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Abstract The computation of the steady-state
response of large finite element discretized systems
subject to periodic excitations is unfeasible because
of excessive run time and memory requirements. One
could in principle resort to reduced order models stem-
ming from the high fidelity counterparts, which typ-
ically require a solution time orders of magnitude
smaller.However,whenmany simulations are required,
as in the case of parametric studies, the overall effort
could be still significant and the analysis process could
be severely hindered. In this work, we propose a sensi-
tivity approach to assess the influence of model param-
eters on the nonlinear dynamic response. As opposed
to the costly evaluation of reduced order solutions over
a range of excitation frequencies and model parame-
ters, the sensitivities of a nominal response allow one
to approximate the dynamic response by a simple eval-
uation of an expansion in the directions spanning the
parameter space. Special care must be taken on the
closure equation that needs to be appended to the sys-
tem of equations stemming from the harmonic balance
method. We discuss the limitations of the current con-
stant frequency approach and propose an improvement.
We demonstrate themerits of the proposed approach on
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a micro-electro-mechanical system affected by param-
eterizedmanufacturing defects. Leveraging from a pre-
vious contribution, the nonlinear response and the sen-
sitivities are obtained from a reduced order model
which is analytical in the defect parameters. Our proce-
dure is able to deliver accurate probability density func-
tions of quantities of interest (e.g. nonlinear resonance
peaks, triple solution bandwidth, etc) against statisti-
cal distributions of manufacturing defects at negligible
computational cost.
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1 Introduction

Numerical methods for steady-state solutions of har-
monically forced nonlinear systems are well estab-
lished in the literature. A popular method is the Har-
monic Balance (HB) [1], a frequency-based approach
that relies on the expansion of the system steady-state
response in truncated Fourier series. This results in a
set of nonlinear algebraic equations for the unknown
Fourier coefficients, which can be solved to obtain
the steady-state response. Continuation algorithms are
employed together with HB to compute the Frequency
Response Curve (FRC), that is the set of steady-state
solutions for varying excitation frequency. For many
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years, HB has been successfully applied to study deter-
ministic systems.

In the last decade the field of nonlinear dynamics has
made some efforts towards the investigation of parame-
ter uncertainties on the FRCs. In order tomodel random
processes and/or to take into account the lack of knowl-
edge on the real system (epistemic uncertainty), math-
ematical models may feature uncertain input parame-
ters. Common sources of uncertainties in mechanical
systems are: variable geometry introduced bymanufac-
turing tolerances, nonuniformmaterial properties, non-
uniform contact surface parameters, non-ideal bound-
ary conditions, or in case of epistemic uncertainties,
inaccurate measured system properties. Uncertainties
in the parameters result in non-deterministic frequency
responses that can be investigated with Uncertainty
Quantification (UQ) techniques.

In this article we focus the attention on uncertain-
ties introduced by small shape imperfections in geo-
metrically nonlinear structures. Defects in the geom-
etry, stemming for example from manufacturing pro-
cess, may result in non-negligible modifications of the
nonlinear frequency response, as in the case of MEMS
devices [2,3].

The Monte Carlo Method (MC) [4] is one of the
first tools developed in the literature for UQ and is still
nowadays considered the benchmark for solution accu-
racy. This classical approach is based on repeated sim-
ulations of the nonlinear system for a set of determinis-
tic parameters, randomly sampled from the stochastic
parameter distribution. When the quantity of interest is
the stochastic FRC, this translates in a repeated appli-
cation of HB. For large systems, however, solving the
nonlinear algebraic HB equations could be computa-
tionally unfeasible even for one simulation. It is for
instance the case of MEMS, for which the equations
of motions (EoM) are derived from a FE discretization
that requires detailed meshing for a thorough descrip-
tion of complex geometry.

A possible option to overcome this issue is to apply
HB to Reduced Order Models (ROM) of the orig-
inal model, namely the Full Order Model (FOM).
Projection-based ROMs can be constructed by select-
ing a suitable and reasonably small collection of vectors
(reduced order basis) to approximate the full solution
[5]. In this way, the number of degrees of freedom (dof)
of the original system is significantly reduced, making
HB computationally feasible.

Unfortunately, rate of converge of MC algorithm is
slow, thus the number of responses required to obtain
relevant statistical quantities is usually large. For this
reason, even if computationally feasible, performing a
MC analysis based on ROM to propagate uncertain-
ties for nonlinear structures with stochastic imperfec-
tions, results in high computational cost. In fact, this
approach sees the construction of a new ROM for each
of the randomly sampled geometries. The cost associ-
ated to a single run for this operation is usually sig-
nificant and scales with the size of the FOM, strongly
impacting on overall time for MC. A possible solution
to this problem is presented in [6,7] and relies on the
construction of a Parametric Reduced Order Model in
the uncertain structural defects (DpROM). This opera-
tion is done only once upstream of MC and represents
a fixed cost, independent of the number of parameter
samples. With this latter approach, the computational
cost associated to a single simulation run is consider-
ably cut down, so that the overall computational burden
forMC is also greatly reduced. Still, as it was described
in [6,7], DpROM requires additional generalized coor-
dinates to properly describe the contribution of imper-
fections. For this reason, if on the one hand the explicit
parametrization eliminates the cost associated to the
ROM construction for every new parameter realiza-
tion, on the other hand the increased size of the ROM
impacts on the simulation times.

All in all, it seems more sensible and efficient to
perform MC studies relying on methods which do
not involve repeated simulations. Polynomial Chaos
Expansion (PCE), Taylor series expansions and inter-
val arithmetic are some methods falling into this cat-
egory. PCE-based methods consist in expanding the
HB Fourier coefficients of the response in a trun-
cated series of orthogonal polynomials of the uncertain
parameters. Coefficients of chaos polynomials can be
determined following two different approaches: intru-
sive approaches based on a recast of HB equations
to account for stochastic parameters or non-intrusive
approaches that rely on nullification of the error at
selected collocation points. Once coefficients of expan-
sion are known, any large set of responses correspond-
ing to different uncertain parameters could be obtained
at almost null computational cost by multiple polyno-
mial evaluations. In [8,9], an intrusive PCE in combi-
nation with Multi Harmonic Balance was successfully
applied to quantify the effects of uncertainties on the
FRF of a linear rotor system. By the same authors,
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the PCE-based method was modified in order to propa-
gate uncertainties in systemswith geometric nonlinear-
ities [10,11]. In that context, the excitation frequency
was considerednon-deterministic but parameter depen-
dent and thus was expanded in the polynomial chaos
basis. This modification of the method was necessary
to assure precise approximations, even in correspon-
dence of returning points of the FRC, where multiple
solutions for same excitation frequency may exist. In
the computation of chaos polynomial coefficients, the
author compared points on different FRCs satisfying
a prescribed phase condition. In [12], a non-intrusive
PCE-basedmethod is usedwith theAsymptotic Numer-
ical Method - Harmonic Balance (ANM-HB) [13]. In
this case, spurious oscillations in the set of responses
provided by PCE were successfully avoided by com-
paring points on different FRCs with the same “arc-
length ratio”, a measure defined by the author. In [14–
16] instead, stochastic amplitudes and excitation fre-
quency were referred to the phase of first harmonic,
in the non-intrusive computation of PCE coefficients.
This approach is restricted to the case in which the
phase is a monotonic function of the frequency for
all the uncertain parameter values. In [17], the authors
applied PCE to investigate the effect of uncertainties on
the steady-state response of a Jeffcott rotor subjected
to rub-impact and parameter uncertainties.

In [18], a surrogate model of the system is cre-
ated exploiting an expansion of the response in Cheby-
shev Polynomials to which follows an interval prob-
lem to find the bounds of the FRC corresponding to
prescribed parameter intervals. Coefficients of polyno-
mial approximations are found by comparing points on
different FRCs at the same polar angle in the frequency-
amplitude plane, in the “Polar Angle Interpolation”
approach as defined by the author. In [19], Chebyshev
Polynomials have been exploited to model uncertain-
ties in the steady state response of a system with back-
lash nonlinearity, in the framework of Interval Har-
monic Balance Method (IHBM).

Taylor series-based UQ methods are far less popu-
lar than PCE methods in the field on stochastic nonlin-
ear FRCs, probably for limited applicability to small
parameter uncertainties. In [20], the author expanded
the HB Fourier coefficients of nonlinear FRCs in a
second-order Taylor series of the uncertain parame-
ters. Coefficients of the Taylor series, namely Parame-
ter Sensitivities, allowed easy prediction of frequency
response bounds corresponding to small parameter

intervals. Instead in [21], parameter sensitivities were
used to asses statistical distributions of nonlinear FRCs
of a bladed disk, for stochastic distribution of friction
parameters, showing good agreement with MC results.

Both in [21] and [20], sensitivity-based approxi-
mations proved to accurately describe FRCs for small
parameter variations from the nominal. However, even
if in a nonlinear setting, in the test cases considered
by the author, FRCs did not exhibit multiple solutions
for the same excitation frequency. Moreover, sensitiv-
ity were performed at constant frequency. As it will
be demonstrated in the present work, this approach to
sensitivities leads to poor results in case of multiple
solutions for same frequency. To deal with this prob-
lem, a new approach to sensitivity-based approxima-
tions of FRCs is here presented, in which frequency is
allowed to vary. Once sensitivities are available, any
FRC corresponding to any small perturbation in the
uncertain parameters can be obtained by updating the
nominal solution with Taylor series approximations.
This “update” operation is practically inexpensive and
can be exploited in a sensitivity-based MC approach to
compute the FRCs.

In this paperwe present a Sensitivity-BasedMC (SB-
MC) method for UQ of structures with geometrical
imperfections, leveraging the availability of the para-
metric ROM (DpROM) presented in [7] and the small
variance of flaws in real engineering applications.

The work is organized as follows: Section 2 recov-
ers the fundamentals of HB and introduces the nota-
tion used throughout the paper; Section 3 reviews the
sensitivity approach for nonlinear FRCs at constant fre-
quency and presents our new approach, showcasing the
main results and differences on a simple 1-dof problem.
Section 4 sketches the main features of the DpROM
which is then used in Section 5 to study a MEMS res-
onator. Finally, in Section 6 conclusions are drawn.

2 Harmonic balance for mechanical systems

We here briefly describe the HB method and introduce
notation; the interested reader is referred to [1] for a
complete dissertation. Let us consider the EoM of a n-
dof nonlinear mechanical system, stemming from the
FE discretization of the continuous problem:

Mq̈ + Dq̇ + Kq + f (q, q̇) = f ω(t), (1)

where q ∈ R
n is the vector of generalized coordinates,

M, D, K ∈ R
n×n are respectively the mass, damp-
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ing and stiffness matrices, f is the vector of nonlinear
forces and f ω is an external periodic forcingwith angu-
lar frequency ω, defined as

f ω(t) = f ω,c cos(ωt) + f ω,s sin(ωt). (2)

At steady state the response is assumed to be periodic,
with the same period of excitation T = 2π

ω
and is

expanded in a truncatedFourier serieswith H harmonic
components as
q(t) ≈ (ψ ⊗ In)Q, (3a)

ψ(t) � [1, cos(ωt), sin(ωt), . . . , cos(Hωt), sin(Hωt)] ,

(3b)

Q �
[
QT
0 , QT

c,1, QT
s,1, . . . , QT

c,H , QT
s,H

]T
, (3c)

where ψ ∈ R
1×(2H+1) is the basis of the Fourier

expansion, In is the identity matrix of dimension n,
Q ∈ R

n(2H+1)×1 is the unknown vector of harmonic
amplitudes (with Q0, Qc,k, Qs,k, ∈ R

n×1, for k =
1, . . . , H ) and ⊗ denotes the Kronecker product.

By taking time derivatives of the ansatz, expressions
for velocities and accelerations write

q̇(t) = (ψ̇ ⊗ In)Q = ω(ψ∇ ⊗ In)Q, (4a)

q̈(t) = (ψ̈ ⊗ In)Q = ω2(ψ∇2 ⊗ In)Q, (4b)

where the derivative operator ∇ is defined as

∇ � diag (0,∇1,∇2, . . . ,∇H ), with ∇k �
[
0 k

−k 0

]
.

From Eq. (1), the residual in time domain is defined
as

r(t) � Mq̈ + Dq̇ + Kq + f (q, q̇) − f ω(t). (5)

Time dependence is eliminated by applying a weighted
residual approach in which the weight functions are
the components of the Fourier basis ψ . In this way we
define the HB residual as

R(Q, ω) � 1

T

∫ T

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r(t, Q)

2r(t, Q) cos(ωt)
2r(t, Q) sin(ωt)

...

2r(t, Q) cos(Hωt)
2r(t, Q) sin(Hωt)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
dt

= 1

T

∫ T

0

(
CψT ⊗ In

)
r(t, Q) dt, (6)

where R(Q, ω) ∈ R
n(2H+1) and

C = diag(1, 2, . . . , 2), C ∈ R
(2H+1) × (2H+1).

Notice that the so defined HB residual is noth-
ing but the collection of the first H+1 Fourier coeffi-
cients (using the sine-cosine representation) of the time
domain residual r(t).

By plugging Eqs. (3a), (4) and (5) into Eq. (6) we
obtain

R(Q, ω) = 1

T

∫ T

0
(C ψT ⊗ In) (Mq̈ + Dq̇ + Kq

+ f (q, q̇) − f ω(t)) dt

=
(
ω2∇2 ⊗ M + ω∇ ⊗ D + I2H+1 ⊗ K

)
Q − Fω

︸ ︷︷ ︸
R lin

+ 1

T

∫ T

0
(C ψT ⊗ In) f (q, q̇) dt

︸ ︷︷ ︸
R nl

,

(7)

in which the expression of the linear residual R lin was
derived by applying the mixed-product property1 of
the Kronecker product. Considering for example the
residual of mass related terms we have that

1

T

∫ T

0
(CψT ⊗ In)Mq̈ dt

= 1

T

∫ T

0
ω2(CψT ⊗ M)(ψ∇2 ⊗ In) Q dt

= 1

T

∫ T

0
ω2 ((CψTψ∇2) ⊗ M)Q dt

=
(
1

T

∫ T

0
CψTψ dt

)
ω2(∇2 ⊗ M)Q

= ω2(∇2 ⊗ M)Q,

(8)

where we also have exploited orthogonality properties
of Fourier basis functions. Moreover, the residual vec-
tor of forcing Fω in Eq. (7) can be developed as

Fω = (ec ⊗ In) f ω,c + (es ⊗ In) f ω,s , (9a)

ec � [0 1 0 . . . 0]T ,

es � [0 0 1 0 . . . 0]T , ec, es ∈ R
2H+1. (9b)

Nullifying R in Eq. (7) leads to the HB residual
equation, that is a set of nonlinear algebraic equations
in the unknown vector Q:

R(Q, ω) = 0. (10)

1 That is, (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD), being A, B, C and
A matrices of suitable dimensions.
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2.1 Numerical solution

Usually the analyst’s interest is not in a single frequency
response, but in the FRC, that is a branch of solutions
of the HB equations in a frequency span. For this rea-
son, ω is taken not as a constant parameter, but as an
additional unknown, so that the FRC can be obtained
using a Newton–Raphson method along with a pseudo
arc-length continuation algorithm. According to this
scheme, discrete points Xi = [Qi T , ωi ]T on the FRC
are obtained, at the i th step of the continuation algo-
rithm, by solving:

R̃ (Xi ,Xi−1, ds) = 0 , R̃ �
{
R (Xi )

p (Xi ,Xi−1, ds)
(11)

where p (Xi ,Xi−1, ds) ∈ R is the additional closure
equation depending on the adopted continuation algo-
rithm,Xi−1 is the solution of the previous continuation
step and ds is the user provided value of the pseudo arc
length.

At each continuation step the iterative Newton–
Raphson method is employed to compute the solutions
of the nonlinear algebraic system of equations:{

δXi
(k) = −J−1 R̃(k)

Xi
(k+1) = Xi

(k) + δXi
(k),

J = ∂ R̃

∂Xi

∣∣∣∣
Xi

(k)

, R̃(k) = R̃ (Xi
(k),X

i−1), (12)

where the subscript k denotes the iteration number and
J is the Jacobian matrix.

While the linear part of the residual and of the Jaco-
bian can be trivially evaluated, usually their nonlinear
counterpartmust be computed numerically, although in
some special cases analytic solutions are available (e.g.
for polynomials). Nonlinear residual is numerically
computed bymeans of theAlternating Frequency-Time
(AFT) algorithm,whilewe refer the reader toAppendix
C for details on Jacobian evaluation. According to the
AFT scheme, displacement vector q(t) and velocity
vector q̇(t) are evaluated at equidistant time snapshots
in the period from the value of the Ansatz Coefficients
Q. Upon substitution of these quantities into the non-
linear force relation f (q, q̇), time snapshots of the non-
linear force vector are retrieved. Eventually the integral
in Eq. (7) is numerically approximated by applying the
Discrete Fourier Transform (DFT) to the snapshots of
nonlinear forces, efficiently implemented with the Fast
Fourier Transform (FFT) algorithm. It is important to

remark that the number of time samples N in the AFT
algorithm impacts on accuracy of the numerically com-
puted residual. If N is not sufficiently large, aliasing
phenomena may occur leading to inexact residual eval-
uation. For the derivatives, because of nonlinearities,
the number of required time samples is usually larger.
For more details on the choice of N the reader is again
referred to [1].

3 Sensitivity analysis

The nonlinear mechanical system in Eq. (1) can depend
on a set of parameters, here collected in vector p ∈ R

m .
In this case the EoM read:

M( p)q̈ + D( p)q̇ + K ( p)q + f (q, q̇, p)

= f ω,c( p) cos(ωt) + f ω,s( p) sin(ωt) , (13)

in which the mass, damping and stiffness matrices
along with the nonlinear force vector and forcing are
assumed to be dependent on p.

By applying the HB method, we obtain a system of
nonlinear algebraic equations parametrized by p:

R (Q, ω, p) = 0. (14)

In many structural applications p can be used to
model a source of uncertainty acting on the system.
The response can be computed for a nominal value
of parameter p∗ and variations in the response can be
investigated by considering its sensitivity to p. In this
context we define a nominal solution point of the para-
metricHBequations as a point {Q∗, ω∗, p∗} satisfying:
R (Q∗, ω∗, p∗) = 0. (15)

In the following, •∗ denotes a quantity referred to
the nominal conditions, although often the superscript
will be omitted to ease notation.

3.1 Sensitivity at constant frequency

An approach commonly followed in the literature [20–
23] is to compute the sensitivity of the response at con-
stant excitation frequencyω. For each nominal solution
point, first-order sensitivities are obtained by total dif-
ferentiation of the parametric HB equations in Eq. (14)
with respect to the parameter vector p, at fixed nominal
angular frequency ω∗:
∂R
∂ Q

d Q
d p

+ ∂R
∂ p

= 0 ,
d Q
d p

= − ∂R
∂ Q

−1 ∂R
∂ p

. (16)
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where all partial derivatives are implicitly assumed to
be evaluated at the considered nominal solution point
{Q∗, ω∗, p∗} and under the hypothesis of non-singular
Jacobian. Through further differentiation we get
(

∂2R

∂ Q2 · d Q
d p

+ ∂2R
∂ p∂ Q

)
·21 d Q

d p
+ ∂R

∂ Q
· d2Q
d p2

+ ∂2R
∂ Q∂ p

· d Q
d p

+ ∂2R
∂ p2

= 0 , (17)

where we denoted with “·” the contraction operation
between last dimension of the first (multidimensional)
matrix and the first dimension of the second matrix,
while similarly “·i j” denotes the contraction between
the i-th dimension of the first matrix and the j-th
dimension of the second one2. Moreover, the order
of elements in derivatives corresponds to the order
of derivation (see Appendix C). Again, all quantities
are assumed to be evaluated at the considered nominal
solution point, while the first-order sensitivity matrix
is obtained from Eq. (16).

From Eq. (17), second-order sensitivities can be
retrieved by solving m2 systems of linear equations in
n(2H + 1) unknowns:

d2Q
d p2 : I J

= − ∂R
∂ Q

−1 (
∂2R

∂ Q∂ p
· d Q
d p

+ ∂2R
∂ p2

+
(

∂2R

∂ Q2 · d Q
d p

+ ∂2R
∂ p∂ Q

)
·21 d Q

d p

)

: I J
,

(18)

where I, J ∈ {1, . . . ,m} and the sign “:” indicates
all elements in the corresponding matrix dimension.
The computational burden can be reduced exploiting
Schwartz theorem

d2Q
d p2 I J K

= d2Q
d p2 I K J

, (19)

so that the number of systems of equations to be solved
for is reduced to m2

2 + m
2 . Notice also that the solution

of Eqs. (16) and (18) involves the inversion of the same
Jacobian, thus enabling a faster solution process. The
expressions for the partial derivatives of the residual R
with respect to Q and p appearing in the definition of
the sensitivities are given in full in Appendix C.

Finally, it is possible to obtain Taylor series approx-
imations of the FRCs corresponding to small perturba-
tions of the parameter vector from the nominal as

2 For instance, C = A · B corresponds to Cikl = Ai j B jkl , in
Einstein notation, while C = A ·13 B is C jkl = Ai j Bkli , being
A and B two- and three-dimensional matrices, respectively.

Fig. 1 Nonlinear oscillator with friction scheme (top) and fric-
tion law plot (bottom)

Q( p∗ + δ p) ≈ Q∗ + d Q
d p

δ p + 1

2

(
d2Q
d p2

· δ p
)

δ p,

(20)

where Q∗ is the nominal coefficient vector and δ p ∈
R
m is the perturbation of the parameter vector from its

nominal value p∗.

3.1.1 A practical case study

In order to asses quality of sensitivity-based approxi-
mations, let us consider the practical case study of a
Duffing oscillator subjected to Coulomb friction. The
equation ofmotion for the harmonically excited system
is

m q̈ + c q̇ + k q + k3 q
3 + fμ(q̇) = F cos(ωt), (21)

where

fμ = flim tanh

(
q̇

ε

)
(22)

is the friction force regularized with the hyperbolic tan-
gent smoothening function, flim is the limit friction
force and ε is the velocity tolerance [24]. A sketch of
this system and of the regularized friction law is pro-
vided in figure 1. Sensitivities of the system’s response
are computed at constant frequency with respect to
the parameter vector p = [k, k3, flim, F]T , taking
as nominal parameters k = 1, k3 = 1, flim = 0.05 and
F = 0.08, with m = 1, c = 0.06 and ε = 0.02.

In figure 2, we show the sensitivity-based approx-
imations for a −5% reduction of flim (Fig. 2a), for a
+5% increase of the forcing F (Fig. 2b), for a −4%
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reduction in both the linear and cubic stiffness coef-
ficients k and k3 (Fig. 2c) and for all these varia-
tions at the same time (Fig. 2d), that is for δ p% =
[−4, −4, −5, +5]T . This latter parameter perturba-
tion results in a significant increase in the resonance
peak amplitude, since external forcing increases while
the stiffness and the limit friction force decrease, hence
it is a good test case for evaluating sensitivity-based
approximations.

Both first- and second-order sensitivity-based
approximationswell capture thevariation in the response
resulting from the perturbations of the parameters.
As expected, second-order sensitivity-based approx-
imations are more accurate, especially close to the
resonance peak. However, if the nominal forcing is
increased from F = 0.08 to F = 0.12, consid-
ering once again the percentage parameter variation
δ p% = [−4, −4, −5, +5]T , some points on the per-
turbed FRC are not anymore approximated correctly by
the sensitivities, as shown in Fig. 3. This is due to the
fact that sensitivities at constant frequency do not allow
the points on the nominal FRC to move to neighboring
points on the perturbed FRC, as they are at different
frequency.

3.2 Sensitivity with the normal–direction approach

To overcome the limits of approximations based on
sensitivities computed at constant excitation frequency,
we introduce a new approach in which the frequency
ω is allowed to vary with the parameter vector p. First,
let us collect the harmonic amplitude vector Q and
excitation frequency ω in a unique column vector as

X =
[
Q
ω

]
, X ∈ R

n(2H+1)+1. (23)

We now seek a unique mapping from each nominal
solution point to a point on the FRC corresponding to
a slightly perturbed parameter vector p = p∗ + δ p.
More precisely, we implicitly define X as a function of
p only as

X( p) : U ⊂ R
m �→ V ⊂ R

n(2H+1)+1

such that: R̂ �
[
R (X( p), p)
g (X( p), p)

]
= 0 (24)

where U and V are open sets in the neighbourhood
of p∗ and X∗, respectively, and g(X( p), p) ∈ R is an

additional closure equation. Notice that all the points
belonging to a branch of the FRC in V , correspond-
ing to any parameter value p ∈ U , satisfy the first
condition R = 0 in Eq. (24), therefore the addi-
tional closure equation is essential to identify a unique
point on the FRC, as qualitatively depicted in Fig. 4a.
In other words, this scalar equation ensures that the
number of equations equals the number of unknowns,
that is dim(R̂) = dim(X) = n(2H + 1) + 1. If

R̂ (X∗, p∗) = 0 and if det
(

∂ R̂
∂X

∣∣∗
)


= 0, the Implicit

Function Theorem ensures the existence of X( p), U
and V as defined in Eq. (24).

Differentiating the implicit function defined in Eq.
(24) it is then possible to compute the total derivatives
ofXwith respect to p, and thus first- and second-order
sensitivities as

dX
d p

= −∂ R̂
∂X

−1
∂ R̂
∂ p

, (25)

and

d2X
d p2 : I J

= −∂ R̂
∂X

−1 (
∂2 R̂

∂X∂ p
· dX
d p

+ ∂2X
∂ p2

+
(

∂2 R̂

∂X2 · dX
d p

+ ∂2 R̂
∂ p∂X

)
·21 dX

d p

)

: I J
,(26)

for I, J ∈ {1, . . . ,m}. Again, refer to Appendix C
for the expressions of all partial derivatives of R with
respect to X and p.

Eventually, sensitivity-based approximations are
obtained as

X( p∗ + δ p) ≈ X∗ + dX
d p

δ p + 1

2

(
d2X
d p2

· δ p
)

δ p.

(27)

Notice that in the constant frequency approach, dis-
cussed in Section 3.1, the implicit function definition
with g = ω( p) − ω∗ is tacitly assumed before tak-
ing the total derivatives with respect to p. A qualitative
sketch of this parametrization is provided in Fig. 4b.

The choice of the closure equation g has a strong
impact on the accuracy of sensitivity-based approxima-
tions. As already mentioned, while many points satisfy
the HB residual equation (blue dots in Fig. 4a), not all
of them are at the same distance from the starting nom-
inal point (black dot). As the sensitivity-based solution
uses a Taylor expansion, the more the mapping from
X∗ to X( p∗ + δ p) is close to linear in the expansion
direction, the greater the accuracy we can expect.
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(a) (b)

(c) (d)

Fig. 2 FRCs (for F = 0.08) of the nonlinear oscillator for nom-
inal parameters p∗ ( ), for a variation p∗ +δ p ( ) and cor-
responding approximations using first ( ) and second-order

( ) sensitivities computed at constant frequency. In each plot
a different variation is considered and the modulus of first har-
monic of the response is shown

(a) (b) (c)

Fig. 3 FRCs (for F = 0.12 and δ p% = [−4, −4, −5, +5]T )
of the nonlinear oscillator for nominal parameters p∗ ( ), for
a variation p∗ + δ p ( ) and corresponding approximations

using first ( ) and second-order ( ) sensitivities computed
at constant frequency. (a) Modulus of the first harmonic, (b)
cosine coefficient A = Qc,1 and (c) sine coefficient B = Qs,1

To this purpose, let us consider a nominal solution
point {X∗, p∗} and a first-order expansion of the HB

residual in (14):

R (X, p) ≈ R(X∗, p∗)︸ ︷︷ ︸
= 0

+ ∂R
∂X

∣∣∣∣∗
δX + ∂R

∂ p

∣∣∣∣∗
δ p

︸ ︷︷ ︸
δR

, (28)
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(a) (b)

Fig. 4 (a) Qualitative sketch of implicit function definition.
Without any closure equation g(X, p) = 0 in addition to HB
equations, starting from a nominal solution point X∗ we could
end up in any of the blue points on the FRC corresponding to the

perturbed parameter value p = p∗ + δ p. The closure equation
allows to uniquely define one point on this curve (in red). (b)
Constant frequency approach (g = ω( p) − ω∗ = 0)

where δX = X−X∗ and δ p = p− p∗. For a perturba-
tion δ p of the parameter vector, we obtain an approx-
imated FRC by nullifying the first variation of the HB
residual δR and solving for δX the resulting one time
underdetermined system:

∂R
∂X

∣∣∣∣∗
δX + ∂R

∂ p

∣∣∣∣∗
δ p = 0,

with
∂R
∂X

∣∣∣∣∗
∈ R

n(2H+1)×n(2H+1)+1. (29)

The associated homogeneous system writes

∂R
∂X

∣∣∣∣∗
τ ∗ = 0, τ ∗ ∈ R

n(2H+1)+1, (30)

where τ ∗ is one of the ∞1 solution vectors and is tan-
gent to the nominal FRC at the nominal solution point.
Thus, the linear system in Eq. (29) admits solutions of
the form

δX = δXp + cτ ∗, (31)

in which δXp is a particular solution of Eq. (29), c ∈
R an arbitrary constant and τ ∗ a particular non-null
solution of Eq. (30).

Therefore, in a neighbourhood V of {X∗, p∗}, the
linear approximation of the FRC corresponding to p =
p∗ + δ p is given by the set of points {X : X = X∗ +
δXp + cτ ∗, c ∈ R}, while the linear approximation of
the nominal FRC, corresponding to p = p∗, is given
by the set of points {X : X = X∗ + cτ ∗, c ∈ R}. Thus,
in the space of harmonic coefficients Q and frequency
ω, the linear approximations of the two FRCs are two
parallel lines, as sketched in figure 5a.

Since the Taylor series approximations in Eq. (28)
worsen as variations in δX increase, a first reasonable
option would be to map the nominal solution point to
the closest point on the perturbed FRC. According to
the geometric construction here presented, the closest
perturbed point lies on the hyperplane orthogonal to
the nominal curve, passing from the nominal solution
point, as sketched in figure 5b. This condition can be
embedded in the closure equation as

g = τ ∗T (X( p) − X∗) = 0 , (32)

where τ ∗ is a non-null solution of Eq. (30).
In order to find a solution for Eq. (30), let us partition

the tangent vector as τ ∗ = [τQ
∗T , τ ∗

ω]T and solve the
linear system of equations with arbitrary non-null τ ∗

ω

as

∂R
∂ Q

∣∣∣∣∗
τQ

∗ + ∂R
∂ω

∣∣∣∣∗
τ ∗
ω = 0,

−→ τQ
∗ = − ∂R

∂ Q

∣∣∣∣
−1

∗
∂R
∂ω

∣∣∣∣∗
τ ∗
ω. (33)

With the closure equation g, R̂(X∗) = 0 and, if

det( ∂R
∂ Q |∗) 
= 0, then det( ∂ R̂

∂X |∗) 
= 0, as proved in
Appendix A. The Implicit Function Theorem hypoth-
esis are then satisfied and Eq. (24) implicitly defines
X( p) in the neighbourhood of each nominal solution
point.
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(a) (b) (c)

Fig. 5 (a) Linear approximations of FRCs in a neighborhood of X∗; (b) mapping between FRCs based on the normal–direction
approach; (c) mapping between FRCs based on the normal–direction approach neglecting the frequency dimension

(a) (b) (c)

(d) (e) (f)

Fig. 6 Comparison of different mappings between FRCs of a
friction free nonlinear oscillator with varying stiffness. Each
nominal solution point is mapped to the closest point on each
perturbed FRC in the Q − ω (a, b, c) or, neglecting the fre-
quency dimension, in the coefficients space only (d, e, f). In (a,

d), for the two mappings, modulus of the response is computed
for the nominal solution (k∗, ), and, for δk% = +10%, with
second-order sensitivities ( ) and by re-running HB ( ). In
(b-e), the two mappings (X (k), ) in the modulus-frequency
plane. In (c,f), the two mappings in the Nyquist plot
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3.2.1 Limitations of the closure equation

Let us now consider the nonlinear oscillator presented
in Section 3.1.1, this time with m = 1, k = k3 =
10, c = 0.05, F = 0.1 and flim = 0. The forced
steady-state response for this system can be accurately
captured with a single harmonic resulting in a FRC in a
three dimensional space (Qs,1, Qc,1, ω), allowing for
an effective graphical representation of the mapping
introduced by the constraint equation g.

In Fig. 6a we plot the sensitivity-based approxima-
tion for a +10% increase of the linear stiffness k. As it
can be observed, in some frequency ranges the accuracy
of the sensitivity-based approximation is low.

In Fig. 6b and 6c, we plot themapping introduced by
closure equation (32) for equidistant interval increase in
stiffness k, in the modulus-frequency and coefficients
space (Nyquist plot), respectively. The mapping (red
lines) has been obtained by exactly solving Eq. (24)
for different values of the parameter p = k, start-
ing from different nominal solution points. It can be
observed that increasing k the FRC shifts to higher fre-
quencies and the resonance peak gradually decreases,
as expected. However, it can also be observed that since
we aremapping each nominal solution point to the clos-
est point on the perturbed FRC considering also the
distance in the frequency space, we end up associat-
ing different “operating points”. This is clearly visi-
ble around frequency ω ≈ 3.4, where two red lines
cross. The reason why this happens is that the proposed
approach minimizes the distance between solutions in
the Q − ω space. Ultimately, this attempt to minimize
also δωmakes themapping highly nonlinear and harder
to capturewith aTaylor expansion, effectively reducing
the parameter validity range of the approximation.

3.2.2 A modified closure equation

Following these considerations, we modify the closure
equation in such a way that the distance in the fre-
quency space is no longer weighted in the mapping.
The modified closure equation we choose is

g = τQ
∗T (Q( p) − Q∗) = 0, (34)

where τQ
∗ is defined in Eq. (33). In other words, we

map the nominal solution point to the point on the per-
turbed FRC such that the variation in theHB coefficient
vector δQ = Q( p) − Q∗ is orthogonal to the tangent
restricted to the HB coefficients space. A qualitative

geometric sketch of this parametrization is provided in
Fig. 5c.

As proved inAppendixA, with this closure equation
we have that under the (generally met) two conditions
det( ∂R

∂ Q ) 
= 0 and ∂R
∂ω


= 0, the Implicit Function Theo-
rem hypothesis are satisfied.Moreover, in Appendix B,
we also prove that this modified approach minimizes
||δQ|| in a linear approximation of FRCs.

Going back to the example of the nonlinear oscil-
lator already presented in the previous section, with
the same increase in stiffness of 10%, we now see that
second-order approximations of the mapping based on
closure equation (34) (Fig. 6d) are more accurate than
those based on closure equation (32) (Fig. 6a). More-
over, notice that in this second approach the mapping is
orthogonal to the FRC in the space of HB coefficients
(space of A1 = Qc,1 and B1 = Qs,1, in this example)
as shown in Fig. 6f. This translates into a map where
the modulus is approximately constant, as depicted in
Fig. 6e, since now the frequency ω is free to move and
the minimization is restricted to the norm of the HB
coefficients variations.

A notable case is the one of pure translation in fre-
quency of the FRC. Approximations based on closure
equation (32), indeed, may lead to inaccurate results
when the FRC ismainly subjected to a translation along
the frequency axis for a given variation of the parameter
vector. This is the case of the nonlinear oscillator intro-
duced in section 3.1.1 with nominal parametersm = 1,
k = k3 = 103, c = 0.2, F = 3 and flim = 0 for an
increase in linear stiffness δk = 10%. For this example
we provide in Fig. 7 the HB coefficients Qs,1,Qc,1 and
the modulus ||Qs,1 + i Qc,1|| (i is the imaginary unit)
for the nominal and the perturbed FRCs, computed by
running HB with a single harmonic. With reference to
the current section, we recall that starting from each
nominal solution point it is possible to obtain a linear
approximation of the FRC corresponding to a perturba-
tion in the parameters, through the linearization of the
HB residual provided inEq. (28). This approximation is
given by the set of points {X : X = X∗+δXp+cτ ∗} and
is plotted in Fig. 7 with dashed line, for different nom-
inal expansion points X∗ identified with markers “∗”.
Notice that each approximation describes well small
different sections of the curves. In a sensitivity-based
expansion (Eq. (27)) limited to first-order terms, with
the choice of closure equation g, we uniquely identify
only one of these points, that will become part of the
final approximation of the perturbed FRC. With refer-
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(a) (b) (c)

Fig. 7 Comparison of approximations based on different clo-
sure equations for the friction free nonlinear oscillator subjected
to increase in stiffness (δk = +10%). In (a) cosine coefficient
A = Qc,1, in (b) sine coefficient B = Qs,1, in (c) modulus of
the first harmonic for the nominal solution ( ) and for the
perturbed solution ( ). From each nominal solution point (* *

* *) a linear approximation of the perturbed FRC can be derived
( ). With first-order sensitivities, nominal
points are mapped to the points on these approximations that are
identified by (××××) and (++++), for closure equations (32)
and (34) respectively

ence toFig. 7 this is equivalent to select the points on the
linear approximations (dashed lines) marked with “×”,
if closure equation g weighs variations in frequency
(Eq. (32)), or marked with “+”, if frequency dimen-
sion is neglected (Eq. (34)).As it can be observed, in the
first case, since distance in frequency is weighted, the
closure equation “forces” the points on the perturbed
FRC to be at a similar frequency of the correspond-
ing nominal solution points. In this way, the method
displays the same issues presented by the constant
frequency approach, resulting in poor approximations.
Conversely, in the second case, since closure equation
does not weigh variations in frequency, approximation
points can freely move in the frequency dimension,
allowing for greater accuracy.

3.2.3 A practical case study: monte carlo analysis

Let us consider the example of the nonlinear oscilla-
tor with friction presented in Section 3.1.1 and with
nominal parameter vector p∗ = [1, 1, 0.2, 0.12]T .
The perturbed FRC for percentage parameter varia-
tion δ p% = [−20,−20,+5,+5]T , obtained with the
sensitivities in the normal–direction approach formu-
lation, is given in Fig. 8. Notice that the so com-
puted approximation is smooth and solves the prob-
lems related to the constant frequency approach.More-
over, greater accuracy is achieved with respect to the

case presented in Fig. 3 that featured the same nomi-
nal parameters, even if percentage parameters pertur-
bations are increased.

Sensitivity-based approximations can be efficiently
used to propagate uncertainty in the system’s param-
eters to the response, following a Monte Carlo (MC)
approach. From the knowledge of the stochastic dis-
tribution of the parameters, the stochastic distribution
of the response is retrieved by computing a set of
responses for a sufficiently large number of randomly
sampled parameter perturbations.

In contrast to conventional Monte Carlo, instead of
running the numerical solution of the nonlinear HB
equations, the solution is cheaply obtained with the
sensitivities by applying the update Eq. (27), for each
parameter variation. This comes at the expense of an
additional fixed cost to compute sensitivities, which
is easily amortized as the number of MC samples is
increased. Finally, stochastic distributions of selected
Quantities of Interest (QoI) can be obtained by post-
processing the set of responses.

As a demonstration of accuracy and efficiency of
the sensitivity-based MC, we apply the method to the
nonlinear oscillator with friction, assuming different
stochastic distributions of the parameters. The quanti-
ties of interest we consider are the resonance frequency
and resonance amplitude. In Fig. 9 we show the Proba-
bility Density Function (PDF) for each of these quanti-
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(a) (b) (c)

Fig. 8 Approximations of the perturbed FRCs for the nonlinear
oscillator with friction, based on first ( ) and second-order
( ) sensitivities in the normal–direction approach formula-
tion. For comparison, the exact perturbed FRCs ( ) and the

nominal FRCs ( ) are also plotted. Percentage parameter vari-
ation is δ p% = [−20, −20, −5, +5]T . In (a) we show themod-
ulus of the first harmonic, in (b) the cosine coefficient A = Qc,1
and in (c) the sine coefficient B = Qs,1

ties, computed for a Gaussian distribution of the linear
and cubic stiffness k and k3 (Fig. 9a), for a Gaussian
distribution of friction limit force flim (Fig. 9b), for a
Gaussian distribution of external forcing F (Fig. 9c)
and for the combination of all these distributions (Fig.
9d).

Each of the stochastic distributions is obtained both
with conventional MC (i.e. solving the HB equations
for the perturbed system) andwith the sensitivity-based
MC, randomly sampling the parameter distribution
1000 times (same seed). As it can be seen, the distribu-
tions computedwith the two different approaches are in
good agreement. For this 1-dof example, we obtained
a speedup factor of 15.

3.2.4 Hardening, softening and stability
considerations

Before concluding this section, we report the frequency
responses for an oscillator with no friction ( flim =
0) and with cubic stiffness k3 = 0 (Fig. 10a) and
k3 = 0.015 (Fig. 10b). The remaining parameters
m = 1, k = 1, c = 0.06, F = 0.25 are fixed. In
the present case, changing the cubic spring value has
the effect of changing the type of nonlinearity from
hardening to softening, and vice versa. However, as
it can be observed, the accuracy of the approximation
is not affected by the type of nonlinearity, but rather
by the magnitude of the variation, as expected from

Taylor expansion theory. In some cases, the maximum
allowed variation can be analytically derived [13], but
this usually requires the knowledge and computation
of derivatives one order higher than the desired order
of the approximation.

Lastly, in Fig. 10 we also show with dotted lines
the unstable branches of the solutions, obtained com-
puting the eigenvalues of the monodromy matrix [1,
25], obtained with the shooting method implemented
in NLvib. Although stability information is usually
desired, this is not readily available neither for the
HB-computed solutions nor for the sensitivity-based
approximation. This means that for each point of the
solution one has to set a proper analysis to determine
stability and, for the monodromy matrix method we
used, a forward time integration has to be performed
for each solution point. This has been done for the nom-
inal and reference curves. However, using the shoot-
ing method, the underlying hypothesis is that the solu-
tion point (used to set the initial conditions of the time
integration) is actually on a periodic orbit, which is in
general not true for the sensitivity-based solution (or
even for HB-solutions with an insufficient number of
harmonics). For this reason, such a stability analysis
proves unreliable for the approximated solutions and is
not shown here. As a final remark, we also point out
that the computational burden associated to the stabil-
ity analysis of the FRC would have probably defeated
the benefits of the proposed method.
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(a) (b)

(d)(c)

Fig. 9 Probability Density Function of resonance frequency
(red) and resonance amplitude (blue), numerically computed
with classic MC (exact) and sensitivity-based MC (sensitivity).
Parameter uncertainties considered are: (a) Gaussian distribu-
tion of linear and cubic stiffness (3σp% = [20, 20, 0, 0]);

(b) Gaussian distribution of friction limit force flim (3σp% =
[0, 0, 20, 0]); (c) Gaussian distribution of forcing amplitude
(3σp% = [0, 0, 0, 20]); (d) all the uncertainties presented
before combined (3σp% = [20, 20, 20, 20])

Fig. 10 FRCs (with
H = 5) for a Duffing
oscillator with nominal
k3 = 0 (a) and k3 = 0.015
(b). For both cases, a
variation Δk3 =
{−0.02, −0.01, +0.01, +0.02}
has been considered to
produce a
softening/hardening
behavior. The frequency
responses are shown for the
nominal ( ), reference
( ) models and for the
second-order approximation
( ); for the former two,
the unstable branches are
dotted

(a) (b)

4 Defect-parametric reduced order model

Until nowwe presented the sensitivity analysis method
for a generic case, showing some examples with
lumped parameter models. In this section, we want to
apply the method to FE structures with the aim to study
the effect of manufacturing variations on the shape
of the structures themselves. This task poses at least
two issues. First, even a single solution with the Har-
monic Balance method can be too expensive (or even

unfeasible) for a FE model with a moderate number of
dofs; secondly, shape parametrization techniques often
involve a high number of parameters, meaning that a
high number of sensitivities would need to be com-
puted. As anticipated in Section 1, we propose to solve
these problems applying the sensitivity approach to a
Defect-parametric Reduced Order Model (DpROM).
The latter, introduced in [6] and extended in [7], is here
described in brief, leaving the details on its implemen-
tation to the aforementioned works.
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4.1 DpROM description

The DpROM is a projection-based ROM which can
parametrically describe a shape imperfection in a
regime of geometric nonlinearity. Shape imperfections,
or defects, are simply given by displacement fields
which move the nodes of the nominal (i.e. without
imperfections) structure into the defected configura-
tion. These displacement fieldsmay come from a previ-
ous study,measurements, or they canbe artificially con-
structed. Each displacement field U j can be indepen-
dently defined, and the final defected configurationwill
be given by the linear superposition of all the defects,
that is:

xd = x0 + Uξ , (35)

where xd and x0 are the defected and nominal config-
uration coordinates, respectively, U = [U1, . . . , Um]
is the matrix collecting m defect shapes, and where
ξ = [ξ1, . . . , ξm]T is a column vector collecting each
defect shape’s amplitude. In this context, ξ takes the
role of the parameter vector which governs the final
defected shape of the structure under study.

The projection basis V ∈ R
n×r , being r the num-

ber of reduced coordinates η ∈ R
r , is built using a set

VibrationModes (VM), their associated (Static)Modal
Derivatives (MD) and Defect Sensitivities (DS), col-
lected in the matrices Φ, Θ and Ξ , respectively, so
that the displacement vector u can be approximated as

u ≈ Vη = [Φ, Θ, Ξ ] η. (36)

This choice, loosely speaking, is an extension of
classicmodal analysis,where the truncated set of eigen-
vectors of the system is augmented with MD to take
into account nonlinearities and DS to take into account
shape parametrization. Retaining a number nvm ofVM,
we have nvm(nvm +1)/2 MD and nvmm DS, for a total
r = nvm(nvm+2m+3)/2. Formore details on this pro-
jection method, again, see [7] and references therein.

Operating a Galerkin projection, we can write the
governing equations for the DpROM as

M̃(ξ)η̈ + K̃2 (ξ)η + ( K̃3 (ξ) · η)η

+(( K̃4 (ξ) · η) · η)η = VT f , (37)

where M̃ = VT MV, and the nonlinear elastic forces
take on a polynomial shape in the displacements3, the

3 Under the hypothesis of linear elastic constitutive law and total
Lagrangian formulation, elastic forces feature linear, quadratic

stiffness tensors also depending in a polynomial way
on ξ as

K̃2 (ξ) = K̃2n + K̃3d · ξ + ( K̃4dd · ξ) · ξ , (38a)

K̃3 (ξ) = K̃3n + K̃4d · ξ + ( K̃5dd · ξ) · ξ , (38b)

K̃4 (ξ) = K̃4n + K̃5d · ξ + ( K̃6dd · ξ) · ξ . (38c)

In Eqs. (38), the left-subscripts denote with a num-
ber the order of the tensor, with a “n” a tensor com-
puted for the nominal geometry and with a “d” (“dd”)
a tensor whose last (two) dimensions are of size m
(which are otherwise equal to r ). For instance, K̃4dd ∈
R
r×r×m×m . The full expressions for these tensors can

be found in [7]. Furthermore, each of the above tensors
and the reduced mass matrix write

P̃ = P̃
′ +

m∑
i=1

ξi P̃
′′,i

, (39)

where P̃ is a generic reduced matrix/tensor, P̃
′
is eval-

uated on the nominal volume and P̃
′′,i

is a correc-
tive term required to approximate the volume change
introduced by the i-th defect4. For this reason, the
massmatrix is also parameter-dependent. In the present
work, Rayleigh damping is assumed as D̃ = αM M̃ +
βK K̃ and can be introduced in Eq. (37). We will also
assume that the external forcing f is approximately
constant and does not depend on ξ . Finally, sensitivities
can be computed for the DpROM using the derivatives
of the stiffness and mass tensors given in Appendix D.

All in all, DpROM features a small set of reduced
coordinates and an easy way to parametrize shape
imperfections which results into polynomials, that can
be efficiently used to compute sensitivities. Finally,
notice once more that although greatly reducing the
computational burden with respect to its correspond-
ing FOM and its non-parametric ROM counterparts,
DpROMmay still take quite some time if several thou-
sands of runs are required, as in the MCmethod. In the
numerical example, we will show how beneficial the
sensitivity analysis is in this sense.

and cubic terms, given by the contraction of second, third and
fourth-order stiffness tensors over the displacement vector (one,
two and three times, respectively).
4 Refer to Section 5.2 “Volume integration” of [7] formore infor-
mation. Notice that in [7] this correction was applied to stiffness
tensors only, as the defected mass matrix was computed without
approximation.
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5 Numerical test: MEMS oscillator

To demonstrate the potentialities of the proposed
method, we now present the case of a single-axis
MEMS gyroscope [26]. The structure is fixed in cor-
respondence of the anchor points and is harmonically
driven by comb-finger electrodes along the y-direction
(see Fig. 11a). Due to this motion, when an external
angular rate is present, the sense mass will experience
a Coriolis force which will make the mass move in
a direction orthogonal to the drive-axis (i.e. x or z-
axes); this movement is then sensed by specifically
designed electrodes to infer the angular rate [2]. Since
the Coriolis-induced motion amplitude is typically 1-
2 orders of magnitude smaller than the one along the
drive-axis, manufacturing imperfections may have a
great impact over the performances of these transducers
and must be taken into account in the design phase.

5.1 Model and chosen defects

We constructed a FE model of the device using three-
dimensional continuum elements (Lagrangian hexahe-
dra with quadratic shape functions), counting 451,089
dofs. We used the material properties of Silicon
(Young’s modulus E = 148GPa, Poisson’s ration
ν = 0.23, density ρ = 0.93 × 2330 kg/m3, where
0.93 is the filling fraction to take into account the holes
required by the production process), a Rayleigh damp-
ing with αM = 71.4 and βK = 0 (corresponding to
a quality factor of 2200 on the first vibration mode),
and an equivalent concentrated forcing F = 0.5μN
located in themiddle of the drive combs. TheDpROM5

is constructed using 2 VM, 2 shape defects, and their
associated MD (3) and DS (4), for a total of 9 dofs.

The first shape defect is the so-called overetch,
which corresponds to the erosion of the Silicon wafer
happening during the MEMS fabrication process [27].
The latter may indeed result in excessive/deficient ero-
sion of the material (over/underetching) with respect
to the nominal overetch value, meaning that the final
geometry will appear slightly thicker/thinner than the
nominal one. In our FE model, this defect is obtained
from a static linear analysis, performed inComsolMul-
tiphysics 6.0, where an inward/outward normal unitary

5 With 1st-order Neumann expansion, integrated over the
defected volume (DpROM-N1d in [7]).

displacement is imposed to all the vertical walls, while
the top and bottom faces are fixed along the z-direction
by rollers. This way, the ξ1 parameter will correspond
to the effective overetch (for ξ1 > 0) or underetch (for
ξ1 < 0) variation. The results of the static analysis are
shown in Fig. 12(a,b). The second defect shape is the
so-called wall-angle, consisting in the fact that the ver-
tical walls will have an angle with respect to the z-axis.
The field we consider for our model, shown in Fig. 12c,
is given by

u(z) = ξ2 tan(θ)(z − z0),

v(z) = ξ2 tan(θ)(z − z0), w = 0, (40)

being u, v, w the displacement fields along x, y, z-
axes, respectively, z0 the elevation of the bottom sur-
face, θ a typical (3σ -)value for the wall angle and
ξ2 ∈ [−1, 1] the amplitude parameter. Notice that with
this choice we consider simultaneously an angle with
respect to the xz and yz-planes.

5.2 Monte Carlo analysis

For each shape defect amplitude, we consider a Gaus-
sian distribution with null mean value and 3σ -value
equal to ξ̂1 = 16 and ξ̂2 = 1. We first prelimi-
nary check that the approximated solutions provided
by the DpROM and the sensitivity approach are suf-
ficiently accurate with respect to a solution obtained
with the non-parametric corresponding ROM7. To this
purpose, in Fig. 13(a, d) the FRCs measured at forc-
ing location for ξ = [±ξ̂1, ξ̂2] are shown, correspond-
ing to the 3σ -corners of the parameter domain (notice
that the sign of ξ2 does not affect the solution). The
FRCs show a significant hardening behavior, induced
by the geometric nonlinearities of the clamp-clamp sus-
pension beams connected to the drive frame. Under
the assumption that the approximation improves for
lower defect amplitudes, we deem these results accu-
rate enough, even though a small deviation from the
reference (ROM) is present. Notice that this error is
to impute to the DpROM approximation, whereas the
sensitivity approach reproduces the DpROM solutions
accurately. Upon these considerations and for time

6 Corresponding to a width-reduction/increase of the suspension
drive beam of about 8%.
7 Constructed with 2 VM and 3 corresponding MD, for a total
of 5 dofs (see [7] for more details).

123



Sensitivity analysis of nonlinear frequency 4043

Fig. 11 (a) Single-axis
MEMS gyroscope model.
The structure is fixed to the
ground by the anchor
points. (b) Mesh is swept
along the z-axis and counts
23,307 hexahedral elements
(Lagrangian, quadratic
shape functions) and
451,089 dofs

(a) (b)

(a) (b) (c)

Fig. 12 Shape defects (top view). (a) Overetch (values normal-
ized over oe = 1μm). (b) Detail with nominal mesh (black line,
gray fill), defect deformation field (blue arrows) and defected

mesh (red line). Underetch case is plotted for better readability.
(c) Wall-angle defect, with θ = 30◦ for visibility and values
normalized over the maximum displacement

constraints, the ROM solutions will not be computed
anymore, and the comparison will be only between
the DpROM solutions and their respective sensitivity-
based approximations.

All the computations were carried out in YetAn-
otherFEcode v1.3.0 [28], with the addition of dedi-
cated routines for the DpROM and sensitivity com-
putation. For computational efficiency, some parts of
the DpROM are built using Julia subroutines for tensor
operations [29], as it will be indicated later in the com-
putational times (see Table 1). The FRC are computed
in NLvib [1], which is also included in YetAnotherFE-

code v1.3.0, usingMATLAB 2021b on a local machine
equipped with an Intel(R) Xeon(R) Silver 4214 CPU
@2.20 GHz and 256 GB RAM @2666 MHz. For the
HB method, we used H = 5 harmonics, a number
Nt = 3H + 1 of time samples for the AFT of the non-
linear terms [30] and twice this number of samples for
the AFT of the sensitivities.

For the Monte Carlo analysis, we generated 5000
random ξ parameters vectors extracted from the afore-
mentioned Gaussian distributions, then we ran as many
simulations with the DpROM and computed as many
solutions with the sensitivity approach. However, since
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Fig. 13 (a, d): First
harmonic modulus and
phase of the drive motion at
forcing location, for
DpROM∗ at ξ = 0 ( ),
ROM ( ), 2nd order
sensitivities ( ), DpROM
( ) for ξ = [±ξ̂1, ξ̂2].
(b, c, e, f) Probability
Density Functions for
DpROM (blue, filled) and
sensitivity-based approach
(black solid line) for: (b) f̂ ,
frequency corresponding to
the drive’s maximum
amplitude (“resonance”); (c)
Δ f , interval of frequencies
where a triple solution exists
(“bandwidth”); (e) drive
maximum amplitude; (f)
sense maximum amplitude

(a) (b)

(d)
(e)

(c)

(f)

the same solver parameters had to remain fixed while
changing ξ , some solutions failed, so that the effective
number of samples that we considered is Nmc = 4612.
Notice that this is a problem only for the DpROM,
where a simulation must be performed, but not for the
sensitivity approach, where the solution is simply an
update of the nominal solution. However, for the sake
of comparison, we discarded the failed cases for both
the approaches.

Figure 13b, c, e, f show the Probability Density
Functions for someQoI, namely the frequency at maxi-
mumamplitude (b), the span of frequencieswhere three
solutions exist (c), the maximum displacement along y
(e) and along z (f), measured at the forcing location.
The latter is usually referred to as quadrature error (in
that it is a spurious motion which superimposes to the
Coriolis reading), and it is nicely captured by the sensi-
tivity method in spite of its small magnitude. As it can
be observed, DpROM and sensitivity-based results are
in almost perfect agreement.

Finally, in Table 1 computational times are reported,
where we distinguish between fixed costs, computed
once and for all independently from the total number
of analyses, and variable costs that must be sustained
for each new analysis. Considering only the variable

costs, we find that the sensitivity approach is almost
300 times faster than the DpROM, and more than 3000
times faster than the repeated construction and evalu-
ation of a non-parametric ROM, with a modest incre-
ment of the fixed costs. The latter, however, can be
largely amortized when a sufficient number of samples
is used for the MC analysis.

6 Conclusions

In this contribution we proposed a sensitivity-based
method to alleviate the computation of the frequency
responses of nonlinear systems, when the latter have
to be repeated for a large number of parameter realiza-
tions and for small parameter deviations from the nom-
inal values. The typical case scenario in this sense is
theMonte Carlo analysis. After recalling the governing
equations for the Harmonic Balance method, we dis-
cussed how to compute sensitivities and how append-
ing an appropriate closure equation to the HB resid-
ual equations is essential to achieve accurate results.
We then introduced a closure equation ensuring that
the sought approximated solution lies along a direc-
tion which is normal in the HB coefficient space. With
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Table 1 Computational times for each step in the construction of the reduced models and simulations. For each model, we denoted
with an F/V a fixed/variable cost (if present).

Matlab/Julia Time [s] ROM DpROM Sensitivity

M, K matrices M 106.3 V F F

Vibration Modes M 28.4 V F F

Modal Derivatives J 268.9 V F F

Defect Sensitivities J 206.1 F F

ROM tensors J 95 V

DpROM tensors J 718 F F

I-II sensitivities M 624.6 F

HB-ROM solution M 13 V

HB-DpROM solution† M 48.4 V

Update solution† M 0.165 V

Fixed cost (F) 0 s 1327.7 s 1952.3 s

Variable cost (V) 512 s 48.4 s 0.165 s

Total cost (4612 runs) 3.9 w‡ 2.6 d 45.2 min

† Average value, computed over the 4612 runs.
‡ Estimated time, computations were not actually performed for this case
In the last three rows of the table, the times for the MC analysis with 4612 samples are reported

the aid of the example of a nonlinear oscillator, accu-
racy and limitations of the discussed approaches were
thoroughly illustrated. Finally, the method is applied
to a large FE model of a MEMS gyroscope. As the
direct evaluation of the response of such a system
through HB is not feasible, we resorted to a parametric
Reduced Order Model which we studied in a previous
work (DpROM), and where the parameters represent
the amplitudes of some imposed shape defect. Using
the HB and DpROM, a Monte Carlo analysis was run
for 4612 sampled parameter vectors, computing the
Frequency Response Curves for both the DpROM (ref-
erence solution) and the sensitivity-based approxima-
tion. The probability density functions of some quan-
tities of interest for the two batches of results showed
excellent agreement. The computational times, how-
ever, were greatly reduced, going from the 2.6 days of
the re-simulated DpROM to the 45.2 minutes of the
sensitivity-based approach, with an effective speedup
factor of approximately 300 (if neglecting fixed costs).
All in all, the proposed method represents an accurate
and cheap solution to evaluate the frequency responses
of systems subject to parameter uncertainties and fea-
turing a marked nonlinear behavior, finding potential
applications in the MEMS industry as well as in other

fields, as for the study of friction related phenomena
[31].
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A Non-singularity of Jacobian matrix

In this subsectionwedemonstrate that,with the implicit
function definition in Eq. (24), conditions for the
Implicit function theorem are satisfied if:

(i) det( ∂R
∂ Q ) 
= 0, for closure Eq. (32);

(ii) det( ∂R
∂ Q ) 
= 0 and ∂R

∂ω

= 0, for closure Eq. (34).

The Jacobian of the extended residual is

∂ R̂
∂X

=
⎡
⎣

∂R
∂ Q

∂R
∂ω

τQ
∗T α τ ∗

ω

⎤
⎦ , (41)

with α = 1 for closure equation (32), or α = 0 for clo-
sure equation (34). Since ∂R

∂ Q is invertible for hypoth-
esis, the determinant of the extended Jacobian can be
developed using Eq. (33) as

det

(
∂ R̂
∂X

)
= det

(
∂R
∂ Q

) (
α τ ∗

ω − τQ
∗T ∂R

∂ Q

−1 ∂R
∂ω

)
,

= det

(
∂R
∂ Q

) (
α τ ∗

ω + 1

τ ∗
ω

τQ
∗T τQ

∗
)

,

(42)

which is different from zero if and only if

α τ ∗
ω + 1

τ ∗
ω

τ ∗
Q
T
τ ∗
Q 
= 0 ⇔ α τ ∗

ω + ||τ ∗
Q ||2 
= 0. (43)

If α = 1, then condition (43) is always satisfied, since
the norm of a tangent vector is positive definite. How-
ever, for α = 0, condition (43) is satisfied if and only
if τQ

∗ 
= 0. As it can be seen from the definition of
τ Q in Eq. (33), since ∂R

∂ Q has full rank for hypothesis,

τQ
∗ is null if and only if ∂R

∂ω
= 0. Hence, in this second

case, for ∂ R̂
∂X to be invertible, the additional condition

∂R
∂ω


= 0 is required (and is generally satisfied, as in the
case of periodic forcing).

B Euclidean distance minimization in the coeffi-
cients space

In Section 3.2 we introduced a mapping between FRCs
that made possible accurate sensitivity-based approx-
imations for small parameter perturbations from the

nominal. The choice we made was to map each nom-
inal solution point to the closest point on each per-
turbed FRC, relying on the fact that Taylor series-based
approximations worsen as variations increase. In this
way, after some geometric considerations we identi-
fied the closure equations in (32) and (34). With the
first constraint we minimize the euclidean distance in
the Q − ω space, while with the second we minimize
the distance restricted to the space ofHB coefficients Q
only. In this section we show that the latter choice cor-
responds to the minimization of the distance between
the solution coefficients (in a linear approximation).

Let us consider the linear system of Eq. (25), both
with closure equation (32) and (34). We can rewrite the
system in terms of Q and ω as

⎧⎪⎪⎨
⎪⎪⎩

∂R
∂ Q

d Q
d p

+ ∂R
∂ω

dω

d p
= −∂R

∂ p
, (44a)

τQ
∗T d Q

d p
+ α τ ∗

ω

dω

d p
= 0, (44b)

with α = 1 if we consider closure equation in (32),
or α = 0 if we consider closure equation in (34).

From equation (44a) we get

d Q
d p

= − ∂R
∂ Q

−1 (
∂R
∂ω

dω

d p
+ ∂R

∂ p

)
, (45)

that upon substitution in (44b) yields

dω

d p
=

τQ
∗T ∂R

∂ Q

−1 ∂R
∂ p

−τQ
∗T ∂R

∂ Q

−1 ∂R
∂ω

+ α τ ∗
ω

, (46)

and eventually

d Q
d p

=
− ∂R

∂ Q

−1 ∂R
∂ω

τQ
∗T ∂R

∂ Q

−1 ∂R
∂ p

−τQ
∗T ∂R

∂ Q

−1 ∂R
∂ω

+ α τ ∗
ω

− ∂R
∂ Q

−1 ∂R
∂ p

.

(47)

The corresponding first-order variations in HB coef-
ficients and frequency obtained with the sensitivities
are thus

δ Q̃ = d Q
d p

δ p, (48a)

δω̃ = dω

d p
δ p. (48b)
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Let us now consider the following constrained min-
imization problem

⎧⎨
⎩

min J (δQ, δω) = δQT δQ + αδω2, (49a)

s.t.
∂R
∂ Q

δQ + ∂R
∂ω

δω = −∂R
∂ p

δ p, (49b)

in δQ and δω, for a fixed δ p. The one time under-
determined system (49b) is obtained from a first-order
expansion of the HB residual in the neighbourhood of
a nominal solution point, as in Eq. (28). For fixed δ p,
this system of equations defines a linear approxima-
tion of the perturbed FRC. The functional J returns the
euclidean distance of the expansion nominal solution
point from any point on the linearized perturbed FRC,
in Q−ω spacewhenα = 1, or in Q spacewhenα = 0.

We now prove that the sensitivity-based solution in
Eq. (48) is a solution of the minimization problem, for
α = 0 and for α = 1. In order to do so we solve
(49b) with respect to δQ and substitute the so obtained
expression in the functional definition (49a) obtaining

J (δω) =
(

∂R
∂ω

T ∂R
∂ Q

−T ∂R
∂ Q

−1 ∂R
∂ω

+ α

)
δω2

+ 2

(
∂R
∂ω

T ∂R
∂ Q

−T ∂R
∂ Q

−1 ∂R
∂ p

δ p

)
δω

+ δ pT
∂R
∂ p

T ∂R
∂ Q

−T ∂R
∂ Q

−1 ∂R
∂ p

δ p.

(50)

Notice that in this expression, the functional J is a
scalar quadratic function in the scalar variable δω.
Moreover, if α ≥ 0, the term multiplying δω in Eq.
(50) is always positive, hence the stationary point is a
minimum.

The optimality condition, d J
d δω

= 0, writes
(

∂R
∂ω

T ∂R
∂ Q

−T ∂R
∂ Q

−1 ∂R
∂ω

+ α

)
δω

+∂R
∂ω

T ∂R
∂ Q

−T ∂R
∂ Q

−1 ∂R
∂ p

δ p = 0. (51)

By substituting the sensitivity-based solution provided
in (48b) in Eq. (50), recalling the definition of the nom-
inal tangent vector τQ

∗ given in (33), it is easy to verify
that the optimality condition is satisfied for both α = 0
and α = 1. Hence the sensitivity-based solution is also
a solution of the minimization problem, proving the
thesis.

C Computation of residual derivatives

In this section we provide a possible method for the
numerical evaluation of the partial derivatives of theHB
residual R with respect to harmonic amplitude vector
Q, parameter vector p and excitation frequency ω. In
the differentiation process, we assume a dependence
of the EoM on the parameter vector p, as stated in
Eq. (13). The HB residual vector R can be split into
a linear contribution in the harmonic amplitude vector
R lin and a nonlinear one R nl , as shown inEq. (7).Also,
we assume that the order of the elements in derivatives
corresponds to the order of derivation, for instance

(
∂2R

∂Q∂p

)

i jk
= ∂2Ri

∂Qk∂p j
.

C.1 Partial derivatives of linear residual

Partial derivatives of the linear part are trivial, and are
hereafter reported:

∂R
∂ Q

= ω2∇2 ⊗ M + ω∇ ⊗ D + I2H+1 ⊗ K , (52a)

∂R
∂p j

=
(

ω2∇2 ⊗ ∂M
∂p j

+ ω∇ ⊗ ∂D
∂p j

+ I2H+1 ⊗ ∂K
∂p j

)
Q

− (ec ⊗ In)
∂ f ω,c

∂p j
− (es ⊗ In)

∂ f ω,s

∂p j
, (52b)

∂R
∂ω

=
(
2ω∇2 ⊗ M + ∇ ⊗ D

)
Q, (52c)

∂2R
∂pk∂p j

=
(

ω2∇2 ⊗ ∂2M
∂pk∂p j

+ ω∇ ⊗ ∂2D
∂pk∂p j

+ I2H+1 ⊗ ∂2K
∂pk∂p j

)
Q − (ec ⊗ In)

∂2 f ω,c

∂pk∂p j

− (es ⊗ In)
∂2 f ω,s

∂pk∂p j
, (52d)

∂2R
∂ω2 =

(
2∇2 ⊗ M

)
Q, (52e)

∂2R
∂ Q∂p j

= ω2∇2 ⊗ ∂M
∂p j

+ ω∇ ⊗ ∂D
∂p j

+ I2H+1 ⊗ ∂K
∂p j

,

(52f)

∂2R
∂ Q∂ω

= 2ω∇2 ⊗ M + ∇ ⊗ D, (52g)

∂2R
∂ω∂p j

=
(
2ω∇2 ⊗ ∂M

∂p j
+ ∇ ⊗ ∂D

∂p j

)
Q, (52h)

with i, j, k ∈ {1, . . . ,m}.
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C.2 Partial derivatives of nonlinear residual

Partial derivatives of Rnl are instead computedwith the
Alternating Frequency Time scheme (AFT) that was
presented in section 2.1. Before going into the details,
let us recall the structure of Rnl :

Rnl � 1

T

∫ T

0
(C ψT ⊗ In) f (q, q̇, p) dt, (53)

First-order derivatives

First-order partial derivatives of Rnl with respect to
the parameter vector p can be developed in Einstein
notation as

∂Rnl
I

∂pJ
= ∂

∂pJ

1

T

∫ T

0
(CψT ⊗ In)I i fi ( p) dt

= 1

T

∫ T

0
(CψT ⊗ In)I i

∂ fi
∂pJ

dt,

(54)

and in matrix notation read

∂Rnl

∂ p
= 1

T

∫ T

0
(CψT ⊗ In)

∂ f
∂ p

dt. (55)

Partial derivatives of Rnl with respect to HB coeffi-
cients Q are developed exploiting chain differentiation
rule, the ansatz definition in Eq. (3a) and the velocities
relation in Eq. (4a), as follows

∂Rnl
I

∂QJ
= ∂

∂QJ

1

T

∫ T

0
(C ψT ⊗ In)I i fi (q, q̇) dt

= 1

T

∫ T

0
(C ψT ⊗ In)I i

(
∂ fi
∂q j

∂q j

∂QJ

+ ∂ fi
∂q̇ j

∂q̇ j

∂QJ

)
dt

= 1

T

∫ T

0
(C ψT ⊗ In)I i

(
∂ fi
∂q j

(ψ ⊗ In) j J

+ ω
∂ fi
∂q̇ j

(ψ∇ ⊗ In) j J

)
dt,

(56)

and in matrix notation read

∂Rnl

∂ Q
= 1

T

∫ T

0
(CψT ⊗ In)

(
∂ f
∂q

(ψ ⊗ In)

+ω
∂ f
∂ q̇

(ψ∇ ⊗ In)
)

dt.

(57)

When it comes to the computation of the partial
derivatives of Rnl with respect to ω, it is useful to per-
form the linear change of variables t = T τ = 2π

ω
τ ,

from physical time t to adimensional time τ . With this
transformation, the nonlinear residual Rnl defined in
(7) rewrites

Rnl =
∫ 1

0
(C ψT ⊗ In) f (q, q̇, p) dτ. (58)

Notice that,with this transformation, integrationbounds
as well as ψ become independent from ω. As a result
of this, exploiting Eqs. (3a), (4a)

∂q
∂ω

= 0, (59a)

∂ q̇
∂ω

= ψ∇ ⊗ In = q̇
ω

, (59b)

and

∂Rnl

∂ω
=

∫ 1

0
(CψT ⊗ In)

∂ f
∂ q̇

q̇
ω
dτ

= 1

T

∫ T

0
(CψT ⊗ In)

∂ f
∂ q̇

q̇
ω

dt, (60)

in which we exploited the chain derivation rule. More-
over, notice that, if the nonlinear force vector f is inde-
pendent from the velocities, ∂Rnl

∂ω
= 0.

Second-order derivatives

Through further differentiation of the first-order deriva-
tives given in the previous section, we get second-order
derivatives of Rnl andmixed derivatives with respect to
parameter vector p, HB coefficients Q and frequency
ω. In this way, second-order derivatives are

∂2Rnl

∂ p2
= 1

T

∫ T

0
(CψT ⊗ In) · ∂2 f

∂ p2
dt, (61a)

∂2Rnl

∂ Q2 = 1

T

∫ T

0
(CψT ⊗ In) ·

[(
∂2 f
∂q2

· (ψ ⊗ In)

+ ∂2 f
∂ q̇∂q

· (ω ψ∇ ⊗ In)
)

·21 (ψ ⊗ In)

+
(

∂2 f

∂ q̇2
· (ω ψ∇ ⊗ In) + ∂2 f

∂q∂ q̇
· (ψ∇ ⊗ In)

)

·21 (ω ψ∇ ⊗ In)
]
dt, (61b)

∂2Rnl

∂ω2 = 1

T

∫ T

0
(CψT ⊗ In)

(
∂2 f

∂ q̇2
· q̇
ω

q̇
ω

)
dt, (61c)

and eventually mixed derivatives are

∂2Rnl

∂ p∂ Q
= 1

T

∫ T

0
(CψT ⊗ In)·

(
∂2 f
∂ p∂q

·21 (ψ ⊗ In) + ∂2 f
∂ p∂ q̇
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·21(ω ψ∇ ⊗ In)) dt, (62a)

∂2Rnl

∂ω∂ Q
= 1

T

∫ T

0
(CψT ⊗ In)

(
∂2 f
∂ q̇∂q

·
q̇
ω

(ψ ⊗ In) + ∂2 f

∂ q̇2
· q̇ (ψ∇ ⊗ In)

)
dt, (62b)

∂2Rnl

∂ω∂ p
= 1

T

∫ T

0
(CψT ⊗ In)

(
∂2 f
∂ q̇∂ p

· q̇
ω

)
dt. (62c)

Once again notice that if the vector of nonlinear
forces f is independent from velocities, then deriva-
tives with respect to ω are null.

Numerical evaluation of partial derivatives

Notice that all partial derivatives of Rnl in the previous
sections all present the same form, that is

1

T

∫ T

0
(CψT ⊗ In) · A(q(t)) dt, (63)

where A(q(t)) is a multidimensional matrix depend-
ing on time through the displacement vector q(t).
According to Eq. (6), this latter integral implements
the truncated Fourier series withH harmonics ofmatrix
A(q(t)) (with Fourier coefficients collected in the fash-
ion of Eq. (6)).

Upon this consideration, we can apply the AFT
algorithm for the computation of these quantities. At
first, through the Ansatz definition in (3a), snapshots
of displacements q(t) at equidistant time instants in
the period T are evaluated and, with them, time snap-
shots of A(q(t)) are retrieved. Eventually the FFT is
applied to the time snapshots of A(q(t)) and the so
obtained Fourier coefficients are rearranged according
to the order defined in Eq. (6).

D Derivatives for the DpROM

With reference to EoM of the DpROM (Eq. (37)), the
vector of internal reduced forces writes

f = K̃2 (ξ)η + ( K̃3 (ξ) · η)η + (( K̃4 (ξ) · η) · η)η.

(64)

Recalling the definitions for stiffness tensors K̃ given
in Eq. (38) and volume integration formula in Eq. (39),
internal forces and mass tensor derivatives, required
to compute the sensitivities for the DpROM write in
Einstein notation:

∂ f I
∂ξL

=
(

K̃ ′′,L
2n I i + K̃ ′

3d I i L

)
ηi

+
(

K̃ ′′,L
3n I im + K̃ ′

4d I imL

)
ηiηm

+
(

K̃ ′′,L
4n I imn + K̃ ′

5d I imnL

)
ηiηmηn , (65a)

∂ f I
∂ηL

= K̃ ′
2n I L +

(
K̃ ′

3n I Li + K̃ ′
3n I i L

)
ηi

+
(

K̃ ′
4n I Li j + K̃ ′

4n I i j L + K̃ ′
4n I i L j

)
ηiη j ,

(65b)

∂2 f I
∂ξJ ∂ξL

=
(

K̃ ′′,J
3d I i L + K̃ ′′,L

3d I i J + K̃ ′
4dd I i J L

+ K̃ ′
4dd I i L J

)
ηi

+
(

K̃ ′′,J
4d I imL + K̃ ′′,L

4d I im J + K̃ ′
5dd I imL J

+ K̃ ′
5dd I im J L

)
ηiηm

+
(

K̃ ′′,J
5d I imnL + K̃ ′′,L

5d I imnJ

+ K̃ ′
6dd I imnL J + K̃ ′

6dd I imnJ L

)
ηiηmηn ,

(65c)

∂2 f I
∂ηL∂ηJ

= K̃ ′
3n I L J + K̃ ′

3n I J L +
(

K̃ ′
4n I L J i + K̃ ′

4n I Li J

+ K̃ ′
4n I J i L + K̃ ′

4n I i J L + K̃ ′
4n I J Li + K̃ ′

4n I i L J

)
ηi ,

(65d)
∂2 f I

∂ηJ ∂ξL
= K̃ ′′,L

2n I J + K̃ ′
3d I J L +

(
K̃ ′′,L

3n I J i + K̃ ′
4d I J i L

+ K̃ ′′,L
3n I i J + K̃ ′

4d I i J L

)
ηi

+
(

K̃ ′′,L
4n I J im + K̃ ′

5d I J imL + K̃ ′′,L
4n I i Jm

+ K̃ ′
5d I i JmL + K̃ ′′,L

4n I im J + K̃ ′
5d I im J L

)
ηiηm ,

(65e)

∂ M̃I L

∂ξJ
= M̃ ′′,J

I L , (65f)

where we highlighted dimensions over which summa-
tion is performed with indices in lowercase. All deriva-
tives are evaluated at the nominal parameter value
ξ = 0.
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