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Abstract A generalized pathway model, with time-
dependent parameters, is applied to describe the mor-
tality curves of the COVID-19 disease for several coun-
tries that exhibitmultiplewaves of infections. The path-
way approach adopted here is formulated explicitly in
time, in the sense that the model’s growth rate for the
number of deaths or infections is written as an explicit
function of time, rather than in terms of the cumula-
tive quantity itself. This allows for a direct fit of the
model to daily data (new deaths or new cases) with-
out the need of any integration. The model is applied
to COVID-19 mortality curves for ten selected coun-
tries and found to be in very good agreement with the
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data for all cases considered. From the fitted theoreti-
cal curves for a given location, relevant epidemiolog-
ical information can be extracted, such as the starting
and peak dates for each successive wave. It is argued
that obtaining reliable estimates for such characteris-
tic points is important for studying the effectiveness of
interventions and the possible negative impact of their
relaxation, as it allows for a direct comparison of the
time of adoption/relaxation of control measures with
the peaks and troughs of the epidemic curve.

Keywords COVID-19 · Epidemic wave · Growth
model · Public health

1 Introduction

Thepandemicof thenovel coronavirus disease (COVID-
19), caused by the SARS-CoV2 virus, has proven to
be one of the most serious health crises in recent
human history. As of this writing, over half a billion
of infection cases have been confirmed [1], with mil-
lions more probably having gone undetected owing to
a myriad of reasons, from a lack of sufficient testing
to asymptomatic infections to poor reporting practices.
Sadly,more than 6.3millions livesworldwide have thus
far been lost to the disease. The global fight against
COVID-19 has been made more difficult by the resur-
gence of infections after periods of relative control of
the disease spread, thus giving rise to successive ‘epi-
demic waves’ [2,3] in most countries.
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Several epidemics, especially those caused by respi-
ratory viruses, are known to occur in repeated, seasonal
patterns [4–6]. The COVID-19 pandemic has shown
a much more complex behavior in that the succes-
sive waves of infections in a given population group
stem not so much from seasonal effects but rather from
the intricate interaction between the virus propaga-
tion dynamics and the population behavior in response
to interventions (or lack thereof) by the local health
authorities [7]. Indeed, when restrictions are lifted (or
poorly adhered to), transmission tends to increase; and,
conversely, when control measures are reintroduced,
the transmission rate declines. It is thus important to
be able to identify, in a quantitative and reliable man-
ner, the occurrence of distinct waves in a given epi-
demic dataset, as this information can help researchers
and health authorities to surmise the impact of con-
trol measures (and their relaxation) on the overall epi-
demic evolution. Having reliable mathematical models
and numerical algorithms to describe epidemic curves
with multiple waves is therefore an important step in
this endeavor. Several models have been considered in
the literature to describe COVID-19 curves with mul-
tiple waves, such as compartmental [8–10] and growth
[7,11] models with time-dependent parameters, among
others. Thesemodels, albeit satisfactory inmany cases,
have the disadvantage that their defining ordinary dif-
ferential equations (ODE) need to be integrated numer-
ically, which makes fitting the model to empirical data
more cumbersome.

In this paper, we consider a different class of
models—called the pathway approach—where the
growth rate for the quantity of interest, say, the total
number of cases or deaths, is given as a known, explicit
function of time. The pathway approach was originally
introduced to describe, in a unifiedmanner, a large fam-
ily of probability distributions [12,13], but recently it
has been applied to one-wave COVID-19 curves of
cases and deaths [14]. Here, we extend the model to
multiwave epidemic curves by assuming that themodel
parameters become time dependent, so as to reflect
the changes in the underlying epidemiological condi-
tions associated with the successive waves of infection.
The specific time dependency of the model parameters
is given by a multistep logistic-like function with N
plateaus, where N is the number of waves, whereby
each plateau represents the parameter value during
the corresponding wave. We apply our time-dependent
pathwaymodel toCOVID-19mortality curves from ten

selected countries, exhibiting from two up to fivewaves
and show that the model is in excellent agreement with
the empirical data for all countries considered.

The pathway approach considered here has several
advantages. First, the model turns out to be quite flexi-
ble and capable of capturing the various distinct wave-
like patterns present in empirical data. Second, it allows
us to perform numerical fits directly on the daily data
without any ODE integration involved, as the theoreti-
cal daily curve is written as an explicit function of time.
This is particularly relevant for multiwave epidemics,
as fittings based on numerical integration of ODEs for
such cases are more computationally demanding and
more prone to parameter uncertainties. Third, from the
fitted theoretical curve, it is an easymatter to determine
its maxima and minima and thus locate the starting and
peak dates for each wave. Furthermore, the model is
able to describe not only the main waves of a given
epidemic curve but also smaller dynamical structures
(e.g., sub-waves and ‘shoulders’) inside a main wave,
as will been seen later.

2 Data

Here, we focus exclusively on mortality data from
COVID-19, instead of infection cases. The reason for
this choice is the difficulty to estimate the actual num-
ber of infected people by the SARS-CoV-2, since the
confirmed cases represent only an unknown fraction
of the total number of infections. In this scenario, the
number of deaths attributed to COVID-19 is a some-
what more reliable measure to describe the dynamics
of the epidemic [15].

As our main aim here is to analyze the successive
waves of the COVID-19 epidemic in different coun-
tries, we have selected a representative set of countries
that have undergone, until the maximum date consid-
ered here, namely March 3, 2022, from two up to five
waves of infections. More specifically, we have ana-
lyzed the COVID-19 mortality curves for the follow-
ing ten countries: Austria, Brazil, Bulgaria, Canada,
Croatia, Italy, Netherlands, Slovakia, SouthAfrica, and
USA. The data used in this study were obtained from
the databasemade publicly available by the Johns Hop-
kins University [16], which lists in automated fashion
the number of the confirmed cases and deaths per coun-
try.
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3 Methods

In this section, we introduce the pathway model and
discuss its main mathematical aspects. We begin with
the case where the model parameters are constant in
time, which applies to single-wave epidemic curves.
Then, we allow the model parameters to become time
dependent, so as to capture multiple-wave effects.

3.1 Standard pathway model

We describe the time evolution of the daily number
of cases or deaths (dD/dt) in the epidemic by means
of the pathway model (PM), defined by the following
ordinary differential equation:

dD

dt
= Ctα

[1+β(q − 1)tγ ]1/(q−1)
, C, α, β, γ >0, q>1.

(1)

where t is the time elapsed since the last day prior to the
first death, such that t = 0 represents the day before the
first death occurred. As indicated above, the aggregated
quantity D(t) could represent the cumulative number
of either detected infection cases or deaths attributed
to COVID-19. But here, we shall focus exclusively on
death curves, for they are less affected by under report-
ing [15] and hence present a more reliable measure to
study multiple waves of infections, which is our main
goal here. The dynamical role played by the differ-
ent parameters in (1) will be discussed later on. For
now, it suffices to say that in order to ensure that D(t)
reaches a finite value for t → ∞ (rather than growing
indefinitely which is not epidemiologically sensible),
we must require that

γ − (q − 1)(α + 1) > 0. (2)

It is worth noting that the right-hand side of (1), with
q > 1, corresponds to the generalized type-2 beta den-
sity function, which is one of the limiting cases of the
so-called pathway approach to describe certain com-
plex systems [12,13]. In the pathway approach, the
parameter q can be varied so as to produce a rather
extensive family of probability distributions, ranging
from the generalized type-1 beta functions (q < 1) to
the generalized type-2 beta functions (q > 1), while
also recovering in the limit q → 1 the generalized

gamma distribution and other related distributions [13].
In epidemic dynamics, which is our main focus here,
the relevant range is q > 1. It is nonetheless worth not-
ing that the generalized type-1 beta functions (q < 1)
also find applications in the context of mathemati-
cal epidemiology. In this case, however, the pathway
approach is formulated as a generalized logistic model,
where the growth rate is written in terms of the cumu-
lative variable D itself (rather than explicitly in terms
of the time t). In other words, replacing t with D in
the right-hand side of (1) and considering q < 1, one
obtains the so-called beta logistic model, which has
been applied to epidemic COVID-19 curves with one
and multiple epidemic waves [7,17].

Viewing the right-hand side of (1) as a probabil-
ity density function can be useful to understand the
underlying epidemic growth process. In this perspec-
tive, Eq. (1) says that the growth rate of the disease,
Ḋ(t), where dot denotes time derivative, counted in
number of cases or deaths at a given time t , can be
viewed as proportional to the probability that a new
case or deathmayoccur at time t . For a typical epidemic
outbreak, one then expects that the probability is quite
low in the beginning of the outbreak, then it increases
rather sharply until reaching a peak, after which the
probability of infection should decrease, possibly with
a long tail. The PM, as defined in (1), provides a flex-
ible approach to describe this generic behavior of an
epidemic outbreak. Another noteworthy aspect of the
pathway approach is the fact that its probability den-
sity function can be derived by optimizing a general-
ized entropy measure [18], which provides an interest-
ing way to justify the PM as an effective macroscopic
description of an underlying agent-based dynamics.

A direct integration of (1) yields the following ana-
lytic expression for the cumulative number of deaths
up to time t :

D(t) = Ctα+1

α + 1
2F1

(
α + 1

γ
,

1

q − 1
; 1

+α + 1

γ
;−β(q − 1)tγ

)
. (3)

where 2F1(a, b; c; x) is the Gauss hypergeometric
function. The fact that the PM has an explicit analytic
solution is an important property, especially for appli-
cations in one-wave epidemic curves, for it allows a
direct fit of the model to cumulative curves, where fluc-
tuations are smaller in comparison with daily curves;
see Sect. 4.1.
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Fig. 1 Plots of the daily (a)
and cumulative (b) curves
for the pathway model with
the following (constant)
parameters: C = 10−3,
α = 3.3, q = 1.4,
β = 10−5, and γ = 3

Fig. 2 Plots of the daily (a)
and cumulative (b) curves
for the pathway model with
N = 3 waves, where the
time-dependent parameters
are as shown in Fig. 3

Figure 1a shows a plot of the function Ḋ(t), as given
by the right-hand side of (1) for the following parameter
values:C = 1×10−3, α = 3.3, q = 1.4, β = 1×10−5

and γ = 3. Note that the shape of the curve Ḋ(t) has
the expected behavior described above. One important
feature of the curve Ḋ(t) defined by (1) is its asym-
metry around the peak, which reflects the fast initial
growth of the epidemics, followed by a slower decay
of the daily number of deaths/cases after the peak, as
seen in Fig. 1a. In terms of the cumulative curve D(t),
shown in Fig. 1b, this dynamics translates as follows:
The curve displays a rapid early rise, followed by a
nearly linear growth regime around the inflection point
(which corresponds to the peak of the daily curve),
after which the growth profile decelerates and starts
to approach a plateau, which corresponds to the total
number of cases/deaths at the end of the epidemics
(assuming there is only one wave of infections). The
different regimes of the growth dynamics mentioned
above are governed by the different parameters of the
model, as discussed next.

First, taking the limit t → 0 in (1) yields

dD

dt
≈ Ctα, (4)

so that the cumulative curve has a polynomial early

growth:

D(t) ≈ Atμ, t → 0, (5)

where A = C/(α + 1) and μ = α + 1. Incidentally,
Eq. (4) can be used to estimate the order of magni-
tude of the constant C , which as we shall see is the
smallest parameter in the model. If we define tb as the
approximate dayof the beginningof the fully developed
epidemic growth (roughly 2 weeks), then C ≈ M/tαb ,
where M = D′(tb) is the number of daily deaths at
time tb. Setting M = 100 and tb = 14, we can see
that C � 10−10 for values of α � 10. Similar analysis
shows that the parameter β is also rather small, being
comparable to or sometimes even smaller thanC , while
the exponents α, q, and γ are typically of the order of
unity. Controlling the numerical errors associated with
such small values of C and β (in comparison with the
other parameters) is one of the challenges of our fitting
algorithm; see below. Now, differentiating (1) and set-
ting it to zero, one finds that the inflection point tc of
the cumulative curve (corresponding to the peak of the
daily curve), defined by D̈(tc) = 0, is given by

tc =
(

α

β[γ − α(q − 1)]
)1/γ

. (6)
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Fig. 3 Plots of the model
parameters
{C(t), α(t), q(t), β(t), γ (t)}
used in the example with
three waves (N = 3) shown
in Fig. 2. The respective
plateau parameters entering
function (14) are as follows:
C1 = 1.84 × 10−12,
C2 = 2.24 × 10−15,
C3 = 1.59 × 10−16,
α1 = 7.19, α2 = 7.67,
α3 = 7.89, q1 = 2.11,
q2 = 1.23, q3 = 1.75,
β1 = 1.45 × 10−6,
β2 = 9.70, β3 = 6.05,
γ1 = 2.23, γ2 = 0.0826,
γ3 = 1.05, t1 = 166,
ρ1 = 0.125, t2 = 375, and
ρ2 = 0.180. The plot of
C(t) in the upper left panel
is shown in a semi-log scale

In view of (6), we can alternatively write (1) as

dD

dt
= Ctα[

1 +
(

α(q−1)
γ−α(q−1)

) (
t
tc

)γ ]1/(q−1)
. (7)

Let us now analyze the large-time behavior of D(t),
i.e., for t � tc. First, we compute the final plateau,
K , of the cumulative epidemic curve, where K =
limt→∞ D(t). Writing K = ∫ ∞

0 Ḋ(t)dt , where Ḋ(t)
is as in (1), and performing the integration yields

K = C

γ [β(q − 1)](α+1)/γ

�( 1
q−1 − α+1

γ
)�(α+1

γ
)

�( 1
q−1 )

.

(8)

Now taking the limit t → ∞ in (1), one obtains

dD

dt
≈ Ctα−γ (q−1)−1

[β(q − 1)]1/(q−1)
, (9)

which upon integration yields

D(t) ≈ K − B

tν
, t → ∞, (10)

where

B = (q − 1)C

[β(q − 1)]1/(q−1) [
γ − (q − 1)(α + 1)

] , (11)
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and

ν = γ

q − 1
− α − 1, (12)

with condition (2) ensuring that ν > 0.
Equation (10) thus shows that the PM has the impor-

tant property that the cumulative curve approaches the
plateau as a power law, rather than exponentially fast
as would be predicted by, say, the standard compart-
mental models of the SIR type. Recent analyses [17]
have shown that theCOVID-19 fatality curves formany
countries do indeed display such a polynomially slow
approach to the plateau (during the first wave of the
disease). Hence it is important to consider theoretical
models with power-law behavior. Several such models
have been discussed in the literature, including gener-
alized logistic models [17] and compartmental models
with nonlinear incidence rate [19]. One advantage of
the pathway approach, as already mentioned, is that it
is formulated explicitly in time, making its power-law
behavior rather manifest.

For completeness, we note that in the limit q → 1,
Eq. (1) becomes

dD

dt
= Ctα exp

(−βtγ
)
, (13)

showing that in this limit, the daily curve has a
stretched-exponential decay after the peak, whereas in
the general case (q > 1), it has a power-law tail, as
shown in (9).

From the preceding analysis, a few words can be
said about the role that each parameter plays in defining
the overall shape of the curve D(t). First, it is obvious
from (4) that the parameter α controls the early growth
regime, as it defines the exponent of the polynomial
growth at the beginning of the outbreak. Second, note
that, although the parameter γ enters into the expres-
sion for the exponent ν in (12), it is clear that ν is more
sensitive to variations in the parameter q. Besides, the
power-law behavior shown in (10) is only possible for
q > 1, with q → 1 yielding a stretched-exponential
behavior, as mentioned above. It can thus be said that
q is mainly responsible for controlling the power-law
saturation regime, while γ adds flexibility to the model
as it contributes to the asymmetry of the cumulative
(daily) curve around the inflection point (peak). Third,
one sees from (6) that the parameter β sets the time
scale for the location of the inflection point tc. Finally,

let us consider the role of the pre-factor C in (1). In
statistical applications of the pathway approach, where
the right-hand side of (1) is a probability density func-
tion,C is a normalizing constant which can be obtained
in terms of the other parameters. In a similar vein, as
the ‘area’ under the daily curve Ḋ(t) yields the total
number of deaths/cases at the end of the epidemic, it is
natural to expect thatC should relate to the value of the
plateau K of the cumulative curve, which is indeed the
case as shown in (8). As the value of K is not known
a priori, we must therefore take C as a free parameter
to be estimated from the numerical fit of the model to
the data.

As described above, the set of parameters of the
pathway model can capture a rich class of dynamical
behaviors and therein lies the model’s power and flex-
ibility. The pathway approach has, however, the draw-
back that the model parameters are not easily inter-
preted in terms of standard epidemiological concepts,
as in the case of compartmental models. In this con-
text, it should be noted that some logistic-like growth
models can be ‘mapped’ onto respective compartmen-
tal models [7,20,21], whereby the parameters of the
former models can be put into correspondence (albeit
in a coupled and nonlinear manner) with the parame-
ters of the latter. A similar comparative study between
the pathway approach and compartmental models is
therefore an interesting topic for future research.

The pathway approach in its probabilistic version
has been applied to a great variety of physical phenom-
ena, for instance in astrophysics and statisticalmechan-
ics [13]. More recently, this approach was also used to
model epidemic dynamics in the context of theCOVID-
19 pandemic [14], where the main idea was to predict
the day in which the peak of the curves of active cases
and daily deaths would be achieved in various coun-
tries. Here, we shall pursue further the epidemiologi-
cal application of the PM by extending it to the case of
multiple waves of infections, as described next.

3.2 Multiple-wave model

To describe epidemic curves with multiple waves of
infections, we shall continue to use the PM, as given
by (1), but now we assume that all model parameters
are time dependent, which we indicate by writingC(t),
α(t), q(t), β(t), and γ (t). Furthermore, to capture the
distinct growth regimes corresponding to the succes-
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sive waves, we propose that these parameters evolve
in time according to the following generalized logistic
function

ζ(t) = ζ1 +
N−1∑
i=1

(ζi+1 − ζi )

2

[
1 + tanh

(
ρi (t − ti )

2

)]
,

(14)

where ζ(t) stands for any of the model parameters,
that is, ζ(t) = {C(t), α(t), q(t), β(t), γ (t)}, and N
is the number of waves. The function given in (14)
describes a curve with N plateaus, whose values are
denoted by the constants ζi , i = 1, . . . , N , where
each plateau represents the corresponding parameter
value during the i-th infection wave. The constants
ti , i = 1, . . . , N − 1, determine the transition times
between successive waves; whereas the constants ρi
characterize how rapid this transition takes place, so
that the larger the value of ρi , the faster the transition
to the next wave regime. The transition times, ti , and
transition rates, ρi , are assumed to be the same for all
model parameters. This is justified because an over-
all change in the epidemic dynamics, as a result, say,
of the adoption or relaxation of control measures, is
expected to affect simultaneously all epidemiological
parameters [17]. Thus, in effective models based on a
single ODE, such as the pathway approach or growth
models, changes in the epidemic dynamics as result of
both pharmacological and non-pharmacological inter-
ventions are reflected in time variations in the model
parameters. Conversely, one may mimic the imple-
mentation of control measures by introducing a priori
changes in the model parameters at some point in time
and studying their impact in the future evolution of the
epidemic curve [15].

In the case of time-dependent parameters, an ana-
lytical solution for the PM is no longer possible. Thus,
in order to obtain the cumulative curve D(t), one must
resort to a numerical integration of (1), with the param-
eters {C(t), α(t), q(t), β(t), γ (t)} described by their
respective transition functions as given in (14).

Figure 2a shows an example plot of a daily curve
obtained from the PM (1) for three waves, i.e., N = 3,
with the corresponding cumulative curve being shown
in Fig. 2b. The time dependencies of themodel parame-
ters {C(t), α(t), q(t), β(t), γ (t)} for the example given
in Fig. 2 are shown in Fig. 3, where the specific plateau
values entering function (14) for each model parame-
ter are given in the figure caption. In Fig. 3, one clearly
sees the three plateaus for each of the model parame-

ters, where each such plateau gives origin to a corre-
sponding wave in the epidemic curves shown in Fig. 2.
Also indicated in Fig. 3 are the corresponding transi-
tion times ti , for i = 1, 2, between i-th and the (i +1)-
th waves. The temporal width, Δt (i), of each transi-
tion region is dictated by the corresponding transition
rate ρi (assuming that the transition times ti are well
separated apart). An estimate of the width Δt (i) can
be obtained by using a linear approximation for each
transition region centered at the mid point between the
two consecutive plateaus, in which case one finds that
Δt (i) = 4/ρi [7].

One sees from (14) that, for a given N , the N -wave
model has 7N − 2 free parameters, corresponding to
the N plateaus for each of the five model parameters
{C, α, q, β, γ }, together with the 2(N − 1) parameters
ti and ρi , i = 1, . . . , N − 1, describing the transition
regions between successivewaves. In applying amodel
with such a large number of parameters to empirical
data, one must be careful to avoid excessive overfit-
ting. Below we describe a fitting procedure that aims
at minimizing this risk.

3.3 Data analysis

In all numerical fits reported here, we employed the
Levenberg-Marquardt algorithm to solve the nonlin-
ear least square optimization problem, as implemented
in the scipy package of the Python language. In
the case of single-wave epidemic curves, the empirical
data can be fitted with the PM with constant param-
eters. Since in this case the model can be integrated
exactly for the cumulative number D(t), we prefer to
fit the analytic solution given in (3) to the cumulative
data, where the level of noise is considerably smaller
than that in the daily curve. For this reason, the fits
presented in Sect. 4.1 for one-wave curves were per-
formed on the respective cumulative empirical data
using the exact solution (3). In such cases, for each
given dataset, we need to determine five parameters,
namely {C, α, q, β, γ }.

For epidemic curves with multiple waves, which is
our main focus of interest here, the model parameters
become time dependent, as discussed in Sect. 3.2, and
the model no longer admits an explicit solution for the
cumulative count D(t). In such cases, it is more con-
venient to perform the fits on the empirical data for the
daily number of deaths, as the function Ḋ(t) is given
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explicitly by (1) and (14), thus rendering the numer-
ical analysis easier to apply to the daily data (rather
than to the cumulative counts). Thus, all numerical fits
presented in Sects. 4.2–4.5 for COVID-19 curves with
multiple waves were performed on the daily curves.

Owing to the large number of parameters for the
multiwave model (we recall that there are 7N − 2
free parameters for N waves), the parameter estimates
returned by the fitting procedure are quite sensitive to
their respective initial guesses. In particular, we noticed
that the fitting procedure is particularly sensitive to the
initial guesses for the transition times ti between suc-
cessive waves. For instance, in some cases, one obtains
a visually good fit to the data, but with high errors in
some of the parameters, possibly indicating overfitting.
We have therefore implemented some controlmeasures
to reduce overfitting, as discussed below.

First, we have imposed some range restrictions
on the parameters {Ci , αi , qi , βi , γi }, such that their
respective lower bounds are as in (1), with an additional
upper bound for {qi } equal to 3. Second, in the fitting
procedure, we require that condition (2) be satisfied for
the parameters of the last wave, namely

γN − (qN − 1)(αN + 1) > 0. (15)

As discussed in Sect. 3.1, this is necessary to ensure
that D(t) reaches a finite value as t → ∞. Third, we
have carefully selected the initial guesses for the fit-
ting parameters, as follows. As mentioned before, the
quality of the fits is quite sensitive on the choice of
the initial guesses for the transitions times ti but less
so for the other parameters. In view of this fact, we
have chosen to fix the initial guesses for the parameters
{Ci , αi , qi , βi , γi } = {1 × 10−3, 4, 1.4, 1 × 10−5, 3},
for i = 1, 2, . . . , N , aswell as the initial guesses for the
transitions rates at ρi = 0.1, for i = 1, 2, . . . , N − 1;
whereas the initial guesses for the transition times ti are
randomly selected in intervals whose bounds are cho-
sen a priori by visual inspection of the empirical curve.
This manner to select the parameter initial guesses has
proven quite satisfactory and in general yields very
good fits. As already mentioned, because of the large
discrepancy in orders of magnitude of the parameters
Ci andβi relatively to the other parameters, the errors in
the fitting parameters are not reliably estimated by our
routine. Nonetheless, the excellent agreement between
the theoretical curves and the empirical data in all fits

presented here indicates that our numerical procedure
yields dependable results.

4 Results

As of this writing, most countries around the world
have exhibited at least three or more waves of COVID-
19 [22], with just a few countries having only twomajor
waves, and hardly any with merely a single wave. As
our main aim in this paper is to illustrate the applica-
tion of the PM to epidemic curves with multiple waves,
we have chosen a representative sample of COVID-19
fatality curves from countries that exhibit up to five
waves. More specifically, we have selected a total of
10 countries, as follows: one country (Slovakia) with
two waves; two countries (Brazil and Bulgaria) with
three waves; three countries (Croatia, Netherlands, and
SouthAfrica)with fourwaves; and four countries (Aus-
tria, Italy, Portugal, and USA) with five waves. For all
selected countries above, we have analyzed data up to
March 3, 2022.

For completeness, we have also included examples
of applications of the PM to single-wave epidemic
curves. Since to this day practically every country has
experienced at least a secondwave of COVID-19 infec-
tions, in order to obtain single-wave curves we need to
truncate the empirical data at a suitable date before the
second wave had started. To exemplify such cases, we
have selected three countries and respective maximum
dates, as follows: Brazil, up to October 22, 2020; Italy,
up to August 10, 2020; and the USA, up to June 27,
2020. Below, we start by showing model fits for one-
wave curves, afterwhichwe present results formultiple
waves.

4.1 Examples with one wave

In the left panels of Fig. 4, we show as green circles the
empirical data for the cumulative number of COVID-
19 deaths in Brazil (up to October 22, 2020), Italy (up
to August 10, 2020), and the USA (up to June 27,
2020); while the black solid lines correspond to the fit-
ted curves obtained from the exact solution (3) for the
PM. The right panels in Fig. 4 show the empirical daily
counts of deaths in green circles, while the solid curves
represent the theoretical daily curves given by the right-
hand side of (1). The black dots on the theoretical daily
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Fig. 4 Left panels:
cumulative number of
deaths (green circles)
attributed to COVID-19 for
a Brazil, up to October 20,
2020, c Italy, up to August
10, 2020, and e USA, up to
June 27, 2020. The solid
curves are the best fits by
the standard pathway model
with one wave. Right
panels: Daily number of
deaths for the same
countries as in the
corresponding left panels,
where the empirical data are
indicated by green circles
and the solid curve
represents the time
derivative of the respective
theoretical curve in the left
panels. The peaks of the
daily curves are indicated
by the black dots

curves indicate the peaks of the first wave. In all fits
shown, one sees a remarkable agreement between the
theoreticalmodel and the empirical data. The fit param-
eters for the plots shown in Fig. 4 are given in Table 2.
In the remainder of this section, we present examples
of recent COVID-19 epidemic curves for several coun-
tries where multiple waves of infections developed.

4.2 Example with two waves

We recall that for curves with multiple waves, the PM
no longer admits an exact solution for the cumulative
curve D(t). In such cases, it is more convenient to fit
the daily data with the theoretical daily curve Ḋ(t), as
it is given explicitly by the right-hand side of (1), with
the model parameters as in (14). In Fig. 5a, we show

the empirical data (green circles) of the daily number
of COVID-19 deaths for Slovakia, which has thus far
developed only two main waves of COVID-19. The
black solid line in this figure corresponds to the fitted
curve obtained from the multiwave PM with N = 2,
where the fitted parameters are given in the figure cap-
tion. In Fig. 5b, we show the corresponding cumula-
tive curves, where the empirical data are indicated by
green circles and the solid black curve was obtained by
numerical integration of Eqs. (1) and (14), using the
parameter values obtained from the fit in the left panel.

It is interesting to notice that the first main wave
in Slovakia came to almost a complete stop, before a
resurgence of the disease. This is indicated by the near-
zero ‘trough’ separating the two main waves in Fig. 5a,
which corresponds to a near-horizontal, extended inter-
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Fig. 5 a Daily number of deaths (green circles) attributed to
COVID-19 for Slovakia up to March 3, 2022. The solid curve
is the best fit by the pathway model with three waves (N = 2),
yielding the following parameters: C1 = 4.39 × 10−13, α1 =
4.59, q1 = 2.05, β1 = 1.14 × 10−4, γ1 = 3.95,C2 =
1.97 × 10−3, α2 = 4.09, q2 = 1.00, β2 = 6.60 × 10−6, γ2 =

2.25, ρ1 = 0.0214, and t1 = 416. The black dots indicate the
maxima and minima of the daily theoretical curve. b Cumula-
tive number of deaths, where the empirical data are indicated by
green circles and the solid curve represents the curves obtained
by numerically integrating the theoretical curve in the left panel

Table 1 Peak and starting dates of the main epidemic waves for all countries studied, as obtained from the maxima and minima of the
respective theoretical daily curves shown in Figs. 5, 6, 7, 8

Dynamical points Slovakia Brazil Bulgaria Croatia Netherlands South Africa Austria Italy USA Portugal

Peak of 1st wave 02/28/21 06/26/20 12/04/20 12/15/20 04/06/20 08/04/20 04/07/20 03/30/20 04/19/20 04/08/20

Start of 2nd wave 08/26/21 11/24/20 01/28/21 02/24/21 07/06/20 11/09/20 09/11/20 09/11/20 06/24/20 08/24/20

Peak of 2nd wave 12/13/21 04/07/21 04/07/21 04/24/21 11/09/20 01/14/21 12/05/20 11/29/20 08/02/20 12/05/20

Start of 3rd wave – 12/27/21 07/14/21 08/01/21 12/08/20 04/24/21 03/07/21 02/26/21 10/13/20 12/26/20

Peak of 3rd wave – 02/10/22 11/03/21 12/01/21 01/06/21 07/28/21 04/08/21 03/31/21 01/17/21 01/29/21

Start of 4th wave – – – 01/02/22 09/17/21 11/20/21 08/07/21 07/11/21 07/02/21 05/02/21

Peak of 4th wave – – – 02/15/22 12/05/21 02/01/22 12/04/21 09/09/21 09/21/21 08/20/21

Start of 5th wave – – – – – – 01/13/22 10/25/21 11/18/21 10/22/21

Peak of 5th wave – – – – – – 02/28/22 01/27/22 01/30/22 03/03/22

mediate plateau in the cumulative curve in Fig. 5b. Cap-
turing such a wide flat trough with an overall smooth
curve is not an easy task, nonetheless the PM does a
remarkable job in fitting Slovakia’s daily curve, as seen
in Fig. 5a. The agreement between theory and data in
the cumulative curves, see Fig. 5b, is also very good.

From the best-fit model, one can obtain relevant
information about the epidemic evolution, such as the
peak and starting dates of each wave, as represented by
the maxima and minima of the theoretical daily curve,
which are indicated by black dots in Fig. 5a. The calen-
dar dates for such important characteristic points of the
COVID-19 epidemic in Slovakia are given in Table 1.

4.3 Countries with three waves

In Fig. 6, we show the empirical data (green circles)
of the daily number of COVID-19 deaths for Brazil
andBulgaria, two countries that have experienced three
major waves of the pandemic. The black solid lines in
this figure correspond to the fitted curves obtained from
the multiwave PM (1), where the time dependency of
the parameters is as given in (14) for N = 3. (The
parameter values of the theoretical curve for the fits
shown in Fig. 6 are given in Table 3.)

One sees from the left panels of Fig. 6 that in spite
of large fluctuations in the empirical daily data, the
theoretical curves give a very good description of the
data evolution. This, in turn, translates into an excellent
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Fig. 6 Left panels: daily
number of deaths (green
circles) attributed to
COVID-19 for a Brazil and
c Bulgaria, up to March 3,
2022. The solid curves are
the best fits by the pathway
model with three waves
(N = 3). The black dots
indicate the maxima and
minima of the daily
theoretical curve that
correspond to the peak and
starting dates of the main
waves. Right panels:
Cumulative number of
deaths for the same
countries as in the
corresponding left panels,
where the empirical data are
indicated by green circles
and the solid curve
represents the curves
obtained by numerically
integrating the theoretical
curves in the left panels

agreement between theory and data for the cumulative
curves, as shown in the right panels of Fig. 6, where
the green data are the cumulative death counts and the
black solid lines are obtained by numerical integra-
tion of the theoretical curves in the corresponding left
panels. The starting and peak dates for the successive
epidemic waves in each country shown in Fig. 6, cor-
responding to the black dots indicated in the left panels
of the figure, are given in Table 1.

4.4 Countries with four waves

In the left panels of Fig. 7, we show the empirical
data (green circles) for the daily number of COVID-
19 deaths for Croatia, Netherlands, and South Africa,
superimposed with the fitted curves (black solid lines)
obtained using the four-wave version of the model
given by (1), with the parameters varying in time
according to (14) with N = 4. (The parameter val-
ues of the theoretical curves are shown in Table 4.)
As before, the right panels of Fig. 7 show the empirical
(green circles) and theoretical (black solid lines) cumu-
lative curves obtained from the daily curves shown in
corresponding left panels. Once again, one sees a very
good agreement between theory and data for both daily
and cumulative curves. The peak and starting dates for

the successive epidemic waves in each country shown
in Fig. 7 are again given in Table 1.

4.5 Countries with five waves

In the left panels of Fig. 8, we show the empirical data
(green circles) and theoretical fits (solid black lines) of
the multiwave PM with N = 5 for the daily number
of COVID-19 deaths for Austria, Italy, Portugal, and
USA. (The parameter values of the theoretical curve
are shown in Table 5.) The right panels in the figure
show the empirical and theoretical cumulative curves
for the corresponding daily curves in the left panels.
Again, the same conclusions as before can be drawn
about the efficiency of ourmodel in fitting the empirical
data, even for epidemic curves with complex evolution
patterns and a larger number of waves of infections,
such as those shown in Fig. 8. The peak and starting
dates of the epidemic waves for the countries seen in
Fig. 8 are all shown in Table 1.

5 Discussion

We have seen above that the PM, as defined in (1) and
(14), is a versatile model that is able to capture with a
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Fig. 7 Left panels: Daily
number of deaths (green
circles) attributed to
COVID-19 for a Croatia,
and c Netherlands, and e
South Africa, up to March 3,
2022. The solid curves are
the best fits by the pathway
model with four waves
(N = 4), while the black
dots indicate the maxima
and minima corresponding
to the peak and starting
dates of the main waves.
Right panels: Cumulative
number of deaths for the
same countries as in the
corresponding left panels,
where the empirical data are
indicated by green circles
and the solid curve
represents the curves
obtained by numerically
integrating the theoretical
curves in the left panels

considerable degree of fidelity the complex patterns
of COVID-19 epidemic curves with multiple waves
of infection. An important advantage of the pathway
approach to bear in mind is that it yields an explicit
model, meaning that the expression for the daily curve,
represented by Ḋ(t) in (1), is written explicitly in terms
of the timevariable,whichmakes it quite convenient for
direct fits to the daily empirical data. Contrast this with
the usual growth and compartmental models, where the
respective differential equations are given in terms of
the accumulated variables, thus requiring a numerical
integration of the model before it can be fitted to the
data [7]. A minor conceptual downside of the path-
way formulation is that it cannot be formally rewrit-
ten as a standard growth model, since the dependency

of the growth rate Ḋ on the cumulative quantity D is
not known a priori nor can it be easily obtained (if
possible at all), although it could be easily computed
numerically. This makes the epidemiological interpre-
tation of the parameters of the PM less direct than, say,
those of compartmental and growth models [7,17]; see
Sect. 3.1. Nonetheless, the PM has proven very effec-
tive in describing epidemics with complex multiwave
behavior, as shown here, and as such it contributes an
important tool to the mathematical epidemiology tool-
box.

Another important aspect of the PM is that it has
an in-built complexity that stems from the multistep
logistic function (14) used for the time dependency of
the parameters. This allows for a rich behavior that
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Fig. 8 Left panels: Daily
number of deaths (green
circles) attributed to
COVID-19 for a Austria, c
Italy, e USA, and g
Portugal, up to March 3,
2022. The solid curves are
the best fits by the pathway
model with five waves
(N = 5). The black dots
indicate the maxima and
minima that correspond to
the peak and starting dates
of the main waves. Right
panels: Cumulative number
of deaths for the same
countries as in the
corresponding left panels,
where the empirical data are
indicated by green circles
and the solid curve
represents the curves
obtained by numerically
integrating the theoretical
curves in the left panels

is not easily anticipated from the model’s equation of
motion. For example, in addition to the N main peaks
(for a given N ), the model is also able to capture ‘sub-
waves’ (i.e., smaller peaks) and ‘shoulders’ (i.e., flatter
portions) near a main peak. Examples of these interest-

ing features can be seen, for instance, in Figs. 6a, c, 8c,
and e.

As already mentioned, from the fitted theoretical
curve for a given location, one can extract relevant
information about the dynamical evolution of the dis-
ease in the chosen location. For example, from the fitted

123



6868 G. L. Vasconcelos et al.

theoretical daily curve, it is a simple matter to deter-
mine its maxima and minima, where the former points
correspond to the waves’ peaks, when the epidemic
was at its worst periods; while the latter indicate peri-
ods when an epidemic wave has subsided, meaning
that some control of the disease spread had by then
been attained, after which a resurgence of infections
takes place (probably owing to relaxation of control
measures), thus characterizing the beginning of a new
wave. Obtaining reliable estimates for the starting and
peak dates for each successive wave is important for
researchers and health authorities [23–25], as it allows
for a direct comparison of the occurrence of peaks and
troughs in an epidemic curve with the timing of con-
tainmentmeasures, thusmaking it possible to study in a
more quantitative fashion the efficacy of interventions
and the (possibly negative) impact of their relaxation.

It is important to point out that the type of informa-
tion extracted from mathematical models, such as the
PM, cannot be easily obtained—at least not with the
same degree of accuracy—from a mere visual inspec-
tion of neither the raw empirical data nor its moving-
average smoothed version [11,26]. Indeed, the large
fluctuations in the daily datamakeusual smoothingpro-
cedures less reliable for such purposes. Mathematical
models are therefore required to obtain a sound quan-
titative description of the epidemic dynamics. Another
important aspect of the PM that we would like to point
out is its applicability to the daily number of both deaths
and infection cases. For instance, a combined analy-
sis of cases and deaths within the pathway approach
was performed for the first COVID-19 wave in several
countries [14]. Similar analysis could in principle be
extended to multiple waves, albeit it is more numeri-
cally demanding and hence will be left for future stud-
ies.

6 Conclusion

In this paper, we have studied the dynamics of multi-
ple waves of COVID-19 infections by means of a gen-
eralized pathway model with time-dependent param-
eters. The pathway approach used here is formulated
explicitly in time by writing the growth rate of the rel-
evant epidemic variable (in our case, number of deaths
attributed to COVID-19) as a prescribed function of
time—more specifically, a type-2 beta function [12].
The explicit timewise nature of the model allows it to

be fitted directly to daily data without the need of any
ODE integration [14].

Here, we have extended the pathway model to the
case of epidemic curves withmultiple waves by assum-
ing that the original model parameters are time depen-
dent, so as to capture the successive acceleration-
deceleration-reacceleration regimes (waves) of the dis-
ease. More concretely, in order to describe an epidemic
curve with N waves, we assumed that the parameters
vary in time according to a multistep logistic func-
tion with N plateaus, where each plateau represents
the parameter value during the respective wave [7]. We
have applied the model to the daily number of COVID-
19 deaths for ten selected countries—all exhibiting
multiple waves of infections (ranging from two to five).
Our results show that themodel is very efficient inmod-
eling such complex epidemic data.

From the fitted model, important characteristic
points of the epidemic evolution, such as the starting
and peak dates for each wave, can be easily obtained.
We have argued that this type of information should
be helpful in analyzing the effectiveness of both phar-
macological and non-pharmacological interventions.
For instance, it is expected that the time for an epi-
demic wave to reach a peak should correlate positively
with the delay to adopt control measures and nega-
tively with their strength [15]. Conversely, it is rea-
sonable to expect that the beginning of a reaccelera-
tion regime (new wave) is in part due to relaxation of
control measures or perhaps to the appearance of new
pathogen variant or both. Similarly, the start of vaccina-
tion should help to tame an epidemicwave. As themain
goal of the present paper was to introduce the pathway
approach for multiwave epidemics and show its effi-
ciency in describing COVID-19 data, a more detailed
study about the effectiveness of intervention measures
along the lines outlined above is left for futurework. As
a concluding remark,wenote that although the pathway
approach presented here was focused on the COVID-
19 pandemic, the model can be readily applied to any
infectious disease, old and new, thus opening new pos-
sibilities of applications.
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A Tables of fitted parameters

See Tables 2, 3, 4, 5.

Table 2 Parameter estimates of the one-wave model for the
selected countries shown in Fig. 4

Parameters Brazil Italy USA

C 3.47 × 10−3 1.35 × 10−3 4.96 × 10−8

α 3.61 4.23 7.51

q 1.10 1.28 1.27

β 0.0353 3.14 × 10−4 1.33 × 10−4

γ 1.07 2.52 2.87

Table 3 Parameter estimates of the fitted daily curves for the
selected countries with three waves shown in Fig. 6

Parameters Brazil Bulgaria

C1 1.46 × 10−3 7.93 × 10−4

α1 3.51 1.75

q1 1.35 2.98

β1 4.28 × 10−4 7.44 × 10−6

γ1 2.00 1.44

C2 6.10 × 10−2 1.94 × 10−2

α2 2.36 7.76

q2 1.00 3.00

β2 1.50 × 10−4 1.43 × 10−8

γ2 1.67 15.3

ρ1 0.0700 0.0648

t1 336 294

C3 1.35 × 10−1 2.02

α3 9.21 8.21

q3 1.02 1.16

β3 1.01 × 10−3 9.63 × 10−3

γ3 1.74 2.23

ρ2 0.0666 0.0946

t2 651 541
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Table 4 Parameter
estimates of the fitted daily
curves for the selected
countries with four waves
shown in Fig. 7

Parameters Croatia Netherlands South Africa

C1 3.53 × 10−10 3.15 × 10−8 6.23 × 10−7

α1 4.23 7.76 4.34

q1 1.34 1.43 1.30

β1 2.18 × 10−8 2.29 × 10−5 1.30 × 10−7

γ1 3.26 3.86 3.40

C2 4.80 × 10−6 2.41 × 10−10 1.59 × 10−4

α2 5.59 8.84 4.17

q2 1.08 1.65 1.23

β2 2.86 × 10−6 6.76 × 10−5 1.40 × 10−7

γ2 2.72 4.77 3.37

ρ1 0.0471 0.160 0.0904

t1 370 77.6 301

C3 3.41 × 10−1 4.25 × 10−6 3.91 × 10−1

α3 3.84 9.70 4.60

q3 1.24 1.10 1.10

β3 4.23 × 10−7 2.92 × 10−2 6.08 × 10−7

γ3 3.20 1.69 2.98

ρ2 0.0794 0.0976 0.0644

t2 638 302 521

C4 3.43 × 10−2 2.20 × 10−4 4.73 × 10−3

α4 3.77 10.6 3.44

q4 1.31 1.03 1.50

β4 1.04 × 10−6 1.46 × 10−2 5.28 × 10−6

γ4 3.14 1.43 3.12

ρ3 0.306 0.118 0.0344

t3 698 612 662

Table 5 Parameter
estimates of the fitted daily
curves for the selected
countries with five waves
shown in Fig. 8

Parameters Austria Italy USA Portugal

C1 4.95 × 10−4 6.53 × 10−5 5.64 × 10−4 3.48 × 10−3

α1 3.73 5.10 4.36 3.92

q1 1.32 1.36 1.40 1.37

β1 1.49 × 10−4 3.34 × 10−5 8.90 × 10−6 8.38 × 10−3

γ1 2.93 3.18 3.23 2.10

C2 9.34 × 10−2 6.22 × 10−2 2.49 × 10−2 1.72 × 10−5

α2 4.06 3.81 3.72 3.95

q2 1.10 1.32 1.76 1.60

β2 7.55 × 10−6 4.53 × 10−5 3.24 × 10−5 1.09 × 10−5

γ2 2.76 2.64 3.33 2.84
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Table 5 continued Parameters Austria Italy USA Portugal

ρ1 0.0503 0.129 0.123 0.0884

t1 174 271 156 154

C3 8.25 × 10−10 1.01 × 10−4 3.37 × 10−1 4.86 × 10−5

α3 3.18 3.88 3.94 4.06

q3 1.25 2.24 1.25 1.43

β3 6.08 × 10−11 1.57 × 10−8 5.66 × 10−6 1.49 × 10−9

γ3 3.14 4.53 2.91 3.09

ρ2 0.0633 0.113 0.0986 0.0987

t2 356 325 288 286

C4 5.97 × 10−7 9.67 × 10−4 4.23 × 10−3 3.70 × 10−7

α4 4.78 2.82 3.63 2.86

q4 1.49 1.24 1.46 1.22

β4 5.31 × 10−6 1.02 × 10−6 2.99 × 10−7 1.76 × 10−6

γ4 2.73 2.62 3.23 2.46

ρ3 0.0150 0.0580 0.0744 0.0598

t3 509 490 529 332

C5 5.04 × 10−7 1.03 × 10−1 2.16 × 10−2 5.47 × 10−4

α5 3.73 4.53 3.84 4.90

q5 1.37 1.12 1.14 1.45

β5 7.11 × 10−7 7.88 × 10−6 7.22 × 10−8 4.04 × 10−6

γ5 2.66 2.50 3.06 3.45

ρ4 0.0950 0.0811 0.101 0.0343

t4 663 693 664 593
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