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Abstract During the COVID-19 pandemic, one of
the major concerns was a medical emergency in human
society. Therefore it was necessary to control or restrict
the disease spreading among populations in any fruit-
ful way at that time. To frame out a proper policy for
controlling COVID-19 spreading with limited medical
facilities, here we propose an SEQAIHR model having
saturated treatment. We check biological feasibility of
model solutions and compute the basic reproduction
number (R0). Moreover, the model exhibits transcriti-
cal, backward bifurcation and forward bifurcation with
hysteresis with respect to different parameters under
some restrictions. Further to validate the model, we fit
it with real COVID-19 infected data of Hong Kong
from 19th December, 2021 to 3rd April, 2022 and esti-
mate model parameters. Applying sensitivity analysis,
we find out the most sensitive parameters that have an
effect on R0.We estimate R0 using actual initial growth
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data of COVID-19 and calculate effective reproduction
number for same period. Finally, an optimal control
problem has been proposed considering effective vac-
cination and saturated treatment for hospitalized class
to decrease density of the infected class and to mini-
mize implemented cost.
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1 Introduction

COVID-19 is a dangerous disease, first found in
December 2019 and after that it spreads throughout the
world rapidly. On January 7, 2020, novel coronavirus
was identified as the cause behind these disease [1].
WHO reported identification of this virus, warned
world about its emergence and named as SARS-CoV-2
[2,3]. Symptoms of this disease are dry cough, fever,
and tiredness. Some patients may have pains and aches,
nasal congestion, diarrhea or sore throat. Some people
may be infected by very mild symptoms. About 80 %
people recover from COVID-19 without hospital treat-
ment [4]. Self-isolation is an important policy to avoid
COVID-19 transmission in community.

In the preliminary stages, number of patients dou-
bled within a little more than a week. Bymid-February,
2020 the virus outbreak affected the USA, Euro-
pean countries like France, Italy, Germany, Spain,
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UK, middle eastern countries like Iran. On March,
2020 WHO declared COVID-19 as a pandemic out-
break [5]. According to reports, almost one-third of
population was under lockdown to slow down the dev-
astating effects of the pandemic [6]. COVID-19 pan-
demic shows immense negative affect on socioeco-
nomic, education and other global aspects. Medical
emergency becomesmore gruesome day by day. There-
fore, it is necessary to formulate a model to describe
development and disease transmission. The model will
also support policymakers to take decision for control-
ling disease based on the effective assumptions [7,8].

Mathematical modeling of such pandemics is very
operational to estimate the outcome. For many years,
researchers are usingmathematical models to deal with
infectious disease outbreaks and as a result, there are
different kinds of epidemic models. The most well-
known epidemic model is the SIR model also known as
Kermack–McKendrick [9] model. The infectious dis-
eases like measles, mumps, rubella etc., create perma-
nent immunity in the system which gives us the recov-
ered (R) portion of the population. The diseases like
tuberculosis have incubation period where patients are
asymptomatic but infected and this portion of the pop-
ulation are considered in the model as the exposed (E)

individuals [10]. There aremany other differentmodels
that have been formulated over the years. To investigate
the COVID-19 disease dynamics, authors have been
formulated large number of models and gave guide-
lines to control it [11–19].

Biswas et al. [11] proposed an SE AI Q H R model
to study COVID-19 outbreak in India. They discussed
coronavirus dynamics and some interventions poli-
cies to control the spread of the disease. In [12],
authors considered an SE I R model to show the
severity of COVID-19 in Italy. They showed affect of
panic/tension/anxiety on population for the first wave.
Ghosh et al. [13]introduced an SE Q I R model with
saturated treatment and studied COVID-19 scenario
in Italy. In [14], authors discussed effect of vaccina-
tion and crowding effect on coronavirus disease. To
study transmission dynamics and control strategies for
COVID-19 in India, Mondal and Khajanchi [15] pro-
posed an SAIQJR model. Authors divided susceptible
populations into two classes, namely conscious and
unconscious susceptibles in [16]. They also considered
asymptomatic, symptomatic, hospitalized and recov-
ered population to frame out a COVID-19 model. Ali
et al. [17] studied a fractional COVID-19 model with

vaccination. In [18], authors discussed the spread of
COVID-19 among health workers in Iran and showed
the effect of vaccination on mitigation of COVID-19
among health workers. In [19], authors proposed a
robust sliding mode controller to mitigate COVID-19
spreading through social distancing, medical treatment
and vaccination.

Here we extend the work of [11], where authors pro-
posed an SE AI Q H R model to examine the scenario
of spreading disease in India. In [11], authors supposed
that susceptible populations affected by interaction
with symptomatic infected, asymptomatic infected,
quarantined and hospitalized populations, but they did
not consider any type of treatment for hospitalized
population. Moreover, asymptomatic people can move
to symptomatic class after showing symptoms, this
is also overlooked. Authors considered COVID-19-
induced death in symptomatic, quarantine and hospital-
ized class, but in reality symptomatic infected and quar-
antined people move to hospitalized class after heav-
ier infection, therefore it is not necessary to consider
COVID-19-induced death rate in above-mentioned two
classes.

In this paper, we propose an SEQAIHR model to
examine COVID-19 transmission dynamics saturated
treatment for hospitalized class and validatemodelwith
infected data of HongKong from 19th December, 2021
to 3rd April, 2022. Here we suppose that susceptible
people are infected by interaction with asymptomatic
infected, symptomatic infected andhospitalized classes
only as the number of infected by quarantine class is
negligible, for this reasonherewedonot consider infec-
tion produced by quarantined class. We consider effec-
tive vaccination for susceptible population in optimal
control problem, which is very realistic in current sit-
uation. Also, we suppose some parts of asymptomatic
population move to infected class after showing symp-
toms and we consider COVID-19-induced death rate
only for hospitalized class, since only severely infected
people are moved to hospitalized class.

The main findings of this paper are given in below:

1. The model undergoes through transcritical, back-
ward bifurcation and forward bifurcation with hys-
teresis at R0 = 1.

2. Validate model with COVID-19 infected data of
HongKong from 19th December, 2021 to 3rd April,
2022, estimate model parameters and identify sen-
sitive parameters.
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3. R0 is estimated using actual COVID-19 infected
data and R(t) is found for same period.

4. Finallywe consider an optimal control problemwith
vaccination to find out optimal value of the consid-
ered controls to reduce or prevent the influence of
the disease among population and minimize imple-
mented cost.

Organization of the paper is as follows: We formu-
late an SEQAIHR model in Sect. 2. In Sect. 3, bio-
logical properties of proposed model have been dis-
cussed. R0 and different types equilibria are addressed
in Sect. 4. In Sect. 5, we show stability of disease
free and endemic equilibria. We examine transcritical,
backward and forward bifurcation with hysteresis of
the considered model in Sect. 6. In Sect. 7, we val-
idate model with COVID-19 infected data of Hong
Kong from 19th December, 2021 to 3rd April, 2022
and estimate model parameters. In Sect. 8, sensitivity
analysis of proposed model has been studied to find
out most effective model parameters which have effect
on R0. In Sect. 9, we estimate R0 from initial growth
data of COVID-19 and find R(t). An optimal con-
trol problem has been constructed to identify optimal
value of controls to minimize influence of the disease
in Sect. 10. Finally, we thoroughly discuss about this
study in Sect. 11.

2 Model formulation

In this paper, our intention is to propose a model
for discussing the devastate phenomenon of the world
due to gruesome spreading of coronavirus. The out-
break of novel coronavirus takes gigantic form which
is intensely denunciation to mankind. Initially there
was no proper medical treatment for coronavirus but
many actions were being taken by government such
as lockdown, social distancing, individual hygienic
cautions etc. Concerning all the matters, we adopt a
deterministic model to predict the mechanism of coro-
navirus disease transmission as well as implementa-
tion of intervention strategies to combat the severe
outbreak of this pandemic. Based on health situa-
tions, we split total population (N ) into seven dif-
ferent compartments, namely susceptible populations
(S) , exposed populations (E) , quarantined popula-
tions (Q), asymptomatic infected populations (A) ,

symptomatic infected populations (I ) , hospitalized
populations (H) and recovered populations (R) i.e.
N (t) = S(t)+E(t)+Q(t)+ A(t)+ I (t)+H(t)+R(t)
at any t . To formulate the deterministic model, the fol-
lowing assumptions are taken into consideration:

1. Constant recruitment rate (C) in susceptible popu-
lation.

2. Normal death rate (μ) in every class.
3. Susceptible population becomes exposed after inter-

action with asymptomatic, symptomatic and hospi-
talized population at a proportion β1, β2, β3, respec-
tively.

4. Exposed populations move to quarantined, asymp-
tomatic and symptomatic infected compartment at
a proportion α1, α3 and α2, respectively.

5. Quarantined populations are taken under obser-
vation, when symptoms are developed, they are
immediately transferred to hospitalized compart-
ment at proportion γ1 otherwise they leave quaran-
tined compartment at rate γ2 and enter to recovered
compartment.

6. Symptomatic infected compartment moves to hos-
pitalized compartment at proportion of δ1. On the
other hand, if symptoms are reduced with days for
self-immunity of human system, they are moved to
recovered compartment at proportion δ2.

7. The asymptomatic population moves to recovered
compartment at proportion ν1 and they transform
to symptomatic infected compartment at proportion
ν2.

8. Since a huge number of humans are infected in very
short period of time and due to limited medical
resources, required treatment may be delayed. To
include the effect of treatment delay, here we con-

sider a saturated treatment function
aH

1 + bH
where

a and b are cure rate and delayed parameter of treat-
ment, respectively. The hospitalized class cure from
the disease at rate σ for self-immunity and die for
disease at proportion d.

Incorporating all the assumptions given above, the
disease transmission dynamics of coronavirus is pre-
sented inFig. 1 and the corresponding differential equa-
tions are given in Eq. (1).
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Fig. 1 Flow diagram of COVID-19 model as proposed in (1)
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dS

dt
= C − S(β1 A + β2 I + β3H)

N
− μS ≡ f1 (say)

dE

dt
= S(β1 A + β2 I + β3H)

N
− (α1 + α2 + α3 + μ)E

≡ f2 (say)
dQ

dt
= α1E − (γ1 + γ2 + μ)Q ≡ f3 (say)

dA

dt
= α3E − (ν1 + ν2 + μ)A ≡ f4 (say)

dI

dt
= (α2E + ν2 A) − (δ1 + δ2 + μ)I ≡ f5 (say)

dH

dt
= (γ1Q + δ1 I ) − aH

1 + bH
− (σ + d + μ)H

≡ f6 (say)
dR

dt
= (γ2Q + δ2 I + ν1 A + σ H) + aH

1 + bH
− μR

≡ f7 (say)

(1)

with initial conditions S(0) > 0, E(0) ≥ 0, Q(0) ≥ 0,
A(0) ≥ 0, I (0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0 at any
instant t ≥ 0 and model parameters in model system
(1) are given in the following Table 1.

3 Basic properties of mathematical model

Here we show all solutions of the proposed model
(1) satisfying initial conditions are non-negative and
bounded for any time t ≥ 0. Adopted mathematical

model is biologically valid if all solutions are non-
negative and bounded at any instant for non-negative
initial conditions. The non-negativity and boundedness
are established in Theorems 1 and 2, respectively.

Theorem 1 All solutions {S(t), E(t), Q(t), A(t), I (t),
H(t), R(t)} of model system (1) are non-negative satis-
fying initial conditions S(0) > 0, E(0) ≥ 0, Q(0) ≥ 0,
A(0) ≥ 0, I (0) ≥ 0, H(0) ≥ 0, R(0) ≥ 0 at any
instant t ≥ 0.

Proof Integrating first equation of the model (1) and
satisfying initial conditions, we have

S(t) = S(0) exp

(

−
∫ t

0

{
(β1 A + β2 I + β3H)

N
+ μ

}

du

)

+
∫ t

0
C exp

(∫ v

0

{
(β1 A + β2 I + β3H)

N
+ μ

}

du

)

dv

× exp

(

−
∫ t

0

{
(β1 A + β2 I + β3H)

N
+ μ

}

du

)

> 0.

Hence S(t) is positive ∀ t > 0. Similarly, consider-
ing other equations of model system (1) using the
same procedure one can easily show E(t) ≥ 0,
Q(t) ≥ 0, A(t) ≥ 0, I (t) ≥ 0, H(t) ≥ 0,
R(t) ≥ 0 at any time t ≥ 0. Therefore all solu-
tions {S(t), E(t), Q(t), A(t), I (t), H(t), R(t)} of sys-
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Table 1 Description of model parameters

Parameter Description

C Birth rate of the population

β1 Infection proportion for asymptomatic
infected compartment

β2 Infection proportion for symptomatic
infected compartment

β3 Infection proportion for hospitalized
compartment

α1 Proportion in which exposed are
quarantined

α2 Proportion in which exposed are
symptomatic infected

α3 Proportion in which exposed are
asymptotically infected

μ Natural death rate of population

γ1 Proportion in which quarantined are
hospitalized

γ2 Proportion in which quarantined are
recovered

ν1 Proportion in which asymptomatic
infected are recovered

ν2 Proportion in which asymptomatic
infected are symptomatically infected

δ1 Proportion in which symptomatic infected
are hospitalized

δ2 Proportion in which symptomatic infected
are recovered

σ Self-immunity rate of hospitalized class

d Disease-induced death rate of hospitalized
class

b Delayed parameter of treatment

a Cure rate due to treatment

tem (1) are non-negative satisfying initial conditions at
any time t ≥ 0. ��
Theorem 2 The closed feasible region Ω given by

Ω =
{
(S, E, Q, A, I, H, R) ∈ R

7+ :

0 < S + E + Q + A + I + H + R ≤ C

μ

}

is a positively attracting region of model system (1)
with non-negative initial condition in R

7+.

Proof Summing all equations of system (1) and noting
N = S + E + Q + A + I + H + R, we get

dN

dt
= C − μN − dH < μ

(
C

μ
− N

)

Integrating the last inequality and letting t −→ ∞, we

get N −→ C

μ
and hence N (t) ≤ C

μ
∀t ≥ 0.

Therefore set Ω is a positively invariant region pre-
sented by model (1). Hence our proposed model is bio-
logically as well as mathematically well defined in fea-
sible invariant set Ω [20]. ��

4 Basic reproduction number (R0) and different
types of equilibria

First we compute R0 of the considered COVID-19
model (1), then we describe different number of equi-
libria based on value of R0.

4.1 Basic reproduction number (R0)

R0 is a threshold quantity in disease transmission
dynamics. It helps to health planners to identify
whether disease will die out or eradicate in a popu-
lation. It is defined as the average number of secondary
infections per unit time from a single susceptible in
its entire infection period. If disease-free equilibrium
point exists, then we can compute R0 using next gen-
eration matrix approach [21,22].

Here disease-free equilibriumpoint E0

(
C

μ
, 0, 0, 0,

0, 0, 0) . According to [21,22], the new infection
matrix F and disease elimination matrix V are given
by

F =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 β1 β2 β3

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

and

V =

⎛

⎜
⎜
⎜
⎜
⎝

D0 0 0 0 0
−α1 D1 0 0 0
−α3 0 D2 0 0
−α2 0 −ν2 D3 0
0 −γ1 −δ1 0 D4

⎞

⎟
⎟
⎟
⎟
⎠

,

where D0 = α1 + α2 + α3 + μ, D1 = γ1 + γ2 + μ,
D2 = ν1 + ν2 + μ, D3 = δ1 + δ2 + μ, D4 =
a + σ + d + μ, The value of R0 is spectral radius of

FV −1 which is R0 = β1α3

D0D2
+

β2(α2D2 + α3ν2)

D0D2D3
+

β3(D1D2α2δ1 + D1α3δ1ν2 + D2D3α1γ1)

D0D1D2D3D4
.
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The interesting result is obtained from the expres-
sion of R0, it contains three separate expressions arise
from proportion of infection for asymptomatic com-
partment (A), proportion of infection for symptomatic
compartment (I ) and last term is proportion of infec-
tion for hospitalized compartment (H).

4.2 Different types of equilibria

Along with E0 the system contains the endemic equi-
librium E∗(S∗, E∗, Q∗, A∗, I ∗, H∗, R∗) where S∗ =
C − D0E∗

μ
, Q∗ = α1

D1
E∗, A∗ = α3

D3
E∗, I ∗ =

α2D3 + γ2α3

D2D3
E∗, E∗ = 1

ρ1

{

D4H∗ − abH∗2

1 + bH

}

,

ρ1 =
{

γ1α1

D1
+ δ1(α2D3 + γ2α3)

D2D3

}

and H∗ satisfies

the equation

e0H∗3 + e1H∗2 + e2H∗ + e3 = 0 (2)

where all coefficients ei , i = 0, 1, 2, 3 are given in
“Appendix-I”.

But from the above expression, it is very diffi-
cult to find the exact number of endemic equilibria.
For this purpose, here we find number of endemic
equilibria numerically considering the empirical val-
ues of model parameters β1 = 0.42, β2 = 0.6, β3 =
0.2, μ = 0.06, α1 = 0.08, α2 = 0.1, α3 = 0.2, γ1 =
0.15, γ2 = 0.25, δ1 = 0.15, δ2 = 0.25, ν1 =
0.2, ν2 = 0.15, a = 1.8, b = 20, σ = 0.1, d = 0.02.
In Fig. 2 we represent the I- component of differ-
ent endemic equilibrium point(s) with respect to R0.
From Fig. 2a, c it is clear that there may exist zero or
two endemic with one coincident endemic equilibrium
point for R0 < 1. Also from Fig. 2a–c there may exist
one or three or two with one coincident endemic equi-
libria for R0 > 1. The number of equilibrium point(s)
under different conditions is summarized in Lemma 1.
The results are biologically interpreted in Sect. 6.3.

Lemma 1 (i) For model (1) always exists E0.
(ii) Model (1) has no or two or one coincident

endemic equilibria for R0 < 1.
(iii) Model (1) has one or three or two with one

coincident endemic equilibria for R0 > 1.

5 Stability analysis of different equilibria

Here we show stability of E0 and E∗ depending on
basic reproduction number (R0). Now Jacobian matrix
of model (1) at E∗(S∗, E∗, Q∗, A∗, I ∗, H∗, R∗) is
denoted by JE∗ and its expression is given by,

JE∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−a1 0 0 −a2 −a3 −a4 0
a1 −D0 0 a2 a3 a4 0
0 α1 −D1 0 0 0 0
0 α3 0 −D2 0 0 0
0 α2 0 ν2 −D3 0 0
0 0 γ1 δ1 0 −a5 0
0 0 γ2 δ2 ν1 a6 −μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3)

wherea1 = (β1A∗ + β2 I ∗ + β3H∗)
N

+μ,a2 = S∗β1

N
,

a3 = S∗β2

N
, a4 = S∗β3

N
, a5 = a

(1 + bH∗)2
+ (δ+d +

μ), a6 = σ + a

(1 + bH∗)2
.

The eigenvalues of Jacobian matrix JE0 at E0 are
−μ, −μ and remaining five are roots of equation:

x5 + c1x4 + c2x3 + c3x2 + c4x + c5 = 0 (4)

where the coefficients ci , i = 1, 2, 3, 4, 5 and some
part of theorem given in “Appendix-II”.

If R0 < 1 then all coefficients of Eq. (4) are positive
that means there is no change in sign for R0 < 1. By
Descartes rule of sign we can conclude that Eq. (4) has
no positive root if R0 < 1 i.e. all eigenvalues of JE0 are
negative for R0 < 1. So, E0 is locally asymptotically
stable for R0 < 1 otherwise E0 is unstable.

The above result is summarized in the following
corollary.

Corollary 1 For R0 < 1, E0 is locally asymptotically
stable and unstable otherwise.

Now we consider a Lyapunov function [23] as,
L(S, E, Q, A, I, H, R)= E + Q + A + I + H which
is positive invariant for all members of the set Ω .

T hen
dL

dt
= dE

dt
+ dQ

dt
+ dA

dt
+ dI

dt
+ dH

dt

i.e.
dL

dt
= (ν1 + μ) (Re − 1) A + (δ2 + μ)

(
R f − 1

)

I + (a + σ + d + μ)
(
Rg − 1

)
H − μE − μQ where

Re = β1

δ2 + μ
< R0, R f = β2

ν1 + μ
< R0, Rg =

β3

a + σ + d + μ
< R0.
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Fig. 2 Number and nature
of endemic equilibria with
respect to R0 for a C = 4, b
C =9, c C = 15 and other
parameters are given above
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Therefore
dL

dt
< 0 if R0 < 1 and hence by Lya-

punov’s stability theorem it follows that E0 is globally
stable [24]. This result is summarized in the following
corollary.

Corollary 2 For R0 < 1, E0 is globally asymptoti-
cally stable.

It is clear from above two theorems that for R0 < 1
then the model (1) is stable that means disease will
eradicate from the system.

Next we shall discuss stability of endemic equilib-
rium E∗.

One of the characteristic root of JE∗ is −μ and other
roots satisfy the following equation:

x6 + b1x5 + b2x4 + b3x3 + b4x2 + b5x + b6 = 0

(5)

where bi , i = 1, 2, 3, 4, 5, 6 are given in “Appendix-
III”.

Since one eigenvalue of JE∗ is negative, therefore
system (1) is asymptotically stable at E∗ if other roots
of the Eq. (5) are negative real or have negative real
part. The stability can be theoretically verified using
Routh–Hurwitz criteria [25] but we are omitting this

due to the large expressions. This result is summarized
in the following corollary.

Corollary 3 For R0 > 1, E∗ is locally asymptotically
stable and unstable otherwise.

6 Bifurcation analysis

In this section, we discuss transcritical bifurcation,
backward bifurcation about R0 = 1 and forward bifur-
cation with hysteresis. The condition R0 = 1 equiva-
lent to a = a[T B] where

a[T B] = β3(D1D2α2δ1+D1α3δ1ν2+D2D3α1γ1)

D0D1D2D3D4(

1 − β1α3

D0D2
−β2(α2D2+α3ν2)

D0D2D3

)−1

− (d + σ + μ)

or β2 = β
[B B]
2 where β

[B B]
2 = D0D2D3

(α2D2+α3ν2)
[1−

β1α3

D0D3
−β3(D1D3α2δ1+D1α3δ1ν2+D2D3α1γ1)

D0D1D2D3D4

]

.

In Theorem 3we shall investigate transcritical bifur-
cation and Theorem 4 we shall examine backward
bifurcation.
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6.1 Transcritical bifurcation

Theorem 3 Model (1)goes through transcritical bifur-
cation about E0 as cure rate parameter (a) passes criti-
cal value a = a[T B] with
2μ(v2+v3+v4+v5+v6+v7)(β1v4+β2v5+β3v6)

C
�= 2abv26w6.

Proof In order to check occurrence of transcritical
bifurcation at E0 of model (1), we need to verify
transversality conditions of Sotomayor’s theorem [26].
First we consider a function f (S, E, Q, A, I, H, R)

with seven components given as below:

f (S, E, Q, A, I, H, R) = (
f1 f2 f3 f4 f5 f6 f7

)T

(6)

where f1, f2, f3, f4, f5, f6, f7 are defined in Eq. (1).
The determinant value of JE0 is D0D1D2D3D4(1−

R0), which vanishes at a = a[T B]. Thus, at a =
a[T B](equivalently R0 = 1), JE0 has a zero eigenvalue.

Let V = (v1 v2 v3 v4 v5 v6 v7)
T and W =

(w1 w2 w3 w4 w5 w6 w7)
T be two eigenvectors

of JE0(a
[T B]) and JT

E0
(a[T B]), respectively, for the

zero eigenvalue then v1 = − μ

D0
, v2 = 1,

v3 = α1

D1
, v4 = α3

D2
, v5 = α2D1D2 + α3ν2D1

D1D2D3
,

v6 = α1γ1D2D3 + α2δ1D1D2 + α3δ1ν2D1

D1D2D3D4
, v7 =

α1γ2D3 + α3ν1D1

μD1D3

+
[δ2D4(α2D1D3+α3ν2D1)+(σ+a)(α1γ1D2D3

+α2δ1D1D2+α3δ1ν2D1)]
μD1D2D3D4

. and

w1 = 0, w2 = 1, w3 = β3γ1
D1D4

, w4 =
β1D3D4+β2ν2D4+β3δ1ν2

D2D3D4
, w5 = β2D4+β3δ1

D3D4
, w6= β3

D4
,

w7=0. Then we get, W T fa(E0; a[T B]) = 0.
W T

(
D fa(E0; a[T B])V

)

= −β3(α1γ1D2D3 + α2δ1D1D2 + α3δ1ν2D1)

D1D2D3D2
4

�= 0.

and W T
(
D2 f (E0;μ0

1)(V, V )
)

= −2μ(v2+v3+v4+v5+v6+v7)(β1v4+β2v5+β3v6)

C
+2abv26w6 �= 0.

Thus all conditions of Sotomayor’s theorem for tran-
scritical bifurcation are satisfied, therefore model (1)
goes through transcritical bifurcation at E0 as cure rate
parameter a passes critical value a = a[T B]. ��

Fig. 3 Transcritical bifurcation diagram with respect to R0 for
the empirical values of the parameters C = 10, β1 = 0.52, β2 =
0.6, β3 = 0.35, μ = 0.82, α1 = 0.08, α2 = 0.1, α3 =
0.2, γ1 = 0.15, γ2 = 0.25, δ1 = 0.15, δ2 = 0.25, ν1 =
0.2, ν2 = 0.15, b = 20, σ = 0.1, d = 0.06. Blue, green line
corresponding to stable equilibrium points and red line corre-
sponding to unstable equilibria. (Color figure online)

In Fig. 3, we have presented the one parameter bifur-
cation diagram with respect to R0 (considering a as
inbuilt parameter). It is clear from the figure, stabil-
ity of disease free equilibrium exchanges at R0 = 1
through creation of one stable endemic equilibrium,
therefore occurrence of transcritical bifurcation is ver-
ified at R0 = 1 numerically. Biologically this result
is highly important because if a > a[T B] i.e. R0 < 1
then no disease will persist and otherwise disease will
persist in the system. Thus we get an lower value of
the cure rate due to treatment below which disease will
persistent in the system.

6.2 Backward bifurcation

Theorem 4 Model (1) has backward bifurcation at
R0 = 1 with respect to disease transmission rate β2

for symptomatic infected individuals if 2abw6v
2
6 >

2μ(v2+v3+v4+v5+v6+v7)(β1v4+β
[B B]
2 v5+β3v6)

C .

Proof To determine the necessary condition for back-
ward bifurcation theorem, Castillo–Chavez and Song
theorem [27]will be used at R0 = 1which is equivalent
to β2 = β

[B B]
2 .

Since det (JE0) = D0D1D2D3D4(1 − R0) = 0
for critical value β2 = β

[B B]
2 , therefore JE0 has

a zero eigenvalue corresponding to β2 = β
[B B]
2 .
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Fig. 4 Backward bifurcation diagram at R0 = 1 (blue, green
line corresponding to stable equilibrium points and red, magenta
line corresponding to unstable equilibrium points) for C =
10, β1 = 0.42, β3 = 0.2, μ = 0.06, α1 = 0.08, α2 = 0.1, α3 =
0.2, γ1 = 0.15, γ2 = 0.25, δ1 = 0.15, δ2 = 0.25, ν1 =
0.2, ν2 = 0.15, a = 0.3, b = 20, σ = 0.1, d = 0.02. (Color
figure online)

Let W = (w1 w2 w3 w4 w5 w6 w7)
T and V =

(v1 v2 v3 v4 v5 v6 v7) be left and right eigenvectors,
respectively, of JE0 corresponding to eigenvalue zero
where the values of wi , vi are given in Theorem 3.

The discriminant quantity used in Castillo–Chavez
and Song backward bifurcation theorem are

⎧
⎪⎪⎨

⎪⎪⎩

ψ = ∑7
k,i, j=1 wkviv j

∂2 fk

∂xi∂x j
(0, 0) = 2abw6v

2
6 − 2μ(v2 + v3 + v4 + v5 + v6 + v7)(β1v4 + β

[B B]
2 v5 + β3v6)

C

φ = ∑7
k,i=1 wkvi

∂2 fk

∂xi∂β3
(0, 0) = v4 > 0.

(7)

where x1 = S, x2 = E , x3 = Q, x4 = A, x5 = I ,
x6 = H , x7 = R.

Here, φ is always positive and by Castillo–Chavez
and Song’s theorem, system (1) experiences backward
bifurcation at R0 = 1 if ψ > 0 which is equivalent to
the condition as stated in theorem. ��

In Fig. 4, we have presented the backward bifur-
cation diagram considering R0 as bifurcation param-
eter (β2 is the inbuilt parameter). There exists a crit-
ical value of R0 (say R∗

0 = 0.9459) such that for
R∗
0 < R0 < 1 the system (1) contains two endemic

equilibrium points with lower endemic state is unsta-
ble and higher endemic state is stable. Thus disease
persists in the system R0 < 1 also. Hence the system

experiences backward bifurcation with respect to β2.
Biologically bi-stability occurs for R0 < 1. Another
importance of backward bifurcation is the eradication
of disease depends not only on R0 but also on initial
population density. Thus for R0 < 1 there is a crit-
ical value of β2 say β

[B B]
2 below which disease will

eradicate from the system.

6.3 Forward bifurcation with hysteresis

Forward bifurcation occurs when two local stable
branches exist at R0 = 1 [25]. In Fig. 2a one sta-
ble endemic equilibrium bifurcates forwardly from
R0 = 1, therefore Fig. 2a exhibits forward bifurca-
tion at R0 = 1 [25]. Now we discuss one uncommon
type bifurcation, namely forward bifurcation with hys-
teresis [28,29]. This type of bifurcation occurs when
three endemic equilibrium exist with two outer sta-
ble endemic and one inner unstable endemic in very
small region of R0 > 1 [28,29]. Figure 2a shows the
above said qualitative phenomenon therefore Fig. 2b
indicates system exhibits forward bifurcation with hys-
teresis. This type bifurcation has onemore critical case.
In Fig. 2c we see that, in very small region of R0 > 1
three endemic equilibria exist with two stable endemic
and one unstable endemic. At the same time, in very

small region of R0 < 1, similar qualitative nature of
backward bifurcation occurs therefore smaller infected
endemic is unstable and higher infected endemic is sta-
ble. These two cases combined represent forward bifur-
cation with hysteresis [28,29].

7 Model validation and parameter estimation

Here we check validity of proposed COVID-19 model
fitting it with COVID-19 infected data of Hong Kong
from 19th December, 2021 to 3rd April, 2022 [30]. In
this context, we use least square minimization tech-
nique for cumulative infected data of COVID-19 [25].
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Fig. 5 a Fitting model to cumulative cases in Hong Kong. b Residuals of the fit. c Bar diagram from 19th December, 2021 to 3rd April,
2022

The main principle for least square technique is to min-
imize sum of the square error. Model fitness will be
reasonably good if sum of the squares of the vertical
distances between real reported data and themodel pre-
dicted data are as small as possible i.e. we have to min-
imize f (ξ, n) where

f (ξ, n) =
n∑

i=1

(Yi − I (ti ))
2 ,

ξ denotes set of the model parameters, Yi denotes
cumulative real infected data for i th observation, I (ti )
denotes cumulative infected data of model prediction
for i th observation and n denotes the total days which
are used for model fitting. The cumulative model pre-
dicted data satisfies equation
dI (t j )

dt
= α2E + ν2A.

The minimization of f (ξ, n) is quite difficult for ana-
lytic procedure.We have taken help ofMATLAB fmin-
con minimization package for fitting the model and
estimating the model parameters. We consider birth
rate, normal death rate as 222.432, 0.0000322 which
are collected from [31] and COVID-19-induced death
rate as 0.00697 which is taken from [30]. Also we take
value of α2 as 0.1 as duration of incubation period lies
between 2 to 14 days. The remaining parameters are
estimated which are enlisted in second column of Table
2. The total error for estimating model parameters is
1.510 × 1011. The number of cumulative infected real
data and the model predicted data is given in Fig. 5a.
Residuals and bar diagram of the data fitting are given
in Fig. 5b, c. From the Fig. 5, we observe that the ver-
tical distances between real infected cumulative data
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Table 2 Parameter values and their sensitivity indexes

Parameter Value Source Sensitivity index

C 222.4320 human day−1 [31] −
β1 0.6886 per contact Estimated 0.3573

β2 0.7064 per contact Estimated 0.1978

β3 0.3723 per contact Estimated 0.4449

α1 0.3876 day−1 Estimated − 0.2485

α2 0.1000 day−1 Assumed 0.0946

α3 0.2072 day−1 Estimated 0.1539

μ 0.0322 ×10−3 day−1 [31] − 0.0004

γ1 0.1022 day−1 Estimated 0.1359

γ2 0.6287 ×10−5 day−1 Estimated − 0.1358

ν1 0.1142 day−1 Estimated − 0.3653

ν2 0.0271 day−1 Estimated 0.008

δ1 0.1206 day−1 Estimated − 0.0918

δ2 0.0562 day−1 Estimated − 0.1059

σ 0.0382 day−1 Estimated − 0.1837

d 0.0069 day−1 [30] − 0.0335

b 0.151669 ×10−3 Estimated −
a 0.0474 day−1 Estimated − 0.2276

and model predicted cumulative infected data are very
small; therefore we can decide that fitness of model is
good. Also residuals are randomly distributed in Fig.
5b which indicates data is fitted well [25].

8 Sensitivity analysis

Since from December 2021, the number of daily
COVID-19 infected people is increasing day by day for
Hong Kong. Therefore our motive will be, how we can
minimize the COVID-19 transmission among commu-
nity. To reduce the rate of disease spreading, we have
to take proper intervention policies which is equivalent
to identify most sensitive parameters which have most
influence on the proposedmodel i.e. on R0. Since, R0 is
defined as average number of secondary infection pro-
duced by an infected people during its entire lifespan
as an infected host, therefore parameters whose impact
on disease transmission dynamics, they should affect
R0. Hence, to decrease the invade of disease transmis-
sion, we have to find out these types of sensitive model
parameters. By controlling these parameters, we can
able to reduce COVID-19 transmission among popula-
tion, since in this case value of R0 will be also reduced.

To find out sensitivity of parameters, we have to esti-
mate variation of R0 with respect to variation of differ-
ent model parameters. Here, we use normalized sensi-
tivity indexmethod [12,32,33] to calculate the value of
sensitivity index of model parameters. In this method,
the sensitivity index of R0 with respect tomodel param-

eterρ is givenbyΓ
ρ
R0

= ∂ R0

∂ρ
× ρ

R0
. Theparameterwith

higher sensitivity index implies that model parameter
has more impact on R0. The positive (negative) sign of
sensitivity index implies R0 will increase with increas-
ing (decreasing) value of that model parameter. In our
study, the sensitivity indexes of parameters are given in
fourth column of Table 2. The most positive sensitive
model parameters of the proposed model are β1, β2,
β3, α3 and most negative sensitive model parameters
are ν1, α1, a, σ . It is clear from Table 2 that, if we
increase (decrease) value of β1, β2, β3, α3 by 10 %,
the value of R0 will be increased (decreased) by 3.57
%, 1.97 %, 4.44 %, 1.54 %, respectively. Similarly, if
we decrease (increase) values of ν1, α1, a, σ by 10 %,
then value of R0 will be increased (decreased) by 3.65
%, 2.49 %, 2.28 %, 1.84 %, respectively. This kind of
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Fig. 6 Effect on symptomatic infected class (I ) with respect to parameter a β1, b β2, c β3, d α3, e ν1, f α1, g a, h σ

study will be helpful for health planners to control or
prevent COVID-19 transmission in the population.

8.1 Effect of different sensitive parameters on
symptomatic infected compartment (I )

In this section, we show the effect of positive indexes
parameters β1, β2, β3, α3 and negative indexes param-
eters ν1, α1, a, σ on symptomatic infected class (I ).
It is clear from Fig. 6a–d that density of symptomatic
infected class (I ) increases (decreases) with increasing
(decreasing) values of parametersβ1,β2,β3,α3. In each
case we increase the values of parameters β1, β2, β3,
α3 by 10 %, the corresponding effect on symptomatic

infected class (I ) is shown in Fig. 6a–d. Since β1, β2,
β3, α3 are positive indexes parameters hence number of
symptomatic infected class (I ) increases with increas-
ing value of β1, β2, β3, α3. Similarly from Fig. 6e–h
we see that density of symptomatic infected class (I )
decreases (increases) with increasing (decreasing) val-
ues of the parameters ν1, α1, a, σ . In each case we
increase the values of the parameters ν1, α1, a, σ by
10%, the corresponding effect on symptomatic infected
class (I ) is shown in Fig. 6e–h. As ν1,α1, a, σ are nega-
tive indexes parameters hence number of symptomatic
infected class (I ) decreases with increasing value of
ν1, α1, a, σ .
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9 Estimation of R0 and R(t) for COVID-19
outbreak in Hong Kong

Here we estimate R0 using initial growth rate of actual
infected data in Hong Kong and also estimate time-
dependent effective reproduction number from daily
new infected COVID-19 cases in Hong Kong.

9.1 Estimation of R0 from actual infected data of
Hong Kong

Many methods exist mathematically and also statis-
tically to estimate R0 from actual infected data [34].
Here, we estimate R0 from initial infected COVID-
19 data of Hong Kong, as theory developed in [35].
First, we assume that cumulative casesC(t) ∝ exp(ζ t)
where ζ is force of the infection. Also number of
exposed, quarantined, asymptomatic, infected and hos-
pitalized human varies with exp(ζ t). Therefore, we get
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E ∼ E0 exp(ζ t)

Q ∼ I0 exp(ζ t)

A ∼ A0 exp(ζ t)

I ∼ I0 exp(ζ t)

H ∼ H0 exp(ζ t)

(8)

where E0, Q0, A0, I0, H0 are constants. Again, we
suppose that at early stage of COVID-19 outbreak, the
density of infected people is negligible compared to
total susceptible population, therefore we can consider

S(t) = N (t) = C

μ
. Putting values of E, Q, A, I, H

from relation (8) in model (1), we get,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(ζ + D0)E0 = β1A0 + β2 I0 + β3H0,

(ζ + D1)Q0 = α1E0,

(ζ + D2)A0 = α3E0,

(ζ + D3)I0 = α2E0 + ν2A0,

(ζ + D4)H0 = γ1Q0 + δ1 I0.

(9)

Determining β1, β2 & β3, from relations of (9) and then
putting in R0, we get,

R0 = ζ + D0

M D0

[
α2D2 + α3ν2

D2D3
+ k1α3

D2

+k2 (D1D2α2δ1 + D1α3δ1ν2 + D2D3α1γ1)

D1D2D3D4

]

(10)

where

M = α2

ζ + D3
+ ν2α3

(ζ + D2)(ζ + D3)
+ k1α3

ζ + D2

+ k2γ1α1

(ζ + D1)(ζ + D4)
+ k2δ1α2

(ζ + D3)(ζ + D4)

+ k2δ1ν2α3

(ζ + D2)(ζ + D3)(ζ + D4)
, k1 = β1

β2
, k2 = β3

β2
.

For estimating R0 from (10), we have to estimate ζ

and here we use estimated values of model parameters
which are given in second column of Table 2. Based
on [36], number of per day new cases varies as ζ(t).
Next we plot daily new COVID-19 infected case ver-
sus cumulative infected COVID-19 casesC(t) in Hong
Kong from19thDecember, 2021 to 3rdApril, 2022 (see
Fig. 7a). Here we fit a linear regression line by adopting
least square methodology to the exponential cumula-
tive growth data. ζ is represented by the slope of fitted
line (see Fig. 7b). Therefore, the estimated value of ζ

is 0.195 ± 0.007 day−1 and using relation (10) along
with ζ , we get the estimated value of R0 is 4.360 with
lower and upper value as 4.203 and 4.519, respectively.

9.2 Effective reproduction number (R(t))

In disease spreading dynamics, R0 plays a crucial role.
Depending on value of R0, we can conclude whether
disease persists or eradicates from population. If value
of R0 < 1, then disease eradicates from population, at
the same time if R0 > 1 then disease persists in popu-
lation. From the definition of R0, it can be assumed that
R0 is always constant. But in reality, the value of R0

is not always constant that means its value varies with
time. Especially for COVID-19 disease, when disease
starts to spread in population at first, its rate of disease
transmission increases gradually, then at a time it will
take its peak position, after that disease transmission
rate starts to decrease. Therefore, value of reproduc-
tion number varies always. In this context, we study
time varying reproduction number, known as effec-
tive reproduction number R(t) [37]. From the value of
R(t), researchers can identify the trend of the disease
and also predict about an epidemic outbreak. There-
fore, health planners can take proper control policies
to control or prevent transmission of disease based on
value of R(t). To estimate the value of R(t), we use
real infected COVID-19 data of Hong Kong from 19th
December, 2021 to 3rd April, 2022. There are several
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Fig. 7 a Time series of new
cases of COVID-19 in Hong
Kong from 19th December,
2021 to 3rd April, 2022, b
daily number of infected
cases against cumulative
number of infected cases
from 19th December, 2021
to 3rd April, 2022
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methods available to estimate R(t), but here we use the
methodology as developed in [38,39]. For estimation
of R(t), we use equation,

R(t) = b(t)
∫ ∞
0 b(t − λ)h(τ )dτ

(11)

where b(t) represents number of new infected COVID-
19 case in t th day and h(τ ) represents generation
interval distribution for COVID-19 transmission in
Hong Kong. Let exposed, quarantined, asymptomatic,
infected and hospitalized people leave their corre-
sponding class at a rate D0 = α1 + α2 + α3 + μ,
D1 = γ1+γ2+μ, D2 = ν1+ν2+μ, D3 = δ1+δ2+μ,
D4 = a + σ + d + μ, respectively. So, generation
interval distribution is combination of the exponential
functions D0e−D0t , D1e−D1t , D2e−D2t , D3e−D3t and
D4e−D4t , then the formula is given as

h(t) =
4∑

i=1

D0D1D2D3D4e−Di t

Π2
j=1, j �=i (D j − Di )

(12)

with mean T = 1

D0
+ 1

D1
+ 1

D2
+ 1

D3
+ 1

D4
and

τ > 0. The above said formula is valid only when
ζ > min {−D0,−D1,−D2,−D3,−D4}.

Using estimated model parameter values, we calcu-
late effective reproduction number and the figure of it
is given in Fig. 8. We see that values of R(t) always
greater than unity except 27th to 29th day but after 90th
day, value of R(t) lies below unity. Therefore we can
conclude that after 90 days disease starts to decrease.

10 Optimal control problem

Coronavirus spread worldwide from December, 2019.
It took dangerous form for human civilization in very
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Fig. 8 Effective reproduction number R(t) for COVID-19 cases
in Hong Kong from 19th December, 2021 to 3rd April, 2022

short time. Initially government of every country faced
problem to reduce infection. To control the invade of
infection, many countries adopted full or partial lock-
down based on their countries financial loss. By adopt-
ing lockdown, government could able to reduce inter-
action between susceptible population with asymp-
tomatic or symptomatic infected population. But to
avoid financial loss, many countries unlocked lock-
down after few months and gave restriction for main-
taining home isolation of the symptomatic infected
persons. We discuss different available ways in for-
mulation of optimal control problem. The main pur-
pose to use optimal control in COVID-19 problem, is
to reduce number of asymptomatic, infected, symp-
tomatic infected and hospitalized people and at the
same time, we have to remember to minimize vacci-
nation or treatment cost [40,41]. Now, if we apply con-
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stant rate of vaccination or treatment, then implemen-
tation cost may be very high. Therefore we have to use
time-dependent control to reduce infected population
as well as implemented cost in a finite time. Now, we
formulate an optimal control problem for considered
SEQAIHR model.

We consider COVID-19 infected data of HongKong
from 19th December, 2021 to 3rd April, 2022, at that
period vaccination was started and without loss of any
generality we can assume that vaccination has been
done to maximum number of populations. Let a1 be
the rate of vaccination and v1 be efficiency of vac-
cination where 0 ≤ v1 ≤ 1. We define u1 = a1v1
(0 ≤ u1 ≤ 1) is the rate of effective vaccination at this
rate successful immunized vaccinated peoples move to
recovered class [42–46]. Therefore here we assume
that the vaccinated peoples who will not be affected
by coronavirus again, hence these vaccinated people
will move to recovered class. Further, we use saturated
type treatment for hospitalized class, therefore we can
here consider a treatment control parameter u2 for treat-

ment function, hence it takes the form
au2H

1 + bu2H
where

0 ≤ u2 ≤ 1. Generally, values of u1 and u2 lie between
0 to 1, since a part of population is vaccinated or took
treatment. Here, we consider both controls u1 and u2

as function of time t . Thus, we reformulate considered
model (1) for optimal control problem as given below:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= C − S(β1A + β2 I + β3H)

N
−u1S − μS

dE

dt
= S(β1A + β2 I + β3H)

N
−(α1 + α2 + α3 + μ)E

dQ

dt
= α1E − (γ1 + γ2 + μ)Q

dA

dt
= α3E − (ν1 + ν2 + μ)A

dI

dt
= (α2E + ν2A) − (δ1 + δ2 + μ)I

dH

dt
= (γ1Q + δ1 I ) − au2H

1 + bu2H
−(σ + d + μ)H

dR

dt
= (γ2Q + δ2 I + ν1A + σ H)

+ au2H

1 + bu2H
+ u1S − μR

(13)

The objective functional M(u1, u2), which has to
minimize is given below,

M(u1, u2)

=
∫ T

0

(

A1S + A2H + 1

2
B1u2

1 + 1

2
B2u2

2

)

dt (14)

constants A1, A2 denote loss due to presence of suscep-
tible class (S), hospitalized class (H ) andConstants B1,
B2 denote loss due to implementation of two controls
u1, u2. The cost function in (14) contains two types of
terms, those are: (i) the cost of infection/loss in popula-
tion (i.e. first two terms) and (ii) cost of vaccination (i.e.
last two terms). It is chosen in quadratic form to make
it convex such that the minimum value exists. Another
important observation of quadratic form in biological
point of view is the severity of “giving toomuchvaccine
to an individual” [47]. The optimal problem is imple-
mented for time interval [0, T ], therefore after time T ,
both controls will be stopped. Thus, we have to identify
an optimal pair (u∗

1, u∗
2) such that

M(u∗
1, u∗

2) = min {M(u1, u2) : (u1, u2) ∈ U } (15)

where U is given by

U = {(u1(t), u2(t)) : 0 ≤ ui ≤ 1, i = 1, 2, t ∈ [0, T ]}
u1(t) and u2(t) as Lebesgue measurable functions.

It is clear that integrand of cost functional M(u1, u2)

is convex function for u1 and u2. Again, by Theorem
2, all solutions of system (1) are bounded, in simi-
lar manner we can show that solutions of system (13)
are bounded, which implies that system (13) satisfies
Lipschitz condition for state variables. This concludes
the existence of (u∗

1, u∗
2) such that M(u∗

1, u∗
2) is mini-

mized. The above result is summarized in the following
remark:

Remark There exists optimal control pair (u∗
1, u∗

2) for
which M(u∗

1, u∗
2) = min {M(u1, u2) : (u1, u2) ∈ U }.

Theorem 5 For (u∗
1, u∗

2) and (S∗, E∗, Q∗, A∗, I ∗,
H∗, R∗) of system (13) and (14) which minimizes
M(u1, u2) on U, there exists λ1, λ2, λ3, λ4, λ5, λ6,
λ7 satisfying
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dλ1(t)

dt
= −A1 + (λ1 − λ2)

(β1A + β2 I + β3H)(E + Q + A + I + H + R)

(S + E + Q + A + I + H + R)2
+ (λ1 − λ7)u1 + λ1μ

dλ2(t)

dt
= (λ1 − λ2)

S(β1A + β2 I + β3H)

(S + E + Q + A + I + H + R)2
+ (λ2 − λ3)α1 + (λ2 − λ5)α2 + (λ2 − λ4)α3 + λ2μ

dλ3(t)

dt
= (λ1 − λ2)

S(β1A + β2 I + β3H)

(S + E + Q + A + I + H + R)2
+ (λ3 − λ6)γ1 + (λ3 − λ7)γ1 + λ3μ

dλ4(t)

dt
= (λ1 − λ2)S

β1(S + E + Q + I + H + R) − (β2 I + β3H)

(S + E + Q + A + I + H + R)2
+ (λ4 − λ7)ν1 + (λ4 − λ5)ν2 + λ4μ

dλ5(t)

dt
= (λ1 − λ2)S

β2(S + E + Q + A + H + R) − (β1A + β3H)

(S + E + Q + A + I + H + R)2
+ (λ5 − λ6)δ1 + (λ5 − λ7)δ2 + λ5μ

dλ6(t)

dt
= −A2 + (λ1 − λ2)S

β3(S + E + Q + A + I + R) − (β1A + β2 I )

(S + E + Q + A + I + H + R)2
+ (λ6 − λ7)

au2

(1 + bu2H)2

+(λ6 − λ7)σ + λ6(d + μ)

dλ7(t)

dt
= (λ1 − λ2)

S(β1A + β2 I + β3H)

(S + E + Q + A + I + H + R)2
+ λ7μ

(16)

with transversality condition

λi (T ) = 0, i = 1, 2, 3, 4, 5, 6, 7

and (u∗
1, u∗

2) is given by
⎧
⎨

⎩

u∗
1(t) = min

(

max

(

0,
(λ1 − λ7)S∗

B1

)

, 1

)

u∗
2(t) = min (max (0, u2) , 1)

(17)

where u2 is non-negative root of u2B2(1+bu2H∗)2 =
(λ6 − λ7)(a − b)H∗.

Proof To prove this theorem, we have to use Pontrya-
gin’s maximum principle [13,41,48]. We construct
Lagrangian L(S, E, Q, A, I, H, R, u1, u2) of (13) as

L(S, E, Q, A, I, H, R, u1, u2) = A1S + A2H

+1

2
B1u2

1 + 1

2
B2u2

2 (18)

and Hamiltonian H as

H1(S, E, Q, A, I, H, R, u1, u2, λ1,

λ2, λ3, λ4, λ5, λ6, λ7, t)

= A1S + A2H + 1

2
B1u2

1 + 1

2
B2u2

2 + λ1
dS

dt

+λ2
dE

dt
+ λ3

dQ

dt
+ λ4

dA

dt
+ λ5

dI

dt

+λ6
dH

dt
+ λ7

dR

dt
(19)

satisfying adjoint equations

dλ1(t)

dt
= −∂ H1

∂S
,
dλ2(t)

dt
= −∂ H1

∂ E
,
dλ3(t)

dt

= −∂ H1

∂ Q
,
dλ4(t)

dt
= −∂ H1

∂ A
,
dλ5(t)

dt

= −∂ H1

∂ I
,
dλ6(t)

dt
= −∂ H1

∂ H
, (20)

dλ7(t)

dt
= −∂ H1

∂ R
(21)

with

λi (T ) = 0, i = 1, 2, 3, 4, 5, 6, 7

.
Solving (20), we see λ1, λ2, λ3, λ4, λ5, λ6, λ7 sat-

isfy the equations which are given in Eq. (16) with
λi (T ) = 0, i = 1, 2, 3, 4, 5, 6, 7.

Now, we use optimality conditions
∂ H1

∂u1
&

∂ H1

∂u2
at

(u∗
1, u∗

2), thus we get

⎧
⎨

⎩

u∗
1(t) = min

(

max

(

0,
(λ1 − λ7)S∗

B1

)

, 1

)

u∗
2(t) = min (max (0, u2) , 1)

where u2 is non-negative root of u2B2(1+bu2H∗)2 =
(λ6 − λ7)(a − b)H∗.

It is obvious that
∂2H1

∂u2
1

> 0,
∂2H1

∂u2
2

> 0 and

∂2H1

∂u2
1

∂2H1

∂u2
1

>

(
∂2H1

∂u1u2

)2

at (u∗
1, u∗

2).

Thus, considered optimal control problem is mini-
mized at optimal value (u∗

1(t), u∗
2(t)). ��

Now we verify theoretical findings of optimal control
(13), we solve numerically using forward-backward
sweepmethod. Here, we consider time interval [0, 108]
days i.e. after 108 days both controls will be stopped.
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Fig. 9 Time series of controls and different populations in pres-
ence of control (blue line) and without control (red line): a
exposed population, b quarantined population c asymptomatic

population, d infected population, e hospitalized population, f
recovered population, g total infected hosts, h u1 control, i u2
control

To simulate the problem, we consider parameter values
from Table 2 with A1 = 0.01, A2 = 0.01, B1 = 1000,
B2 = 0.0001 with initial conditions 7604299, 15, 4,
7, 6, 5, 0. From Fig. 9a–f, we compare density of
exposed, quarantined, asymptomatic, infected, hospi-
talized, recovered population when system is in control
or in without control. From Fig. 9a–e, we see density of
exposed, quarantined, asymptomatic, infected, hospi-
talized population is reducedwhen system is in control.
In Fig. 9g, we show density of total infected population
i.e. asymptomatic, infected and hospitalized population
is also reduced when system with control. In Fig. 9h–i,
we show optimal path of control variables u1 and u2.

11 Conclusion

In this paper we consider an SEQAIHR model with
three infected classes namely asymptomatic (A), symp-
tomatic infected (I ) and hospitalized class (H) to visu-
alize the pandemic situation of Hong Kong, 2022. Here
we consider saturated treatment rate in hospitalized
class to include effect of the limited medical facil-
ity. First we examine biological significance of model
solutions. Then we compute R0 which has effective
role to control disease outbreak. It is verified that the
model may have maximum three endemic equilibria
for R0 > 1 and also may have maximum two endemic
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equilibria for R0 < 1. The stability of disease free
and endemic equilibrium point is expressed in terms of
R0. Further, we show the model exhibits transcritical,
backward and forward bifurcation with hysteresis.

To validate the proposed model, we fit model with
COVID-19 infected data of Hong Kong from 19th
December, 2021 to 3rd April, 2022 and also estimate
the model parameters. Then, we use sensitivity anal-
ysis to identify the most sensitive parameters which
have more impact on R0. From estimation of R0, we
see that value of R0 lies between 4.20 and 4.51, there-
fore COVID-19 takes a fatal form in population. Also,
from R(t), we see that its values lie between from 1.44
to 12.87 and also we observe that after 90 days the
value of effective reproduction number less than unity
therefore we can conclude that after 90 days disease
will die out from population.

Finally, we perform an optimal control problem
considering effective vaccination control and saturated
treatment control. Numerically we give a comparative
study of each class with population under control and
without control. We think that our study will give some
lay out for health planners to take some decision about
pandemic outbreak. For futurework, one can extend the
proposed SE Q AI H R model by considering separate
vaccinated class V to study the effect of vaccination
for populations.
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Appendices

Appendix-I: Expressions of ei , i = 0, 1, 2, 3

e0 = −D0D1D2
2 D2

3a2α1b2μ − D0D1D2
2 D2

3 D2
4α1b2μ

−D0D2
1 D2D2

3a2α2b2μ − D0D2
1 D2D2

3 D2
4α2b2μ

−D0D2
1 D2D2

3a2α2b2β2 − D0D2
1 D2D2

3 D2
4α2b2

β2 − D0D2
1 D2

2 D3a2α3b2β1 − D0D2
1 D2

2 D3a2α3b2μ

−D0D2
1 D2

2 D3D2
4α3b2β1 − D0D2

1 D2
2 D3D2

4α3b2μ

+D0D1D2D3D5ab2μ + 2D0D2
1 D2

2 D2
3 D4ab2μ

−D0D1D2D3D4D5b2μ + D0D1D2D3D5ab2β3

−D0D1D2D3D4D5b2β3 + D0D1D2D3D5ab2

σ − D0D2
1 D2D2

3a2α2b2δ2 − D0D2
1 D2

2 D3D2
4α3b2ν1

−D0D2
1 D2

2 D3a2α3b2ν1−D0D1D2D3D4D5b2σ −D0D1D2
2 D2

3 D2
4

α1b2γ2 − D0D1D2
2 D2

3a2α1b2γ2 − D0D2
1 D2D2

3 D2
4

α2b2δ2 + D2
0 D2

1 D2
2 D2

3a2b2 + D2
0 D2

1 D2
2 D2

3 D2
4b2

+2D0D2
1 D2D3D4aα3b2μν2 + 2D0D2

1 D2D3D4aα3b2β3ν2

+2D0D2
1 D2D3D4aα3b2δ2ν2 + 2D0D2

1 D2
2 D3D4aα3b2ν1

−D0D2
1 D2D3D2

4α3b2δ2ν2 − D0D2
1 D2D3a2α3b2δ2ν2

+2D0D1D2
2 D2

3 D4aα1b2γ2 + 2D0D2
1 D2D2

3 D4aα2b2δ2

−D0D2
1 D2D3a2α3b2β2ν2 − D0D2

1 D2D3a2α3b2μν2

+2D0D2
1 D2D2

3 D4aα2b2β2 + 2D0D2
1 D2D2

3 D4aα2b2μ

−D0D2
1 D2

2 D2
3a2b2μ − D0D2

1 D2D3D2
4α3b2β2ν2

−D0D2
1 D2D3D2

4α3b2μν2 + 2D0D1D2
2 D2

3 D4aα1b2μ

+2D0D2
1 D2

2 D3D4aα3b2β1 + 2D0D2
1 D2

2 D3D4aα3b2μ

−2D2
0 D2

1 D2
2 D2

3 D4ab2 − D0D2
1 D2

2 D2
3 D2

4b2μ,

e1 = D0D1D2D3D5abμ + 2D0D2
1 D2

2 D2
3 D4abμ

−2D0D1D2
2 D2

3 D2
4α1bγ2 − C D1D5aα3b2β2ν2

−2D0D1D2D3D4D5bβ3 − 2D0D1D2D3D4D5bμ

+D0D1D2D3D5abβ3+C D0D1D2D3D5ab2+C D1D2D4D5α3b2β1

−C D1D2D5aα3b2β1 + C D1D3D4D5α2b2β2

−C D1D3D5aα2b2β2 + C D1D4D5α3b2β2ν2

−2D0D2
1 D2

2 D2
3 D2

4bμ + D0D1D2D3D5a2b − 2D2
0 D2

1 D2
2 D2

3 D4ab

+2D0D1D2
2 D2

3 D4aα1bμ − 2D0D2
1 D2D3D2

4

α3bμν2 − 2D0D1D2
2 D2

3 D2
4α1bμ − C D0D1D2D3D4D5b2

−2D0D2
1 D2D2

3 D2
4α2b

μ − 2D0D2
1 D2

2 D3D2
4α3bμ − 2D0D2

1 D2D2
3 D2

4α2bβ2

−D0D1D2D3D4D5ab − 2D0D2
1 D2

2 D3D2
4α3bβ1

−2D0D1D2D3D4D5bσ + D0D1D2D3D5abσ

−2D0D2
1 D2D2

3 D2
4α2bδ2 − 2D0D2

1 D2
2 D3D2

4α3bν1

+2D0D2
1 D2D3D4aα3bδ2ν2 + 2D0D2

1 D2D3D4aα3bβ2ν1

+2D0D2
1 D2D3D4aα3bμν2 − 2D0D2

1 D2D3D2
4α3bβ2ν2

+2D0D2
1 D2D2

3 D4aα2bμ

+2D0D2
1 D2

2 D3D4aα3bμ + 2D0D2
1 D2D2

3 D4aα2bβ2

+2D0D2
1 D2

2 D3D4aα3bβ4 + 2D0D2
1 D2

2 D3D4aα3bν1

+2D2
0 D2

1 D2
2 D2

3 D2
4b − 2D0D2

1 D2D3D2
4α3bδ2ν2

+2D0D2
1 D2D2

3 D4aα2bδ2 + 2D0D1D2
2 D2

3 D4aα1bγ2 + C D2
5b2β3,

e2 = −D0D1D2
2 D2

3 D2
4α1γ2 − D0D2

1 D2D2
3 D2

4α2δ2

−D0D2
1 D2

2 D3D2
4α3ν1 − D0D1D2

2 D2
3 D2

4α1μ

−D0D1D2D3D4D5β3 − D0D1D2D3D4D5σ

−D0D2
1 D2

2 D3D2
4α3β1 − D0D2

1 D2
2 D3D2

4α3μ

−D0D2
1 D2D2

3 D2
4α2β3 − D0D2

1 D2D2
3 D2

4α2μ − D0D1D2D3D4D5μ

−D0D1D2D3D4D5a − C D1D5aα3bβ2ν2 − D0D2
1 D2D3D2

4α3δ2ν2

−C D1D2D5aα3bβ1 + 2C D1D3D4D5α2bβ2

−C D1D3D5aα2bβ2 + 2C D1D4D5α3bβ2ν2

−D0D2
1 D2D3D2

4α3β2ν2 − D0D2
1 D2D3D2

4α3μν2

−2C D0D1D2D3D4D5b + C D0D1D2D3D5ab

+2C D1D2D4D5α3bβ1 + D2
0 D2

1 D2
2 D2

3 D2
4

+2C D2
5bβ3 − D0D2

1 D2
2 D2

3 D2
4μ,
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e3 = −C D0D1D2D3D4D5 + C D1D2D4D5α3β1

+C D1D3D4D5α2β2 + C D1D4D5α3β2ν2 + C D2
5β3.

Appendix-II: Expressions of ci , i = 1, 2, 3, 4, 5 and
some part of Corollary 1

c1 = D0 + D1 + D2 + D3 + D4,

c2 = D4(D0 + D1 + D2 + D3) + (D0D1 + D1D2

+D1D3 + D2D3) + D0D2

(1 − Ra) + D0D3 (1 − Rb) ,

c3 = [D1D3(D2 + D4) + D2D4(D1 + D3)]

+D0 {D1(D2 + D3 + D4) + D3(D2 + D4) + D2D4} (1 − Rc) ,

c4 = D1D2D3D4

+ {D0(D1D2D3 + D1D2D4 + D1D3D4 + D2D3D4)}
(1 − Rd ) ,

c5 = D0D1D2D3D4 (1 − R0) ,

and

Ra = β1α3

D0D2
< R0, Rb = β2α2

D0D3
< R0,

Rc = β1α3(D1 + D2 + D4)

D0D3(D1 + D2 + D4) + D0 (D1D2 + D2D4 + D4D1)

+ β2 {α3ν2 + α2(D1 + D3 + D4)}
D0D2(D1 + D3 + D4) + D0 (D1D3 + D3D4 + D4D1)

+ β3 (α1γ1 + α2δ1)

D0D1D4 + D0D2D4 + D0(D1D2 + D2D3 + D3D4 + D3D1)

< R0,

Rd = β2

{
α3ν2(D1 + D4)

D0D2D3(D1 + D4) + D0D1D4(D2 + D3)

+ α2 {D2(D1 + D4) + D1D4}
D0D2 {D3(D1 + D4) + D1D4} + D0D1D3D4

}

+β3

{
α2δ1(D1 + D2)

D0D3D4(D1 + D2) + D0D1D2(D3 + D4)

+ α1γ1(D2 + D3)

D0D1D4(D2 + D3) + D0D2D3(D1 + D4

}

+ β3α3δ1ν2

D0D2D3D4 + D0D1(D2D3 + D3D4 + D4D2)

+ β1α3D4(D1 + D2)

D0D2D4(D1 + D3) + D0D1D3(D2 + D4)
< R0.

Appendix-III: Expressions of bi , i = 1, 2, 3, 4, 5, 6

b1 = a5 + D3 + D2 + D1 + D0 + a1,

b2 = D0D1 + D0D2 + D0

D3 + D0a1 + D0a5 + D1D2 + D1D3

+D1a1 + D1a5 + D2D3 + D2a1 + D2a5 + D3a1 + D3a5

+a1a5 − a2α2 − a3α3,

b3 = D0D1D2 + D0D1D3 + D0D1a1

+D0D1a5 + D0D2D3 + D0D2a1 + D0D2a5

+D0D3a1 + D0D3a5 + D0a1a5 + D1D2D3

+D1D2a1 + D1D2a5 + D1D3a1 + D1D3a5

+D1a1a5 − D1a2α2 − D1a3α3

+D2D3a1 + D2D3a5

+D2a1a5 − D2a3α3 + D3a1a5

−D3a2α2 − a2a5α2 − a2α3ν2

−a3a5α3 − a4α1γ1 − a4α2δ1,

b4 = D2D1D0a1 − a4α3δ1ν2 + D0D1D2D3

+D0D1D3a1 + D0D2D3a1 + D1D2D3a1 − D1D2a3α3

−D1D3a2α2 − D1a2α3ν2 − D1a4α2δ1

−D2a4α1γ1 − D3a4α1γ1 − D3a4α2δ1

+D0D1D2a5 + D0D1D3a5

+D0D1a1a5 + D0D2D3a5 + D0D2a1a5

+D0D3a1a5 + D1D2D3a5

+D1D2a1a5 + D1D3a1a5 − D1a2a5α2

−D1a3a5α3 + D2D3a1a5

−D2a3a5α3 − D3a2a5α2 − a2a5α3ν2,

b5 = D3D2D1D0a1 − D1D3a4α2δ1

−D2D3a4α1γ1 − D1a4α3δ1ν2

+D0D1D2D3a5 + D0D1D2a1a5 + D0D1D3a1a5

+D0D2D3a1a5 + D1D2D3a1a5 − D1D2a3a5α3

−D1D3a2a5α2 − D1a2a5α3ν2,

b6 = a5D3D2D1D0a1.
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