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Abstract Discovering governing equations of com-
plex dynamical systems directly from data is a cen-
tral problem in scientific machine learning. In recent
years, the sparse identification of nonlinear dynam-
ics (SINDy) framework, powered by heuristic sparse
regression methods, has become a dominant tool for
learning parsimonious models. We propose an exact
formulation of the SINDyproblemusingmixed-integer
optimization (MIO-SINDy) to solve the sparsity con-
strained regression problem to provable optimality in
seconds. On a large number of canonical ordinary and
partial differential equations, we illustrate the dramatic
improvement in our approach in accuratemodel discov-
ery while being more sample efficient, robust to noise,
and flexible in accommodating physical constraints.
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1 Introduction

Advances in machine learning (ML) combined with
the exponential growth of data and computing power
are enabling new paradigms of data-driven science
and engineering. In particular, emerging techniques for
learning dynamic patterns directly from data are poised
to revampfieldswhere data are abundant, but traditional
static analysis methods have failed to generate useful
models. While accurate dynamical models are impor-
tant, the ultimate goal is to advance scientific under-
standing by discovering interpretable models that are
as simple as possible, but no simpler.

The modern era of data-driven system discovery
started in earnest with the work of [14,56] on sym-
bolic regression. Since then, probabilistic methods
[26,46,53,67] and deep neural networks [3,20,40,48,
49,65,66] have proved to be effective tools for mod-
eling high-dimensional complex dynamical systems.
However, it is the seminal work of [16] on the Sparse
Identification of Nonlinear Dynamics (SINDy) frame-
work that serves as the foundation for our approach.
SINDy casts system identification as a sparse regres-
sion problem over a large set of nonlinear library func-
tions to find the fewest active terms which accurately
reconstruct the system dynamics. Such a technique is
especially useful for finding highly interpretable mod-
els and performs well even with limited training data
(in particular, much less than what a neural network
would require). Its success has inspired a large number
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of extensions and variants tailored for more specific
problems [17,25,30,31,52].

The enabling technology underlying all of these
methods is the optimization algorithm that selects
and fits the best set of library terms to reconstruct
the dynamics. The original SINDy paper [16] used
the sequential threshold least squares algorithm which
finds a sparse solution by iteratively fitting a least
squares regression on the candidate library and remov-
ing terms with coefficients below a specified thresh-
old. However, thresholding is problematic for recov-
ering small model coefficients and does not easily
allow adding additional structure on the coefficients
as might be needed for enforcing an arbitrary physi-
cal constraint. These limitations motivated the devel-
opment of algorithms with different sparse regulariz-
ers that could incorporate constraints such as the sparse
relaxed regularized regression (SR3) [21,68] and con-
ditional gradients-based approaches [19]. There is also
a long history of greedy algorithms and convex relax-
ations designed to solve sparse regression and related
subset selection problem [47,61,62]. For system iden-
tification problems, we claim that such relaxations and
heuristics are unnecessary, and ultimately inadequate.

Concurrent with the developments in system iden-
tification and increase in scientific data, advances in
hardware and software have led to over a one tril-
lion times speed up in mixed-integer optimization
(MIO) solvers since 1990 [1,13,35]. This fact neces-
sitates researchers revisit their preconceptions about
the tractability of MIO in machine learning contexts.
Indeed, there has been substantial work on viewing
the full slate of classical machine learning algorithms
under a modern optimization lens [7], often yield-
ing state-of-the-art results with practical computational
budgets. Most relevant to system identification is the
recent progress on high-dimensional sparse regression
which solves the NP-hard feature selection problem
exactly [6,8–11,29,62]. In addition to superior perfor-
mance, these modern formulations inherit the full gen-
erality ofMIO, empowering domain experts with a rich
modeling language to express a vast range of model
desiderata as arbitrary linear, quadratic, and semidef-
inite constraints on both the coefficients and sparsity
structure.

The objective of this work is to bridge the gap
between the system identification and discrete opti-
mization literatures and demonstrate the effective-
ness of learning sparse nonlinear dynamics via MIO-

SINDy. We begin by reviewing MIO for sparse regres-
sion and then adapt a formulation utilizing specially
ordered sets to the basic SINDy framework and its rel-
evant extensions. We then systematically illustrate the
contrast in performance between heuristic and MIO
sparse regression (MIOSR) methods on a wide range
of canonical dynamical systems, including both ordi-
nary and scalar partial differential equations. Our main
contribution is the optimal MIO-SINDy formulation
utilizing a MIOSR optimizer for which we establish
the following results:

1. Tractable and provably optimal MIOSR termi-
nates when the objective of the incumbent solu-
tion matches the dual lower bound, that is, when
the gap between the objective upper bound and
lower bound vanishes, yielding both an optimal
solution and a proof of optimality. Despite solv-
ing the NP-hard subset selection problem exactly,
in Sect. 3.3 we show that the extra computational
cost ofMIOSR isminimal and scales favorablywith
additional data and compute.

2. Sample efficient and noise robust This theoreti-
cal optimality buys practical performance in more
challenging statistical regimes. In particular, we
study the low data limit in Sect. 3.2 and the high
noise setting in Sect. 3.5wherewefindMIOSRout-
performs heuristic methods, especially in learning
the true sparse form of the dynamics.

3. Customizable Due to the flexibility of MIO as a
modeling framework,MIOSRcanbe endlessly cus-
tomized to impose additional structure on the learn-
ing problem to further improve sample efficiency,
enforce physically realistic models, or incorporate
other domain tailored model requirements. We dis-
cuss this flexibility and a few relevant extensions in
Sect. 2.3 and then demonstrate the benefits of incor-
porating known physics as constraints in Sect. 3.4.

4. Consistent interfaceWeprovide an implementation
of our algorithm which adheres to the PySINDy
interface [33,58], both computationally and con-
ceptually. Therefore, our algorithm is compatible
with other advancements in the SINDy framework
(e.g., preprocessing, library construction, outer
loop algorithms) and seamlessly integrates into
existing tools and workflows.
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2 Methods

We begin by reviewing the SINDy problem, its exten-
sion to partial differential equations (PDEs), and the
weak formof SINDy for noisy data.We then discuss the
most appropriate MIO formulations for sparse regres-
sion that solve the SINDy problem and some relevant
extensions.

2.1 SINDy

The original SINDy framework [16] was designed
to recover systems of ordinary differential equations
(ODEs) of the form

d

dt
x(t) = f (x(t)) (1)

where x(t) ∈ R
d is the state of the system at time t and

the function f (x(t)) encodes the dynamics of the sys-
tem. Implicitly, f (·) is also assumed to be sparse. This
is justified because most physical systems are known
to have sparse dynamics when represented in suitable
coordinates. Sparsity also acts as a natural and effec-
tive regularizer [36] while yielding more interpretable
models.

Given n measurements of a system of interest, the
three required inputs are a state time matrix X ∈
R
n×d where xi j is the state of system variable j at

time i , the measured or numerically approximated
time derivatives of the state variables PX∈ R

n×d , and
a candidate library of nonlinear functions Θ(X) =
[θ1(X), . . . , θ L(X)]∈ R

n×D . As an example,we could
consider second-order polynomials θ�(X) = X2

which would yield d(d − 1)/2 candidate terms of ele-
mentwise products for every pair X i �X j . In all of our
experiments, we will use a library of low-order poly-
nomials, but other natural choices are trigonometric,
logarithmic, or exponential functions.

With these ingredients, we seek a solution to

Ẋ = Θ(X)Ξ (2)

for Ξ = [
ξ (1) ξ (2) . . . ξ (d)

]∈ R
D×d to learn the

dynamics of each state variable Ẋ i = f i (X) =
Θ (X) ξ (i). Framed as an optimization problem, the
standard objective is to

min
Ξ

‖Ẋ − Θ(X)Ξ‖2 + λR(Ξ) (3)

where R(·) is a sparsity promoting regularization func-
tion which may also include an l2 ridge regularization

term to improve the conditioning and add robustness
[5].

Given the rapid growthof the number of library func-
tions with regard to the input data dimensionality (e.g.,
D = O(d p) for an order p polynomial library), SINDy
is best suited for analysis of low-dimensional data sets.
Therefore, to learn the dynamics of high- dimensional
systems, a dimensionality reduction technique such as
proper orthogonal decomposition (POD) is first applied
to the data [4], and then, SINDy is applied to the
reduced data space. SINDy also makes the implicit
assumptions that the data contain the relevant govern-
ing variables and are represented in coordinates which
allow for sparsely representing the dynamics as the sum
of only a few elementary functions, and that the library
contains these elementary functions.
SINDy for PDEs This core framework can be fur-
ther extended to the automatic discovery of PDEs by
including partial derivatives in the candidate library
[52,54]. Concretely, spatiotemporal data of m spatial
locations measured over n time slices are arranged into
a lengthmn column vectorU. Then, a candidate library
Θ(U) ∈ R

mn×D is constructed as before except here
we consider functions of both the system state and sys-
tem spatial derivatives (which have to be numerically
approximated). That is, in addition to library functions
like U2, we also might include UU x and potentially
higher-order derivatives like U xxx . Finally, as before,
we seek coefficients Ξ which accurately reconstruct
the temporal dynamics U t = Θ(U)Ξ .
Weak form One core drawback with SINDy, espe-
cially when applied to PDEs or noisy data, is the need
to numerically estimate derivatives because numer-
ical differentiation compounds any noise present in
the underlyingmeasurement data.Whendifferentiating
multiple times, as is necessary for higher-order PDEs,
the estimates can become unusable, even while using
more robust differentiation techniques like smoothed
finite difference or polynomial interpolation.

This drawback motivates the weak form of SINDy
[45,50,55] (which also generalizes to the PDE case
[27,44]), where both sides of Equation 2 are integrated
over a random collection of K temporal subdomains
(spatiotemporal for PDEs). That is, for a randomsubdo-
main Ωk , a candidate library function θ i , and a weight
vector w, we compute

qki =
∫

Ωk

wT θ i dΩ (4)
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for every library term and subdomain. Each of the ele-
ments is then organized into a data matrixQ ∈ R

K×D .
By also integrating the left hand side of Equation 1 over
the same subdomains, we get a linear system q0 = QΞ

amenable to sparse regression without needing to dif-
ferentiate noisy data.

2.2 Mixed-integer sparse regression

The seminal paper on best subset selection using MIO
[8] proposed two primal formulations for sparse regres-
sion. Both of these formulations use binary variables to
encode the support of the coefficients, one using big-M
constraints, and theother using type-1 specially ordered
sets (SOS-1). Because the system identification prob-
lem is coordinate separable, we can fit each dimen-
sion independently, resulting in d smaller subproblems
which can be solved directly using these techniques.

For system dimension j , with user-specified target
sparsity k j , the big-M formulation with ridge regular-
ization for the SINDy problem is

min
ξ ,z

‖Ẋ j − Θ(X)ξ‖22 + λ‖ξ‖22 (5)

s.t. M�
i zi ≤ ξi ≤ MU

i zi i = 1, . . . D (6)
D∑

i=1

zi ≤ k j (7)

ξi ∈ R, zi ∈ {0, 1} i = 1, . . . , D (8)

where M�
i , MU

i are lower and upper bounds on
the coefficients. This formulation is solved for each
j ∈ [1, d], where we simply stack the coefficient
vectors to recover the full system dynamics Ξ =[
ξ (1) ξ (2) . . . ξ (d)

]
.

While the theory and practice of solving MIO prob-
lems are deep [12], the basic solution technique relies
on the linear programming (LP)-based branch-and-
bound algorithm to avoid performing the full com-
binatorial search. The hard part of MIO problems is
the discrete variables which make the problem non-
convex and NP-hard. Hence, branch and bound relies
on solving the polynomial-time linear relaxation of the
problem by allowing integer variables to take contin-
uous values, to obtain bounds on the optimal integral
solution. Branch and bound maintains a tree of solu-
tions to the LP relaxation where, at each branch of the
tree, an integer variable is fixed to an integer value,

while maintaining global upper and lower bounds on
the optimal objective value of an integral solution. The
algorithm continues expanding the tree, by branching
on integer variables with fractional LP optimal val-
ues in promising partial solutions, while pruning other
branches outside the solution bounds, until the lower
and upper bounds converge, yielding an optimal inte-
gral solution. We rely on modern optimization solvers
such as Gurobi [28] or CPLEX [23] to both solve the
problem and present this certificate of optimality.

The effectiveness of big-M modeling relies on the
tightness of coefficient bounds as otherwise the linear
relaxations are tooweak to efficiently prune the branch-
and-bound tree. [8] derive a number of ways to obtain
such bounds; however, these approaches can add sig-
nificant overhead to the solution times and don’t gener-
alize well in the presence of arbitrary constraints. This
motivates a nonlinear approach which circumvents the
need to calculate these 2D different bounds. [8] also
proposed adding the cardinality constraint via type-1
specially ordered sets (SOS-1) [12]. An SOS-1 con-
straint on a set of variables enforces that no more than
one variable within the set is nonzero enabling branch-
ing onmultiple variables for each branch of the branch-
and-bound tree. In this case,

(1 − zi )ξi = 0 ⇐⇒ {ξi , 1 − zi } : SOS-1

correctly captures the support of ξ . By replacing the
support constraint, we get

min
ξ ,z

‖Ẋ j − Θ(X)ξ‖22 + λ‖ξ‖22 (9)

s.t. {ξi , 1 − zi } : SOS-1 i = 1, . . . D
(10)

D∑

i=1

zi ≤ k j (11)

ξi ∈ R, zi ∈ {0, 1} i = 1, . . . , D.

(12)

More explicitly, the main objective term is

‖Ẋ j − Θ(X)ξ‖22 (13)

= ξ TΘ(X)TΘ(X)ξ − 2〈Θ(X)T Ẋ j , ξ 〉 + Ẋ j
T
Ẋ j .

(14)
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If we remove the constant term Ẋ j
T
Ẋ j and add the

regularization term, we get our final objective

ξ TΘ(X)TΘ(X)ξ − 2〈Θ(X)T Ẋ j , ξ 〉 + λξT ξ (15)

= ξT
(
Θ(X)TΘ(X) + λI

)
ξ − 2〈Θ(X)T Ẋ j , ξ 〉.

(16)

For a problem with n temporal observations and
library size D, our final formulation has D continuous
variables, D binary variables, D corresponding SOS-1
constraints, and one knapsack constraint. The objec-
tive has D(D+1)

2 quadratic terms and D linear terms.
Notably, the formulation size is independent of nwhich
yields very favorable scaling properties as we discuss
in Sect. 3.3.

A question that naturally arises is whether to enforce
sparsity as a hard constraint or promote sparsity as an
objective penalty. While it may be tempting to use a
penalty term and let the model balance sparsity, it is
known that constrained problems enjoy more favor-
able statistical properties [57]. In particular, while an
optimal solution to the sparsity regularized problem
is always obtainable by the constrained problem, the
converse is not true in general (see [34] Sect. 2.2). This
is especially true when the data matrix exhibits high
multicollinearity which is common in system discov-
ery because the library terms are usually strongly cor-
related.

Finally, we note that we adopt the SOS-1 formula-
tion because we found it to be the most numerically
stable and most flexible in including other potential
model desiderata (e.g., satisfaction of physical con-
straints). However, it is not the most scalable. Mod-
ern general-purpose optimization solvers can only han-
dle sparse regression problems with up to a few thou-
sand SOS-1 constraints. This is in stark contrast with
very recent tailored sparse regression solution tech-
niques such as the outer approximation method [9],
coordinate descent based branch and bound [29], and
the backbone method [6] which can scale to the high-
dimensional regime with dimension O(107). Given
that even a six-dimensional system with a fifth-order
polynomial library is only of dimension 462, the more
stable and flexible general-purpose solvers are prefer-
able for our circumstances.

2.3 Extensions

In many physical systems where something is known
about the underlying physics, we can incorporate this
knowledge as constraints on themodel coefficients [21,
32,37]. However, these constraints generally apply to
the system as a whole (e.g., conservation of energy), so
it is no longer possible to fit one coordinate at a time.
Therefore, we fit all coordinates jointly using objective

min
ξ

∣∣∣∣∣∣
∣∣∣

∣∣∣∣∣∣
∣∣∣

⎡

⎢⎢⎢
⎣

Ẋ1

Ẋ2
...

Ẋd

⎤

⎥⎥⎥
⎦

−

⎡

⎢⎢⎢
⎣

Θ(X) 0 . . . 0
0 Θ(X) 0
...

. . .
...

0 0 . . . Θ(X)

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

ξ (1)

ξ (2)

...

ξ (d)

⎤

⎥⎥⎥
⎦

∣∣∣∣∣∣
∣∣∣

∣∣∣∣∣∣
∣∣∣

2

2
(17)

= min
ξ

d∑

i=1

ξ (i)TΘ(X)TΘ(X)ξ (i) − 2〈Θ(X)T Ẋ i , ξ
(i)〉.

(18)

Now in addition to the sparsity constraint, we can
add arbitrary constraints Aξ̄ ≤ b where ξ̄ is the vec-
torized coefficient matrix of length Dd. Of course,
because we inherit the full generality of MIO, these
constraints can be anything that modern optimization
solvers can handle (e.g., linear, quadratic, semidefinite,
equality, inequality).

While such a formulation increases the dimension
of the regression problem by a factor of d (which is
potentially quite costly, both in terms of computational
time and sample efficiency), it is sometimes more nat-
ural and offers several additional benefits. The first is
based on the fact that the coordinates used in SINDy
often represent the spatial modes of a high-dimensional
discretized PDE simulation computed using a dimen-
sionality reduction technique like proper orthogonal
decomposition [22]. Each of these spatial modes has an
associated energy λi designated by their singular val-
ues. Consequently, the quality of the high-dimensional
reconstruction does not depend uniformly on the accu-
racy of each of the individual spatial modes, but in
proportion to their energies. In this setting, we can
weight each inner term in the sum of the objective func-
tion (17) by the energy of the respective spatial mode
to recover the terms which maximize the quality of the
full reconstruction, rather than the average dimension-
wise reconstruction. Another advantage is instead of
having to run parameter tuning on different values of
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k for each system variable, we can specify and cross-
validate one global value of the desired sparsity, and the
model will automatically determine the correct level of
sparsity per dimension.

While not pursued here, there are many extensions
that could be appropriate for more specific circum-
stances. For instance, it is possible to add lower and
upper bounds on the magnitudes of coefficients, add
more sophisticated conditional logic on the relation-
ship between nonzero coefficients, put controls on the
level of multicollinearity [9], require coefficients be
statistically significant [9], automatically prune out-
liers [21,60], and much more. In short, as such a
general framework, MIO-SINDy fully empowers the
researcher to express a vast range of model desider-
ata and impose additional structure to aid the learning
process.

3 Results

We benchmark our approach on nine canonical dynam-
ical systems across awide variety of statistical regimes.
Our analysis focuses on attributes that most differenti-
ate SINDy from alternative techniques and then illus-
trates how using optimal methods furthers these advan-
tages. In particular, we study sample efficiency, robust-
ness, constraint enforcement, and computational effi-
ciencywhere our evaluation focuses on identifying cor-
rect sparse models.

All of our experiments are built off of the open
source PySINDy library [33,58]. We use a shared
university cluster with heterogeneous hardware where
individual trials are confined to one CPU core with
sufficient RAM. Our implementation of MIO sparse
regression utilizes Gurobi 9.5.0 [28] to optimize and
prove optimality. We make all of our code, data, and
results publicly available at our Github repository
https://github.com/wesg52/sindy_mio_paper.

3.1 Experimental overview

Most of our experiments follow the same high level
structure. We vary a quantity of interest (e.g., data
length, data noise) for 50 random initial conditions,
each with additive Gaussian noise scaled to be a certain
percentage of the l2 norm of the training data. Then, for
each sampled trajectory, we split the data into a training

and a validation segment, using the validation segment
to select the hyperparameters (see Sect. 3.1.1) of each
of the baseline algorithms (Sect. 3.1.2). We follow the
standard practice of unbiasing the final model by refit-
ting an unregularized least squares regression on the
selected coefficients. This final model is then evalu-
ated on a suite of metrics (Sect. 3.1.3), with a focus
toward identifying the correct coefficient support.

While the specifics of our results are somewhat sen-
sitive to the details of our experimental procedure, we
take steps to ensure our conclusions are robust to such
design choices. For instance,we use random initial con-
ditions, whereas many papers in the SINDy literature
report results using a fixed initial condition. While this
aids reproducibility, we found performance to be sensi-
tive to initial conditions formany systems, especially in
the lowdata limit. Additionally, for each experimentwe
test our approach on multiple systems, each of which
raises different qualitative behavior, to better under-
stand the factors which differentiate performance.

3.1.1 Model selection

A critical component of learning parsimonious mod-
els is in choosing hyperparameters that appropriately
tradeoff model fit with sparsity, since adding more
degrees of freedom monotonically decreases insam-
ple error. We strike this balance by selecting param-
eters which minimize the Akaike information criterion
(AIC) metric [2,42].

In our setting of sparse regression, for a learned
model Ξ̂ , the corrected AIC is given by

AICc = m ln(RSS/m) + 2k + 2(k + 1)(k + 2)

m − k − 2
(19)

where RSS is the residual sum of squared errors∑n
i=1

∑d
j=1(Ẋ − Θ(X)Ξ̂)2i j , m = n × d is the total

number of measurements, k is the sparsity of the solu-
tion, and the last term is the correction for finite sam-
ples.

Unless otherwise noted, for every trial of every
experiment discussed below, we run the following
model selection procedure. Split the sampled trajectory
into a train and a validation interval, typically the first
2/3 and the last 1/3, respectively. For each algorithm
and choice of hyperparameters, train on the training
split and compute the AICc with respect to the valida-
tion data. The final model is the one which minimizes
the AICc metric on the validation data. Note, for algo-
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rithms which fit each dimension separately, we com-
pute the AICc dimensionwise and combine the best
coefficients per dimension to create the final model.

3.1.2 Algorithms

Given our focus on accurate support recovery, and for
sake of consistent comparison, we restrict our baselines
to other l0 regularized or constrained sparse regres-
sion algorithms. This notably excludes l1 regularized
sparse regression methods like LASSO and its vari-
ants [19,61], probabilistic methods, and deep learning-
based approaches which are less suitable for accurate
variable selection [9,21]. Specifically, we compare our
MIO-based approach (MIOSR) to four common opti-
mizers in the SINDy literature: sequential threshold
least squares (STLSQ) [16], sparse relaxed regular-
ized regression (SR3) [21], stepwise sparse regression
(SSR) [15], and ensembling using STLSQ (E-STLSQ)
[25].

For every experiment trial, we perform a grid search
over the relevant hyperparameters of each algorithm
to find the set which minimize the AICc as described
above. Each algorithm has a hyperparameter corre-
sponding to regularization strength and sparsity pro-
motion. MIOSR, STLSQ, SSR, and E-STLSQ all have
an explicit ridge regression penalty while SR3 has a
relaxation parameter ν. For MIOSR and SSR, we tune
the sparsity of each dimension, where we control the
can control k exactly. For (E-)STLSQandSSR,we tune
the threshold parameter which acts as a proxy for the
true sparsity. Parameter ranges for each algorithm are
included in appendix.

For SSR, we use the greedy criterion of removing
the smallest magnitude coefficient at each iteration. For
SR3, we run until convergence up to a max 10000 iter-
ations. For MIOSR, we set a timeout of 30 sec. per
dimension to prove convergence. For E-STLSQ,we use
robust bagging (bragging) where we randomly sample
time slices with replacement to train 50 different mod-
els, and then use the median of the coefficients as the
final model.

3.1.3 Evaluation metrics

To evaluate each algorithm, we focus on three common
metrics: true positivity rate (TPR), normalized coeffi-
cient error (NCE), and rootmean squared error (RMSE)
of the estimated dynamics. Throughout, let Ξ be the

true dynamics of the system and Ξ̂ be the estimated
dynamics.

The true positivity rate measures the ability to iden-
tify the correct nonzero terms of the dynamics and
importantly to not select superfluous terms. Specifi-
cally, the true positivity rate is the ratio of intersection
over union of nonzero coefficients

TPR = |{i : Ξi 
= 0} ∩ {i : Ξ̂i 
= 0}|
|{i : Ξi 
= 0} ∪ {i : Ξ̂i 
= 0}| , (20)

or equivalently, the ratio of true coefficients identified
to the combined number of true coefficients, false zero
coefficients, and false nonzero coefficients identified.

The normalized coefficient error simply measures
the normalized Euclidean distance between the true
coefficients and the learned coefficients

NCE = ‖Ξ − Ξ̂‖2
‖Ξ‖2 . (21)

This metric is less punitive that the true positivity rate
because it mainly captures the difference in large coef-
ficients and minimally penalizes small nonzero terms.

Finally, to contextualize how the coefficient error
actually impacts the quality of the recoveredmodel, we
also report the root mean squared error of the estimated
derivatives on a clean test set. That is, for a testing
trajectory of length n we calculate

RMSE

=
√√√
√ 1

nd

n∑

i=1

d∑

j=1

(Θ(X test )Ξ − Θ(X test )Ξ̂)2i j .

(22)

To test that the model truly generalizes, we indepen-
dently sample 10 initial conditions, each run for 10
sec., and take the average RMSE across each of these
trajectories. Due to the chaotic nature of the systems
we study, we only compare the derivatives and not the
trajectories of the forward models, since initial errors
will rapidly compound regardless of the accuracy of
the underlying model.

In the results that follow, we will typically report
the log RMSE and log l2 coefficient errors, averaged
over 50 trials. When calculating the mean and standard
errors,wedo soon the logof these statistics. This avoids
one outlier from dragging up the mean by many orders
of magnitude and makes the standard errors symmetric
in log space.
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3.2 Sample efficiency

A key advantage of SINDy over deep learning tech-
niques is the reduced data requirements to learn high-
quality sparse models. To test howMIOSR extends this
advantage, we study the effect of varying the length
of the training trajectory on model recovery for three
canonical dynamical systems studied in the SINDy lit-
erature: the Lorenz model [38], the Hopf system [43],
and a triadic magnetohydrodynamical (MHD) model
[18].

The Lorenzmodel is the classic example of a chaotic
system and is given by

ẋ = σ(y − x) (23a)

ẏ = x(ρ − z) − y (23b)

ż = xy − βz (23c)

where we use the standard parameters σ = 10, β =
8/3, ρ = 28. Another canonical system in the study
of nonlinear dynamics is the Hopf system given by

ẋ = μx + ωy − Ax
(
x2 + y2

)
(24a)

ẏ = −ωx + μy − Ay
(
x2 + y2

)
(24b)

where we set μ = −0.05, ω = A = 1. Finally, we
consider a simplified plasma model of a joint velocity
and magnetic field with 0 fluid viscosity or resistivity

V̇1 = 4 (V2V3 − B2B3) (25a)

V̇2 = −7 (V1V3 − B1B3) (25b)

V̇3 = 3 (V1V2 − B1B2) (25c)

Ḃ1 = 2 (B3V2 − V3B2) (25d)

Ḃ2 = 5 (V3B1 − B3V1) (25e)

Ḃ3 = 9 (V1B2 − B1V2) . (25f)

Figure 1 depicts our results for each combination
of algorithm and system for varying lengths of train-
ing data. For each system, we sample trajectories with
0.002 second time granularity with 0.2% added Gaus-
sian noise. In anticipating the assumption that exact
optimization methods are not scalable, we use over-
sized libraries: 5th-order polynomials for the Lorenz
andHopf systems and3rd-order polynomials forMHD.

This yields libraries with dimension 56, 21, and 84,
respectively.

The high-level conclusion is that MIOSR consis-
tently outperforms all other methods by finding more
accurate models with less data and with less vari-
ance in the quality of the fit. While the gap is more
muted in the Lorenz case, the stark differences in the
Hopf and MHD systems surface two distinct scenarios
where heuristics can fail: the presence of small coef-
ficients and large libraries. For Hopf, with bifurcation
parameter μ = −0.05, thresholding techniques can-
not select such a small coefficient in the presence of
even modest noise. Indeed, the original SINDy paper
usedmultiple independent trajectories to learn theHopf
dynamics, because the system quickly converges to a
fixed point. In the low data limit for MHD, a larger
6-dimensional system, there are many combinations of
the large library of terms which fit the small training
set well. With so many degrees of freedom, iterative
methods break down by taking incorrect intermediate
steps, but by taking a global view, MIOSR can identify
the true model.

In this low data regime, some baselines completely
fail, in particular SR3. This is perhaps unsurprising
because SR3 fits all coordinates jointly and therefore is
solving a more difficult, higher-dimensional optimiza-
tion problem. While sometimes the baselines methods
achieve comparable test RMSE, they often do so by
overfitting as evidenced by the low true positivity rate.
This largely defeats the purpose of SINDy in discover-
ing robust, interpretable, and scientifically illuminating
models.

Many of the aforementioned difficulties are partially
ameliorated by using a smaller library. In appendix,
we perform the same experiment with “tight” libraries,
those which don’t include higher-order polynomials
than are necessary to express the system (Fig. 6).While
MIOSR maintains a clear edge, the difference is less
striking. Of course for novel systems, this information
is not available a priori, and therefore, this represents
the most idealized scenario.

3.3 Computational efficiency

Nearly every SINDy paper contains a sentence that
justifies the need for sparse regression heuristics by
claiming that the feature selection problem is compu-
tationally intractable due to the combinatorial nature.
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Fig. 1 Performance comparison of sparse regression algorithms
for the differential form of SINDy under varying amounts of
training data for three different canonical systems: Lorenz, Hopf,

and MHD. Results are averaged over 50 trials with added Gaus-
sian noise of 0.2%

To directly dispel this claim, we compare the wallclock
computation time of each of different algorithms for
varying library sizes and amounts of training data (see
Fig. 2). Similar to the previous experiment, for each
system, library size, and amount of data, we train each
algorithm on 50 random trajectories with 0.2% addi-
tive Gaussian noise with 0.002 sample frequency. We
precompute the derivatives and library, so the reported
times corresponds to just the regression time, not the
whole SINDy pipeline. Unlike the previous experi-
ment, we are not performing hyperparameter tuning
and instead use appropriate defaults learned above.

Several points deserve elaboration. Perhaps most
surprising to those unfamiliarwithMIO-basedmachine
learning is that MIOSR is often faster as the amount

of data increases, sometimes significantly [11]. This
is partially due to the fact that the final optimization
problem has no dependence on n, as we only require
a one time n × D matrix multiplication to initially
construct the objective value coefficients. On the other
hand, for small n, there are more ways to fit the data,
so the bounds in the branch-and-bound tree are weaker,
necessitating more node exploration. Combining these
results with those from Sect. 3.2, we conclude that
eitherMIOSR takes a comparable amount of timewhile
achieving the same accuracy, or it takes longer, but
the extra computational cost buys extra statistical per-
formance. That is, regardless of data size, the cost of
MIOSR is justified.
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Fig. 2 Comparison of sparse regression algorithm computa-
tional efficiency for the differential form of SINDy under varying
amounts of training data for three different canonical systems:
Lorenz, Hopf, and MHD. The top row uses a fifth-order polyno-

mial library for each of the three systems while the bottom row
uses a third-order polynomial library. Results are averaged over
50 trials with added Gaussian noise of 0.2%

Another critical point is the dramatic speed up asso-
ciated with utilizing more powerful hardware and par-
allelization.When run on a high-end laptop (2021Mac-
book Pro with M1 Max chip), as opposed to a single
core of a cluster node, MIOSR can be up to 100x faster,
while all other methods only improve by a few percent
(see Fig. 7). This is because MIO is a highly paral-
lelizable technology, as multiple threads can explore,
expand, and prune different branches of the branch-
and-bound tree in parallel. Therefore, one can simply
allocate additional compute to achieve increasing lev-
els of performance, and the time gap between optimal
methods and heuristics will continue to close as more
powerful MIO software and parallel hardware emerge
in the future.

In addition to hardware, there are several other fac-
tors which understate how efficient MIOSR can be rel-
ative to the results reported in Fig. 2. The first is that
MIO requires less hyperparameter tuning than other
methods because we are directly tuning the sparsity
and not a proxy threshold. Second, for especially dif-
ficult or large problems, one can use warm starts from
heuristic methods to get good initial solutions or reuse

solutions and models from previous steps in the hyper-
parameter search (which also avoids reconstructing the
full optimization model). Finally, much of the compu-
tational effort is dedicated toward proving optimality
by improving the dual lower bound [11]. Therefore, one
could set a short timeout on the solver to get what is
likely an optimal solution, but give up on the optimality
guarantee if so desired.

While not studied in detail here, it is important to
note that runtime also has a dependence on the sparsity
parameter k because the number of possible models
scales exponentially as

(D
k

)
.However, given the dynam-

ics are assumed to be sparse (e.g., k < 10), this scal-
ing limitation is less relevant. We refer the reader to
other works [8,9] on generalMIOSRmethods for more
extensive runtime benchmarking.

3.4 Physical constraints

A central goal within scientific machine learning is to
incorporate existing physical knowledge into the mod-
els, both to aid the learning process and to ensure that

123



Learning sparse nonlinear dynamics

physically plausible models are learned. To illustrate
the improved capability of MIOSR in service of this
goal, we replicate the experiment performed by [21]
on the two-dimensional Duffing system.

To briefly describe their setup, the 2D Duffing sys-
tem is both aHamiltonian systemandagradient system.
These properties induce constraints on the coefficients
because each individual governing equation must be a
partial derivative of a Hamiltonian or potential func-
tion. The full system is described by

ẋ = X (26a)

ẏ = Y (26b)

Ẋ = − ∂

∂x
V (x, y) (26c)

Ẏ = − ∂

∂y
V (x, y) (26d)

where x, y give the spatial position, X, Y give the
momentum, and the potential function is

V (x, y) = −ω

2
(x2 + y2) + α

4
(x2 + y2)2. (27)

We use SINDy to just fit the spatial coordinates and set
ω = −2 and α = 0.1. We refer the interested reader
to [21] for the detailed derivation of the constraints,
but for our purposes, the relevant fact is simply that
the potential function imposes a set of equality con-
straints on Ξ . We can then use a vectorized represen-
tation of the coefficients ξ̄ and add Aξ̄ = b to the MIO
model where A, b are based on the partial derivatives
of V (x, y). Because these constraints extend between
dimensions, we use the joint formulation (17) to fit x
and y simultaneously.

As in previous experiments, we sample 50 inde-
pendent trajectories with random initial conditions,
for every combination of training duration and noise
depicted in Fig. 3. For every trajectory, we run MIOSR
with and without constraints, as well as SR3 with and
without constraints, as it is the only baseline which
naturally accommodates constraints. To stay consis-
tent with [21], we use a third-order polynomial library
with a sample rate of 0.01 sec. Additionally, we do not
unbias the coefficients after feature selection and report
the average constraint violation 1

c‖Aξ̂ − b‖1 where c
is the number of constraints.

The immediate takeaways from Fig. 3 are that
adding constraints help both algorithms, especially
with limited data, but that even without constraints,

MIOSR is more accurate. This is in slight contrast to
the findings of [21] where “the constrained and uncon-
strained models have nearly identical [R2] scores at
all noise levels.” However, this is because we study a
more difficult statistical regime, one with less data and
with coefficients of different magnitudes. In particular,
they used training sets that included 20 independent tra-
jectories; hence, the constraints did not add additional
information.

Another drawback of SR3 is that it enforces the con-
straints on a set of relaxed coefficients; hence, the con-
straints are not strict and there exist nontrivial viola-
tions. This occurs most frequently in training regimes
with less data and more noise. Unfortunately, these are
precisely the regimes where constraints are most use-
ful. MIOSR, in contrast, always satisfies constraints up
to solver numerical precision, which can be adjusted or
relaxed as desired. Finally, we observe that adding con-
straints does not add to the solution time of MIOSR,
so the runtimes are comparable to those reported in
Sect. 3.3, while constraining SR3 increases the runtime
by about 30%.

3.5 Robustness

For the remainder of our experiments, we study sys-
tem recovery under substantial noise, and therefore,
we use the weak form of SINDy, where the data matrix
is given by Eq. 4. We first study robust recovery of
three canonical ODEs: the Van der Pol oscillator [64],
Lotka–Volterra equations [39], and the Rössler system
[51].

The Van der Pol system is given by

ẋ = y (28a)

ẏ = μ(1 − x2)y − x (28b)

where we use μ = 3. The Lotka–Volterra equations,
sometimes also known as the predator–prey equations
given their origin in modeling wildlife populations, are
given by

ẋ = p1x − p2xy (29a)

ẏ = p2xy − 2p1y (29b)
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Fig. 3 Performance comparison of constrained versus uncon-
strained sparse regression for the differential form of SINDy
under varying amounts of training data and noise for the 2D

Duffing system. Results are averaged over 50 trials with random
initial conditions

where we set p1 = 1 and p2 = 10. Finally, the Rössler
system is

ẋ = −y − z (30a)

ẏ = x + ay (30b)

ż = b − cz + xz (30c)

where we have a = b = 0.2 and c = 5.7.
For all three systems, we use a third-order polyno-

mial librarywith 50 sec. of training datawith time inter-

vals of 0.002 sec. (i.e., 25000 total time steps). Our
weak libraries are composed of 2400 spatial domains
each with 400 points per domain. To validate weak
models on noisy data, one can either use the weak form
of the validation set or try to differentiate the valida-
tion data with more aggressive smoothing. We observe
that the weak form of the validation data yields a less
reliable tuning signal, partially because the weak form
uses randomized domains and leads to less sparsemod-
els. However, the numerical derivative also becomes
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Fig. 4 Performance comparison of sparse regression algorithms
for the integral form of SINDy under varying amounts of added
Gaussian noise for three different canonical systems: Van der

Pol, Lotka, and Rossler. Results are averaged over 50 trials, each
with 50 sec. of training data

increasingly unreliable with more noise. Therefore,
under 15%noiseweuse the a smoothed derivative (with
window size 21) for validation and use the weak form
of the validation data above 15% additive noise.

Figure 4 depicts our results. The general trend is that
for low to medium amounts of noise, MIOSR is signif-
icantly more accurate, often perfectly recovering the
underlying model. Even with just 1% noise, the base-
lines struggle to identify the true model coefficients.
However, unlike in Sect. 3.2, the baselines are mostly
identifying all of the correct coefficients, but find small
false positive coefficients that are fitting noise.

At very high levels of noise, MIOSR starts to break
down, converging to the approximate performance of
heuristic methods. While more elaborate ensembling
could help, we believe better data preparation is likely a

more effective way to learn accurate models, especially
withMIOSR. Examples include applyingmore aggres-
sive smoothing, expanding the number of domains or
points per domain in theweak form, or utilizing tailored
differentiation techniques [63]. Beyond data prepara-
tion, there is also more recent work on more sophisti-
cated iterative schemes to prune the library by regress-
ing on Fourier transforms [24], which could benefit
from utilizing optimal methods.

3.6 PDEs

For our last experiment, we study the recovery of scalar
PDEs under substantial measurement noise. This is
likely the regime most relevant to advancing mod-
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Fig. 5 Best PDE model
found by sparse regression
algorithms for the integral
form of SINDy under
varying amounts of
Gaussian noise for two
different canonical PDE
systems:
Kuramoto–Sivashinsky and
reaction diffusion. Results
are averaged over 50 trials
with random initial
conditions

ern science and engineering practice. In particular,
we study the one-dimensional Kuramoto–Sivashinsky
equation [59], an early model of laminar flame fronts,
and the two-dimensional reaction diffusion system,
a ubiquitous model in chemistry. The Kuramoto–
Sivashinsky in spatial dimension x and time t is given
by

ut = −uux − uxx − uxxxx (31)

where the notation uxx denotes the second partial
derivative with respect to x . We study the 2D reaction
diffusion system given by

ut = 1

10
uxx + 1

10
uyy + u − uv2 − u3 + v3 + u2v

(32a)

vt = 1

10
vxx + 1

10
vyy + v − uv2 − u3 − v3 − u2v.

(32b)

For both systems, we use weak third-order polyno-
mial libraries, with up to fourth-order derivatives for
Kuramoto–Sivashinsky and second- order derivatives
for reaction diffusion, yielding library dimensions of
19 and 109, respectively. For Kuramoto–Sivashinsky,
our weak library is composed of 200 spatiotemporal
domains, each with 50 points, sampled 10 times a sec-
ond for 25 sec. on a periodic domain with 1024 spa-
tial points. For reaction diffusion, our weak library is
composed of 400 spatiotemporal domains, each with
36 points, sampled 50 times a second for 5 sec. on a
256 × 256 periodic grid.

Unlike the previous experiments, we do not per-
form model tuning and selection using AIC, due to the
computational cost of fitting a large number of PDEs.
Instead, we perform an achievability analysis, loosely
inspired by [41],wherewe choose the algorithmparam-
eters knowing the dynamics, to determine if it is even
possible to learn a correct model given an appropriate
model selection method. In particular, for MIOSR, we
set the sparsity constraint to be the actual dimension-
wise sparsity; for STLSQ, we try several thresholds
slightly below the actual smallest coefficient; for E-
STLSQ, we use library ensembling [25] and take the k
terms with the highest inclusion probability, where k is
the true sparsity.

Figure 5 depicts our results for PDE learning based
on 50 trials with random initial conditions and vary-
ing amounts of additive Gaussian noise. These results
further underscore how MIOSR has a substantial edge
over heuristic methods when using larger libraries or
when the system coefficients are of different orders
of magnitude; it also further illustrates the converse
that problems with smaller libraries and similar mag-
nitude coefficients do not benefit from exact methods
because the heuristics converge to the correct solution.
Regardless of optimizer, we see how effective the weak
SINDy framework can be in identifying noisy sys-
tems, with Kuramoto–Sivashinsky often being recov-
ered even with 300% measurement noise.
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4 Conclusion

In this work, we demonstrate the superior performance
of mixed-integer optimization in learning sparse non-
linear dynamics (MIO-SINDy) as compared with pop-
ular heuristic approaches. The biggest advantage is in
finding models which are as simple as possible, but not
simpler—a model which learns the truth and only the
truth. In addition to more accurate support recovery,
MIO sparse regression is capable of incorporating a
huge range of additional model structure as auxiliary
objective terms or constraints, while solving the under-
lying optimization problem to provable optimality.

Contrary to the predictions of complexity theory,
MIOSR is highly tractable and can actually be faster
than heuristics for large amounts of data. Indeed,
MIOSR runs slower when the regression is harder, that
is, when the sample size is small, signal-to-noise ratio is
low, or the coefficients span multiple orders of magni-
tude. However, this is exactly where heuristic methods
perform poorly, so MIOSR requires more time when it
improves upon heuristic methods while being compa-
rable in running time when the dynamics are more eas-
ily recoverable. Given the practicality of the approach,
and the theoretical guarantees, we see no reason why
MIOSR should not be the default choice of optimizer
for real applications.

Due to the modularity of the SINDy framework,
MIO-SINDy is compatible with other methodological
advancements concerning data preprocessing, library
construction, numerical differentiation, and outer loop
algorithms. We restricted our study of these extensions
to the weak form and PDE learning, but we expect
MIOSR to offer similar benefits to other variants like
control [17] or identifying implicit equations [30]. We
hope domain experts find use for the additional model-
ing and statistical power afforded by MIO. We believe
this is an exciting development that advances the state
of the art in system discovery.
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A Additional experiment details

Here we record in greater detail the set of initial con-
ditions we use for each system, the parameter ranges
in tuning various algorithms, and other relevant imple-
mentation details. Additionally, in our raw results files
made available on Github, we include the initial con-
dition, random seed, and chosen hyperparameters for
every trial in every experiment.

A1 Sample efficiency

For all systems and algorithms, we use smoothed finite
difference differentiation with a smoothing window
length of 9. We use the same regularization grid for all
systems. For MIOSR, STLSQ, and SSR, we tune over
the regularization strength α ∈ {0, 10−5, 10−3, 10−2,

0.05, 0.2}. For E-STLSQ, we use the best α for
STLSQ. For SR3, we tune relaxation parameter ν ∈
{ 1
30 ,

1
10 ,

1
3 , 1,

10
3 }. For thresholds, we try to tailor the

range based on the system to give the best shot at find-
ing a sparse model (since the heuristics are quite sensi-
tive to the threshold). We choose 50 values uniformly
in log space. That is, 10a for a ∈ [b : c : d] where
d = 50 values equally spaced on the interval [b, c]. In
particular, we use [−2 : 1 : 50], [−2 : 0 : 50], and
[−1.5 : 1.5 : 50] for Lorenz, Hopf, and MHD, respec-
tively (where we increase the range by 0.5 for SR3
since it does not use a hard threshold). For MIOSR,
we tune the sparsity k for each dimension over integers
k ∈ [1, 5] and SSR by nature fits a model at every level
of sparsity between one and the full library size.

Regarding initial conditions, we sample uniformly
from a specified volume. For Hopf, we sample in polar
coordinates: a radius uniformly at randombetween0.75
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and 1.25 and an angle at random from 0 to 2π radians.
For Lorenz, we sample x, y ∈ [−5, 5] and z ∈ [10, 40.
For MHD, we sample every coordinate independently
from [−1.5, 1.5]. We use the same sampling strategy
for the runtime experiment.

A2 Physical constraints

For both algorithms, we use smoothed finite difference
differentiation with a smoothing window length of 21
to accommodate the noisier data. As before, for SR3
we tune over ν ∈ { 1

30 ,
1
10 ,

1
3 , 1,

10
3 } and 50 thresholds

λ = 10a, a ∈ [−3 : 0 : 20]. For MIOSR, we tune over
a global sparsity constraint k ∈ [2, 10], and regularizer
in {0.0001, 0.001, 0.01}. As in [21], we sample initial
conditions uniformly for each dimension in [−π, π ].

A3 Robustness

For all weak form experiments, we normalize the data
matrix to have unit column norm. We use the same
values of α and ν as before. Again, in an effort to get
the best baseline model, we tailor the thresholds to the
system and check that all chosen thresholds fall in the
rangewe tune over. ForVan der Pol, Lotka, andRossler,
respectively, we tune the threshold λ over 2a a ∈ [−1 :
5 : 50], [−3 : 4 : 50] and [2 : 6 : 50] for STLSQ.
For E-STLSQ, we use the same regularization that was
optimal for STLSQ.

For Van der Pol, we sample initial conditions from
the box x ∈ [−1, 1], y ∈ [−μ,μ] where we use μ =
3. For Lotka, we sample initial conditions from the
box x, y ∈ [0, 1]. For Rossler, we sample uniformly

from the a canonical trajectory with initial condition
(5, 3, 0) and add 10% Gaussian noise. For Rossler, we
additionally take the absolute value of the z coordinate
to preclude unstable trajectories.

A4 PDEs

For achievability analysis, we don’t need to tune the
sparsity of MIOSR since we can simply use the true
sparsity and check if the correctmodel is learned. How-
ever, for (E-)STLSQ the optimal threshold does change
becausewe add substantial noise to the data. Therefore,
we still train for thresholds in λ ∈ [0.4, 2.0, 20] and
λ ∈ [0.04, 0.16, 20] for Kuramoto–Sivashinsky and
reaction diffusion, respectively.

The initial conditions for Kuramoto–Sivashinsky
are sampled as 1

Z (cos(x + r0) + sin(4r1x)) where
r0, r1 ∈ [0, 1] are sampled uniformly at random, x is
the 1D mesh on [0, 2π ]with 1024 grid points, and Z is
the normalization factor ‖ cos(x +r0)+ sin(4r1x))‖∞.
For reaction diffusion, we use a spiral initial condi-
tion that is randomly rotated and slightly expanded
or contracted. In particular, for X,Y representing the
256 × 256 spatial mesh

u0 = tanh((X2 + Y 2)1/2) cos((angle(X + iY ) + o)

−(s(X2 + Y 2)1/2))

s ∈ [0.95, 1.05] and o ∈ [0, 2π ] both sampled uni-
formly at random. v0 is the same but with sin instead
of cos.

B Additional results
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Fig. 6 Performance comparison of sparse regression algorithms
for the differential form of SINDy using minimal polynomial
libraries under varying amounts of training data for three dif-

ferent canonical systems: Lorenz, Hopf, and MHD. Results are
averaged over 50 trials with added Gaussian noise of 0.2%
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Fig. 7 Comparison of sparse regression algorithm computa-
tional efficiency, when executed on a 2021 Macbook Pro, for
the differential form of SINDy under varying amounts of train-
ing data for three different canonical systems: Lorenz, Hopf, and

MHD. The top row uses a fifth-order polynomial library for each
of the three systems while the bottom row uses a third-order
polynomial library. Results are averaged over 5 trials with added
Gaussian noise of 0.2%
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