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Abstract In the paper, nonlinear vibrations of a sys-
tem with three degrees of freedom having a spheri-
cal pendulum are considered. The system comprises a
mass element suspended from a linear spring and a vis-
cous damper, and a spherical pendulum swung from the
mass element. It is assumed that the fractional viscous
damping occurs in the viscous damper and at the pen-
dulumpivot point. The viscoelastic properties of damp-
ing are assumed to be described using the Riemann–
Liouville fractional derivative. The fractional deriva-
tive of an order of 0 < α ≤ 1 is assumed. The nonlinear
vibrations of the system near internal and external res-
onances are analyzed. The equations of motion of the
analyzed system are solved using the multiple-scale
method. The steady-state approximate solution is stud-
ied. The effect of a fractional-order derivative on the
system vibrations is examined.
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1 Introduction

The presentedwork is a continuation of previous works
by authors dealing with the system of three degrees of
freedomwith a spherical pendulum [1–3]. In this work,
a system consisting of a mass element and a spherical
pendulum swung from the mass element is examined.
The mass element is suspended from a linear spring
and a damper. It is assumed that the damping in the
system studied is described by the fractional Riemann–
Liouville derivative [4] and this damping occurs in the
damper and at the pivot point of the spherical pendu-
lum. The considered systemwith a spherical pendulum
can be used as a model of a real machine or its compo-
nents, which operates in an energy-dissipating environ-
ment. In many scientific works, the systems containing
a spherical pendulumare used tomodel the dynamics of
certain types of structures, such as cranes [5–10], vibra-
tion absorbers [11–13], energy harvesters [14]. Thus,
the dynamics of systems with a spherical pendulum is
an absorbing issue of scientific research and has been
studied in a number of researches [15]. A brief review
of publications dealing with this issue is presented in
the paper by Han et al. [16].

In previous works, the authors studied autoparamet-
ric systems containing a spherical pendulumwith a vis-
cous and magnetorheological energy dissipation sys-
tem. Sado et al. [1] analyzed the influence of initial
conditions on energy transfer between vibrating ele-
ments and the existence of chaotic motion in a sys-
tem with a spherical pendulum. Sado and Freundlich
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[2] studied a dynamical behavior of a three-degree-of-
freedom systemhaving a spherical pendulum. This sys-
tem was controlled by a magnetorheological damper.
The analyzed system consisted of a spherical pendulum
suspended from a mass block which was suspended
from a vertical linear spring and a magnetorheologi-
cal damper. They investigated the influence of magne-
torheological damper parameters on the system vibra-
tion close to internal and external resonances. These
studies revealed that in addition to the regular behavior
of the spherical pendulum, chaotic oscillations for all
coordinates can arise near internal and external reso-
nant regions. In all above-mentioned authors’ works,
the obtained equations of motion were solved using
numerical methods.

It is well known that energy dissipation can have
a significant impact on the dynamic behavior of a
structure or its components. For this reason, various
advanced methods for modeling damping in mechan-
ical systems are being developed. One of these meth-
ods is the use of fractional derivatives to model energy
dissipation. The use of fractional derivatives to model
energy dissipation has increased very significantly over
the past few decades [17–19]. Fractional derivatives are
used to describe viscous damping because these deriva-
tives allow a more accurate description of the damp-
ing phenomenon over a wider frequency range [20,21].
These derivatives have also been employed in model-
ing processes of energy dissipation in systems having
pendulums [22–25]. Thus far, however, there has been
small number of publications investigating dynamical
systems with pendulum and fractional damping, espe-
cially with a spherical pendulum.

Rossikhin and Shitikova [22] investigated damped
oscillations of two-degree-of-freedom system with a
plane pendulum suspended from amass element which
was attached to a spring. They assumed that the sys-
tem oscillates in a viscous medium whose damping
properties are describedby fractional derivatives.Addi-
tionally, the authors assumed small finite amplitudes
of vibrations which allowed the use of multiple-scale
method to solve the problem. They studied the impact
of the damping described by the fractional derivative
on damped free vibrations and the energy transfer in
the system.

Seredyńska and Hanyga [23] studied damped vibra-
tions of a planar, inextensible and extensible pendu-
lums in which the damping was described by a frac-
tional derivative. This analysis was an example of the

presented method for solving nonlinear differential
equations with fractional damping. They determined
the conditions of existence, uniqueness and dissipativ-
ity for a certain class of nonlinear dynamical systems
including systems with fractional damping.

Hedrih [24] analyzed multi-pendulum systems with
fractional-order creep elements. In this study, paral-
lel pendulums were joined with creep elements, which
were modeled using fractional-order derivatives. The
governing equations of the system and its analytical
solution for selected cases of the pendulumsystemwere
presented. The vibrationmodes of the systemswith one
and two pendulums having creep fractional elements
were analyzed. The authors concluded that there is a
mathematical analogy in descriptions between multi-
pendulum systems and chain dynamical systems.

To the our knowledge, thus far only by the authors
have performed the study of vibrations of a spherical
pendulum with fractional damping [3]. In the afore-
mentioned work, the authors assumed fractional damp-
ing only in the damper attached to themass element [3].
The effect of a fractional-order derivative on the system
vibrations was analyzed using numerical calculations.
The impact of the fractional damping on the system
vibrations waveforms and on the energy transfer in the
system was shown. Thus, this study is a continuation
of the authors’ earlier work.

2 Description of the analyzed system

In this study, we consider a system with a spherical
pendulum suspended from an oscillator excited har-
monically by a force Fz(t) = P1 cos(ν1t) acting in
the vertical direction (Fig. 1). Additionally, the pen-
dulum is excited harmonically in horizontal direction
by forces Fx (t) = P2 cos(ν2t), Fy(t) = P3 cos(ν2t).
The oscillator consists a linear spring and a fractional
damper. Furthermore, it is assumed that there is also
fractional damping in the pendulum pivot point. This
damping is expressed bymoments proportional to frac-
tional derivative of order α. Thus, the analyzed system
has three degrees of freedom. Themotion of the spheri-
cal pendulum can be analyzed using various coordinate
systems [9,26–29]. In this study, the spherical coordi-
nates presented by Leung and Kuang [9], and Aston
[28] are employed to describe the motion of the pen-
dulum. The following generalized coordinates z, θ , φ

are assumed (Fig. 1). The position of the mass element
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Fig. 1 Schematic diagram of the system analyzed

m1 is defined by coordinate z, whereas the position of
the pendulum of mass m2 and length l is defined by
the coordinates: z, θ , φ. The coordinate z is the ver-
tical displacement of the body of mass m1 measured
from the static position of equilibrium. The angle θ is
the angle between the vertical axis and the deflection
of the pendulum in the plane xz. The angle φ is the
angle between the deflections of the pendulum in the
plane xz and pendulum. The selected coordinates are
useful in the dynamic analysis of the spherical pendu-
lum [28,29] and enable more interesting results to be
obtained than using the classical spherical coordinates
[1–3].

The position of a pendulum bob of mass m2 in
Cartesian coordinates is determined as follows (see
Appendix A)

x2 = l cosφ sin θ

y2 = l sin φ

z2 = l cosφ cos θ + z1

z1 = z + zst

(1)

where zst is the static deflection determined as follows

zst = (m1 + m2)g

k
(2)

where g is gravitational acceleration

The kinetic energy T of the system can be expressed
as

T = 1

2
ż21(m1 + m2) + 1

2
m2l

2φ̇2 + 1

2
m2l

2θ̇2 cos2 φ

− m2l ż1φ̇ sin φ cos θ − m2l ż1θ̇ cosφ cos θ

(3)

The potential energy V of the system is expressed as

V = −(m1+m2)z1g−m2gl cosφ cos θ+ 1

2
k(z1)

2 (4)

In this study, a fractional damping characterized by
the damping coefficient cα1 and the order of the frac-
tional derivative α1 is assumed in the damper, while
for the coordinates θ and φ the damping at the pendu-
lum pivot point is described by the damping coefficient
cα2 and the order of the fractional derivative α2. Thus,
the dissipation force R(ż(α)), moments M(θ̇ (α)) and
M(φ̇(α)) (Fig. 1) are determined by following expres-
sions

R(ż(α)) = cα1

dα1

dtα1
(z(t)) , M(θ̇ (α)) = cα2

dα2

dtα2
(θ(t)) ,

M(φ̇(α)) = cα2

dα2

dtα2
(φ(t))

(5)

where z(t), θ(t) and φ(t) are the generalized coordi-
nates, cα1,2 are damping coefficients and dα

dtα is a frac-
tional derivative of the order α1,2.

In this analysis, the fractional Riemann–Liouville
derivative [4] is used, which it is defined as

dα

dtα
f (t) ≡ Dα

0 ( f (t)) ≡ ḟ (α)(t)

≡ 1

Γ (m − α)

dm

dtm

t∫

0

f (τ )

(t − τ)α+1−m
dτ

(6)

where Γ (m − α) is the Euler gamma function [4],
m is a positive integer number satisfying inequality
m − 1 < α < m and t > 0. The fractional derivative
order is assumed to be in a range of 0 < α ≤ 1.

Using the fractional dissipation function D =
1
2cα(Dα

t (z))2 [30], the equations of motion of the sys-
tem can be written as
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z̈(m1 + m2) − m2l θ̈ cosφ sin θ − m2lφ̈ sin φ cos θ

+ 2m2lφ̇θ̇ sin φ sin θ − m2l θ̇
2 cosφ cos θ

− m2lφ̇
2 cosφ cos θ + cα1 ż

(α1)

+ kz = P1 cos ν1t,

− m2l z̈ cosφ sin θ

+ m2l
2θ̈ cos2 φ − 2m2lφ̇θ̇ cosφ sin φ

+ m2gl cosφ sin θ + cα2 θ̇
(α2)

= P2l cosφ cos θ cos ν2t,

− m2l z̈ sin φcosθ + m2l
2φ̈

+ m2l
2θ̇2 cosφ sin φ

+ m2gl sin φ cosφ + cα2 φ̇
(α2)

= −P2l sin φ sin θ cos ν2t + P3l cosφ cos ν2t

(7)

The dimensionless equations can be obtained by
introducing the dimensionless time τ = ω1t and defin-
ing the following parameters

ω2
1 = k

m1 + m2
, ω2

2 = g

l
, β = ω2

ω1
, z̄ = z

l
,

μ1 = ν1

ω1
, μ2 = ν2

ω1

γ1 = cα1ω
α1
1

(m1 + m2)ω
2
1

, γ2 = cα2ω
α2
1

m2ω
2
1l

2
, a = m2

m1 + m2

p1 = P1
(m1 + m2)ω

2
1l

, p2 = P2
m2lω2

1l
, p3 = P3

m2lω2
1l

(8)

Using parameters defined in Eq. (8), the equations
of motion (7) can be transformed into a dimensionless
form (where the overbars are omitted for convenience)

z̈ − aφ̈ sin φ cos θ + 2aφ̇θ̇ sin φsinθ − aθ̈ cosφ sin θ

− aθ̇2 cosφ cos θ − aφ̇2 cosφ cos θ + γ1 ż
(α1) + z

= p1 cos(μ1τ),

θ̈ cos2 φ − z̈ cosφ sin θ − 2θ̇ φ̇ cosφ sin φ

+ β2 cosφ sin θ + γ2θ̇
(α2)

= p2 cosφ cos θ cos(μ2τ),

φ̈ − z̈ sin φ cos θ + θ̇2 cosφ sin φ + β2 sin φ cos θ

+ γ2φ̇
(α2) = −p2 sin φ sin θ cos(μ2τ)

+ p3 cosφ cos(μ2τ)

(9)

3 Method of solution

An approximate solution to Eq. (9) can be obtained
using the multiple-scale method [31]. For small oscu-
lations in the vicinity of equilibrium position, trigono-
metrical functions can be expanded into Maclaurin
series; thus,

sin φ = φ − φ3

6
, cosφ = 1 − φ2

2
,

sin θ = θ − θ3

6
, cos θ = 1 − θ2

2

(10)

Substituting the approximated trigonometrical func-
tions Eq. (10) into Eq. (9), the following system of
equations is obtained

z̈ − aθ̈ θ − aφ̈φ = p1 cos (μ1τ) + a
(
φ̇2 + θ̇2

)

− γ1 ż
(α1) − z

− z̈θ + θ̈
(
1 − φ2

)
= p2 cos (μ2τ) − β2θ − γ2θ̇

(α2)

− z̈φ + φ̈ = p3 cos (μ2τ) − θ̇2φ − β2φ − γ2φ̇
(α2)

(11)

The approximate solution of Eq. (11) for small vibra-
tions can be expressed by expansion with different
timescales as shown below [31–33]

z (t) = εz1 (T0, T1, T2, . . .) + ε2z2 (T0, T1, T2, . . .)

+ ε3z3 (T0, T1, T2, . . .) + . . .

θ (t) = εθ1 (T0, T1, T2, . . .) + ε2θ2 (T0, T1, T2, . . .)

+ ε3θ3 (T0, T1, T2, . . .) + . . .

φ (t) = εφ1 (T0, T1, T2, . . .) + ε2φ2 (T0, T1, T2, . . .)

+ ε3φ3 (T0, T1, T2, . . .) + . . .

(12)

where

Tn = εnτ (n = 0, 1, 2, 3 . . .) (13)

are new independent variables, ε is a formal small
parameter, T0 = τ is the fast timescale and T1, T2 are
slow timescale [31,32].
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Using the chain rule, the integer-order derivatives
can be expanded in series of a small parameter ε

d

dτ
= D0 + εD1 + ε2D2 + . . .

d2

dτ 2
= D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2) + . . .

(14)

where Dn = ∂
∂Tn

A fractional-order derivative can be expanded in
series of a small parameter as shown Rossikhin and
Shitikova [18,34]

Dα =
(
d

dt

)α

=
(
D0 + εD1 + ε2D2 + . . .

)α = Dα
0

+ εαDα−1
0 D1

+ 1

2
ε
2

α
[
(α − 1) Dα−2

0 D2
1 + 2Dα−1

0 D2

]

(15)

where Dα
0 , D

α−1
0 and Dα−2

0 are the Riemann–Liouville
fractional derivatives with respect time T0.

Introducing additional small parameters [33],

γ1 = εγ̃1, γ2 = εγ̃2, γ2 = εγ̃2,

p1 = ε2 p̃1, p2 = ε2 p̃2, p3 = ε2 p̃3
(16)

Substituting expression (12)-(16) into (11) and equat-
ing terms standing at the equal powers of a small param-
eter ε and limiting the approximate solution by terms
of ε2, a following system of recurrent equations can be
obtained
for ε1

D2
0 (z1) + z1 = 0

D2
0 (θ1) + β2θ1 = 0

D2
0 (φ1) + β2φ1 = 0

(17)

for ε2

D2
0(z2) + z2 = −2D0D1 (z1) + aD2

0 (θ1) · θ1

+ aD2
0 (φ1) · φ1 + p̃1cos (μ1τ)

−γ̃1D
α1
0 (z1)

+a

((
D2
0 (φ1)

)2 +
(
D2
0 (θ1)

)2)

D2
0(θ2) + β2θ2 = p̃2 cos (μ2τ) − 2D0D1 (θ1)

−D2
0 (z1) θ1 − γ̃2D

α2
0 (θ1)

D2
0(φ2) + β2φ2 = p̃3 cos (μ2τ) − 2D0D1 (φ1)

−D2
0 (z1) φ1 − γ̃2D

α2
0 (φ1) (18)

Since further in the present analysis the expansions for
displacements are limited by the expressions (18) of
order ε2, we assume that the amplitudes Az1, Aθ1 and
Aφ1 are functions of time T1 only. Therefore, the sought
solutions to Eq. (17) are as below

z1 = Az1(T1)e
iT0 + Āz1(T1)e

−iT0

θ1 = Aθ1(T1)e
iβT 0 + Āθ1(T1)e

−iβT 0

φ1 = Aφ1(T1)e
iβT0 + Āφ1(T1)e

−iβT0

(19)

where Az1, Aθ1 and Aφ1 are arbitrary complex func-
tions of the timescale T1, and overbars denote complex
conjugate functions.

In general, the Riemann–Liouville fractional deriva-
tive of the exponential function may be calculated
according with method presented by Rossikhin and
Shitikova [34,35], namely

Dα
0

(
eiωt

)
= (iω)α eiωt + sinπα

π

∫ ∞

0

uα

u + iω
e−ut du

(20)

It can be shown that if the lower limit of the integral
in the definition Eq. (6) is −∞ then the Riemann–
Liouville fractional derivative of the exponential func-
tion has a form [4,35]

Dα+
(
eiωt

)
= (iω)α eiωt (21)

where Dα+ is defined as [4,35]

Dα+ f (t) ≡ 1

Γ (1 − α)

d

dt

∫ t

−∞
f (τ ) dτ

(t − α)α
, 0 <α < 1

(22)

The improper integral in Eq. (20) may be omitted
under certain circumstances, which are justified in the
papers by Roshikhin and Shitikova [18,35]. Further-
more, Roshikhin and Shitikova [34] have shown that
the improper integral in Eq. (20) does not affect the
solution obtained by the method of multiple timescales
when it is limited to the first- and second-order approxi-
mations. Thus, in further analysis the simplified deriva-
tive of the exponential function Eq. (21) is used.
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Substituting solution to the fist approximation Eq.
(19) into equations for the second approximation Eq.
(18), the following system of equations is obtained

D2
0(z2) + z2 = p̃1

1

2
eiμ1T0 − 2A′

z1 (T1) ie
iT0

− aβ2
(
A2

θ1(T1) e
i2βT 0 + Aθ1 (T1) Āθ1 (T1)

)

− aβ2
(
A2

φ1(T1) e
i2βT0 + Aφ1 (T1) Āφ1 (T1)

)

+ aβ4
(
A2

φ1 (T1) e
i2βT0 + Aφ1 (T1) Āφ1 (T1)

)

+ aβ4
(
A2

θ1(T1) e
i2βT 0 + Aθ1 (T1) Āθ1 (T1)

)

− γ̃1Az1(T1) i
α1eiT0 + cc.

D2
0(θ2) + β2θ2 = p̃2

1

2
eiμ2T0 − 2A′

θ1(T1) iβe
iβT 0

+ Az1 (T1) Āθ1(T1) e
iT0(1−β)

+ Az1 (T1) Aθ1(T1) e
iT0(β+1)

− γ̃2Aθ1(T1) i
α2βeiβT 0 + cc.

D2
0(φ2) + β2φ2 = p̃3

1

2
eiμ2T0 − 2A′

φ1(T1) iβe
iβT0

+ Az1 (T1) Āφ1 (T1) e
iT0(1−β)

+Az1 (T1) Aφ1(T1) e
iT0(β+1)

− γ̃2Aφ1 (T1) i
α2βeiβT 0 + cc.

(23)

where cc. stands for complex conjugate terms.
Then, in order to eliminate the expressions that result

in secular terms, we need to distinguish the following
cases 2β = 1 ,μ1 = 1 , 1−β = β ,μ2 = β ,μ3 = β .
In the analyzed system, the internal resonance occurs
for β = 0.5, whereas the external resonances occur for
μ1 = 1 , μ2 = β and μ3 = β . All resonances should
be analyzed separately.

4 A case of the internal resonance for β = 0.5 and
the external resonance for μ1 = 1

We are considering the internal resonance for β = 0.5
and the external resonance for μ1 = 1 . Introducing
detuning parameters σ1 and σ2, we assume that p2 =
p3 = 0 and

1 − β = β − εσ2

μ1 = 1 − εσ1
(24)

The secular terms in Eq. (23) may be eliminated if

1

2
p̃1e

iσ1T1 − (
2i A′

z1 (T1) + γ̃1i
α1 Az1 (T1)

)

− aβ2
(
A2

θ1 (T1) + A2
φ1 (T1)

)
e−iσ2T1

+ aβ4
(
A2

φ1 (T1) e
−iσ2T1 + A2

θ1 (T1) e
−iσ2T1

)
= 0

− 2A′
θ1 (T1) iβ + Az1 (T1) Āθ1 (T1) e

iσ2T1

− γ̃2Aθ1 (T1) i
α2β = 0

− 2A′
φ1 (T1) iβ + Az1 (T1) Āφ1 (T1) e

iσ2T1

− γ̃2Aφ1 (T1) i
α2β = 0

(25)

Assuming that

Az1 = 1

2
az1e

iψ1 , Āz1 = 1

2
az1e

−iψ1 ,

Aθ1 = 1

2
aθ1e

iψ2 , Āθ1 = 1

2
aθ1e

−iψ2 ,

Aφ1 = 1

2
aφ1e

iψ3 , Āφ1 = 1

2
aφ1e

−iψ3

(26)

Noting that the amplitudes az1, aθ1 and aφ1 are the
functions of time T1, and considering that T1 = εT0,
then substituting expressions (26) into system of Eq.
(25) and separating real and imaginary parts of Eq.
(25), we obtain the following equations

−az1ψ
′
1 − 1

2
γ̃1az1 cos

(πα1

2

)

+1

4
aa2θ1β

2
(
β2 − 1

)
cos (Θ1)

+1

4
aa2φ1β

2
(
β2 − 1

)
cos (Θ2 ) + 1

2
p̃1 cos ( Θ3)

= 0

a′
z1 − 1

2
γ̃1az1 sin

(πα1

2

)

+1

4
aa2θ1β

2
(
β2 − 1

)
sin (Θ1)

+1

4
aa2φ1β

2
(
β2 − 1

)
sin (Θ2 ) + 1

2
p̃1 sin ( Θ3)

= 0

βaθ1ψ
′
2 − 1

4
az1aθ1 cos (Θ1)

−γ̃2
1

2
aθ1β cos

(πα2

2

)
= 0
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βψ ′
2 − 1

4
az1 cos (−Θ1) − γ̃2

1

2
β cos

(πα2

2

)
= 0

βaφ1ψ
′
3 − 1

4
az1aφ1 cos (−Θ2 )

−γ̃2
1

2
aφ1β cos

(πα2

2

)
= 0

βa′
φ1 − 1

4
az1aφ1sin (Θ2 )

−γ̃2
1

2
aφ1β sin

(πα2

2

)
= 0 (27)

where

Θ1 = 2ψ2 − σ2T1 − ψ1, Θ2 = 2ψ3 − σ 2T1 − ψ1,

Θ3 = σ1T1 − ψ1, Θ ′
1 = 2ψ ′

2 − σ2 − ψ ′
1,

Θ ′
2 = 2ψ ′

3 − σ 2 − ψ ′
1, Θ ′

3 = σ1 − ψ ′
1

(28)

We assume for steady-state solution that

a′
z1 = 0, a′

θ1 = 0, a′
φ1 = 0,

Θ ′
1 = 0, Θ ′

2 = 0, Θ ′
3 = 0

(29)

Noticing that

ψ ′
1 = σ1, ψ ′

2 = 1

2
(σ2 + σ1) , ψ ′

3 = 1

2
(σ2 + σ1)

(30)

and substituting Eqs. (29) and (30) into Eqs. (27) and
(27) have the form

2az1
(
σ1 − γ̃1cos

(πα1

2

))
+ 1

2
aβ2

(
β2 − 1

)

·
(
a2θ1cos (Θ1) +a2φ1 cos (Θ2 )

)
+ p̃1 cos ( Θ3) = 0

− γ̃1az1sin
(πα1

2

)
+ 1

2
aβ2

(
β2 − 1

)

·
(
a2θ1sin (Θ1) + a2φ1sin (Θ2 )

)
+ p̃1sin ( Θ3) = 0

aθ1

(
2β (σ2 + σ1) − az1 cos (Θ1) − 2γ̃2β cos

(πα2

2

))
= 0

aθ1

(
az1sin (Θ1) − 2γ̃2β sin

(πα2

2

))
= 0

aφ1

(
2β (σ2 + σ1) − az1 cos (Θ2) − 2γ̃ 2β cos

(πα2

2

))
= 0

aφ1

(
az1sin (Θ2) − 2γ̃ 2β sin

(πα2

2

))
= 0

(31)

It can be concluded that according to the assumptions
made previously, four cases of the steady-state solution
are possible.

4.1 The case with amplitudes aθ1 = 0 and aφ1 = 0

The first case is if amplitudes aθ1 = 0 and aφ1 = 0,
in this case the pendulum does not vibrate. The system
corresponds to a one-degree-of-freedomoscillatorwith
the mass m = m1 + m2 and the amplitude az1 is

az1
(
γ̃1 cos

(πα1

2

)
+ 2σ1

)
= p̃1 cos (Θ3)

γ̃1az1sin
(πα1

2

)
= p̃1sin (Θ3)

(32)

Thus, solving Eq. (32), the amplitude az1 and the phase
angle Θ3 can be calculated, namely

az1 =
√

p̃21
γ̃ 2
1 + 4γ̃1 cos

(
πα1
2

)
σ1 + 4σ 2

1

(33)

tan (Θ3) = γ̃1sin
(

πα1
2

)
(
γ̃1 cos

(
πα1
2

) − 2σ1
) (34)

Equation (33) shows that for parameter σ1 = 0, ampli-
tude az1 does not depend on the order of the frac-
tional derivative α1. This dependency for small values
of damping coefficient γ̃1 and for σ1 �= 0 is weak.

4.2 The case with amplitudes aθ1 = 0 and aφ1 �= 0

The second case is if the amplitudes aθ1 = 0 and
aφ1 �= 0, thus a following system of equations may
be formulated

2az1
(
σ1 − γ̃1cos

(πα1

2

))
+ 1

2
aβ2 (

β2 − 1
)
a2φ1 cos (Θ2)

+ p̃1 cos (Θ3) = 0

−γ̃1az1sin
(πα1

2

)
+ 1

2
aβ2 (

β2 − 1
)
a2φ1sin (Θ2 )

+ p̃1sin ( Θ3) = 0

2β (σ2 + σ1) − az1 cos (Θ2 ) − 2γ̃2β cos
(πα2

2

)
= 0

az1sin (Θ2 ) − 2γ̃2β sin
(πα2

2

)
= 0 (35)

Solving Eq. (35), the amplitude az1 and the phase angle
Θ2 can be obtained, viz

az1 = 2β

√
(σ2 + σ1)

2 − 2γ̃2 (σ2 + σ1) cos
(πα2

2

)
+ γ̃ 2

2

(36)
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tan (Θ2) = γ̃2 sin
(

πα2
2

)
(σ2 + σ1) − γ̃2 cos

(
πα2
2

) (37)

Similarly, the amplitude aφ1 and the phase angle Θ3

can be calculated using the equations (35)
Equation (36) shows that if σ1 = −σ2, amplitude

az1 does not depend on the order of the fractional
derivative α2. This dependency for σ1 �= −σ2 and for
small values of damping coefficient γ̃2 is weak.

4.3 The case with amplitudes aθ1 �= 0 and aφ1 = 0

The third case is if the amplitude aθ1 �= 0 and aφ1 = 0,
then

2az1
(
σ1 − γ̃1 cos

(πα1

2

))
+ 1

2
aβ2

(
β2 − 1

)
a2θ1 cos (Θ1)

+ p̃1 cos (Θ3) = 0

− γ̃1az1 sin
(πα1

2

)
+ 1

2
aβ2

(
β2 − 1

)
a2θ1 sin (Θ1)

+ p̃1 sin ( Θ3) = 0

2β (σ2 + σ1) − az1 cos (Θ1) − 2γ̃2β cos
(πα2

2

)
= 0

az1 sin (Θ1) − 2γ̃2β sin
(πα2

2

)
= 0

(38)

The amplitude az1 and the phase angle Θ1 can be cal-
culated, namely

az1 =

2β

√
(σ2 + σ1)

2 + γ̃ 2
2 − 2 (σ2 + σ1) γ̃2 cos

(πα2

2

)

(39)

tan (Θ1) = γ̃2 sin
(

πα2
2

)
(σ2 + σ1) − γ̃2 cos

(
πα2
2

) (40)

The amplitude aθ1 and the phase angle Θ3 can be cal-
culated using Eq. (38)

Similarly as in the previous case, if σ1 = −σ2,
amplitude az1 does not depend on the order of the frac-
tional derivative α2. This dependency for σ1 �= −σ2
and for small values of damping coefficient γ̃2 is weak.

4.4 The case with amplitudes aθ1 �= 0 and aφ1 �= 0

The forth case is if the amplitudesaθ1 �= 0 andaφ1 �= 0,
then solving Eq. (29), amplitude az1 and angle Θ2 can

be derived, namely

az1 =

2β

√
(σ2 + σ1)

2 − 2γ̃2 cos
(πα2

2

)
(σ2 + σ1) + γ̃ 2

2

(41)

and

tan (Θ2) = γ̃2sin
(

πα2
2

)
(σ2 + σ1) − γ̃2cos

(
πα2
2

) (42)

Equation (29) shows that cosΘ2 = cosΘ1 and
sinΘ2 = sinΘ1. Taking this into account, after some
mathematical transformations, we can find that

a4θ1a
2β4

(
β2 − 1

)2

− 2a2θ1a · az1β2
(
β2 − 1

)2 ·(
γ̃1 cos

(πα1

2
− Θ1

)
+ 2σ1 cos

(πα1

2

))

+ a2z1

(
γ̃ 2
1 + 4σ 2

1 + 4γ̃1σ1 cos
(πα1

2

))
− p̃21 = 0

(43)

Having expression for az1 and tan (Θ2), we can derive
expressions for amplitudes aθ1 and aφ1 by solving Eq.
(43).

In this case, amplitude az1 does not depend on the
order of the fractional derivative α2. This dependency
for σ1 �= −σ2 and for small values of damping coeffi-
cient γ̃2 is weak.

5 A case of the internal resonance for β = 0.5 and
the external resonance for μ2 = β

We are considering the internal resonance for β = 0.5
and the external resonance for μ2 = β . Introducing
detuning parameters σ1 and σ3, and assuming that p1 =
0 whereas p2 �= 0 and p3 �= 0

1 − β = β − εσ2

μ2 = 1 + εσ3
(44)

The secular terms in Eq. (23) may be eliminated if

−2A′
z1 (T1) i − aβ2

(
A2θ1 (T1) + A2φ1 (T1)

)
e−iσ2T1

+aβ4
(
A2φ1 (T1) e

−iεσ2T0 + A2θ1 (T1) e
−iσ2T1

)
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−γ̃1Az1 (T1) i
α1 = 0

p̃3
1

2
eiσ3T1 −2A′

θ1 (T1) iβ+Az1 (T1) Āθ1 (T1) e
iσ2T1

−γ̃2Aθ1 (T1) i
α2β = 0

p̃3
1

2
eiεσ3T1 − 2A′

φ1 (T1) iβ

+Az1 (T1) Āφ1 (T1) e
−iσ2T1

−γ̃2Aφ1 (T1) i
α2β = 0 (45)

Assuming that the amplitudes have the same form
as in section 4 Eq. (26) and noting that the amplitudes
az1, aθ1 and aφ1 are functions of time T1, and consid-
ering that T1 = εT0, then substituting expressions (26)
into system of Eq. (45), and separating real and imag-
inary parts of Eq. (45), the following equations can be
obtained

4az1ψ
′
1 + aa2θ1β

2
(
β2 − 1

)
cos (Φ1)

+ aa2φ1β
2
(
β2 − 1

)
cos (Φ2) − 2γ̃1az1 cos

(πα1

2

)
= 0

− 4a′
z1 + aa2θ1β

2
(
β2 − 1

)
sin (Φ1)

+ aa2φ1β
2
(
β2 − 1

)
sin (Φ2) − 2γ̃1az1sin

(πα1

2

)
= 0

p̃2 cos (Φ4) + 2β aθ1

(
1

2

(
Φ ′

1 − Φ ′
2

) + σ3 − Φ ′
3

)

− 1

2
az1aθ1 cos (Φ1) − γ̃2βaθ1 cos

(πα2

2

)
= 0

p̃2 sin (Φ4) − 2βa′
θ1 + 1

2
az1aθ1sin (Φ1)

− γ̃2β aθ1sin
(πα2

2

)
= 0

p̃3 cos (Φ3) + βaφ1(σ3 − ψ ′3) − 1

2
az1aφ1 cos (Φ2 )

− γ̃2β aθ1 cos
(πα2

2

)
= 0

p̃3 sin (Φ3) − 2βa′
φ1 + 1

2
az1aθ1sin (Φ2 )

− γ̃2β aφ1sin
(πα2

2

)
= 0 (46)

where

Φ1 = 2ψ2 − σ2T1 − ψ1, Φ2 = 2ψ3 − σ2T1 − ψ1,

Φ3 = σ3T1 − ψ3, Φ ′
1 = 2ψ ′

2 − σ2 − ψ ′
1,

Φ ′
2 = 2ψ ′

3 − σ 2 − ψ ′
1, Φ ′

3 = σ1 − ψ ′
3,

Φ4 = Φ3 − 1

2
(Φ1 − Φ2 ) (47)

We assume for steady-state solution that

a′
z1 = 0, a′

θ1 = 0, a′
φ1 = 0,

Φ ′
1 = 0, Φ ′

2 = 0, Φ ′
3 = 0 (48)

Noticing that

ψ ′
1 = 2σ3 − σ2 − 2Φ′3 − Φ ′

2,

ψ ′
3 = σ3 − Φ ′

3, ψ ′
2 = 1

2

(
Φ ′
1 − Φ ′

2
) + σ3 − Φ ′

3

(49)

and substituting Eqs. (48) and (49) into Eq. (46), we
obtain following expressions

2az1
(
2 (2σ3 − σ2) − γ̃1az1 cos

(πα1

2

))

+ aβ2
(
β2 − 1

)
(a2θ1 cos (Φ1)

+ a2φ1 cos (Φ2)) = 0

aβ2
(
β2 − 1

) (
a2θ1sin (Φ1) + a2φ1sin (Φ2)

)

− 2γ̃1az1sin
(πα1

2

)
= 0

p̃2 cos (Φ4) + 2β aθ1σ3 − 1

2
az1aθ1 cos (Φ1)

− γ̃2β aθ1 cos
(πα2

2

)
= 0

p̃2 sin (Φ4) + 1

2
az1aθ1sin (Φ1)

− γ̃2β aθ1sin
(πα2

2

)
= 0

p̃3 cos (Φ3) + βaφ1σ3 − 1

2
az1aφ1 cos (Φ2 )

− γ̃2β aθ1 cos
(πα2

2

)
= 0

p̃3 sin (Φ3) + 1

2
az1aφ1sin (Φ2 )

− γ̃2β aφ1sin
(πα2

2

)
= 0 (50)

Equation (50) shows that several cases of the steady-
state solution are possible. The first case is if amplitude
az1 = 0, in this case the mass element does not vibrate.
Amplitudes aθ1, aφ1 are equal and

aθ1=aφ1= p̃2

β

√
4σ 2

3 +γ̃ 2
2 β2 − 4γ̃2σ3 cos

(
πα2
2

) (51)

The second case is when all amplitudes are not equal
zero. In this case, the relationship between amplitude
aθ1 and az1 is as below

aθ1 =
p̃2√

β2σ 2
3 + 1

4a
2
z1 + γ̃ 2

2 β2 − 2βσ3wθ − az1γ̃2β
(
cos

(
Φ1 + πα2

2
))

(52)
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where

wθ = az1 cos (Φ1) + 2γ̃2β cos
(πα2

2

)

The relationship between amplitude aφ1 and az1 is
expressed as

aφ1 =
p̃3√

β2σ 2
3 + 1

4a
2
z1 + γ̃ 2

2 β2 − 2βσ3wφ − az1γ̃2β
(
cos

(
Φ2 + πα2

2
))

(53)

where

wφ = az1 cos (Φ2) + 2γ̃2β cos
(πα2

2

)

Thenext two cases occurwhen one of the amplitudes
aθ1 = aφ1 = 0. Equation (50) shows that this case is
possible when amplitudes p̃2 = p̃3 = 0; thus, the
pendulum does not vibrate. Another cases occur when
aθ1 = 0 and aφ1 �= 0 or aθ1 �= 0 and aφ1 = 0. In
these cases, one of the amplitudes p̃2 = 0 or p̃3 = 0
correspondingly, and the movement of the pendulum is
in one plane.

The dynamic behavior of the system can be also ana-
lyzed when one of the forces p̃2, p̃3 is zero. For exam-
ple, if p̃2 = 0 then Eq. (50) shows that the amplitude
az1 is expressed as

az1 = 2β

√
2σ 2

3 + γ̃ 2
2 − σ3 cos

(πα2

2

)
(54)

The amplitude aφ1 can be calculated using Eq. (53) and
phase angle Φ1 may be calculated from

tan (Φ1) = γ̃2βsin
(

πα2
2

)
(
2βσ3 − γ̃2β cos

(
πα2
2

)) (55)

Having calculated az1, aφ1 and Φ1, amplitude aφ1 and
phase angle Φ2 can be determined using Eq. (50).

Equation (54) shows that amplitude az1 does not
depend on damping coefficient γ̃1 but it depends on
damping coefficient γ̃2 and detuning parameters σ3. If
σ3 = 0, amplitude az1 does not depend on the order of
the fractional derivative α2. This relationship for σ3 �=
0 and for small values of damping coefficient γ̃2 is
weak.

Fig. 2 Amplitude az1 as a function of the detuning parameter
σ1, σ2 = 1.0, a = 0.5, β = 0.5, p1 = 0.001, a) γ2 = 0.002, b)
γ2 = 0.004

6 Numerical calculations

Example calculations aremade for the case of the inter-
nal resonance for β = 0.5 and the external resonance
for μ1 = 1 and the subcase presented in subsection
4.4, namely for aθ1 �= 0 and aφ1 �= 0. The amplitudes
az1 and aθ1 as a function of the detuning parameter
σ1 are computed using Eqs. (41), (42) and (43). The
calculations are performed for the following system
parameters: σ2 = 1.0, a = 0.5, β = 0.5, γ2 = 0.002,
γ2 = 0.004, p1 = 0.001 and orders of fractional
derivative α2 = 0.25, α2 = .50, α2 = 0.75, α2 = 1.00.
The calculations are made using the “Mathematica”
package. The obtained relationships for amplitude az1
are presented in Fig. 2, whereas for the amplitude aθ1

are presented in Fig. 3.
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Fig. 3 Amplitude aθ1 as a function of the detuning parameter
σ1, σ2 = 1.0, a = 0.5, β = 0.5, p1 = 0.001, a) γ2 = 0.002, b)
γ2 = 0.004

Figure2 shows that the amplitude az1 depends
weakly on the order of the fractional derivative, as well
on the damping coefficient γ2. Moreover, we can see
that the amplitude az1 = γ̃2 for σ1 = −1.0.

The graph shown in Fig. 3 shows that the amplitude
aθ1 also depends weakly on the order of the fractional
derivative, virtually all curves coincide. Thegraphs pre-
sented in Fig. 3 show that the order of the fractional
derivative effects on the range of existing real solution
of Eq. (43) for amplitude aθ1, namely an increase in the
order of the fractional derivative, decreases the range of
the solution. The decrease in the range of the solution
is more noticeable for a higher damping coefficient γ2.

7 Conclusions

In this paper, analysis of a nonlinear three-degree-
of-freedom system with a spherical pendulum is per-
formed. A fractional damping is assumed in the damper
and in the spherical pendulumpivot point. The approxi-
mate analytical solution is obtained using the multiple-
scale method. Steady-state solutions for different com-
binations of external and internal resonances are stud-
ied. The analysis is performed for two types of excita-
tion. The first excitation case assumes only excitation
by a vertical force acting on the oscillator and for an
internal resonance for β = 0.5 and an external reso-
nance for μ1 = 1.0, while the second case assumes
excitation with a force acting on the pendulum in the
horizontal direction (Fig. 1) and an internal resonance
for β = 0.5 and an external resonance for μ2 = β.

It is shown that the amplitude az1 depends weakly
on the order of the fractional derivative, as well on the
damping coefficient. Similarly, the amplitudes aθ1 and
aφ1 dependweakly on the order of the fractional deriva-
tive. The study can be extended to a transient analysis
and analysis of other external and internal resonances.
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Appendix A

Relationship between Cartesian and generalized coor-
dinates Eq. (1) can be obtained by analyzing the appro-
priate distances and the triangles OCB and ABO
shown in Fig. 4. The triangle OCB lies in the plane
Ox2z2. The triangle ABO lies in the plane perpen-
dicular to the plane Ox2z2 and passing through the
pendulum OA; thus, the segment AB is perpendicular
to the segment OB and the angle at the vertex B is a
right angle. The angle θ lies in the plane Ox2z2 and
it is between the vertical axis Oz2 and the orthogonal
projection of the pendulum OA on the plane Ox2z2,
i.e., the segment OB. The angle φ is the angle between
the deflections of the pendulum in the plane x2z2 and
the pendulum [9].

It can be seen from the triangle�ABO (Fig. 4) that

y2 = |AB| = |OA| sin φ = l sin φ (A.1)

|OB| = |OA| cosφ = l cosφ (A.2)

The triangle �OCB (Fig. 4) shows that

x2 = |CB| = |OB| sin θ = l cosφ sin θ (A.3)

Figure4 shows that

z2 = z1 + |OC | (A.4)

Fig. 4 Schematic diagram for calculation generalized coordi-
nates

The triangle �OCB shows that

|OC | = |OB| cos θ = l cosφ cos θ (A.5)

thus

z2 = z1 + l cosφ cos θ (A.6)

Therefore, the relationship between the Cartesian coor-
dinates and the generalized coordinates used is as
follows

x2 = l cosφ sin θ

y2 = l sin φ

z2 = l cosφ cos θ + z1

(A.7)
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