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Abstract With promising applications in medical
diagnosis and therapy, the behavior of shell-encapsula-
ted ultrasound contrast agents (UCAs) has attracted
considerable attention. Currently, second-generation
contrast agents stabilized by a phospholipid mem-
brane are widely used and studies have focused on
the dynamics of single phospholipid shell-encapsulated
microbubbles. To improve the safety and the effi-
ciency of the methods using the propagation or tar-
geted ultrasound, a better understanding of the prop-
agation of ultrasound in liquids containing multiple
encapsulated microbubbles is required. By incorporat-
ing the Marmottant–Gompertz model into the multiple
scale analysis of two-phase model, this study derived a
Korteweg–de Vries–Burgers equation as a weakly non-
linear wave equation for one-dimensional ultrasound in
bubbly liquids. It was found that the wave propagation
characteristics changed with the initial surface tension,
highlighting two notable features of the phospholipid
shell: buckling and rupture. These results may provide
insights into the suitable state of microbubbles, and
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better control of ultrasound for medical applications,
particularly those that require high precision.
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1 Introduction

Since the pioneering research on the collapse of an
empty cavity in a liquid by Lord Rayleigh [1] and
the extension of bubble dynamics by Plesset [2],
researchers have extended the knowledge of single bub-
ble oscillation under driving pressure [3–11]. Another
research direction based on bubble dynamics is the
study of the propagation of pressure waves in bub-
bly liquids, which has been performed by various
researchers such as van Wijngaarden [12–15] and
Caflisch group [16–18]. In recent decades, following
the commercialization of ultrasound contrast agents
(UCAs), bubble dynamics has received considerable
attention, particularly for medical applications such
as echocardiography [19–22], drug and gene delivery
[23–27], and sonoporation [28–30].

For applications in medical treatment, a comprehen-
sive understanding of the interaction of encapsulated
bubbles with ultrasound is required. Several models
have been proposed to explain the effect of shells on
bubble oscillation, which encapsulate the gas core and
provide important functions, such as improvement of
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stability against Laplace-pressure driven dissolution,
gas diffusion, and coalescence. For example, de Jong
proposed a pioneering model for viscoelastic shells
[31–34], Church et al. [35] presented a model for a vis-
coelastic shell that also incorporates shell thickness,
and Hoff et al. constructed a model by considering
the limit of shell thickness as zero [35–37]. Further-
more, Chatterjee and Sarkar [38] created a model by
assuming that shells behave as Newtonian viscous flu-
ids. Marmottant et al. [39] proposed amodel that incor-
porates the buckling and rupture phenomena, observed
in phospholipid monolayer shells (it should be noted
that the “rupture” phenomenon defined by Marmot-
tant is not the irreversible collapse in solid mechanics).
Recently, a nonlinear viscositymodelwas suggested by
Doinikov et al. [40] and amodel incorporating the effect
of shell compressibility and anisotropy was developed
by Chabouh et al. [41]. Extensive reviews on compar-
isons and discussions of the models have also been
published [42–45]. Under simplifications and assump-
tions, the existing models show reasonable agreement
with experimental results, mostly in the linear regime.
However, nonlinear behavior of encapsulated bubbles
is complicated, and attempts have been made to better
understand these behaviors [46–56]. As Doinikov et al.
[57] pointed out, available shell models do not possess
required predictive capability for wide range of con-
ditions. This problem may be solved with researches
at the molecular scale, using theoretical [58,59] and
simulation [60–63] approaches.

Research regarding single encapsulated bubbles in
pressurewaves is a foundation for studies on ultrasound
propagation in a liquid with a large number of encapsu-
lated bubbles. Accordingly, several models have been
proposed as an extension of the analysis by van Wijn-
gaarden and Caflisch, and multiple imaging techniques
have been developed [64–67]. Ma et al. [68] derived a
nonlinear evolution equation for ultrasound propaga-
tion in liquids containing multiple encapsulated bub-
bles, and Xia [69] theoretically studied the attenuation
coefficient of ultrasound propagation. These studies,
however, were limited to linear case and cannot holis-
tically reflect nonlinear effects such as rapid attenua-
tion change above the Blake threshold or the depen-
dence on pressure of attenuation and sound speed. To
address such limitations, in his pioneeringpaper, Louis-
nard [70,71] constructed a mechanical energy bal-
ance equation from fully nonlinear Caflisch equations.
Here, energy loss was computed numerically by simu-

lating bubble radial dynamics Rayleigh–Plesset equa-
tion. Consequently, a nonlinear Helmholtz equation
for wave propagation in liquids with uncoated bubbles
was derived. Accordingly, pressure dependent atten-
uation was derived from the imaginary part of wave
number. This equation is relatively easier to solve than
the fully nonlinear Caflisch equations and can predict
more realistic attenuation and acoustic pressure val-
ues compared to the fully linearized models. Similarly,
Jamshidi et al. [72] considered compressibility of the
liquid using Keller–Miksis equation, and the additional
attenuation effect of acoustic radiation was obtained in
addition to small modifications to thermal and viscos-
ity attenuation terms. Later, the Jamshidi model was
shown to have non-physical values and a critical mod-
ification to the calculation of the damping terms was
provided by Sojahrood et al. [73]. These values had
better agreement with the linear model and resolved
the non-physical values. Additionally, they extended
previous studies and were the first to introduce a full
nonlinear model capable of simultaneously calculat-
ing the pressure dependence of sound speed, which
affected local acoustic pressure amplitude, and atten-
uation [74]. This model was verified numerically [75]
and in the first controlled observation of the pressure
dependence of sound speed and attenuation for coated
bubbles [76]. To describe wave propagation in a liq-
uid containing a high number of viscoelastic shell-
encapsulated microbubbles, we have adopted another
approach using two-phase model. Consequently, the
Korteweg–de Vries–Burgers (KdVB) equations were
obtained [77–79]. Although our studies are limited to
small pressure amplitude, the proposed models can
account for the nonlinear propagation of waves, a char-
acteristic neglected in models based on the Helmholtz
model.

The buckling and rupture of the shell were first mod-
eled byMarmottant et al. [39] for large-amplitude oscil-
lations of coated bubbles. Researchers using this model
have reported that it can predict important behaviors
exhibited by phospholipid monolayer shells. De Jong
et al. [80] observed a highly nonlinear response of
phospholipid-coatedUCA termed “compression-only”
behavior, whereinmicrobubbles compressed but barely
expanded beyond its initial radius. Later, Emmer et
al. [81] linked the “compression-only” behavior to the
enhanced second harmonic behavior, and Sijl et al.
[48] theoretically showed that the subharmonic behav-
ior and its threshold pressure can be explained through
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the value and rate of change of elasticity with radius,
which are important features of theMarmottant model.
The Marmottant model has been demonstrated to have
predicted the intensification of the generation of 1/2
order subharmonics via simulation and experiment on
bubbles in the buckling region [49]. Several researchers
have reported the change in resonance curves and onset
of vibrations [82,83]. These two prominent nonlin-
ear effects were explained later using the Marmottant
model by Overvelde et al. [47]. Recently, the genera-
tion of higher order subharmonics (e.g., 1/3, 1/4) has
been demonstrated by analyzing bifurcation structure
and verified experimentally by Sojahrood et al. [84].
Since many approved UCAs for human use such as
Definity (2001), SonoVue (2001), and Sonazoid (2007)
are coated by phospholipid shells, the incorporation
of the two physical properties (buckling and rupture)
is necessary to model the interaction between ultra-
sound and phospholipid shell encapsulated microbub-
bles.

The aim of the present paper is to extend previ-
ous studies on ultrasound propagation in liquids con-
taining multiple microbubbles encapsulated with vis-
coelastic shell [77] or with compressible viscoelastic
shell [78,79], by incorporating buckling and rupture
phenomena. To the best of our knowledge, this is the
first theoretical study that considers effect of buckling
and rupture of phospholipid shell on ultrasound propa-
gation in a liquid containingmultiple encapsulated bub-
bles that includes nonlinearity parameters through two-
phasemodel. Instead of the original model proposed by
Marmottant et al. [39], we consider the Marmottant–
Gompertz model [85] to describe the behavior of the
surface tension of the phospholipid shell, as the lat-
ter offers important features relevant to our study (as
described in Sect. 2.2). Following themethod described
in our previous papers [86,87], we derived a KdVB
equation as a physico-mathematical model for ultra-
sound propagation.

The remainder of this paper is organized as follows.
Section 2 introduces basic equations for bubbly liquids
based on a two-fluid model [88] and lipid-encapsulated
bubble dynamics including shell buckling and rup-
ture. Section 3 presents derivation of linear propaga-
tion for the first-order problem and a KdVB equa-
tion for the second-order problem. Section 4 presents
a parametric analysis conducted to explore the effect
of the initial void fraction and initial surface tension
on the characteristics of the propagation (i.e., advec-

tion, nonlinearity, attenuation and dispersion). Fur-
thermore, the results obtained after the analysis pro-
posed by Katiyar and Sarkar [50], with the upper and
lower limits of the surface tension removed, are pre-
sented. The limitations of derived model are then dis-
cussed. Finally, Sect. 5 presents the conclusions of this
paper.

2 Problem formulation

2.1 Problem statement

We consider a weakly nonlinear (i.e., finite but small
amplitude) propagation of plane and progressive pres-
sure waves radiating from a source in a bubbly
liquid.

In this study, the following assumptions were made
for simplicity:

(i) The liquid is slightly compressible.
(ii) The initial flow velocities of gas and liquid phases

are zero.
(iii) The number of bubbles is constant, i.e., the bub-

bles do not coalesce, break up, appear, and disap-
pear.

(iv) Only one bubble size is considered, and the bub-
ble distribution is spatially uniform.

(v) Bubble–bubble interaction is neglected.
(vi) The mass transport through the bubble–liquid

interface is neglected, i.e., the number of molecu-
les inside the gas core of each bubble is constant.

(vii) The bubble oscillations are spherically symmetric
and are the same in an averaged volume.

(viii) The translation of bubbles and drag force on the
bubbles are neglected.

(ix) The thermal conductivity and phase change are
neglected.

(x) Shell viscosity is considered, and liquid viscosity
is only considered at the bubble–liquid interface.

(xi) The temperature of the liquid is constant.
(xii) The buckling and rupture are accounted for.

Except for assumption (xii), which is the main
topic of this study, the other assumptions are identi-
cal to those in our previous papers [86–88]. The buck-
ling and rupture of the shell were modeled using the
Marmottant–Gompertzmodel, first suggested byGüm-
mer et al. [85].

123



10862 Q. N. Nguyen, T. Kanagawa

Fig. 1 Schematic of model: Ultrasound propagation in liquid
containing multiple microbubbles coated by a viscoelastic shell
with buckling and rupture

2.2 Governing equations

In this study, we use a two-fluid model [88,89] struc-
tured by a set of basic equations. This set includes the
following equations:

(i) Mass conservation law in the gas phase

∂

∂t∗
(αρ∗

G) + ∂

∂x∗ (αρ∗
Gu

∗
G) = 0. (1)

(ii) Mass conservation law in the liquid phase

∂

∂t∗
[(1 − α)ρ∗

L] + ∂

∂x∗ [(1 − α)ρ∗
Lu

∗
L] = 0. (2)

(iii) Momentum conservation law in the gas phase

∂

∂t∗ (αρ∗
Gu

∗
G)+ ∂

∂x∗ (αρ∗
Gu

∗
G
2
)+α

∂p∗
G

∂x∗ = F∗. (3)

(iv) Momentum conservation law in the liquid phase

∂

∂t∗
[(1 − α)ρ∗

L] + ∂

∂x∗ [(1 − α)ρ∗
Lu

∗
L
2]

+(1 − α)
∂p∗

L

∂x∗ + P∗ ∂α

∂x∗ = −F∗, (4)

where α is the void fraction (the gas fraction)
(0 < α < 1), ρ∗ is the density, u∗ is the veloc-
ity, p∗ is the pressure, and the subscripts G and
L indicate the volume-averaged variables in the
gas and liquid phases, respectively. The right-
hand sides of Eqs. (3) and (4) show the interfacial
momentum transport, denoted as F∗, following
themodel of virtual mass force in a compressible
liquid [89–91]

F∗ = −β1αρ∗
L

(
DGu∗

G
Dt∗ − DLu∗

L
Dt∗

)

−β2ρ
∗
L(u∗

G−u∗
L)DGα

Dt∗ −β3α(u∗
G−u∗

L)
DGρ∗

L
Dt∗ , (5)

For spherical bubble case, the coefficients β1,
β2 and β3 can be set to 1/2. We refrained from
explicitly using these values to present the contri-
bution of each term to the result. The total deriva-
tives are defined as follows:
DG

Dt∗
≡ ∂

∂t∗
+u∗

G
∂

∂x∗ ,

DL

Dt∗
≡ ∂

∂t∗
+u∗

L
∂

∂x∗ , (6)

(v) Modified Rayleigh–Plesset equation for spheri-
cal oscillations of bubbles in a slightly compress-
ible liquid [39]

ρ∗
L0R

∗D2
GR

∗

Dt∗2
+ ρ∗

L0
3

2

(
DGR∗

Dt∗

)2

= P∗ + R∗

c∗
L0

DG

Dt∗
p∗
G, (7)

where R∗ is the bubble radius, ρ∗
L0 is the liq-

uid density in unperturbed state, c∗
L0 is the ini-

tial sound velocity in the liquid phase and P∗ is
the difference between volume-averaged liquid
pressure and liquid pressure at bubble surface.
Equations (1)–(5) and (7) are closed using the
following equations:

(vi) Tait equation of state for liquid

p∗
L = p∗

L0 + ρ∗
L0c

∗
L0

2

n

[(
ρ∗
L

ρ∗
L0

)n

− 1

]
, (8)

(vii) Polytropic equation of state for gas

p∗
G

p∗
G0

=
(

ρ∗
G

ρ∗
G0

)γ

, (9)

(viii) Conservation law of mass inside a bubble

ρ∗
G

ρ∗
G0

=
(
R∗
0

R∗

)3

, (10)

where p∗
L0 and R∗

0 are the liquid pressure and
bubble radius, respectively, in the initial undis-
turbed state; p∗

G0 and ρ∗
G0 are the gas pressure

and density inside the bubble in the initial state,
respectively; γ is the polytropic exponent; and n
is the material constant (e.g., n = 7.15 for water).

(ix) The equation for balance of the normal stress
across bubble–liquid interface based on the equa-
tion given by Marmottant et al. [39]

p∗
G − (p∗

L + P∗) = 2σ ∗(R∗)
R∗ + 4μ∗

R∗
DGR∗

Dt∗
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+ 4κ∗
s

R∗2
DGR∗

Dt∗
, (11)

Here, μ∗ is the liquid viscosity, and κ∗
s is the

shell dilatational viscosity derived for shells with
small but finite and constant thickness.

To incorporate the buckling and rupture phenomena
in our study, instead of using the original model of
surface tension proposed by Marmottant et al. [39],
in which there are two discontinuities at R∗ = R∗

buck
and R∗ = R∗

rupt, we use the continuous Marmottant–
Gompertz model constructed by Gümmer et al. [85],
the detailed form of this model is given in “Appendix
A” (Fig. 2).

The Marmottant model can simulate certain non-
linear characteristics such as “compression-only” and
subharmonic behaviors of phospholipid-coatedmicrobu-
bbles [43–45,47–49]. The Marmottant surface tension
model has two important features: the first are an upper
limit (ruptured state) and a zero lower limit (buck-
led state). The effects of these limits on the excitation
threshold for subharmonic generation were studied by
Katiyar and Sarkar [50]. The second is the rapid change
of the elastic coefficientχ∗ between the elastic-buckled
state and elastic-ruptured state with two singularities of
dχ∗/dR∗ at R∗ = R∗

buck and R∗ = R∗
rupt. These two

singularities make the Marmottant model sensitive to
the time step used in numerical methods [48,85]. To
resolve this sensitivity, Silj et al. [48] proposed two
additional quadratic crossover functions to smoothen
the curve and control the two transition points. The
Marmottant–Gompertz model proposed by Gümmer et
al. [85] is based on the Gompertz function. This model
can smoothen the curve and eliminate the singularities
using the same set of initial parameters (i.e., R∗

0 ,χ
∗ and

σ ∗
0 ), while retaining the two significant features of the

Marmottantmodel. The elimination of these two singu-
larities allows for the calculation of the continuous first
and second derivatives of the function.Accordingly, the
linearization for theoretical analysis can be obtained.
Furthermore, without the singularities, the sensitivity
to the time step in numerical calculations is dismissed.
As an inherent characteristic of the Gompertz func-
tion, there is a more rapid change of surface tension
near buckled radius than near ruptured radius, provid-
ing good qualitative approximation to the behavior of
the lipidmonolayer observed in experiments.Addition-
ally, the Marmottant–Gompertz equation is shown to
have no significant difference to the original Marmot-
tant model for acoustic emissions and overall dynam-

ics of the bubble while demonstrating smoother bubble
radius transition in and out of the elastic regime. The
result also has good agreement to in vitro experiments
under similar conditions. Readers are referred to Güm-
mer et al. [85] for further discussion of theMarmottant–
Gompertz model.

2.3 Multiple-scale analysis

For weakly nonlinear problems, the nonlinear effect
becomes apparent at a large distance from the sound
source relative to the wavelength. In these problems,
different time and length scales are considered. First,
the independent variables are nondimensionalized as

t = t∗

T ∗ , x = x∗

L∗ , (12)

where T ∗ and L∗ are the typical period and wavelength
of the propagating wave, respectively. Then, the near-
field (i.e., the temporal and spatial scales of O(1)) is
defined as

t0 = t, x0 = x, (13)

and the far-field (i.e., the temporal and spatial scales of
O(1/ε)) is described as

t1 = εt, x1 = εx, (14)

where ε is the nondimensional wave amplitude under
the assumption (0 < ε � 1). Using Eqs. (13) and (14)
with the derivative-expansion method [92], the differ-
ential operators are expanded as follows:

∂

∂t
= ∂

∂t0
+ ε

∂

∂t1
,

∂

∂x
= ∂

∂x0
+ ε

∂

∂x1
.

(15)

Further, the dependent variables are nondimension-
alized and expanded in the power series of ε:

α

α0
= 1 + εα1 + ε2α2 + · · · , (16)

R∗

R∗
0

= 1 + εR1 + ε2R2 + · · · , (17)

ρ∗
L

ρ∗
L0

= 1 + ε2ρL1 + ε3ρL2 + · · · , (18)

p∗
L

ρ∗
L0U

∗2 = pL0 + εpL1 + ε2 pL2 + · · · , (19)

u∗
G

U∗ = εuG1 + ε2uG2 + · · · , (20)

123



10864 Q. N. Nguyen, T. Kanagawa

Fig. 2 Comparison of
Marmottant–Gompertz
surface tension model [85]
(blue solid curve) and
Marmottant surface tension
model [39] (red dashed
curve). R∗ is bubble radius,
σ ∗ surface tension, R∗

buck
buckle radius, R∗

rupt rupture
radius, σ ∗

c surface tension of
the clean gas-liquid
interface

Buckled Elastic Ruptured

σ*

Marmottant-Gompertz model

Marmottant model

R*

σ*
c

buckR* ruptR*

u∗
L

U∗ = εuL1 + ε2uL2 + · · · , (21)

where α0 is the initial void fraction and U∗ is the typ-
ical wave propagation speed, which is related to the
wavelength L∗ and period T ∗ through U∗ ≡ L∗/T ∗.

The nondimensional pressures for the gas and liq-
uid phases in the unperturbed states pG0 and pL0 are
defined as:

pG0 ≡ p∗
G0

ρ∗
L0U

∗2 ≡ O(1), pL0 ≡ p∗
L0

ρ∗
L0U

∗2 ≡ O(1).

(22)

The liquid viscosity μ∗, shell viscosity κ∗
s and initial

surface tension σ ∗
0 are nondimensionalized as

μ∗

ρ∗
L0U

∗L∗ ≡ O(ε) ≡ με, (23)

κ∗
s

ρ∗
L0U

∗2R∗
0T

∗ ≡ O(ε) ≡ κsε, (24)

σ ∗
0

ρ∗
L0U

∗2R∗
0

≡ O(1) ≡ σ0. (25)

For simplicity, we define the following two parameters:

σ ∗
c

2χ∗ ≡ O(1) ≡ χc, (26)

σ ∗
0

χ∗ ≡ O(1) ≡ χ0. (27)

Using Marmottant–Gompertz model, the surface ten-
sion σ ∗ can be expanded as follows:

σ ∗ = σ ∗
0

[
1 + εN1R1 + ε2(N22R2 + N21R

2
1)

]
, (28)

where the explicit forms of N1, N22 and N21 are

N1 = N22 ≡ − ln

(
χ0

2χc

)
e

χc

√
(1 + χ0)(1 + χc)

= 1

σ ∗
0

∂σ ∗

∂(R∗/R∗
0)

∣∣∣
R∗/R∗

0=1
, (29)

N21 ≡ 1

2

e2

χ2
c
(1 + χ0)(1 + χc)

(
ln

χ0

2χc
+ ln2

χ0

2χc

)

= 1

σ ∗
0

∂2σ ∗

∂(R∗/R∗
0)

2

∣∣∣
R∗/R∗

0=1
. (30)

Substitute Eq. (28) into the modified Rayleigh–
Plesset equation (Eq. (7)), and follow the analysis of
Van der Meer et al. [82], the eigenfrequency of the
bubble is obtained through linearization:

ω∗
B

2 = 1

ρ∗
L0R

∗
0
2

[
2σ ∗

0 (N1 − 1)

R∗
0

+ 3p∗
G0γ

]
. (31)

We focus on the long-range propagation of nonlinear
waves in low-frequency and long-wavelength bands. In
this case, the appropriate scaling relations [86] are

U∗

c∗
L0

≡ O (√
ε
) ≡ V

√
ε, (32)

R∗
0

L∗ ≡ O (√
ε
) ≡ �

√
ε, (33)
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ω∗

ω∗
B

≡ 1

T ∗ω∗
B

≡ O(
√

ε) ≡ 

√

ε, (34)

where V,� and 
 are of order unity, and ω∗ is the
typical angular frequency.

3 Derivation of KdVB equation

3.1 Leading order of approximation

Substituting Eqs. (5), (6), (8)–(25), and (28)–(34) into
Eqs. (1)–(4) and (7) and collecting the ε1 terms, the
following set of linearized equations for the first-order
problem is obtained:

(i) Mass conservation equation in the gas phase

∂α1

∂t0
− 3

∂R1

∂t0
+ ∂uG1

∂x0
= 0, (35)

(ii) Mass conservation law in the liquid phase

α0
∂α1

∂t0
− (1 − α0)

∂uL1
∂x0

= 0, (36)

(iii) Momentum conservation law in the gas phase

β1
∂uG1
∂t0

− β1
∂uL1
∂t0

− 3γ pG0
∂R1

∂x0
= 0, (37)

(iv) Momentum conservation law in the liquid phase

(1 − α0 + β1α0)
∂uL1
∂t0

−β1α0
∂uG1
∂t0

+ (1 − α0)
∂pL1
∂x0

= 0, (38)

(v) Modified Rayleigh–Plesset equation

R1 + 
2

�2 pL1 = 0. (39)

The set of linearized equations, i.e., Eqs. (35)–(39)
contains five dependent variables (i.e., α1, pL1, uG1,
uL1 and R1). By eliminating α1, pL1, uG1 and uL1, the
linear wave equation for the first-order perturbation of
the bubble radius R1 is derived as

∂2R1

∂t20
− v2p

∂2R1

∂x20
= 0, (40)

where the phase velocity vp is given by

vp =
√
3α0(1 − α0 + β1)γ pG0 + β1(1 − α0)�2/
2

3β1α0(1 − α0)
. (41)

Equation (40) indicates a linear and nondispersive
wave motion, described in terms of t0 and x0, while

Eq. (41) shows a proportional relation between the
phase velocity vp and 1/

√
α0(1 − α0), a feature sim-

ilar to the classical speed of sound in bubbly liquids
[14,15]. The expressions in Eqs. (35)–(41) are identi-
cal to some of our previous results for the uncoated-
bubble case [86,87] but are different from other results
[78,93–95] that incorporate effects such as those of
polydispersity, thermal effect, and drag force as well as
results based on other shell models (the Church–Hoff
and Chabouh models). This similarity indicates that if
the same set of nondimensionalized parameters, i.e.,�
and 
 is used, the derived solution of the first-order
problem will be identical to that of the uncoated bub-
ble. However, because the expression of ω∗

B changes
with the contribution of σ ∗

0 and χ∗, the behavior of the
solution is different. By substituting the definitions of
pG0 in Eq. (22), � in Eq. (33), and 
 in Eq. (34) into
Eq. (41), we formulated a typical propagation speed
U∗ as follows:

U∗ =
√√√√3α0(1 − α0 + β1)γ p∗

G0/ρ
∗
L0 + β1(1 − α0)R∗

0
2ω∗

B
2

3β1α0(1 − α0)v2p
.

(42)

Focusing on the right-running wave in the leading-
order of approximation, a phase function ϕ0 for an arbi-
trary value of vp can be introduced as follows:

ϕ0 ≡ x0 − vpt0. (43)

By setting R1 ≡ f (ϕ0; t1, x1), Eq. (40) becomes

∂ f

∂t0
+ vp

∂ f

∂x0
= 0. (44)

Rewriting Eqs. (35)–(39) usingϕ0 and integrating them
with respect toϕ0, the other first-order perturbationsα1,
uG1, uL1 and pL1 can be expressed in terms of f (ϕ0):

α1 = s1 f, uG1 = s2 f, uL1 = s3 f, pL1 = s4 f,

s4 = −�2


2 , s1 = (1 − α0)[3β1α0v
2
p − (1 − α0)s4]

α0v2p(1 − α0 + β1)
,

s2 = (s1 − 3)vp, s3 = − α0vp

1 − α0
s1. (45)

Here, the integration constants are omitted because of
the boundary conditions at x0 → ∞ where the bub-
bly liquid is uniform and at rest. Furthermore, from
the relations in Eq. (45), it is apparent that the first-
order perturbations in the near field characterized by t0
and x0 (i.e., α1, uG1, uL1, pL1 and R1) are governed by
Eq. (44).
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3.2 Second order of approximation

Following the procedure presented in Sect. 3.1, but for
the ε2 terms, we derive a single inhomogeneous equa-
tion for R2:

∂2R2

∂t02
− v2p

∂2R2

∂x02
= 1

3

∂K1

∂ϕ0
− 1

3α0

∂K2

∂ϕ0

+ 1 − α0 + β1

3β1(1 − α0)

∂K3

∂ϕ0
+ 1

3α0(1 − α0)

∂K4

∂ϕ0

− 1

3α0

�2


2

∂2K5

∂ϕ2
0

≡ K (R1;ϕ0, t1, x1).

(46)

The explicit form of inhomogeneous terms Ki (i =
1, 2, 3, 4, 5) is provided in “Appendix B”. From the
solvability condition of the inhomogeneous equation
in Eq. (46), which is also the non-secular condition for
the asymptotic expansions in Eqs. (16)–(21), we have
K = 0, that is,

2
∂

∂ϕ0

(
∂ f

∂t1
+ ∂ f

∂x1
+ �0

∂ f

∂ϕ0
− �1 f

∂ f

∂ϕ0

−�2
∂2 f

∂ϕ2
0

+ �3
∂3 f

∂ϕ3
0

)
= 0. (47)

Finally, through variable transformation,

τ ≡ εt, ξ ≡ x − (vp + ε�0)t, (48)

the KdVB equation for nonlinear propagation in the
far-field can be obtained as follows:

∂ f

∂τ
− �1 f

∂ f

∂ξ
− �2

∂2 f

∂ξ2
+ �3

∂3 f

∂ξ3
= 0. (49)

Here,�0,�1,�2 and�3 represent the advection, non-
linear, attenuation, and dispersion effects, respectively.
The explicit forms of the coefficients �i (i = 0, 1, 2, 3)
can be expressed as

�0 = − V 2

6α0

�2


2 (1 − α0), (50)

�1 = − 1

6

[
k1 − k2

α0
+ (1 − α0 + β1)k3

β1(1 − α0)
+ k4

α0(1 − α0)

−�2


2

2k5
α0

]
, (51)

�2 = 1

6α0
(4μ + 4κs), (52)

�3 = �2

6α0
, (53)

where the explicit forms of ki (i = 1, 2, 3, 4, 5) can be
written as:

k1 = 6(2 − s1) + 2s2(3 − s1),

k2 = −2α0s1s3,

k5 = 
2

�2

[
3γ (3γ + 1)pG0

2

−
(

�2


2 − 3γ pG0

)
N21 − N 2

1 + 1

N1 − 1

]
,

k̂ = (β1 + β2)(s2 − s3)s1 − β1(s
2
2 − s23 ),

k3 = k̂ + 3γ pG0(s1 − 3γ − 1),

k4 = −α0k̂ + α0s1s4 − 2(1 − α0)s
2
3 − 2α0s1s3.

From this result, it is apparent that �0 is negative
while�2 and�3 are positive. However, the sign of�1

is challenging to analyze; this case is evaluated with
some examples in Sect. 4. A comparison with our pre-
vious results for the uncoated bubbles reveals certain
discrepancies in the expressions of k5 of �1 and �2.
The difference in k5 of �1 originates from the com-
plicatedMarmottant–Gompertz surface tensionmodel.
Moreover, the difference in �2 arises from the incor-
poration of the shell dilatational viscosity κ∗

s , which
leads to the additional nondimensional term κs, and
the use of the modified Rayleigh–Plesset equation in
Eq. (7) results in the omission of term−�3V/(6α0


2).
Notably, if we had followed the procedure presented in
our previous paper using the Keller–Miksis equation
to describe the bubble oscillation instead of the mod-
ified Rayleigh–Plesset equation, this term would have
reappeared. Although the expressions for �0 and �3

are identical to those in our previous studies, these two
coefficients implicitly depend on the presence of the
shell through the change in the eigenfrequency ω∗

B.
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Fig. 3 Coefficients of the KdVB equation versus initial void
fraction �i (α0) curves for four different cases: elastic region
(σ ∗

0 = 0.036: blue), buckled region (σ ∗
0 = 0.001: yellow), rup-

tured region (σ ∗
0 = 0.071: green) and uncoated case (red) for

R∗
0 = 1.5µm, κ∗

s = 7.5×10−9 kg/s, γ = 1.07, c∗
L0 = 1.5×103

m/s, p∗
L0 = 101325 Pa, μ∗ = 0.001 Pa · s, ρ∗

L0 = 1000 kg/m3,
β1 = β2 = 1/2, ε = 0.0225 and 
 = 1. The high void fractions
are graphed to demonstrate the behavior of the solutions

4 Discussion

4.1 Effect of shell

In this section, the effect of the initial surface tension
on the coefficients of the derived KdVB equation is
first investigated. For all the numerical calculations pre-
sented below, we set vp = 1 because our method can-
not predict the typical speed of sound in a bubbly liquid
U∗. Figure 3 shows the coefficients versus the initial
void fraction for the uncoated bubbles case (red) and
three cases for lipid-shell encapsulated bubbles (i.e.,
near the buckled state, in elastic state, and near the
ruptured state). The parameters used for each case are
listed in Table 1. It should be noted that, in our calcula-
tion, the elasticity coefficient appears in denominators
in certain relations and therefore zero value will make
the program yields error. Here, since we would like to
use the same model for every case (even for uncoated
case) to avoid any unnecessary differences, the shell
elasticity for uncoated bubble case is nonzero. Even
though uncoated bubble case has shell elasticity, the
contribution is neglegible and the result for uncoated
bubble case is the same with our previous studies [86].
In this range of parameters, the sign of �1 is positive
for all the cases. Furthermore, �0 diverges rapidly as
gas fraction goes to zero. This behavior arises from
the divergence of typical wave velocity U∗ chosen for

Table 1 Parameters used in the followingdiscussion of the effect
of initial surface tension

Case σ ∗
0 [N/m] χ∗[N/m] ω∗

B [rad/s]

Buckled 0.001 0.5 1.57 × 107

Elastic 0.036 0.5 2.81 × 107

Ruptured 0.071 0.5 1.62 × 107

Uncoated 0.072 0.0001 1.55 × 107

vp = 1. For all terms except attenuation term �2,
the difference between the ruptured case (green) and
the uncoated case (red) is relatively small. Moreover,
the shell enhances all the effects of wave propagation,
and for a larger void fraction, the absolute values of
the coefficients decrease, although at different rates. It
should be noted that, inmedical applications and exper-
imental studies, the void fraction is of the order of 10−6.
Although a higher void fraction is difficult to achieve in
experiments and applications, we draw graphs at very
high void fractions to illustrate the behavior of the solu-
tions.

To investigate the effect of the initial surface tension
σ ∗
0 onwave propagation, graphs ofσ ∗

0 versus�i for dif-
ferent initial void fractions α0 are plotted as solid lines
in Fig. 4. The dashed line in Fig. 4 depicts the result
of the coefficients �i subtracted by its counterpart in
the uncoated bubbles case (at α0 = 0.05). Since for
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Fig. 4 Coefficients of theKdVBcoefficient versus initial surface
tension�i (σ

∗
0 ) curves of three different void fraction:α0 = 10−6

(blue), α0 = 0.01 (orange) and α0 = 0.05 (green). The effects of
the shell at α0 = 0.05 are indicated in the form of a red dashed

line Shell effect is defined as �i subtracted by its counterpart in
the uncoated bubbles case. The other parameters are same with
Fig. 3. The high void fractions are graphed to show the behavior
of the solutions

all σ ∗
0 , the coefficients of the KdVB equation for the

uncoated bubble case do not vary, the dashed line in
Fig. 4 is the α0 = 0.05 solid curve that shifts vertically
and demonstrates the effect of the shell. From Fig. 4,
we can deduce that the effect of the shell is relatively
insignificant for the advection effect �0 near buckled
and ruptured state, and dispersion effect �3. However,
for the attenuation effect�2, the effect of the shell near
buckled and ruptured state is significant. Moreover, for
the nonlinear effect�1, the effect of the shell is themain
component. Another observation is that for the attenu-
ation term �2 and dispersion term �3, the coefficients
vary insignificantly in the linear regime. In the linear-
buckled and linear-ruptured transition regimes, σ ∗

0 N1

and σ ∗
0 N21 (i.e., the first- and second-order derivatives

of the surface tension at R∗/R∗
0 = 1) change rapidly,

which may explain this tendency. From the expression
of the coefficients, it is apparent that only N1 affects
the values of �0,�2,�3 through the change in ω∗

B, as
discussed in Sect. 3. Therefore, these valueswere deter-
mined by N1. The coefficient N21, however, implicitly
defines the shape of the graphs because σ ∗

0 N21 shows
the rate of change of σ ∗

0 N1. Physically, σ ∗
0 N1 shows

shell stiffness. For regions with high σ ∗
0 N1, the shells

are expected to be stiffer, making bubbles oscillation
more difficult and impeding the rate of radius change
of the bubbles. This tendency is reflected through the
attenuation term �2. As shown in Fig. 4c, the region
of low absolute value of �2 corresponds to the region

where shell stiffness is large. It should be noted that in
our study, only the attenuation effect of shell viscosity
and liquid near the bubbles are considered while other
attenuation mechanisms such as thermal or radiation
damping are neglected.

The behavior of the nonlinear term�1 is more com-
plicated and is characterized by the absence of symme-
try as in the other coefficients. Note that in the transition
regime between linear-ruptured, an insignificant uphill
region can be observed. These two features arise from
the fact that the values of�0,�2 and�3 are determined
by N1 and from the symmetry of N1, the graphs of these
coefficients are symmetrical. However, the expression
of component k5 of �1 indicates that there is also a
contribution of N21. In the transition regime from the
buckled state to the elastic state, σ ∗

0 N1 changes rapidly
from zero to χ∗ (i.e., σ ∗

0 N21 is positive), whereas in the
transition regime from the elastic state to the ruptured
state, σ ∗

0 N1 changes rapidly back to zero (i.e., σ ∗
0 N21

is negative). These rapid rates of change result in the
dominance of σ ∗

0 N21 in the nonlinear coefficient. For
reference, we drawn the ratio of (σ ∗

0 N21)/(σ
∗
0 N1) and

present the result in Fig. 5.

4.2 Effect of upper and lower limits

To investigate the effect of the upper and lower limits of
surface tension, each of the limit is removed by modi-
fying the original Marmottant–Gompertz model. First,
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Fig. 5 Ratio of second-order derivative σ ∗
0 N21 and first-order

derivative σ ∗
0 N1 of the initial surface tension at R∗/R∗

0 = 1 for
bubble radius R∗

0 = 1.5 µm and shell elasticity, χ∗ = 0.5 N/m

Table 2 Parameters used in the study of removing the upper and
lower limits of surface tension

Case A
[N/m]

σ ∗′
c

[N/m]
σ ∗′
0

[N/m]
χ∗′

[N/m]

Remove upper limit – 800 σ ∗
0 400

Remove lower limit 800 σ ∗
c + A σ ∗

0 + A 3000

the upper limit is removed by setting asymptote value
(i.e., free gas–water surface tension σ ∗

c ) to a higher
value while maintaining the lower limit. Second, the
lower limit is removed while maintaining the upper
limit through two steps: (i) The graph is translated down
A unit (i.e., σ ∗′ = −A + σ ∗); (ii) The values of the
surface tension (i.e., σ ∗

c and σ ∗
0 ) are set to a new value

according to A (i.e.,σ ∗
c toσ ∗′

c = σ ∗
c +A andσ ∗

0 toσ ∗′
0 =

σ ∗
0 +A). It should be noted that the change in the values

of surface tension only occurs in the expansion terms
of surface tension σ ∗ and therefore, does not affect the
zero-order term. In addition, the value of χ∗ is varied
to obtain a good fit to the elastic region of the original
model. The new parameters are listed in Table 2.

Themodifiedmodels, after the removal of the limits,
are shown in Fig. 6. Notably, since the Marmottant–
Gompertz model is based on the Gompertz function,
it uses three parameters: an asymptote parameter, a
displacement along the horizontal-axis parameter, and
a growth rate parameter. The Marmottant–Gompertz
model varies these three parameters through (σ ∗

0 , σ ∗
c

and χ∗), and only two parameters can be set since we
have already fixed σ ∗

0 . This results in high values of χ
∗′

used in this section. Moreover, we cannot find a set of
parameters that can remove both the upper and lower
limits with which the linear region is comparable with

the original model. Therefore, a direct comparison for
the case of the surface model without upper and lower
limits cannot be achieved in this study, and readers are
referred to our previous papers [77–79] for the results
of the analysis using the Church–Hoff shell model.

In Figs. 7 and 8, the results for the upper-limit-
removed case and original case are illustrated as dashed
curves and solid curves, respectively. In Fig. 7, there
is a shift in the ruptured case toward a higher abso-
lute value for �0,�1, and �3, whereas for the atten-
uation term �2, the ruptured case moves toward a
smaller absolute value. The relatively small differences
in �0,�2, and �3 for elastic lines and buckled lines
between two cases may arise from the small discrepan-
cies between the upper-limit-removed model and the
original model, specifically the value of σ ∗

0 N1 (i.e.,
the slope of the graph). However, the considerable dif-
ference in the nonlinear coefficient �1 might be the
result of two factors: the difference in σ ∗

0 N1 and the
difference in σ ∗

0 N21. Because the value and variation
of σ ∗

0 N1 are insignificant, the difference in σ ∗
0 N21 for

each case is dominant in determining the difference in
�1, as mentioned in Sect. 4.1. In Fig. 8, the case of
α0 = 10−6, 0.01 is omitted to highlight the results.
The significant shape change for all coefficients can be
explained as follows. Since the differences in σ ∗

0 N1 and
the differences in σ ∗

0 N21 between the elastic and rup-
tured regimes are small for upper-limit-removed case,
the curves of coefficients flatten in the region with a
relatively large value of σ ∗

0 . This illustrates our discus-
sion of the effects of σ ∗

0 N1 and σ ∗
0 N21 on the wave

propagation coefficients.
In Figs. 9 and 10, the results for the lower-limit-

removed case and original case are illustrated as dashed
curves and solid curves, respectively. In Fig. 9, the
buckling curves vary significantly while the elastic and
rupture curves do not vary significantly for�0,�2 and
�3. This is expected owing to the dependence of those
curves on the slope of σ ∗. By removing the lower limit,
the slopeofσ ∗ (σ ∗

0 N1) near the buckled regionbecomes
larger than the original case, explaining the lower dis-
sipation absolute value for the buckling curve, since
a stiffer shell makes bubbles harder to compress. The
notable differences of the �1 curves can be explained
similarlywith the upper-limit-removed case. In Fig. 10,
the �i (σ

∗
0 ) curves are plotted. A similar trend with the

upper-limit-removed case can be observed. However,
in this case the curves flatten in the region with a rela-
tively large σ ∗

0 value.
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Fig. 6 Comparison of surface tension models in different regimes. The original Marmottant–Gompertz model, upper limit removed
model, lower limit removed model as blue, orange, and green curves, respectively
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Fig. 7 Coefficients of the KdVB equation versus initial void
fraction �i (α0) curves for four different cases: elastic region
(σ ∗

0 = 0.036: blue), buckled region (σ ∗
0 = 0.001: yellow), rup-

tured region (σ ∗
0 = 0.071: green) and uncoated case (red). The

dashed curves represent the case where upper limit was removed,
and the solid curves represent the original model. The other
parameters are same with Fig. 3. The high void fractions are
graphed to demonstrate the behavior of the solutions
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Fig. 8 Coefficients of the KdVB equation versus initial surface
tension �i (σ

∗
0 ) curves of α0 = 0.05 (blue) and the effects of

the shell at α0 = 0.05 (orange). The curves denoted as “Shell
effect” represent difference of �i ’s value for coated bubble case
and that for uncoated bubble case. The dashed curves and solid

curves represent the case where upper limit was removed, and
the original model, respectively. The other parameters are same
with Fig. 3. The high void fractions are graphed to demonstrate
the behavior of the solutions

4.3 Limitations of the present model

The KdVB equation in Eq. (49) incorporates the
Marmottant–Gompertz model proposed by Gümmer
et al. [85], and a same set of parameters was used to
define and calculate the surface tension curve. Figure 5
shows that in Marmottant–Gompertz model, σ ∗

0 N21 is
an order of magnitude larger than σ ∗

0 N1. However, Sijl
et al. [48] demonstrated that σ ∗

0 N21 must be at least

three orders of magnitude larger than σ ∗
0 N1 to illus-

trate the abrupt elasticity change of the collapsing phos-
pholipid monolayer. This characteristic is crucial for
explaining the subharmonic behavior of phospholipid-

encapsulated microbubbles [48] and corresponds with
the experimentally determined value. From our analy-
sis, it is noted that a change in σ ∗

0 N21 directly changes
the value of the nonlinear coefficient �1 and affects
the tendency of �i (σ

∗
0 ) graphs. The alternative model,

which can control the slope of surface tension curve
and its rate of change, was proposed by Sijl et al. [48].
They introduced a new parameter (i.e., ζ to manipulate
σ ∗
0 N21), and the model is shown as follows:

σ ∗(R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 (R∗ < R∗
buck),

ζ ∗/2
(
R∗/R∗

buck − 1
)2

(R∗
buck < R∗ < R∗

elas),

2χ∗
max

(
R∗/R∗

0 − 1
)

(R∗
elas < R∗ < R∗

elas2),

σ ∗
c − ζ ∗/2

(
R∗/R∗

buck − R∗
rupt/R

∗
buck

)2
(R∗

elas2 < R∗ < R∗
rupt),

σ ∗
c (R∗ > R∗

rupt),

(54)

In this study, we did not use the model proposed
by Sijl et al. [48] since it requires the analysis to be
conducted for each separated region; this is because, in
this model, the surface tension is divided into different
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Fig. 9 Coefficients of the KdVB equation versus initial void
fraction �i (α0) curves for four different cases: elastic region
(σ ∗

0 = 0.036: blue), buckled region (σ ∗
0 = 0.001: yellow),

ruptured region (σ ∗
0 = 0.071: green) and uncoated case (red).

The dashed curves represent the case where the lower limit was
removed, and the solid curves represent the original model. The
other parameters are same with Fig. 3. The high void fractions
are graphed to demonstrate the behavior of the solutions

regions, which are expressed using different equations.
Furthermore, in each separated region, there may not
be sufficient information about the other regions. For
example, in the region of R∗

elas2, there is no information
about the upper limit (i.e., σ ∗

c ).
Additionally, the KdVB equation derived in this

study neglects the contributions of several factors. For
instance, the effect of the bubble–bubble interaction,
[96–98] that changes the resonance frequency of the
bubbles, can alter the coefficients of the KdVB equa-
tion. Such interactions have been shown to affect the
oscillation of themicrobubbles, resulting inmilder pul-
sation, and reduction in minimum pressure threshold
at resonance [99,100]. Furthermore, Sojahrood et al.
[76,101] proved theoretically and experimentally that
the bubble–bubble interaction is crucial even at low
concentrations and influences the pressure-dependent
attenuation and sound speed of the bubbly liquid sig-
nificantly. This effect explains the increase in scattering
power until a plateau with increasing void fraction and
then decrease, as predicted in [55] and observed exper-
imentally in [102]. Therefore, the bubble–bubble inter-

action will be addressed in future studies, particularly
for the void fraction curves.

Certain assumptions mentioned in Sect. 2, such as
the initial uniform bubble radius distribution, thermal
effect, and drag force acting on the bubbles for uncoated
bubbles, have been considered in our previous stud-
ies [94,103,104]. Since the inclusion of the aforemen-
tioned effects may obscure the effects of buckling and
rupture, these effects are excluded from this study.

5 Conclusions and prospect for future research

Using multiple-scale analysis for the weakly nonlinear
propagation of one-dimensional ultrasound,we derived
a KdVB equation. This equation characterizes wave
propagation based on advection, nonlinear, attenuation,
and dispersion effects. The analysis showed that shell
with buckling and rupture phenomena increases the
absolute values of all the effects through the increase
in eigenfrequency caused by the elastic coefficient and
variation of surface tension value.Moreover, the behav-
ior of the nonlinear term is significantly affected by the
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Fig. 10 Coefficients of the KdVB equation versus initial sur-
face tension �i (σ

∗
0 ) curves of α0 = 0.05 (blue) and the effects

of the shell at α0 = 0.05 (orange). The curves denoted as “Shell
effect” represent difference of �i ’s value for coated bubble case
and that for uncoated bubble case. The dashed curves and solid

curves represent the case where the lower limit was removed and
original model case, respectively. The other parameters are same
with Fig. 3. The high void fractions are graphed to demonstrate
the behavior of the solutions

rate of change of the elastic coefficient. For the dis-
persion terms, the shell contribution is relatively small,
whereas for the attenuation, the contribution ismedium,
more prominent near buckled and ruptured states, and
for nonlinear term the contribution of the shell is dom-
inant.

From these results, a basic understanding of the
effect of the phospholipid shell on the nonlinear propa-
gation of ultrasound was obtained. In the future, analy-
sis of ultrasound propagation incorporating other shell
models and other assumptions, such as bubble–bubble
interaction and effect of non-Newtonian fluid [52],
will be conducted. Numerical simulations, evaluation
of the stability of solutions, and inclusion of elastic
continuum mechanics, such as plastic deformation and
anisotropy [41], will also be considered. Finally, a com-
prehensive model including the investigated assump-
tions will be proposed.
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Appendices

A Marmottant–Gompertz model

The full form of Marmottant–Gompertz model [85] is
given as follows:

σ ∗ =σ ∗
c exp

{
ln

(
σ ∗
0

σ ∗
c

)
exp

[
2eχ∗

σ ∗
c

√
1+ σ ∗

c

2χ∗

(
R∗
0

R∗
buck

− R∗

R∗
buck

)]}
,

(A.1)

where σ ∗
0 is the initial surface tension at R∗ = R∗

0 , σ
∗
c

is the surface tension of the clean gas–liquid interface,
χ∗ is the surface elasticity of the lipid monolayer, and
R∗
buck can be expressed as:

R∗
buck = R∗

0√
1 + σ ∗

0 /χ∗ . (A.2)

Although not shown in Eq. (A.1), it is helpful to show
the radius at which the bubble begins to rupture, that
is, rupture radius:

R∗
rupt = R∗

buck

√
1 + σ ∗

c

χ∗ = R∗
0

√
1 + σ ∗

c /χ∗
1 + σ ∗

0 /χ∗ . (A.3)

By using equation for balance of the normal stress in
Eq. (11) and modified Rayleigh–Plesset equation in
Eq. (7), we have the following equation:

ρ∗
L0R

∗D2
GR

∗

Dt∗2
+ ρ∗

L0
3

2

(
DGR∗

Dt∗

)2

= p∗
G − p∗

L

−2σ ∗(R∗)
R∗ − 4μ∗

R∗
DGR∗

Dt∗
− 4κ∗

s

R∗2
DGR∗

Dt∗

+ R∗

c∗
L0

DG

Dt∗
p∗
G. (A.4)

Finally, we can express the surface tension term in
Eq. (A.4) by Eq. (A.1) and we obtain the full form
of the equation for spherical oscillations of bubbles.

B Inhomogeneous terms

The inhomogeneous terms Ki (i = 1, 2, 3, 4, 5) in Eq.
(46) are given by

K1 = − ∂uG1
∂x1

+ ∂

∂t1
(3R1 − α1)

+ 3
∂R1(α1 − 2R1)

∂t0
+ ∂

∂x0
[uG1(3R1 − α1)], (B.1)

K2 = (1 − α0)
∂uL1
∂x1

− α0
α1

∂t1
− α0

∂α1uL1
∂x0

+ (1 − α0)
∂ρL1

∂t0
, (B.2)

K3 = 3γ pG0
∂R1

∂x1
− β1

∂

∂t1
(uG1 − uL1)

− β1

(
uG1

∂uG1
∂x0

− uL1
∂uL1
∂x0

)

− β1α1
∂

∂t0
(uG1 − uL1) − β2(uG1 − uL1)

∂α1

∂t0

+ 3γ pG0

[
α1

∂R1

∂x0
− (3γ + 1)R1

∂R1

∂x0

]
, (B.3)

K4 = −(1 − α0)

(
∂pL1
∂x1

+ ∂uL1
∂t1

)

+ β1α0
∂

∂t1
(uG1 − uL1) + α0

∂α1uL1
∂t0

+ β1α0

(
uG1

∂uG1
∂x0

− uL1
∂uL1
∂x0

)

+ β1α0α1
∂

∂t0
(uG1 − uL1) + β2α0(uG1 − uL1)

∂α1

∂t0

+ α0α1
∂pL1
∂x0

− (1 − α0)
∂u2L1
∂x0

+ α0

(
pL1 + �2


2 R1

)
∂α1

∂x0
, (B.4)

K5 = 9γ 2 + 3γ − 2(�2/
2 − 3γ pG0)(N21 − N 2
1 + 1)/(N1 − 1)

2�2/
2 R2
1

− 
2 ∂2R1

∂t20
− 4(μ + κS)


2

�2

∂R1

∂t0
. (B.5)
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