

� �� ��

ð19Þ

where the coefficient K takes a value ensuringR RL

0
u2
2dx ¼ 1.
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