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Abstract The prediction of the temporal dynamics
of chaotic systems is challenging because infinitesimal
perturbations grow exponentially. The analysis of the
dynamics of infinitesimal perturbations is the subject
of stability analysis. In stability analysis, we linearize
the equations of the dynamical system around a refer-
ence point and compute the properties of the tangent
space (i.e. the Jacobian). The main goal of this paper is
to propose a method that infers the Jacobian, thus, the
stability properties, from observables (data). First, we
propose the echo state network (ESN) with the Recy-
cle validation as a tool to accurately infer the chaotic
dynamics fromdata. Second,wemathematically derive
the Jacobian of the echo state network, which provides
the evolution of infinitesimal perturbations. Third, we
analyse the stability properties of the Jacobian inferred
from the ESN and compare them with the benchmark
results obtained by linearizing the equations. The ESN
correctly infers the nonlinear solution and its tangent
space with negligible numerical errors. In detail, we
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compute from data only (i) the long-term statistics of
the chaotic state; (ii) the covariant Lyapunov vectors;
(iii) the Lyapunov spectrum; (iv) the finite-time Lya-
punov exponents; (v) and the angles between the sta-
ble, neutral, and unstable splittings of the tangent space
(the degree of hyperbolicity of the attractor). This work
opens up new opportunities for the computation of sta-
bility properties of nonlinear systems fromdata, instead
of equations.

Keywords Data-driven learning · Lyapunov
exponents · Covariant Lyapunov vectors · Echo
state network

Mathematics Subject Classification 68T07 · 34D08 ·
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1 Introduction

Chaotic behaviour has been observed and extensively
studied in diverse scientific fields, initially in meteorol-
ogy [1] and later in physics [2,3], chemistry, biology
and engineering [4] to name a few. Chaos appears from
deterministic nonlinear equations in the form of sen-
sitivity to initial conditions, aperiodic behaviour, and
short predictability. A successful mathematical tool for
the analysis of chaos is provided by stability analysis.
By applying infinitesimal perturbations to a system’s
trajectory, we can classify its stability along different
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directions and compute the properties of its linear tan-
gent space.

Stability analysis relies on the linearization of the
dynamical equations, which requires the Jacobian of
the system. The key quantities that characterize chaotic
dynamics, and many other related physical properties,
such as dynamical entropies and fractal dimensions,
are the Lyapunov Exponents (LEs) [5,6], which are the
eigenvalues of the Oseledets matrix [7]. There are sev-
eral numerical methods to extract the LEs based on the
Gram–Schmidt orthogonalization procedure [6,8,9].
The relevant eigenvectors are the corresponding Lya-
punov vectors that constitute a coordinate dependent
orthogonal basis of the linear tangent space. Instead,
an intrinsic and norm-independent basis, which is also
time invariant and covariant with the dynamics is given
by the covariant Lyapunov vectors (CLVs). Crucially,
CLVs are able to provide information on the local struc-
ture of chaotic attractors [10]. This viewpoint allows the
study of an attractor’s topology with the occurrence of
critical transitions [11–14], paving the way for CLVs
to be considered as precursors to such phenomena.

The previous exposition is traditionally related to
model-based approaches, as it relies on the knowledge
of a system’s dynamical equations. However, study-
ing the stability properties of observed data, where
equations are not necessarily known, is hard; there are
few approaches, e.g. [15,16], relying on the delayed
coordinates attractor reconstruction by Takens [17].
The recent breakthrough of data-driven (model-free)
approaches poses the reasonable question: Can we use
the rich knowledge of dynamical systems theory for
model-free approaches? Indeed, although at early steps,
the use of advanced machine learning (ML) techniques
for complex systems has shown promising potential in
applications ranging from weather and climate predic-
tion and classification [18–20] to fluid flows prediction
and optimization [21–23], among others. The overar-
ching goal of this work is to propose a machine learn-
ing approach to accurately learn and infer the ergodic
properties of prototypical chaotic attractors, and in par-
ticular to extract LEs and CLVs from data.

The recurrent neural networks (RNNs) constitute a
promising type of ML to address chaotic behaviour.
Thanks to their architecture, the RNNs are suitable
for processing sequential data, typically encountered
in speech and language recognition, or time-series pre-
diction [24]. In particular, they are proven to be univer-
sal approximators [25,26] and are able to capture long-

term temporal patterns, i.e. they possessmemory.Akey
piece of their architecture is that they maintain a hid-
den state that evolves dynamically, effectively allowing
the RNNs to be treated as dynamical systems, and in
particular as discrete neural differential equations [27].
Thus, RNNs lend themselves to being analysed with
dynamical systems theory, allowing the study of sta-
bility properties from the dynamics they have learned.
By exploiting this here, we derive the RNN’s Jacobian
and infer the linear dynamics from data.

Recently, there have been significant advancements
in employingRNNs to learn chaotic dynamics [28–36],
where two core objectives are studied: (1) the time-
accurate prediction of chaotic fluctuations and maxi-
mization of the prediction horizon and (2) accurately
learning the ergodic properties of chaotic attractors.
The first objective has been addressed by one of the
co-authors in [34–36] for several prototypical chaotic
dynamical systems using the same RNN architecture
as the present work. Here we address the second objec-
tive by extending the recent works [29,30,32], where
the LEs of the Lorenz 63 [1] and the one-dimensional
Kuramoto–Sivashinsky equation [37] were retrieved
from trained RNNs.

In this work, we employ a specific architecture of
the RNN, a type of reservoir computer, the echo state
network (ESN) [38] and train it with a diverse set of
four prototypical chaotic attractors. The objective of
this paper is twofold; first the accurate learning and
inference of the ergodic properties of the chaotic attrac-
tors by the ESN. This is accomplished by thoroughly
comparing the long-term statistics of (i) degrees of free-
dom, (ii) LEs, (iii) finite-time LEs, and (iv) angles of
the CLVs. Second, by comparing the distribution of (i)
finite-time LEs and (ii) angles of CLVs on the topol-
ogy of the attractor, providing a strict test of the ESN’s
capability to accurately learn intrinsic chaotic proper-
ties.

The paper is organized as follows: Section2 presents
the necessary tools for our study. In particular, Sect. 2.1
provides a brief introduction to the relevant concepts
and quantities from dynamical systems, such as LEs
and CLVs. Then, Sect. 2.2 describes the architec-
ture of the ESN, while Sect. 2.3 its validation strate-
gies. Section3 presents our main results, which are
divided into two subsections; Sect. 3.1 devoted in low-
dimensional systems, namely the Lorenz 63 [1] and
Rössler [39] attractors; and Sect. 3.2 showing results
on the Charney-DeVore [40] and the Lorenz 96 [41]
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attractors. Finally, we summarize our results and pro-
vide future perspectives in the conclusions in Sect. 4.
The appendix A presents the two algorithms to extract
the LEs and CLVs from the ESN. Appendix B provides
further tests on the robustness of the methodology.

2 Background

In the following two subsections,we summarize the key
theory that underpins the stability of chaotic systems
(Sect. 2.1) and reservoir computers (Sect. 2.2).

2.1 Stability of chaotic systems

We consider a state x(t) ∈ R
D with D degrees of free-

dom, which is governed by a set of nonlinear ordinary
differential equations

dx
dt

= f (x), (1)

where f (x) : RD → R
D is a smooth nonlinear func-

tion. Equation (1) defines an autonomous dynamical
system. Hence, the dynamical system exists in a phase
space of dimension D, equipped with a suitable met-
ric, and is associated with a certain measure μ that we
assume to be preserved (invariant). To investigate the
stability of the dynamical system (1), we perturb the
state by first-order perturbations as

x + u, x ∼ O(1), u ∼ O(ε), ε → 0. (2)

By substituting decomposition (2) into (1) and col-
lecting the first-order terms∼ O(ε), we obtain the gov-
erning equation for the first-order perturbations (i.e.
linear dynamics)

du
dt

= J(x(t))u, (3)

where Ji j = ∂ fi (x)
∂x j

∈ R
D×D are the components of the

Jacobian, J(x(t)), which is in general time-dependent.
The perturbations u evolve on the linear tangent space
at each point x(t). The goal of stability analysis is to
compute the growth rate of infinitesimal perturbations,

which is achieved by computing the Lyapunov expo-
nents and a basis of the tangent space with the covari-
ant Lyapunov Vectors. To do so, we numerically time-
march K ≤ D tangent vectors, ui ∈ R

D , as columns
of the matrix U ∈ R

D×K , U = [u1, u2, . . . , uK ]

dU
dt

= J(x(t))U . (4)

Geometrically, Eq. (4) describes the tangent space
around the state x(t). Starting from x(t = t0) = x0
and U(t0) = I, Eqs. (1) and (4) are numerically solved
with a time integrator. As explained in the subsequent
paragraphs, in a chaotic system, almost all nearby tra-
jectories diverge exponentially fast with an average rate
equal to the leading Lyapunov exponent. Hence, the
tangent vectors align exponentially fast with the lead-
ing Lyapunov vector, u1. (‘Almost all’ means that the
set of perturbations that do not grow with the largest
Lyapunov exponents has a zero measure). To circum-
vent this numerical issue, it is necessary to periodi-
cally orthonormalize the tangent space basis during
time evolution, using a QR-decomposition of U , as
U(t) = Q(t)R(t,Δt) (see [8,9]) and updating the
columns of U with the columns of Q, i.e. U ← Q.
The matrix R(t,Δt) ∈ R

K×K is upper-triangular and
its diagonal elements [R]i,i are the local growth rates
over a time span Δt of the (now) orthonormal vectors
U , which are also known as backward Gram–Schmidt
vectors (GSVs) [10,42]. The Lyapunov spectrum is
given by1

λi = lim
T→∞

1

T

∫ T

t0
ln[R(t,Δt)]i,idt. (5)

The algorithm 1 in the appendix A is a pseudocode
for the calculation of the LEs for the ESN following
[29,32]. The sign of the Lyapunov exponents indicates
the type of the attractor. If the leading exponent is neg-
ative, λ1 < 0, the attractor is a fixed point. If λ1 = 0,
and the remaining exponents are negative, the attrac-
tor is a periodic orbit. If at least a Lyapunov exponent

1 The Oseledets’ theorem [6,7,10] establishes the existence of
Lyapunov exponents (LEs) for a generic set of orbits under
fairly general assumptions. In particular, the Oseledets’ theorem
enables the extension of Lyapunov stability analysis to any tra-
jectory of a dynamical system defined on a Riemannianmanifold
of dimension N and equipped with a suitable metric, including
fixed points and periodic orbits.
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is positive, λ1 > 0, the attractor is chaotic. In chaotic
systems, the Lyapunov time τλ = 1

λ1
defines a char-

acteristic timescale for two nearby orbits to separate,
which gives a scale of the system’s predictability hori-
zon [43].

TheGSVs,U , constitute a norm-dependent orthonor-
mal basis, which is not time-reversible, due to the
frequent orthogonalizations via the QR decomposi-
tion. Instead, the covariant Lyapunov vectors (CLVs)
V = [v1, v2, . . . , vK ] (each CLV vi ∈ R

D is a col-
umnofV ) form a norm-independent and time-invariant
basis of the tangent space, which is covariant with the
dynamics. The latter features of the CLVs, which are
not possessed by the GSVs, allow us to examine indi-
vidual expanding and contracting directions of a given
dynamical system, thus providing an intrinsic geomet-
rical interpretation of the attractor [6,10], as well as
a hierarchical decomposition of spatiotemporal chaos,
thanks to their generic localization in physical space
[42]. Each bounded nonzero CLV, i.e. 0 < ||vi || < ∞,
satisfies the following equation:

dvi
dt

= J(x(t))vi − λivi , (6)

which shows that the CLV is evolved by the tangent
dynamics J(x(t))vi , while the extra term −λivi guar-
antees that its norm is bounded [44]. The name “covari-
ant” means that the i th CLV at time t1, vi (x(t1)),
maps at vi (x(t2)) at time t2, and vice versa. Math-
ematically, if M(t,Δt) = exp(

∫ t+Δt
t J(x, τ )dτ) is

the system’s tangent evolution operator (which con-
tains a path-ordered exponential), covariant means
M(t,Δt)vi (t) = vi (t + Δt); time-invariance of
CLVs naturally arises from the previous expression, as
M(t,−Δt)vi (t + Δt) = vi (t). If the Lyapunov spec-
trum is non-degenerate (such as for the cases consid-
eredhere), eachCLVvi is associatedwith theLyapunov
exponent λi and is uniquely defined (up to a phase).

An important subclass of chaotic systems are uni-
formly hyperbolic systems, which have a uniform split-
ting between expanding and contracting directions, i.e.
there are no tangencies between the unstable, neutral,
and stable subspaces [45] that form the tangent space.
Because of their simple geometrical structure, many
theoretical tools have been developed in recent years.
Hyperbolic systems have structurally stable dynam-
ics and linear response, meaning that their statistics
vary smoothly with parameter variations [46]. In prac-

tice, violations of hyperbolicity are commonly reported
in the literature [44,47,48], whereas true hyperbolic
systems are rare [49]. Thanks to the chaotic hypoth-
esis [5,50,51], high-dimensional chaotic systems can
be practically treated as hyperbolic systems, i.e. using
techniques developed for hyperbolic systems, regard-
less of hyperbolicity violations. This is because many
convenient statistical properties of uniformly hyper-
bolic systems, such as ergodicity, existence of phys-
ical invariant measures, exponential mixing and well-
defined time averages with large deviation laws [52,
53], can be found in the macroscopic scale dynamics
of certain large non-uniformly hyperbolic systems [46].

An application of CLVs is to assess the degree of
hyperbolicity of the underlying chaotic dynamics. The
tangent space of hyperbolic systems, at each point x,
can be directly decomposed into three invariant sub-
spaces, EU

x ⊕ EN
x ⊕ ES

x . Here EU
x is the unstable

subspace composed by the CLVs associated with pos-
itive LEs, EN

x is the neutral subspace spanned by the
CLVs associatedwith the zero LEs, and ES

x is the stable
subspace spanned by the CLVs associated with neg-
ative LEs. In hyperbolic systems, the distribution of
angles between subspaces is bounded away from zero.
In Sect. 3, we will study in detail the angles θU,N , θU,S ,
and θN ,S between pairs of the subspaces, and com-
pare the ability of the ESN to accurately learn both
the long-term statistics, and the phase space finite-time
variability of the angles. Because the GSVs are mutu-
ally orthogonal, they cannot assess the degree of hyper-
bolicity of the attractor. Moreover, CLVs are key to the
optimization of chaotic acoustic oscillations [44], as
well as in reduced-ordermodelling [54]; they can reveal
two uncoupled subspaces of the tangent space, one that
comprises the physical modes carrying the relevant
information of the trajectory, and another composed
of strongly decaying spurious modes [10]. Two recent
attempts to extract CLVs from data-driven approaches,
which do not employ a neural network, can be found
in [55,56].

We explain the algorithmwe employ to compute the
CLVs; for further details, we refer the interested reader
to [10,42,44]. The GSVs are generated by numerically
solving Eqs. (1) and (4) simultaneously and performing
a QR-decomposition every m timesteps. In this way,
after a time-lapse Δt , the GSVs at time t + Δt are
given by:

M(t,Δt)U(t) = U(t + Δt)R(t,Δt). (7)
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We can define the CLVs V (t) in terms of the GSVs as

V (t) = U(t)C(t), (8)

where C is an upper triangular matrix that contains the
CLVexpansion coefficients, [C(t)] j i = c j,i (t), for j ≤
i . Hence, the objective is to calculate C(t). Because
the CLVs have by choice a unit norm, each column
of the matrix C has to be normalized independently,
i.e.

∑i
j=1(c j,i (t))

2 = 1,∀i .
We start by writing the evolution equation of the

CLVs as

M(t,Δt)V (t) = V (t + Δt)D(t,Δt). (9)

We can re-write Eq. (9) via Eq. (8)

U(t + Δt)C(t + Δt)D(t,Δt)

= M(t,Δt)U(t)C(t)

= U(t + Δt)R(t,Δt)C(t), (10)

and solve with respect to C(t)

C(t) = R−1(t,Δt)C(t + Δt)D(t,Δt). (11)

This equation is evolved backwards in time starting
from the end of the forward-in-time simulation. We
employ the solve_triangular routine of scipy
[57] to invert R(t,Δt) and solve with respect to C(t).
The C and D matrices are initialized to the identity
matrix I. We leave a sufficient spin-up and spin-down
transient time at the beginning and end of our total time
window, before we compute the CLVs via Eq. (8), to
ensure that they are converged. The algorithm 2 in the
appendix A is a pseudocode for the calculation of the
CLVs.

To estimate the expansions and contractions of the
tangent space on finite-time intervals of length Δt =
t2−t1, we compute the finite-time Lyapunov exponents
(FTLEs) as Λi = 1

Δt ln[R]i,i . Hence, λi is the long-
time average of Λi . The FTLE Λ1 physically quanti-
fies the exponential growth rate of a vector u1 during
the time interval Δt ; therefore, Λ2 quantifies the expo-
nential growth rate of the vector u2 that is orthogonal
to u1 by construction. Hence, as the GSVs form an
orthogonal basis, looking at individual FTLEs for Λi ,
i ≥ 2, lacks a physical meaning. Instead, the sum of

the first n FTLEs is a growth rate in Δt for a typical
n-dimensional volume Voln in the tangent space [9,58]

n∑
i=1

Λi = 1

Δt

n∑
i=1

ln[R(t,Δt)]i,i = 1

Δt
ln

n∏
i=1

[R(t,Δt)]i,i

= 1

Δt
ln Voln(Δt). (12)

Accordingly, the diagonal matrixD(t,Δt) contains the
CLV local growth factors of γi (t,Δt) = ||M(t,Δt)
vi (t)||, i.e. [D(t,Δt)]i, j = δi, jγi (t,Δt). We can
extract the finite-time covariant Lyapunov exponents
(FTCLEs) from the logarithm of these growth factors
for a time interval Δt

Λc
i = 1

Δt
ln[D]i i . (13)

EachFTCLEquantifies afinite-timeexponential expan-
sion or contraction rate along a covariant direction
given by vi . Hence, each individual FTCLEhas a physi-
cal interpretation, in contrast to theFTLEs, as explained
before. On the other hand, now the sums of FTCLEs
lack a physical meaning [58]. The long-time average
of the FTCLEs is equal to the Lyapunov exponents,
λi = lim

T→∞
1
T

∫ T
t0

Λc
i (t)dt .

2.2 Echo state network

The solution of a dynamical system is a time series.
From a data analysis point of view, a time series is a
sequentially ordered set of values, in which the order
is provided by time. In a discrete setting, time can be
thought of as an ordering index. For sequential data, and
hence, time series, recurrent neural networks (RNNs)
are designed to infer the temporal dynamics through
their internal hidden state. However, training RNNs,
such as long short-termmemory (LSTM) [59] networks
and gated recurrent units (GRUs) [60], requires back-
propagation through time, which can be a demand-
ing computational task due to the long-lasting time
dependencies of the hidden states [61]. This issue is
overcome by echo state networks (ESNs) [38,62], a
RNN that is a type of reservoir computer, of which
the recurrent weights of the hidden state (commonly
named “reservoir”) are randomly assigned and possess
low connectivity. Therefore, only the hidden-to-output
weights are trained leading to a simple quadratic opti-
mization problem, which does not require backpropa-
gation (see Fig. 1a for a graphical representation). The
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reservoir acts as amemory of the observed state history.
ESNs have demonstrated accurate inference of chaotic
dynamics, such as in [28–36,63].

An echo state network maps the state from time
index ti to index ti+1 as follows (with a slight abuse
of notation, the discrete time is denoted ti ). The evo-
lution equations of the reservoir state and output are
governed, respectively, by [36,38]

r(ti+1) = tanh
(
[ŷin(ti ); bin]TWin + r(ti )TW

)
,

(14)

yp(ti+1) = [r(ti+1); 1]TWout; (15)

where at any discrete time ti the input vector, yin(ti ) ∈
R

Ny , is mapped into the reservoir state r ∈ R
Nr , by the

input matrix, Win ∈ R
(Ny+1)×Nr , where Nr � Ny .

The updated reservoir state r(ti+1) is calculated at
each time iteration as a function of the current input
ŷin(ti ) and its previous value r(ti ) via Eq. (14) and
then is involved in the calculation of the predicted out-
put, yp(ti+1) ∈ R

Ny via Eq. (15). Here, ˆ( ) indicates
normalizationby themaximum-minus-minimumrange
of yin in training set component-wise, (T ) indicates
matrix transposition, (;) indicates array concatenation,
W ∈ R

Nr×Nr is the state matrix, bin is the input bias
and Wout ∈ R

(Nr+1)×Ny is the output matrix. In our
applications, the dimension of the input and output vec-
tors is equal to the dimension of the physical system of
Eq. (1), i.e. Ny ≡ D.

The matrices Win and W are (pseudo)randomly
generated and fixed, whilst the weights of the output
matrix, Wout, are the only trainable elements of the
network. The input matrix, Win, has only one element
different from zero per row, which is sampled from
a uniform distribution in [−σin, σin], where σin is the
input scaling. The state matrix, W, is an Erdös–Renyi
matrix with average connectivity d, in which each neu-
ron (each row of W) has on average only d connec-
tions (i.e. nonzero elements), which are obtained by
sampling from a uniform distribution in [−1, 1]. The
echo state property enforces the independence of the
reservoir state on the initial conditions, which is sat-
isfied by rescaling W by a multiplication factor, such
that the absolute value of the largest eigenvalue [38],
i.e. the spectral radius, is smaller than unity. Following
[29,36,63,64], we add a bias in the input and output
layers to break the inherent symmetry of the basic ESN
architecture. Specifically, the input bias, bin is a hyper-
parameter, selected in order to have the same order of

Fig. 1 a Schematic representation of the echo state network. b
Open-loop and c closed-loop configurations

magnitude as the normalized inputs, ŷin. Differently,
the output bias is determined by training the weights of
the output matrix, Wout.

In Fig. 1b and c, we present the two types of config-
urations with which the ESN can run, i.e. in open loop
or closed loop, respectively. Running in open-loop is
necessary for the training stage, as the input data is fed
at each step, allowing for the calculation of the reser-
voir time series r(ti ), ti ∈ [0, Ttrain], which need to be
stored. There is an initial transient time window, the
“washout interval”, where the output yp(ti ) is not com-
puted. This allows for the reservoir state to satisfy the
echo state property, i.e. making it independent of the
arbitrarily chosen initial condition, r(t0) = 0, while
also synchronizing it with respect to the current state
of the system.
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The training of the outputmatrix,Wout, is performed
after the washout interval and involves the minimiza-
tion of the mean square error between the outputs and
the data over the training set

MSE = 1

NtrNy

Ntr∑
i=0

||yp(ti ) − yin(ti )||2, (16)

where ||·|| is the L2 norm, Ntr+1 is the total number of
data in the training set, and yin the input data on which
the ESN is trained. Training the ESN is performed by
solving with respect toWout via ridge regression of

(RRT + βI)Wout = RYT
d , (17)

whereR ∈ R
(Nr+1)×Ntr andYd ∈ R

Ny×Ntr are the hor-
izontal concatenation of the reservoir states with bias,
[r(ti ); 1], ti ∈ [0, Ttrain] and of the output data, respec-
tively; I is the identity matrix and β is the Tikhonov
regularization parameter [65].

On the other hand, in the closed-loop configuration
(Fig. 1c) the output yp at time step ti is used as an
input at time step ti+1, in a recurrent manner, allowing
for the autonomous temporal evolution of the network.
The closed-loop configuration is used for validation
(i.e. hyperparameter tuning, see Sect. 2.3) and testing,
but not for training. For our purposes,we independently
train NESN ∈ [5, 10] networks, of which we take the
ensemble average to increase the statistical accuracy
of the prediction and evaluate its uncertainty. We start
with NESN = 10 trained networks, but during post-
processing we may discard any network that shows
spurious temporal evolution. The NESN networks are
statistically independent thanks to: (1) initializing the
random matrices Win and W with different seeds, and
(2) training each network with chaotic time series star-
ing from different initial points on the attractor.

2.2.1 Jacobian of the ESN

In this subsection, we mathematically derive the Jaco-
bian of the echo state network. Equations (14)–(15) are
a discrete map [2,32],

r(ti+1) = f (y(ti ), r(ti ))

= tanh
(
[ŷ(ti ); bin]TWin + r(ti )TW

)
,

y(ti+1) = [r(ti+1); 1]TWout,

and the continuous-time formulae derived for the Lya-
punov exponents and CLVs in Sect. 2.1 can be adapted
for a discrete-time system. The Jacobian of the ESN
reservoir is the total derivative of the hidden state
dynamics at a single timestep [29]

J(r(ti+1)) = d r(ti+1)

d r(ti )
= d f (y(ti ), r(ti ))

d r(ti )

= ∂ f (y(ti ), r(ti ))
∂y(ti )

∂y(ti )
∂ r(ti )

+ ∂ f (y(ti ), r(ti ))
∂ r(ti )

= (1 − tanh2[·])WT
inW

T
out + (1 − tanh2[·])WT

= (1 − r(ti+1)
2)

(
WT

inW
T
out + WT

)
, (18)

where from Eq. (14) r(ti+1)
2 = tanh2([ŷin(ti ); bin]T

Win + r(ti )TW) is the updated squared hidden state
at timestep ti+1. The Jacobian of the ESN is cheap to
calculate as the expression

(
WT

inW
T
out + WT

)
is a con-

stant matrix, which is fixed after the training of Wout.
The only time-varying component is the hidden state.
The Jacobian J ∈ R

Nr×Nr is used for the extraction
of the Lyapunov spectrum and the CLVs of a trained
ESN. We time-march D Lyapunov vectors ui ∈ R

Nr

and periodically perform QR decompositions, where
Q ∈ R

Nr×D , and R ∈ R
D×D . The same CLV algo-

rithm described in Sect. 2.1 is employed to extract D
covariant Lyapunov vectors vi ∈ R

Nr from a trained
ESN. The pseudocode is given in algorithm 2.

2.3 Validation

The dataset is split into three subsets, which are the
training, validation, and testing subsets in a time-
ordered fashion. During training, the ESN runs in open-
loop, while during validation and testing, the ESN
runs in closed-loop and the prediction at each step
becomes the input for the next step. After training the
ESN, its validation is necessary for the determination
of the hyperparameters. The objective is to compute
the hyperparameters that minimize the logarithm of
the MSE (16). The logarithm of the MSE is preferred
because the error varies by orders of magnitude for dif-
ferent hyperparameters, as explained in [36]. In gen-
eral, instead of Eq. (16), other types of error functions
can be used for the hyperparameter tuning, such as the
maximization of the prediction horizon [29,34,36] or
theminimization of the kinetic energy differences [64].
Here the input scaling, σin, the spectral radius, ρ, and
the Tikhonov parameter, β, are the ESN hyperparam-
eters that are being tuned [38,64]. In order to select

123



8806 G. Margazoglou, L. Magri

Table 1 Echo state
networks’ hyperparameters

Multiple values indicate that
the parameter is optimized
within the range

Parameter Name Value

ρ Spectral radius [0.1, 1]
σin Input scaling [0.1, 5]
β Tikhonov parameter {10−6, 10−8, 10−10, 10−12}
d Connectivity 3

bin Input bias 1

σn Noise (training) 0.0005σu

the optimal hyperparameters, σin and ρ, we employ
a Bayesian optimization, which is a strategy for find-
ing the extrema of objective functions that are expen-
sive to evaluate [64,66]. Within the optimal [σin, ρ],
we perform a grid search to select β [64]. In particu-
lar, [σin, ρ] are searched in the hyperparameter space
[0.1, 5] × [0.1, 1] in logarithmic scale, while for β we
test {10−6, 10−8, 10−10, 10−12}. The Bayesian opti-
mization starts from a grid of 6 × 6 points in the
[σin, ρ] domain, and then, it selects five additional
points through the gp-hedge algorithm [66]. We set
bin = 1, d = 3 and add Gaussian noise with zero mean
and standard deviation, σn = 0.0005σy , where σy is the
standard deviation of the data component-wise, to the
training and validation data. Adding noise to the data
improves the performance of ESNs in chaotic dynam-
ics by alleviating overfitting [32]. A summary of the
hyperparameters is shown in Table 1.

One of the most commonly used validation strategy
for RNNs is the single shot validation (SSV) [67], in
which the data are split into a training set, followed by
a single small validation set; see Fig. 2a. As the ESN
now runs in closed loop, the size of the validation set is
limited by the chaotic nature of the signal. In particu-
lar, at the beginning of the validation set, the input y(t0)
of the ESN is initialized to the target value. However,
chaos causes the predicted trajectory to quickly diverge
from the target trajectory in a few Lyapunov times τλ.
The validation interval is therefore small and not rep-
resentative of the full training set, which causes poor
performance in the test set [64]. An improvement to
the performance with cheap computations is achieved
by the the recycle validation (RV), which was recently
proposed by [64]. In the RV, the network is trained only
once on the entire training dataset (in open loop), and
validation is performed on multiple intervals already
used for training (but now in closed loop); seeFig. 2b. In

Fig. 2 Schematic representation of the a single shot, and b recy-
cling validation strategies. Here, y represents the degrees of free-
dom of the data. Three sequential validation intervals are shown
for the Recycle Validation [64]

this work, we use the chaotic recycle validation (RVC),
where the validation interval simply shifts as a small
multiple of the first Lyapunov exponent, Nval = 3λ1.

3 Results

In this section, we present the numerical results, which
include a thorough comparison between the statistics
produced by the autonomous temporal evolution of the
ESN and the target dynamical system. The selected
observables are the statistics of the degrees of free-
dom, the Lyapunov exponents, the angles between the
CLVs or subspaces composed of CLVs, and the finite-
time covariant Lyapunov exponents. We separate our
analysis into two subsections, which contain two low-
dimensional systems and then two higher-dimensional
systems.

3.1 Low-dimensional chaotic systems

As a first case, we consider two low-dimensional
dynamical systems that exhibit chaotic behaviour:
Lorenz 63 (L63) [1] and Rössler [39] attractors. The
Lorenz 63 system is a reduced-order model of atmo-
spheric convection for a single thin layer of fluid that is
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heated uniformly from below and cooled from above,
which is defined by:
dx1
dt

= σ(x2 − x1)

dx2
dt

= x1(ρ − x3) − x2

dx3
dt

= x1x2 − βx3. (19)

We chose the parameters [σ, β, ρ] = [10, 8/3, 28]
to ensure a chaotic behaviour. The Rössler attractor,
which models equilibrium in chemical reactions, is
governed by:
dx1
dt

= −(x2 + x3)

dx2
dt

= x1 + ax2

dx3
dt

= b + x3(x1 − c), (20)

We choose the parameters [a, b, c] = [0.1, 0.1, 14]
to ensure a chaotic behaviour.

To generate the target set, we evolve the dynamical
systems forward in time with a fourth-order Runge–
Kutta (RK4) integrator and a timestep dt = 0.005
for both L63 and Rössler, which is sufficiently small
for a good temporal resolution. (We tested slightly
larger/smaller timesteps with no significant differ-
ences. Results not shown.)We perform aQR decompo-
sition every m = 1 timesteps for L63 and every m = 5
timesteps for Rössler. For all systems, we generate a
training set of size 1000τλ and a test set of size 4000τλ,
for the CLV statistics to converge, where τλ = 1/λ1 is
the Lyapunov time, which is the inverse of the maximal
Lyapunov exponent λ1.

First, we test whether the ESN correctly learns the
chaotic attractor from a statistical point of view, i.e.
whether the ESN correctly learns the long-term statis-
tics of the degrees of freedom when it evolves in the
closed-loop (autonomous) mode. By estimating the
probability density function (PDF) of the degrees of
freedom of the ESNs, as a normalized histogram, and
comparing it with the corresponding PDF of the target
set, we extract information on the invariant measure of
the considered chaotic system. This is shown in Fig. 3
for L63 and Rössler attractors, in which the black lines
show the target statistics and the red dashed lines show
the ESN statistics. In Figs. 3, 5 and 7, and Table 2, we
haveused NESN ESNs trainedon NESN independent tar-
get systems, starting from different initial conditions,

Fig. 3 Comparison of the target (straight black line) and ESN
(red dashed line) probability density functions (PDF) of the three
degrees of freedom, x1, x2, and x3 of the Lorenz 63 system (19)
a–c and the Rössler system (20) d–f. (Color figure online)

and averaged among the estimated observables, where
NESN = 6, and NESN = 8 for Rössler and L63, respec-
tively.We perform the ensemble calculation to quantify
the uncertainty of the predictions and the robustness of
the ESN for different initializations.

Second, we test whether the ESN correctly learns
the Lyapunov spectrum. Table 2 shows the ESN pre-
dictions on the Lyapunov exponents for the L63 and
Rössler attractors, which are compared with the tar-
get exponents. The leading exponent is accurately pre-
dicted with a 0.2% error in the L63 and 1.5% error in
the Rössler system. In chaotic systems, there exists a
neutral Lyapunov exponent, which is associated with
the direction of dx

dt . In these cases, the neutral Lyapunov
exponents are λ2 = 0 for both systems, which are cor-
rectly inferred by the ESN within a O(10−5) error, or
less. For the smallest, and negative exponent, which is
generally harder to extract because it is highly damped,
the relative error is about 0.6% for L63 and 2.1% for
Rössler. Therefore, theESNs can accurately capture the
tangent dynamics of a low-dimensional chaotic attrac-
tor.

Third, we investigate the angles between the CLVs.
We assess whether the ESNs learn the long-term statis-
tics of these quantities, but also whether, they correctly
infer the distribution and fluctuations of those observ-
ables in the phase space. In other words, whether the
ESNs learn the geometrical structure of the attractor
and its tangent space.
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Fig. 4 Comparison of Target (left column), ESN (middle col-
umn), and their statistical mean absolute difference (right col-
umn), for a 300τλ trajectory of the Lorenz 63 system (19) in the
test set, coloured by the CLV principal angles (in deg). First row:
θU,N , second row: θU,S , and third row: θN ,S

Fig. 5 Comparison of the target (straight black line) and ESN
(red dashed line) probability density functions (PDF) of the three
principal angles between the covariant Lyapunov vectors, where
U refers to unstable, N to neutral and S to stable CLVs. The top
row (a–c) is for Lorenz 63 (19) and the bottom row (d–f) for
Rössler (20). All y-axes are in logarithmic scale and the x-axis
is in degrees. The shaded region indicates the error bars derived
by the standard deviation. (Color figure online)

In Fig. 4, we present an analysis of the distribution
of principal angles between the CLVs,

θa,b = 180◦

π
cos−1(|va · vb|), (21)

θa,b ∈ [0◦, 90◦], on the topology of the L63 attrac-
tor. The attractor is well reproduced by a selected ESN
(middle column), compared to the target (left column).
The size of both trajectories is 300τλ. In this case, there
are three principal angles between the CLVs; θU,N is
the angle between the unstable and neutral CLV; θU,S

is the angle between the unstable and stable CLV; θN ,S

is the angle between the neutral and stable CLV. The
colouring of the attractor is associated with the mea-
sured θa,b. The black and dark red colours identify
small angles, i.e. regions of the attractor where near-
tangencies between the CLVs occur. Possible tangen-
cies between CLVs or invariant manifolds composed
of CLVs (as will be discussed later for higher dimen-
sional chaotic systems) are of significant importance,
as they signify that the attractor is non-hyperbolic [10]
(see Sect. 2.1). The right column is the mean abso-
lute difference between the target and the ESN. The
x, y, z domain is discretized with 50 bins in each direc-
tion; then, the mean θa,b is calculated from each of the
three-dimensional bins for the 300τλ long trajectory.
Finally, the absolute difference between ESN and tar-
get is calculated for each bin. The plots follow the same
colour scheme as the colourbar, with black and dark red
colours indicating < 2◦ differences with a maximum
of ∼ 10◦. Figure4 shows that the ESN is able to accu-
rately learn the dynamics of the tangent linear space of
the attractor.

In Fig. 5, we show the PDF of the principal angles
between the three CLVs, for which there is agreement
between target and ESN results in all cases for both
L63 and Rössler, even for smaller angles. The nonzero
count of events close to θ → 0 indicates that the two
considered systems are non-hyperbolic, which is con-
sistent with the literature [58].

Fourth, we analyse the distribution on the attractor,
as well as the statistics, of the Finite-time Covariant
Lyapunov Exponents, for a time-lapse of Δt = m dt
timestep, and assess the accuracy of the trained ESNs.
For the considered low-dimensional systems there are
threeFTCLEswith each showing thefinite-timegrowth
rate of the corresponding Covariant Lyapunov Vectors.

In Fig. 6, we visualize the distribution of the single
timestep FTCLEs, in the case of the Rössler attractor,
which is well reproduced by a selected ESN (middle
column), compared to the target (left column). The size
of both trajectories is 300τλ. FTCLE 1 is the finite-time
exponent for the unstable CLV, FTCLE 2 is for the
neutral CLV, and FTCLE 3 is for the stable CLV. The
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Fig. 6 Comparison of target (left column), ESN (middle col-
umn), and their statistical mean absolute difference (right col-
umn) for a 300τλ trajectory of the Rössler system (20) in the test
set, coloured by the three FTCLEs. First row: FTCLE 1, second
row: FTCLE 2, and third row: FTCLE 3

colouring is associated with the values of the FTCLEs.
Large positive FTCLEs correspond to high finite-time
growth rates and, thus, reduced predictability. The dis-
tribution of the leading FTCLE on the attractor is sim-
ilar between the target and ESN. The second FTCLE
and third FTCLE, which correspond to the neutral CLV
and stable CLVs, accordingly, also show good agree-
ment between the two. The mean difference between
the target and the ESN on the attractor is plotted in the
right column, in which black identifies Λc

i ≈ 0. The
right column shows that most of the small differences
between the ESNand the target are located in the region
of large variation of z.

Finally, Fig. 7 shows the PDF of the three FTCLEs.
There is agreement between the ESN-inferred quan-
tities and the target in all cases, in particular in the
Rössler attractor for the most-probable statistics. The
small deviation in Fig. 7a for L63 corresponds to the
statistics around the peak of the first FTCLE, Λc

1, but
the tails of the distributions are well reproduced. The
mean of theΛc

i distributions coincides with the LEs λi ,
which holds true for all our results. A behaviour as in
Fig. 7a implies that in this case the finite-time values
Λc

1 are less peaked around the mean value, even though
their long-time average coincides with the Lyapunov
exponent λ1. Nevertheless, in Figs. 7d–f for Rössler
the statistics around the peak (and beyond) are well
captured.

Fig. 7 Comparison of the target (straight black line) and ESN
(red dashed line) probability density functions (PDF) of the three
finite-time covariant Lyapunov Exponents. The top row a–c is
for Lorenz 63 (19) and the bottom row d–f for Rössler (20). All
y-axes are in logarithmic scale. (Color figure online)

Table 2 Estimates of Lyapunov exponents λi for the two low-
dimensional systems, the Lorenz 63 and Rössler attractors

Lorenz 63 Rössler
Target ESN Target ESN

1 0.9050 0.9067 0.071 0.070

2 9×10−5 −8. × 10−5 2 × 10−6 1 × 10−6

3 −14.572 −14.664 −13.88 −14.17

Comparison between the target and echo state network

We refer the interested reader to our supplemen-
tary material where the corresponding results of Figs. 4
and 6 for both attractors are shown. Also, the statistics
of FTLEs, as well as their distribution on the chaotic
attractors, are presented in the supplementary material.

3.2 Higher-dimensional chaotic systems

We follow the same analysis and approach as in
Sect. 3.1 for two higher-dimensional chaotic systems,
both of which are related to atmospheric physics and
meteorology. The first is a reduced-order model of
atmospheric blocking events by Charney and DeVore
[40] (CdV), which is a six-dimensional truncation of
the equations for barotropic flow with orography. We
employ the formulation of [68,69], which is forced by
a zonal flow profile that can be barotropically unstable.
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The governing equations are:

dx1
dt

= γ ∗
1 x3 − C(x1 − x∗

1 ),

dx2
dt

= −(α1x1 − β1)x3 − Cx2 − δ1x4x6,

dx3
dt

= (α1x1 − β1)x2 − γ1x1 − Cx3 + δ1x4x5,

dx4
dt

= γ ∗
2 x6 − C(c4 − x∗

4 ) + ε(x2x6 − x3x5),

dx5
dt

= −(α2x1 − β2)x6 − Cx5 − δ2x4x3,

dx6
dt

= (α2x1 − β2)x2 − γ2x4 − Cx6 + δ2x4x2, (22)

where the model coefficients are

αm = 8
√
2

π

m2

4m2 − 1

b2+m2 − 1

b2 + m2 , βm = βb2

b2 + m2 ,

δm = 64
√
2

15π

b2 − m2 + 1

b2 + m2 , γ ∗
m =γ

4m

4m2 − 1

√
2b

π
,

ε = 16
√
2

5π
, γm = γ

4m3

4m2 − 1

√
2b

π(b2 + m2)
. (23)

Equation (22) is integrated with RK4 and dt =
0.1. The constants are set to (x∗

1 , x
∗
4 ,C, β, γ, b) =

(0.95,−0.76095, 0.1, 1.25, 0.2, 0.5), for which the
CdV model generates regime transitions [68,69]. In
particular, the CdV model allows for two metastable
states, the so-called “zonal” state, which represents the
approximately zonally symmetric jet stream in themid-
latitude atmosphere, and the “blocked” state, which
refers to a diverse class of weather patterns that are
a persistent deviation from the zonal state. Block-
ing events are known to be associated with regional
extreme weather, from heatwaves in summer to cold
spells inwinter [70]. The dynamical properties ofCLVs
in connection to blocking events were recently investi-
gated for a series of more complex atmospheric models
than CdV [11,12,71], which demonstrated that CLVs
are good candidates for blockings precursors, aswell as
a good basis for model reduction. In the previous work
[34], the CdV system was used as a training model for
the ESN, with the purpose of studying short-term accu-
rate prediction of chaos, and quantifying the benefit of
Physics informed echo state networks [34].

The second higher-dimensional system that we con-
sider is the Lorenz 96 (L96) model [41], which is a
system of coupled ordinary differential equations that

describes the large-scale behaviour of the mid-latitude
atmosphere, and the transfer of a scalar atmospheric
quantity. Three characteristic processes of atmospheric
systems (advection, dissipation, and external forcing)
are included in the model, whose equations are

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F (24)

where x = [x1, x2, . . . , xD] ∈ R
D . We set periodic

boundary conditions, i.e. x1 = xD+1. In our analy-
sis, we chose D = 20 degrees of freedom. The exter-
nal forcing is set to F = 8, which ensures a chaotic
evolution [32]. We integrate the system with RK4 and
dt = 0.01. We perform a QR decomposition every
m = 5 timesteps for CdV and every m = 10 timesteps
for L96. Similar to the previous section, we generate a
training set of size 1000τλ and a test set of size 4000τλ.

First, Fig. 8 shows the PDF of the six degrees of
freedom of CdV, and the first six from L96 (the PDFs
of the rest 13 dofs have similar shape and agreement
between ESN and target). We use a semilogarithmic
scale to emphasize that the agreement between target
(black line) and ESN (red dashed line) is accurate for
the tails of the distributions, which effectively corre-
spond to the edges of each attractor. As in Sect. 3.1 in
order to evaluate uncertainty and robustness, we start
with NESN = 10 trained networks, but during post-
processing we discard any network that shows spurious
temporal evolution, and perform a further averaging of
the PDFs of each network’s observable. Therefore, the
PDFs of Fig. 8 are the outcome of averaging NESN = 5
and NESN = 9 PDFs with the same binning, for CdV
and L96, respectively.

Second, Fig. 9 shows the Lyapunov exponents spec-
trum of (a) CdV and (b) L96 for D = 20 and compares
the target (black squares) with the ESN prediction (red
circles). TheCdVmodel has a single positiveLyapunov
exponent, with the average value of 5 ESNs resulting
in λ1 = 0.0214, and for the 5 independent target sets,
λ
targ
1 = 0.0232 with an 8% absolute error. The second

Lyapunov exponent is zero (to numerical error) and cor-
responds to the neutral direction, with λ2 = −3×10−5

for ESN, and λ
targ
2 = −7 × 10−6 for the target. The

low order ofmagnitude achieved by the ESN assures its
ability to capture the neutral exponent. Finally, the four
remaining negative exponents are well learned by the
ESN, i.e. λ3−6 = [−0.077, −0.103, −0.224, −0.234]
andλ

targ
3−6 = [−0.079,−0.101,−0.218,−0.226] for the
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Fig. 8 Comparison of the target (straight black line) and ESN (red dashed line) PDF of the first six degrees of freedom, x1, …, x6 of
the a Charney–DeVore (22) and b for Lorenz 96 (24) for D = 20. (Color figure online)

Fig. 9 Comparison of the target (black squares) and ESN (red
circles) Lyapunov spectrum for a Charney–DeVore (22) and b
Lorenz 96 (24) at D = 20. (Color figure online)

target. Overall, excluding λ2, the mean absolute error
of the CdV Lyapunov spectrum here is 3.7%, which is
negligibly small.

With respect to the L96 Lyapunov spectra in Fig. 9b,
the agreement between target and ESN across all 20
exponents is good. In particular, there are 6 positive,
1 zero and 13 negative exponents. The maximal expo-
nent predicted from the ensemble of NESN = 9 ESNs
is equal to λ1 = 1.551, and for the 9 independent target
sets, λtarg1 = 1.557, meaning a 0.4% absolute error. The
rest of the positive exponents are well captured by the
ESN, with λ2−6 = [1.221, 0.936, 0.668, 0.416, 0.151]
and λ

targ
2−6 = [1.217, 0.937, 0.673, 0.413, 0.152] for

the target. The zero exponent is sufficiently small with
λ7 = −10−4 for ESN, and λ

targ
7 = 4× 10−4 for target.

Albeit more difficult to predict because of large numer-
ical dissipation, the negative Lyapunov exponents are
accurately learned by the ESN, with the smallest ones
reading λ15−20 = [−1.84, −2.22, −2.71, −3.45,
−4.24, −4.73] and accordingly λ

targ
15−20 = [−1.85,

−2.21, −2.71, −3.45, −4.25, −4.75] for the target.
Those directions in tangent space decay exponentially
fast and the accuracy that the ESN achieves is consis-
tent. For L96 the mean absolute error of the Lyapunov
spectrum is approximately 0.5%.

To further elaborate, the L96 is known to be an
extensive system [72,73], which means that quantities
such as the surface width, the entropy and the attrac-
tor dimension scale linearly with its dimensionality D.
For the Lyapunov spectrum, this means that the pro-
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Fig. 10 Comparison of the target (straight black line) and ESN
(red dashed line) PDF of the three minimum principal angles
between the three subspaces composed by the CLVs, where U
refers to unstable, N to neutral and S to stable CLVs. The top
row a–c is for Charney–DeVore (22) and the bottom row d–f for
Lorenz 96 (24) at D = 20. Both x and y axes are in logarithmic
scale and the x-axis is in degrees. Only in a a logarithmic binning
was used being denser close to θU,N → 0, while PDFs in b–f
are linearly binned in x-axis. (Color figure online)

portion of positive to negative exponents is roughly the
same (≈ 1/2) as D changes. For this reason, our chosen
D = 20 is sufficient for our purposes.

Third, we investigate the statistics of the principal
angles, θ ∈ [0◦, 90◦], between the three subspaces that
partition the invariantmanifolds,which are the unstable
EU
x , neutral E

N
x and stable ES

x , spanned by the corre-
sponding CLVs. The extraction of the principal angles
between two linear subspaces requires a singular value
decomposition of their matrix product Γ a,b = Ea

x E
b
x

(assuming the CLVs are ordered as stacked columns,
according to their Lyapunov exponent order), because
all paired products between theCLVs spanning the sub-
spaces do not provide all the angles [10,74]. The angles
are given by

θa,b = 180◦

π
cos−1

(
svd[Γ a,b]

)
, (25)

and we analyse the smallest singular value. Here, we
use the implemented routine scipy.linalg.sub
space_angles of the scipy package [57] in python
and analyse theminimum angle in order to track homo-
clinic tangencies between the subspaces. This imple-
mentation is based on the algorithm presented in [75],
which has improved accuracy with respect to Eq. (25)
in the estimation of small angles.

In Fig. 10, we study the PDFs of the three princi-
pal angles between the linear subspaces for CdV and

Fig. 11 Comparison of the target (straight black line) and ESN
(reddashed line) PDFof sixfinite-time covariantLyapunov expo-
nents (Λc

i ) for aCharney–DeVore (22) for which λ1 > 0, λ2 = 0

and the rest are λi < 0, and b Lorenz 96 (24) at D = 20, where
for i = 1, 2, 3 λi > 0, for i = 7 λi = 0, and for i = 11, 17
λi < 0. All y-axes are in logarithmic scale. (Color figure online)
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L96. In CdV, the unstable and neutral subspaces are
spanned only by the corresponding CLVs, while the
stable subspace is spanned by the remaining fourCLVs,
of which λi < 0. In L96 with D = 20, the unstable
subspace is spanned by the first six CLVs, the neutral
subspace is spanned only by the 7th CLV, and the sta-
ble subspace is spanned by the remaining 13 CLVs.
Focusing on Fig. 10a–c for CdV, we notice that this
system is non-hyperbolic because the PDFs are pop-
ulated close to θ → 0. Specifically for Fig. 10a, the
binning is geometrically spaced and denser close to
θ → 0. Interestingly, the PDF of θU,N of CdV for
small angles follows a power-law PDF(θ) ∼ θ−α for
θ → 0 and until ≈ 10◦, before it saturates. A differ-
ent shape that is still highly non-hyperbolic is shown
for the PDFs of θU,S and θN ,S in Fig. 10b and c, in
which the binning is linear and both axes in logarith-
mic scale. Figure10d–f shows the same statistics in the
case of L96, which is also non-hyperbolic, as there is
strong frequency of tangencies, θ → 0. In all plots of
Fig. 10, the agreement of the subspace angle statistics
between target and ESN is good, which demonstrates
that the ESN has achieved a robust and accurate learn-
ing of the ergodic properties from higher-dimensional
data.

Fourth, the statistics of FTCLEs (Λc
i ), for a time-

lapse of Δt = m dt timesteps, in the cases of CdV and
L96 are shown in Fig. 11. All six Λc

i are shown for
CdV, while a representative set of six Λc

i are shown
for L96, such that λi > 0 for k = 1, 2, 3, λi = 0
for k = 7, and λi < 0 for k = 11, 17. For CdV, the
most probable statistics are well captured by the ESN,
which is in agreement with the target data. There are
slight deviations at the tails of the distributions, which
are still in agreement within error bars (shaded region).
In the case of L96, the agreement is good for both the
most probable statistics and the tails, for all FTCLEs
(also those not shown). The first moment of the distri-
butions, i.e. the mean of the FTCLEs time series, must
be equal to the Lyapunov exponents, λi = 1

T

∫ T
0 Λc

i ,
which indeed holds for all the cases considered here.
The agreement between ESN and target sets in Fig. 11
shows that the ESN is able to accurately learn the finite-
time variability of the CLV growth rates also for higher
dimensional systems that are characterized by many
Lyapunov exponents.

Finally, in Table 3 we show the estimated Kaplan–
Yorke dimension [76] for all the considered systems
and compare the outcomes of the ESN and target. This

Table 3 Estimates of theKaplan–Yorke dimension for all attrac-
tors, comparing between the target and echo state networks

Target ESN % error

Lorenz 63 2.0621 2.0618 0.015

Rossler 2.0051 2.0049 0.01

CdV 2.294 2.277 0.74

Lorenz 96 13.4697 13.4721 0.018

The error is the quantity target−ESN
target × 100%

dimension is an upper bound of the attractor’s fractal
dimension [2], which is defined as

DKY = k +
∑k

i=1 λi

|λi+1| , (26)

where k is such that the sum of the first k LEs is positive
and the sumof thefirst k+1LEs is negative.Weobserve
a good agreement in all cases with ≤ 1% error. This
observation further confirms the ability of the ESN to
accurately learn the properties of the chaotic attractor.

4 Conclusion

Stability analysis is a principled mathematical tool to
quantitatively answer key questions on the behaviour
of nonlinear systems: Will infinitesimal perturbations
grow in time (i.e. is the system linearly unstable)? If
so, what are the perturbations’ growth rates (i.e. how
linearly unstable is the system)? What are the direc-
tions of growth? To answer these questions, tradition-
ally, we linearize the equations of the dynamical system
around a reference point, and compute the properties
of the tangent space, the dynamics of which is gov-
erned by the Jacobian. The overarching goal of this
paper is to propose a method that infers the stability
properties directly from data, which does not rely on
the knowledge of the dynamical differential equations.
We tackle chaotic systems, which have a linearized
behaviour that is more general and intricate than peri-
odic or quasi-periodic oscillations. First, we propose
the echo state network with the recycle validation as
a tool to accurately learn the chaotic dynamics from
data. The data are provided by the integration of low-
and higher- dimensional prototypical chaotic dynam-
ical systems. These systems are qualitatively differ-
ent from each other and are toy models that describe
diverse physical settings, ranging fromclimatology and
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meteorology to chemistry. Second, we mathematically
derive the Jacobian of the echo state network (Eq. (18)).
In contrast to other recurrent neural networks, such
as long short-term memory networks or gated recur-
rent units, the Jacobian of the ESN is mathematically
simple and computationally straightforward. Third, we
analyse the stability properties inferred from the ESN
and compare them with the target properties (ground
truth) obtained by linearizing the equations. The ESN
correctly infers quantities that characterize the chaotic
dynamics and its tangent space (i) the long-term statis-
tics of the solution, for which we compute the prob-
ability density function of each state variable; (ii) the
covariant Lyapunov vectors, which are a physical basis
for the tangent space that is covariant with the dynam-
ics; (iii) the Lyapunov spectrum, which is the set of
eigenvalues of the Oseledets matrix that are the pertur-
bations’ average exponential growths; (iv) the finite-
time Lyapunov exponents, which are the finite-time
growth along the covariant Lyapunov vectors; and (v)
the angles between the stable, neutral, and unstable
splittings of the tangent space, which informs about the
degree of hyperbolicity of the attractor. We show that
these quantities can be accurately learned from data by
the ESN, with negligible numerical errors.

As mathematically and numerically shown in [44],
the stability properties of fixed points (with eigenvalue
analysis) and periodic solutions (with Floquet analy-
sis) can be inferred from covariant Lyapunov analysis.
Therefore, this work opens up new opportunities for
the inference of stability properties from data in nonlin-
ear systems, from simple fixed points, through periodic
oscillations, to chaos.
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A Algorithms to compute LEs and CLVs

In this section, we present two algorithms for the com-
putation of LEs andCLVs.Algorithm1 is used to calcu-
late the first D LEs of an ESN, where Nr is the dimen-
sionality of the hidden state and D is the dimensionality
of the input state. This algorithm follows the methods
described in [29,32]. Algorithm 2 computes the first
D CLVs for both the ESN and target chaotic systems,
using the approach outlined in [42]. These algorithms
are crucial for understanding the dynamics and pre-
dictability of the systems being studied.

B Robustness

An important aspect of data-driven approaches is their
ability to perform accurately under a variety of condi-
tions. In this section, we evaluate the robustness of our
approach by using smaller training sets (less data) sub-
ject to noise levels that are higher than those of Sect. 3.
We also test the effect of using a loss function other than
the mean square error (MSE), as defined in Eq. (16),
on the accuracy of the learning. The ESN architecture
follows [36], where it was trained with chaotic data
from the Lorenz 63 and Lorenz 96 systems, and was
robustly optimized to maximize the prediction horizon
under different validation strategies.

B.1 Training with less data and higher noise intensity

It has been demonstrated that adding a small amount
of Gaussian centered noise proportional to the stan-
dard deviation of the chaotic signal during training can
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Algorithm1:Algorithm to calculate theLyapunov
exponents of the echo state network

U ← random ∈ R
Nr×D ; /* Initialize D GSVs */

Q, R ← QR(U) ; /* Othonormalize GSVs */
U ← Q ∈ R

Nr×D ;
NQR ← (Ntest − Nw)/m ; /* Number of QR
decompositions */
Save the time series of R and Q for CLVs calculation
Initialize R̃ ← 0 ∈ R

D×D×NQR
;

Initialize Q̃ ← 0 ∈ R
Nr×D×NQR

;

Initialize Λ ← 0 ∈ R
D×NQR

; /* Save the FTLEs */
Wc = WT

inW
T
out + WT ; /* Constant matrices of Eq. (18)

*/
Evolve the hidden state and GSVs simultaneously.
Skip a transient initial Nw steps for warm-up.
n ← 0 ; /* Increments the number of QR decompositions
*/
for i = 0 : Ntest do

r(ti+1) ← tanh
([ŷ(ti ); bin]TWin + r(ti )TW

)
;

y(ti+1) ← [r(ti+1); 1]TWout;
J ← (1 − r(ti+1)

2)Wc ; /* The updated Jacobian */
U ← JU ; /* The variational equation */
if mod (i,m) = 0 then

Q, R ← QR(U) ; /* QR every m steps */
U ← Q;
if i > Nw then

Λ[:, n] ← log (diag[R])/dt ; /* Save the
FTLEs */

R̃[:, :, n] ← R ; /* Save R */

Q̃[:, :, n] ← Q ; /* Save Q */
n ← n + 1;

end
end

end

λ j ← ∑NQR

i=0 Λ[ j, i]/T test ; /* The jth Lyapunov
exponent */

improve the performance of an ESN [32,36]. Noise
aids the ESN to generalize to unseen data. In Sect. 3
we add Gaussian noise with a zero mean and standard
deviation, σn = δσy , where δ = 0.05%, and σy is
the standard deviation of the data component-wise. We
consider the Lorenz 96 with D = 10 degrees of free-
dom and F = 8, such that the system is chaotic. We
increase the noise intensity to δ = {0.5%, 5%, 10%}.
We also quantify the effect of less training data by using
100τλ and 500τλ long time series, i.e. 1/10 and half of
the 1000τλ long time series that we used in Sect. 3.
Figure12 shows the effects in the Lyapunov spectrum.
For 12a, where the training set is 100τλ long, there is
a good agreement between the target (black squares)
and the ESN (coloured points) positive exponents. As

Algorithm 2:Algorithm to calculate the covariant
Lyapunov vectors [10,42]

Data: Given R̃ and Q̃
Set to 0 the matrices C , D and V
C ← 0 ∈ R

D×D×NQR
; /* Coordinates of CLVs in the

GSV basis */

D ← 0 ∈ R
D×D×NQR

; /* Growth factors of CLVs */

Λc ← 0 ∈ R
D×NQR

; /* The D FTCLEs */

V ← 0 ∈ R
Nr×D×NQR

; /* Each column is a CLV */
Set final time index to identity I for the matrices C and D
C[:, :, NQR] ← I;
D[:, :, NQR] ← I;

V [:, :, NQR] ← Q̃[:, :, NQR]C[:, :, NQR];
Evolve backwards and solve Eq. (11)
for i = NQR − 1 : 0 do

G ← solve_triangular(R̃[:, :, i]C[:, :, i + 1]);
Normalize each column of G
for j = 0 : G.shape[1] do

D[:, :, i] ← norm(G[:, j]);
C[:, :, i] ← G[:, j]/D[:, :, i];

end
V [:, :, i] ← Q̃[:, :, i]C[:, :, i]; /* Calculate CLVs */
Λc[:, i] ← log (diag[D[:, :, i]])/dt ; /* Calculate
FTCLEs */

end

expected, a gradual deterioration appears as the noise
increases. In 12b for a 500τλ long training set, the
agreement is good for all exponents with a smaller dif-
ference for negative exponents compared to (a). After
training NESN = 10 statistically independent networks
with chaotic time series, some might eventually evolve
towards afixedpoint or a periodic orbit instead (i.e. they
show spurious behaviour). Here, for 100τλ long train-
ing time series, no ESN evolves spuriously at 0.05%
and 0.5% noise. However, at 10% noise, half of the
networks show spurious evolution, and are discarded at
post-processing. Instead, for 500τλ long training time
series, one and two out of ten evolves spuriously at
0.05% and 0.5% noise, respectively, but none at 5%
and 10% noise, which ensures robustness of the net-
work.

As a further test, in Fig. 13 we consider the min-
imum angles between subspaces spanned by CLVs.
In 13a–c the ESNs are trained with 100τλ long time
series, and accordingly in 13d–f with 500τλ. Overall,
the results are in good agreement with the target ensur-
ing the robustness of the ESN. A slight and gradual dis-
agreement is observed as the noise intensity increases,
in particular for θU,N .
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Fig. 12 Lyapunov spectrum of Lorenz 96 trained with a 100τλ

and b 500τλ long time series, and different noise intensity, as
indicated in the legend

Fig. 13 PDF of minimum angles between subspaces of CLV
from Lorenz 96 trained with a–c 100τλ and d–f 500τλ long time
series, and different noise intensity, as indicated in the legend.
Both x and y axes are in logarithmic scale and the x-axis is in
degrees

B.2 Training with a different loss function

The mean square error (MSE), Eq. (16), is a commonly
used loss function in the ESN architecture [38]. We

Fig. 14 Using the mean absolute error, Eq. (27), to train the
ESN with 100τλ long time series from the Lorenz 96, and with
different noise intensity, as indicated in the legends. (a) Lyapunov
spectrum. (b–d) PDF of minimum angles between subspaces of
CLVs, where both x and y axes are in logarithmic scale and the
x-axis is in degrees

investigate the effect of using a mean absolute error
(MAE) loss function defined as

MAE = 1

NtrNy

Ntr∑
i=0

|yp(ti ) − yin(ti )|. (27)

By comparing the stability properties obtained using
the MSE and MAE loss functions, we can gain a better
understanding of the potential impact of the choice of
loss function on the performance of ESN. In Fig. 14 the
results correspond to a 100τλ long training set, where
Eq. 27 was used as a loss function. The Lyapunov spec-
trum of Fig. 14a is qualitatively similar to Fig. 12a.
In practice, training with MAE resulted in less stable
ESNs, with increased failures during the test set. For
a 100τλ long training set, at 10%σy noise with MAE,
80% of ESNs failed, in contrast to 50% with MSE for
the same noise. Figure14b–d are similar to Fig. 13a–c
showing minor differences. We also trained the ESNs
with 500τλ long training sets, as in Sect. B.1. Interest-
ingly, we obtain similar results with Figs. 12b and 13d–
f, with no significant differences (result not shown).

Based on our analyses, we can conclude that the
process of extracting the stability properties of an ESN
is robust against higher levels of noise, smaller training
sets, and the use of a MAE loss function. Our results
suggest that a good practice is to use small to moderate
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levels of centered Gaussian noise in the training set, a
sufficiently large reservoir size, and a training trajectory
of at least 100τλ.
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