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Abstract In this paper, we study transverse and lon-
gitudinal oscillations and resonances in a hoisting sys-
tem induced by boundary disturbances. The dynamics
can be described by an initial-boundary value prob-
lem for a coupled system of nonlinear wave equations
on a slowly time-varying spatial domain. It will be
shown how the boundary excitations and the nonlinear
terms influence transverse and longitudinal vibrations
of the system. Firstly, due to the slow variation of the
cable length, a singular perturbation problem arises.
By using an interior layer analysis, many resonance
manifolds are detected. Secondly, it will be shown that
resonances in the system are caused not only by bound-
ary disturbances but also by nonlinear interactions.
Based on these observations, a three-timescales pertur-
bation method is used to approximate the solution of
the initial-boundary value problem analytically. It turns
out that for special frequencies in the boundary excita-
tions and for certain parameter values of the longitudi-
nal stiffness and the conveyancemass,many oscillation
modes jump up from small to large amplitudes in the
transverse and longitudinal directions. Finally, numer-
ical simulations are presented to verify the obtained
analytical results.
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1 Introduction

Within the last decades, hoisting systems are widely
used for transportation of objects to a large height or
depth. Such systems consist of a drum, a head sheave,
a driving motor, a flexible hoisting cable with time-
varying length, and a hoisting conveyance moving
along two guiding ropes. When the flexible hoisting
cable’s bending stiffness is not considered, the math-
ematical model for this system can be described as
an axially moving string with a time variable length
[1]. Compared with rigid structures, the flexible cable
has many advantages, such as low costs, high speeds,
and high load carrying capacities, which are applied
in various engineering fields, for instance, elevators
[2], marine risers [3,4], suspension bridges [5,6], med-
ical rescue systems [7], etc. In hoisting processes [8,9],
vibration-induced structural failure for hoisting cables
may occur due to external disturbances such as airflows
or earthquakes, or due to other internal or external exci-
tations. These failures are usually related to internal
or external resonances. Resonance refers to the phe-
nomenon that a small periodic excitation can produce
large vibrations when the frequency of the external or
internal excitation is close to one of the natural frequen-
cies of the system. In most cases resonance is harmful,
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it will not only lead to significant deformations and
dynamic stress, but also leads to accidents. Therefore,
it is important to develop advanced analyticalmodels to
figure out the nature of these large vibrations inmoving
media.

There is an abundance of papers on the analysis
of moving flexible string models. Some researchers
focus on traveling strings defined on a fixed domain,
and other researchers focus on traveling strings subject
to moving boundaries. For the analysis on the fixed
domain: Zhu et al. in [10] considered a constrained
translating cable with a spring-mass-dashpot located at
any position along the cable. They determined asymp-
totic approximations of the eigenvalues of the system.
Nguyen and Hong in [11] investigated an active control
scheme for an axially moving cable system by employ-
ing the Lyapunov method. The controller suppresses
the vibrations and regulates the transport velocity of
the cable to track a desired moving velocity profile.
Gaiko and van Horssen in [12] considered transverse
vibrations of a traveling string with a spring-mass-
dashpot boundary. They constructed approximations of
the solutions and eigenvalues on a long timescale. For
the analysis on the moving boundaries: Zhu in [13]
considered the transverse vibration stability of a class
of translating media with an arbitrarily varying length
from energy standpoint. Sandilo and van Horssen in
[14] studied the vertically translating string with a time
varying length and a space–time-varying tension by
an interior layer analysis. Gaiko and van Horssen in
[15] discussed resonances and vibrations in an elevator
cable system due to boundary sway by using a multi-
ple timescales perturbation method. Wang et al. in [16]
studied resonances of transversally vibrating cables for
a fixed domain, in which resonances are induced by an
external force and a time-dependent coefficient in a
Robin boundary condition. This problem may serve as
a simplified model describing longitudinal vibrations
(see also [17]) as well as resonances in axially moving
strings for which the length changes in time.

In recent years, researchers found that, due to exter-
nal excitation and loading conditions, the nonlinear
interactions between transverse and longitudinal string
motions may influence the vibration behaviour in two
directions when the hoisting conveyance is moving up
or down. Some research has been conducted on similar
types of problems by using numerical simulations. Cre-
spo et al. in [18] introduced a stationary high-rise ele-
vator cable system model and presented its numerical

simulations. Wang et al. in [19] investigated a coupled
dynamic model for a flexible guiding hoisting system
and presented the response of the system by numerical
simulations. In this paper, we will construct analytical
approximate solutions for the nonlinear coupled trans-
verse and longitudinal vibration string problem with
time-varying length.

The hoisting system considered in this paper is
described by a vertically translating string with a time-
varying length and a mass attached at one of the ends
of the string. The time-varying length of the string is
given by l(t) = l0 + vt , where l0 is the cable initial
length, and v is the longitudinal velocity of the hoist-
ing cable, and where l0, v are constants. It is assumed
that the axial velocity of the string is small compared
to nominal wave velocity, and that the string mass is
small compared to cage mass. The system is excited at
the upper end by small displacements in the horizon-
tal and vertical directions from its equilibrium position
caused by, for instance, wind forces (see Fig. 1). By
Hamilton’s principle, themodel can bewritten as a cou-
pled system of nonlinear wave equations (in transverse
and longitudinal directions) on a slowly time-varying
spatial domain. The string is excited at a boundary by
two harmonic functions in the horizontal and in the
vertical directions. The main objective of this paper is
to study how the boundary excitations and nonlinear
interactions between the two motion directions influ-
ence the vibration behaviour in the transverse and in the
longitudinal directions for the moving string. In con-
trast to previous research, where only the transverse or
the longitudinal vibration behaviour was studied, the
coupled model is more accurate. However, the appear-
ance of nonlinear and coupled terms increases the com-
plexity of the system analysis. For the problem with
nonlinearly coupled terms, and with moving boundary
conditions, the traditional (analytical) methods, such
as the method of separation of variables (SOV), and
the (equivalent) Laplace transform method, can usu-
ally not be applied. In order to deal with these difficul-
ties, perturbation methods and an internal layer anal-
ysis are used in this paper to approximate the vibra-
tions and the resonances, including determining the
resonance amplitudes and the size of the resonance
zones. Based on this analysis, solutions of the coupled
initial-boundary value problem for the transverse and
the longitudinal motions can be predicted analytically.
To the best of our knowledge, the results about ana-
lytical approximations of the solutions have not been
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Fig. 1 Coupled transverse-longitudinal vibrating cable with
time-varying cable length

proposed for the coupled transverse and longitudinal
vibrations of the moving cable system until now.

The remaining part of this paper is organized as fol-
lows. In Sect. 2, the problem is formulated. In Sect. 3,
the problem is reformulated from a partial differential
equations formulation to an ordinary differential equa-
tions formulation by using the method of separation
of variables. Many resonance manifolds for the trans-
verse and longitudinal motions are detected by an inner
layer analysis. In Sect. 4, approximate solutions are
constructed analytically for the transverse and longitu-
dinal motions by using a three-timescales perturbation
method. In Sect. 5, some numerical approximations are
presented by using a central finite difference scheme to
validate the theoretical results from Sect. 4. Finally, in
the last section we draw some conclusions.

2 Formulation of the physical system

2.1 Modelling of the problem

In this section, the mathematical model of the hoisting
system is described and the equations for the transverse
and the longitudinal motions of the system are derived
and explained. By using Hamilton’s principle [20], the
mathematical problem for the vibrating cable (Fig. 1)
can be written as an initial boundary value problem for
the transverse vibration (see also Appendix A):

Nomenclature

w(x, t) the transverse displacement
u(x, t) the longitudinal displacement
l(t) the length of the hoisting cable
v = l̇(t) the longitudinal velocity of the hoisting

cable
â = l̈(t) the longitudinal acceleration of the

hoisting cable
ρ the linear density of the hoisting cable
m the mass of the hoisting conveyance
E A the longitudinal stiffness,

E Young’s elasticity modulus, A the
cross-sectional area

T (x, t) the spatiotemporally varying tension in
hoisting cable

c1, c2 transverse and longitudinal viscous
damping coefficients

in hoisting cable
g the standard gravity
Egs initial gravitational potential energy
cu longitudinal viscous damping coefficient

in hoisting conveyance
ew(t), eu(t) the transverse and longitudinal

fundamental excitations
at the top of the hoisting cable
ew(t) = β1cos(ω1t + α),
eu(t) = β2cos(ω2t)

β1, β2 the amplitudes of the transverse and
longitudinal

fundamental excitations
α primary phase of the transverse

fundamental excitation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(wt t + 2vwxt + v2wxx + âwx ) − (Twx )x

+c1(wt + vwx ) − E A(zwx )x = 0,

β2 cos(ω2t) < x < l(t), t > 0,

w(l(t), t) = 0, w(β2 cos(ω2t), t)

= β1 cos(ω1t + α), t ≥ 0,

w(x, 0) = w0(x), wt (x, 0) = w1(x),

β2 < x < l0,

(1)

and as an initial boundary value problem for the longi-
tudinal vibration:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(utt + 2vuxt + v2uxx + âux + â) + c2(ut + vux )

−E Azx = 0,

β2 cos(ω2t) < x < l(t), t > 0,

[m(utt + 2vuxt + v2uxx + âux + â)

+cu(ut + vux ) + E Az]|x=l(t) = 0,

u(β2 cos(ω2t), t) = β2 cos(ω2t), t ≥ 0,

u(x, 0) = u0(x), ut (x, 0) = u1(x), β2 < x < l0,

(2)
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where z = ux + 1
2w

2
x and

T (x, t) = [m + ρ(l(t) − x)]g,
β2 cos(ω2t) ≤ x ≤ l(t). (3)

In this paper, we use the following assumptions for
the parameters and functions:

• The longitudinal velocity v is small compared to the

wave velocities
√

E A
ρ

and
√

mg
ρ
, that is, v = εv0;

• The nominal wave velocities
√

E A
ρ

and
√

mg
ρ

are of

the same order of magnitude, that is, E A
mg = O(1),

√
E A
mg > 1, and E A

mg is not near 1, i.e.
√

E A
mg − 1 >>

O(ε);
• The cable mass ρL is small compared to the car
mass m (L is the maximum length of the cable),
that is, μ = ρL

m = εμ0;
• The viscous damping parameters c1, c2, and cu are
small, that is, c1 = εc1,0, c2 = εc2,0, cu = εcu,0;

• The fundamental excitations at the top of the hoist-
ing rope are small, and the longitudinal excitation
is smaller than the transverse excitation, that is,
β1 = εβ1,0, β2 = ε2β2,0;

• The initial conditions w0(x) = O(ε), w1(x) =
O(ε), u0(x) = O(ε2) and u1(x) = O(ε2);

• For convenience,weonly consider a non-accelerating
cable, that is, the cable length l(t) = l0 + vt and
â = 0, where l0 is the initial string length.

In the above assumptions, v0, μ0, c1,0, c2,0, cu,0, β1,0,
β2,0, α m, ρ, ω1, ω2, L , and l0 are positive constants
and are of order 1, and ε is a small parameter with
0 < ε << 1.

To put Eq. (1) and (2) into non-dimensional forms,
the following dimensionless variables and parameters
are used:

w∗ = w

L
, u∗ = u

L
, x∗ = x

L
,

t∗ = t

L

√
mg

ρ
, v∗ = v

√
ρ

mg
,

β∗
1 = β1

L
, β∗

2 = β2

L
,

c∗
1 = c1

L√
mgρ

, c∗
u = cu

L

m

√
ρ

mg
,

ω∗
1 = Lω1

√
ρ

mg
, u∗

0 = u0
L

, u∗
1 =

√
ρ

mg
u1,

l∗ = l

L
, μ = ρL

m
, c∗

2 = c2
L√
mgρ

,

ω∗
2 = Lω2

√
ρ

mg
, w∗

0 = w0

L
, w∗

1 =
√

ρ

mg
w1.

The initial boundary value problem for the transverse
motion in non-dimensional form becomes:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt t + 2vwxt + v2wxx − wxx − μ(l(t) − x)wxx

+μwx + c1(wt + vwx )

− E A
mg (zwx )x = 0, β2 cos(ω2t)

< x < l(t), t > 0,

w(l(t), t) = 0, w(β2 cos(ω2t), t)

= β1 cos(ω1t + α), t ≥ 0,

w(x, 0) = w0(x), wt (x, 0) = w1(x),

β2 < x < l0,

(4)

and the initial boundary value problem for the longitu-
dinal motion in non-dimensional form becomes:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt + 2vuxt + v2uxx + c2(ut + vux ) − E A
mg uxx

− E A
mg ( 12w

2
x )x = 0,

β2 cos(ω2t) < x < l(t), t > 0,

[utt + 2vuxt + v2uxx + cu(ut + vux )

+μE A
mg z]|x=l(t) = 0,

u(β2 cos(ω2t), t) = β2 cos(ω2t), t ≥ 0,

u(x, 0) = u0(x), ut (x, 0) = u1(x),

β2 < x < l0,

(5)

where the asterisks (indicating the dimensionless vari-
ables and parameters) are omitted in the problems (4)
and (5) for convenience.

2.2 Transformations of the problem

In order to convert the time-varying spatial domain
[β2cos(ω2t), l(t)] for x to a fixed domain [0,1] for ξ , a
new independent spatial coordinate ξ = x−β2cos(ω2t)

h(t) ,
where h(t) = l(t) − β2cos(ω2t), is introduced. After
this spatial transformation, new dependent variables
w̄(ξ, t) = w(x, t), ū(ξ, t) = u(x, t), and all the partial
derivatives have to be rewritten as follows:

ξt = − vξ

h(t)
+ β2

ω2(1 − ξ)sin(ω2t)

h(t)
,

ξt t = v2ξ

h2(t)
+ β2

[
ω2
2(1 − ξ)cos(ω2t)

h(t)

−vω2(1 − 2ξ)sin(ω2t)

h2(t)

]

−β2
2
ω2
2(1 − ξ)sin2(ω2t)

h2(t)
,
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wt = w̄ξ ξt + w̄t , wt t = w̄ξξ (ξt )
2

+2w̄ξ tξt + w̄ξ ξt t + w̄t t ,

wx = 1

h(t)
w̄ξ , wxx = 1

h2(t)
w̄ξξ ,

ut = ūξ ξt + ūt , utt = ūξξ (ξt )
2

+2ūξ tξt + ūξ ξt t + ūt t ,

ux = 1

h(t)
ūξ , uxx = 1

h2(t)
ūξξ .

Then, the equation for the transverse motion becomes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w̄t t + 2v
h(t) w̄ξ t − 1

h2(t)
w̄ξξ − μ

h(t) (1 − ξ)w̄ξξ

+ μ
h(t) w̄ξ + c1w̄t − E A

mgh3(t)
(ūξ w̄ξ )ξ

− E A
mgh4(t)

( 12 w̄3
ξ )ξ − 2vξ

h(t) w̄ξ t = O(ε2w̄),

0 < ξ < 1, t > 0,

w̄(1, t) = 0, w̄(0, t) = β1 cos(ω1t + α), t ≥ 0,

w̄(ξ, 0) = w̄0(ξ), w̄t (ξ, 0) = w̄1(ξ), 0 < ξ < 1,

(6)

where w̄0(ξ) = w0(ξ l0 + β2(1 − ξ)) and w̄1(ξ) =
w1(ξ l0 + β2(1 − ξ)). It should be observed that the
order of the term − E A

mgh3(t)
(ūξ w̄ξ )ξ in (6) is unknown

a priori due to possibly occurring resonances. So, we
keep this term explicitly in the equation, and analyse
it later. The equation for the longitudinal motion then
becomes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ūt t + 2v
h(t) ūξ t + c2ūt − E A

mgh2(t)
ūξξ − E A

mgh3(t)
w̄ξ w̄ξξ

− 2vξ
h(t) ūξ t = O(ε2ū), 0 < ξ < 1, t > 0,

[ūt t + cuūt + μE A
mgh(t) ūξ + μE A

2mgh2(t)
w̄2

ξ ]|ξ=1

= O(ε2ū),

ū(0, t) = β2 cos(ω2t), t ≥ 0,

ū(ξ, 0) = ū0(ξ), ūt (ξ, 0) = ū1(ξ), 0 < ξ < 1,

(7)

where ū0(ξ) = u0(ξ l0 + β2(1 − ξ)) and ū1(ξ) =
u1(ξ l0 + β2(1 − ξ)). The orders of the term
− E A

mgh3(t)
w̄ξ w̄ξξ and the term μE A

2mgh2(t)
w̄2

ξ (1, t) in (7)
are unknown a priori due to possible resonances. So,
we keep these terms in the equation, and analyse them
later.

In order to eliminate the time-variable coefficients
in 1

h2(t)
w̄ξξ and in E A

mgh2(t)
ūξξ in the initial boundary

problems (6) and (7), the Liouville–Green transforma-
tion (see also theWKBJmethod [25] [26]) is introduced
with ds

dt = 1
l(t) . In accordance with a new time variable

s, all the partial derivatives have to be rewritten as fol-
lows:

s = 1

εv0
ln

(
l(t)

l0

)

, l(t) = l̂(s) = l0e
εv0s,

χ(s) = l0(eεv0s − 1)

εv0
,

w̄t = 1

l̂
w̃s, w̄ξ t = 1

l̂
w̃ξs, w̄t t = 1

l̂2
w̃ss − v

l̂2
w̃s,

ūt = 1

l̂
ũs, ūξ t = 1

l̂
ũξs, ūt t = 1

l̂2
ũss − v

l̂2
ũs .

Substituting these derivatives into the problem (6),
the initial boundary value problem for the transverse
motion becomes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w̃ss − w̃ξξ = vw̃s − 2vw̃ξs − c1l̂w̃s − μl̂w̃ξ

+μl̂(1 − ξ)w̃ξξ + E A
mgl̂

(ũξ w̃ξ )ξ

+ E A
mgl̂2

( 12 w̃3
ξ )ξ + 2vξw̃ξs + O(ε2w̃),

0 < ξ < 1, s > 0,

w̃(1, s) = 0, s ≥ 0,

w̃(0, s) = β1cos(ω1χ(s) + α), s ≥ 0,

w̃(ξ, 0) = w̄0(ξ), w̃s(ξ, 0) = l0w̄1(ξ),

0 < ξ < 1.

(8)

The initial boundary value problem for the longitudinal
motion becomes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũss − E A
mg ũξξ = vũs − 2vũξs − c2l̂ ũs + E A

mgl̂
w̃ξ w̃ξξ

+2vξ ũξs + O(ε2ũ),

0 < ξ < 1, s > 0,

ũss(1, s) = [−μE Al̂
mg ũξ + vũs − cul̂ũs

−μE A
2mg w̃2

ξ ] |ξ=1 +O(ε2ũ),

ũ(0, s) = β2cos(ω2χ(s)), s ≥ 0,

ũ(ξ, 0) = ū0(ξ), ūs(ξ, 0) = l0ū1(ξ), 0 < ξ < 1.

(9)

The initial boundary value problem (9) can further be
rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũss − E A
mg ũξξ = vũs − 2vũξs − c2l̂ ũs + E A

mgl̂
w̃ξ w̃ξξ

+2vξ ũξs + O(ε2ũ),

0 < ξ < 1, s > 0,

ũξξ (1, s) = [−μl̂ ũξ + mg
E A (c2 − cu)l̂ ũs − μ

2 w̃2
ξ

− 1
l̂
w̃ξ w̃ξξ ] |ξ=1 +O(ε2ũ),

ũ(0, s) = β2cos(ω2χ(s)), s ≥ 0,

ũ(ξ, 0) = ū0(ξ), ũs(ξ, 0) = l0ū1(ξ),

0 < ξ < 1.

(10)

In order to eliminate the non-homogenous terms in
the boundary conditions in (8) and in (10), the following
transformations are used:
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w̃(ξ, s) = β1(1 − ξ) cos(ω1χ(s) + α) + ŵ(ξ, s), (11)

ũ(ξ, s) = û(ξ, s) + ξ2

2

[
−μl̂ ûξ

+ mg

E A
(c2 − cu)l̂ ûs − μ

2
ŵ2

ξ

]
|ξ=1

+ ξ2

2

[

−1

l̂
ŵξ ŵξξ

]

|ξ=1

+ ξ2

4
μ[ŵ2

ξξ + ŵξ ŵξξξ ] |ξ=1

− ξ2

4

mg

E A
(c2 − cu)[ŵξsŵξξ + ŵξ ŵξξs ] |ξ=1

+ ξ2μβ1

2
cos(ω1χ(s) + α)ŵξ (1, s)

+ ξ2β1

2l̂
cos(ω1χ(s) + α)ŵξξ (1, s)

− ξ2

4

mg

E A
(c2 − cu)β1

[ω1l̂sin(ω1χ(s) + α)ŵξξ (1, s)

− cos(ω1χ(s) + α)ŵξξs(1, s)]

− ξ2μβ1

4
cos(ω1χ(s) + α)ŵξξξ (1, s)

+β2 cos(ω2χ(s)), (12)

Then, the initial boundary value problem in the trans-
verse direction becomes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŵss − ŵξξ = vŵs − 2vŵξs − c1l̂ŵs − μl̂ŵξ

+μl̂(1 − ξ)ŵξξ + E A
mgl̂

(ûξ ŵξ )ξ

+ E A
mgl̂2

( 12 ŵ
3
ξ )ξ + 2vξŵξs

+β1(1 − ξ)ω2
1 l̂

2 cos(ω2χ(s) + α)

− E A
mgl̂2

ŵξ (1, s)ŵξξ (1, s)

×[ŵξ + ξŵξξ ] + h.o.t.,

0 < ξ < 1, s > 0,

ŵ(1, s) = 0, ŵ(0, s) = 0, s ≥ 0,

ŵ(ξ, 0) = w̃(ξ, 0) − β1(1 − ξ) cos(α),

ŵs(ξ, 0) = w̃s(ξ, 0) + β1ω1l0(1 − ξ) sin(α),

0 < ξ < 1,

(13)

where according to the initial condition assumptions,
the terms in “h.o.t.”, consisting of O(εû), O(ε2ŵ),
O(εŵ2), O(εûŵ) and O(εŵ3), cannot influence the
lowest order of the solution of problem (13) on
timescales of O( 1

ε
).

The initial boundary value problem in the longitudinal
direction then becomes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ûss − E A
mg ûξξ = vûs − 2vûξs − c2l̂ ûs + 2vξ ûξs

+(c2 − cu)l̂ ûs(1, s)

− E A
mg μl̂ ûξ (1, s) + μl̂ξ2

2
E A
mg ûξξξ (1, s)

− ξ2

2 (c2 − cu)l̂ ûsξξ (1, s) + O(ε2û)

− ξ2

2l̂
[ŵξξξ (1, s)ŵξξ (1, s)

+ŵξ ŵξξξξ (1, s)]
− ξ2

l̂
ŵξs(1, s)ŵξξs(1, s) + E A

mgl̂
ŵξ ŵξξ

− E A
mgl̂

ŵξ (1, s)ŵξξ (1, s) + O(εŵ2)

− E A
mgl̂

β1 cos(ω1χ(s) + α)ŵξξ

+ E A
mgl̂

β1 cos(ω1χ(s) + α)ŵξξ (1, s)

+ ξ2

2l̂
E A
mg β1 cos(ω1χ(s) + α)ŵξξξξ (1, s)

−ξ2β1ω1 sin(ω1χ(s) + α)ŵξξs(1, s)

+O(ε2ŵ) + β2ω
2
2 l̂

2 cos(ω2χ(s))

+O(ε3), 0 < ξ < 1, s > 0,

ûξξ (1, s) = O(ε2û), û(0, s) = 0, s ≥ 0,

û(ξ, 0) = ũ(ξ, 0) − ξ2

2 [−μl̂ ũξ (1, 0)

+ mg
E A (c2 − cu)l̂ ũs(1, 0)

−μ
2 w̃2

ξ (1, 0) − 1
l̂
w̃ξ (1, 0)w̃ξξ (1, 0)]

+O(ε3),

ûs(ξ, 0) = ũs(ξ, 0) − ξ2

2 [−μl̂ ũξs(1, 0)

+ mg
E A (c2 − cu)l̂ ũξξ (1, 0)

−μw̃ξ (1, 0)w̃ξs(1, 0) − 1
l̂
w̃ξs(1, 0)w̃ξξ (1, 0)

− 1
l̂
w̃ξ (1, 0)w̃ξξs(1, 0)] + O(ε3), 0 < ξ < 1,

(14)

where according to the initial condition assumptions,
the terms in O(εŵ2), O(ε2û), O(ε2ŵ), and O(ε3) can-
not influence the lowest order of the solution û(ξ, s) in
problem (14) on timescales of O( 1

ε
), so they can be

neglected in the further analysis. In the following sec-
tions, the solutions of ŵ(ξ, s), û(ξ, s) in problem (13)
and (14)will be approximated by using an interior layer
analysis and a three-timescales perturbation method.

3 Inner layer analysis

It will be shown that an interior layer analysis (includ-
ing a rescaling and balancing procedure) leads to a
description of an (un-)expected resonance manifold
and leads to timescales which describe the solutions
of the partial differential equations (13) and (14) suffi-
ciently accurately. To derive the solutions ŵ(ξ, s) and
û(ξ, s) in problem (13) and (14), firstly the method of
separation of variables is employed. In accordancewith
the method of separation of variables, the general solu-
tion of the transverse problem (13) can be expanded in
the following form:
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ŵ(ξ, s) =
∞∑

n=1

Tn(s) sin(nπξ), (15)

and the general solution of the longitudinal problem
(14) can be expanded in the following form:

û(ξ, s) =
∞∑

n=1

Yn(s) sin(nπξ). (16)

Substituting (15) into the initial boundary value prob-
lem (13), and substituting (16) into problem (14),
further by multiplying the obtained equations with
sin(kπξ), and by integrating with respect to ξ from
ξ = 0 to ξ = 1, and by using the orthogonality prop-
erties of the sin-functions on 0 < ξ < 1, we obtain
the following ordinary differential equations for Tk(s)
(with k = 1, 2, 3, ...) in the transverse direction:

Tk,ss + k2π2Tk = χ̂ (s), (17)

where

χ̂ (s) = εv0Tk,s − εc1,0l̂Tk,s −
∞∑

n=1

εc1n,kμ0 l̂(nπ)2Tn

+
∞∑

n=1

c2n,k(−2v0nπTn,s − μ0 l̂nπTn)

+ε

∞∑

n=1

c3n,k2v0nπTn,s

+ E Aπ3

2mgl̂

⎡

⎣
∞∑

p=k+1

kp(k − p)YpTp−k

−
k−1∑

p=1

kp(k − p)YpTk−p

⎤

⎦

− E Aπ3

2mgl̂

∞∑

p=1

kp(k + p)YpTk+p

+ 3E A

8mgl̂2

n+p=∞∑

n+p=k+1

npπ3(k − n − p)TnTpTn+p−k

+ 3E A

8mgl̂2

⎡

⎣
n−p=k−1∑

n−p=−∞
npπ3(k − n + p)TnTpTk−n+p

+
∞∑

n,p=1

npπ3(k + n + p)TnTpTk+n+p

⎤

⎦

+ 3E A

8mgl̂2

⎡

⎣
p−n=k−1∑

p−n=−∞
npπ3(k + n − p)TnTpTk+n−p

−
p−n=∞∑

p−n=k+1

npπ3(p − k − n)TnTpTp−k−n

⎤

⎦

+ 3E A

8mgl̂2
[
n+p=k−1∑

n+p=2

npπ3(k − n − p)TnTpTk−n−p

+
n−p=∞∑

n−p=k+1

npπ3(k − n + p)TnTpTn−p−k ]

+εβ2,0dkω
2
2 l̂

2 cos(ω2χ(s) + α) + h.o.t.,

Tk(0) =
∫ 1
0 ŵ0(ξ) sin(kπξ)dξ

∫ 1
0 sin(kπξ) sin(kπξ)dξ

= Fk ,

Tk,s(0) =
∫ 1
0 ŵ1(ξ) sin(kπξ)dξ

∫ 1
0 sin(kπξ) sin(kπξ)dξ

= Gk , (18)

where Fk = O(ε) and Gk = O(ε). c1n,k , c
2
n,k , c

3
n,k and

dk are given by:

c1n,k =
∫ 1
0 (1 − ξ) sin(nπξ) sin(kπξ)dξ

∫ 1
0 sin2(kπξ)dξ

,

c2n,k =
∫ 1
0 cos(nπξ) sin(kπξ)dξ
∫ 1
0 sin2(kπξ)dξ

,

c3n,k =
∫ 1
0 ξ cos(nπξ) sin(kπξ)dξ

∫ 1
0 sin2(kπξ)dξ

,

dk =
∫ 1
0 (1 − ξ) sin(kπξ)dξ
∫ 1
0 sin2(kπξ)dξ

. (19)

Further, the differential Eq. (17) can be written as:

Tk,ss + k2π2Tk

= ε

[

v0Tk,s − c1,0l̂Tk,s −
∞∑

n=1

c1n,kμ0l̂(nπ)2Tn

+
∞∑

n=1

c2n,k(−2v0nπTn,s − μ0l̂nπTn)

+
∞∑

n=1

c3n,k2v0nπTn,s

+ E Aπ3

2εmgl̂

∞∑

p=k+1

kp(k − p)YpTp−k

− E Aπ3

2εmgl̂

k−1∑

p=1

kp(k − p)YpTk−p

− E Aπ3

2εmgl̂

∞∑

p=1

kp(k + p)YpTk+p

+β1,0dkω
2
1 l̂

2 cos(ω1χ(s) + α)

]

+ h.o.t., (20)

where Tk(0) and Tk,s(0) are given by (18), c1n,k , c
2
n,k ,

c3n,k and dk are given by (19). Note that the term
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“h.o.t.”(including TnTpTj in (17)) cannot influence the
lowest order of the solution of the differential Eq. (20)
on timescales of O( 1

ε
). This can be seen as follows.

When the addition or subtraction of the three subscripts
in TnTpTj equals to k or −k, then for the given ini-
tial conditions of O(ε), TnTpTj leads to O(ε2) con-
tributions in the solution of the differential Eq. (20)
on timescales of O( 1

ε
); otherwise, TnTpTj will lead to

contributions of O(ε3) in the solution of the differential
Eq. (20) on timescales of O( 1

ε
).

Similarly, we obtain the following differential equa-
tions for Yk ( with k = 1, 2, 3, ...) in the longitudinal
direction:

Yk,ss + E A

mg
k2π2Yk

= ε(v0 − c2,0l̂)Yk,s +
∞∑

n=1

2εv0nπd1n,kYn,s

−
∞∑

n=1

E A

mg
μl̂nπd3n,kYn

+
k−1∑

j=1

d4k− j, j Tk− j Tj +
∞∑

j=k+1

d4j−k, j Tj−kTj

−
∞∑

j=1

d4j+k, j Tj+kTj

+β1d̃
4
k,kTk cos(ω1χ(s) + α)

+β2ω
2
2 l̂

2d1,k cos(ω2χ(s)) + h.o.t.,

Yk(0) =
∫ 1
0 û0(ξ) sin(kπξ)dξ

∫ 1
0 sin(kπξ)sin(kπξ)dξ

= fk,

Yk,s(0) =
∫ 1
0 û1(ξ) sin(kπξ)dξ

∫ 1
0 sin(kπξ)sin(kπξ)dξ

= gk, (21)

where fk = O(ε2) and gk = O(ε2). d1n,k , d
3
n,k , d

4
n, j ,

d1,k , d̃4k,k are given by:

d1n,k =
∫ 1
0 (ξ − 1) cos(nπξ) sin(kπξ)dξ

∫ 1
0 sin2(kπξ)dξ

,

d3n,k =
∫ 1
0 (1 + (nπξ)2

2 ) cos(nπ) sin(kπξ)dξ
∫ 1
0 sin2(kπξ)dξ

,

d4n, j = E Anj2π3

2mgl̂
, d1,k =

∫ 1
0 sin(kπξ)dξ
∫ 1
0 sin2(kπξ)dξ

,

d̃4k,k = E A

mgl̂
k2π2. (22)

Before approximately solving the ordinary differen-
tial Eqs. (20) and (21), according to an inner layer anal-
ysis process (see also [16]), we can make the follow-
ing remarks beforehand. For the given initial conditions
for Yk (which are of O(ε2)), the terms in the right-hand
side of Eq. (21) can lead to different contributions in the
solution Yk on timescales of O( 1

ε
). The first three terms

in the right-hand side of Eq. (21) only lead to contribu-
tions of O(ε2). The coupled, nonlinear terms includ-
ing TpTj can lead to contributions up to O( 1

ε
TpTj ),

and the term with frequency ω1 lead to contributions
up to O(

√
εTk). The term with frequency ω2 can lead

to contributions up to O(ε
√

ε). Since Tk may increase
from the initial state order of O(ε) to lower orders, the
orders of the terms including TpTj determine that of the
solution Yk . Therefore, the solution of Eq. (21) can be
approximated as Yk = O( 1

ε
TpTj ). Similarly, we obtain

that for the given initial conditions for Tk ( which are
of O(ε)), terms in the right-hand side of Eq. (20) can
also have different contributions to the solution Tk on
timescales of O( 1

ε
). The first five terms in the right-

hand side of Eq. (20) only can lead to contributions of
O(ε). Based on the fact that Yk = O( 1

ε
TpTj ), terms

including YpTj can lead to contributions up to O(ε),
and the last term with frequency ω1 can lead to contri-
butions up to O(

√
ε). This implies that in Eq. (20) only

the external forcing with frequency ω1 produces reso-
nance, and leads to a jump in the solution Tk from O(ε)

toO(
√

ε). Further, it follows fromEq. (21) that the cou-
pled terms including TpTj produce maximum ampli-
tude responses, and the amplitude responses depend on
the solution Tk of Eq. 20).

After the above made observations, to obtain the
(un-)expected resonance manifolds which describe the
solutions of ordinary differential Eqs. (20) and (21) suf-
ficiently accurately, the following standard transforma-
tions are introduced:

Tk(s) = A1,k(s) sin(kπs) + B1,k(s) cos(kπs),

Tk,s(s) = kπ A1,k(s) cos(kπs) − kπB1,k(s) sin(kπs),

Yk(s) = C1,k(s) sin(λks) + D1,k(s) cos(λks),

Yk,s(s) = λkC1,k(s) cos(λks) − λk D1,k(s) sin(λks),

where λk =
√

E A
mg kπ . The transverse problem (20) can

now be rewritten in the following form (where the dot
· represents differentiation with respect to s):

Ȧ1,k = ε(v0 − c1,0l̂)A1,k cos
2(kπs)

−ε(v0 − c1,0l̂)B1,k sin(kπs) cos(kπs)
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+ε

∞∑

n=1

[(

−c1n,kμ0 l̂
n2π

k

)

A1,n

+
(

2c2n,kv0
n2π

k

)

B1,n

−
(
c2n,kμ0 l̂

n

k

)
A1,n

−
(

2c3n,kv0
n2π

k

)

B1,n

]

sin(nπs) cos(kπs)

+ε

∞∑

n=1

[(

−c1n,kμ0 l̂
n2π

k

)

B1,n

+
(

2c2n,kv0
n2π

k

)

A1,n

−
(
c2n,kμ0 l̂

n

k

)
B1,n

+
(

2c3n,kv0
n2π

k

)

A1,n

]

cos(nπs) cos(kπs)

+ E Aπ2

2mgl̂

∞∑

p=k+1

p(k − p)

[C1,p A1,p−k sin(λps) sin((p − k)πs)

+C1,p B1,p−k sin(λps) cos((p − k)πs)

+D1,p A1,p−k cos(λps) sin((p − k)πs)

+D1,p B1,p−k cos(λps) cos((p − k)πs)] cos(kπs)

− E Aπ2

2mgl̂

k−1∑

p=1

p(k − p)

[C1,p A1,k−p sin(λps) sin((k − p)πs)

+C1,p B1,k−p sin(λps) cos((k − p)πs)

+D1,p A1,k−p cos(λps) sin((k − p)πs)

+D1,p B1,k−p cos(λps) cos((k − p)πs)] cos(kπs)

− E Aπ2

2mgl̂

∞∑

p=1

p(k + p)

[C1,p A1,p+k sin(λps) sin((p + k)πs)

+C1,p B1,p+k sin(λps) cos((p + k)πs)

+D1,p A1,p+k cos(λps) sin((p + k)πs)

+D1,p B1,p+k cos(λps) cos((p + k)πs)] cos(kπs)

+β1
dkω2

1 l̂
2

2
[cos(kπs + ω1χ(s) + α)

+ cos(kπs − ω1χ(s) − α)]
+h.o.t, (23)

Ḃ1,k = −ε(v0 − c1,0l̂)A1,k cos(kπs) sin(kπs)

+ε(v0 − c1,0l̂)B1,k sin
2(kπs)

−ε

∞∑

n=1

[(

−c1n,kμ0 l̂
n2π

k

)

A1,n

+
(

2c2n,kv0
n2π

k

)

B1,n

−
(
c2n,kμ0 l̂

n

k

)
A1,n

−
(

2c3n,kv0
n2π

k

)

B1,n

]

sin(nπs) sin(kπs)

−ε

∞∑

n=1

[(

−c1n,kμ0 l̂
n2π

k

)

B1,n

+
(

2c2n,kv0
n2π

k

)

A1,n

−
(
c2n,kμ0 l̂

n

k

)
B1,n

+
(

2c3n,kv0
n2π

k

)

B1,n

]

cos(nπs) sin(kπs)

− E Aπ2

2mgl̂

∞∑

p=k+1

p(k − p)

[C1,p A1,p−k sin(λps) sin((p − k)πs)

+C1,p B1,p−k sin(λps) cos((p − k)πs)

+D1,p A1,p−k cos(λps) sin((p − k)πs)

+D1,p B1,p−k cos(λps) cos((p − k)πs)] sin(kπs)

+ E Aπ2

2mgl̂

k−1∑

p=1

p(k − p)

[C1,p A1,k−p sin(λps) sin((k − p)πs)

+C1,p B1,k−p sin(λps) cos((k − p)πs)

+D1,p A1,k−p cos(λps) sin((k − p)πs)

+D1,p B1,k−p cos(λps) cos((k − p)πs)] sin(kπs)

+ E Aπ2

2mgl̂

∞∑

p=1

p(k + p)

[C1,p A1,p+k sin(λps) cos((p + k)πs)

+C1,p B1,p+k sin(λps) cos((p + k)πs)

+D1,p A1,p+k cos(λps) sin((p + k)πs)

+D1,p B1,p+k cos(λps) cos((p + k)πs)] sin(kπs)

−β1
dkω2

1 l̂
2

2
[sin(kπs + ω1χ(s) + α)

+ sin(kπs − ω1χ(s) − α)]
+h.o.t. (24)

Large transverse amplitude responses in (23) and (24),
due to the external forcing with frequency ω1, can be
expected when kπ −ω1χ̇ (s) ≈ 0, or kπ +ω1χ̇ (s) ≈ 0.
But since kπ > 0 andω1χ̇ (s) > 0, resonance only will
occur when

ω1l0e
εv0s ≈ kπ. (25)

So, transverse resonances are expected for times s
around s(k) with

s(k) = 1

εv0
ln

(
kπ

ω1l0

)

, kπ ≥ ω1l0, k = 1, 2, ...(26)

To study the situation in the transverse resonance
zone, we introduce time-like variables
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τ = εs, φk(s) = kπs,

ϕ(s) = ω1χ(s) + α,

ψk(s) = φk(s) − ϕ(s),

and rescale τ − τ (k) = δ(ε)τ̂ with τ̂ = O(1) and
τ (k) = εs(k) = 1

v0
ln( kπ

ω1l0
). Then

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

τ̇ = ε, ˙̂τ = ε
δ(ε)

,

φ̇k = kπ,

ϕ̇ = ω1l0ev0(τ
(k)+δ(ε)τ̂ ),

ψ̇k = kπ − ω1l0ev0(τ
(k)+δ(ε)τ̂ )

= δ(ε)ω1l0v0ev0τ
(k)

τ̂ ,

(27)

and Ȧ1,k(s), Ḃ1,k(s) are given by (23). It now follows
that a balance in system (27) occurs when ε

δ(ε)
= δ(ε),

and this implies that in the transverse resonance zone
that δ(ε) = √

ε, i.e. the size of transverse resonance
zone is O( 1√

ε
) for times s. So, together with τ −τ (k) =

δ(ε)τ̂ , it follows from (27) that

τ̂ = √
ε(s − s(k)). (28)

Further, from (27), we obtain ψk(s) = ψk(s(k)) +
1
2ω1l0v0ev0τ

(k)
ε(s−s(k))2. Hence, in the transverse res-

onance zone, we can write

sin(ψk(s)) = sin

(
1

2
ω1l0v0e

v0τ
(k)

ε(s − s(k))2

+ψk(s
(k))
)

,

cos(ψk(s)) = cos

(
1

2
ω1l0v0e

v0τ
(k)

ε(s − s(k))2

+ψk(s
(k))
)

, (29)

where ψk(s(k)) = kπs(k) − kπ−ω1l0
εv0

− α.
So far it can be concluded that the resonance

responses for Yk in (21) depend on the terms includ-
ing TpTj , and the resonance responses for Tk in (20)
depend on the terms with frequency ω1. So, based on
the inner layer analysis, the size of the resonance zones
has been obtained, and this size will also be used as
a new asymptotic scale to be introduced in the three-
timescale perturbationmethod in the next sectionof this
paper to study problems (20) and (21) in detail, and to
construct asymptotic approximations of the solutions
of the initial-boundary value problems (13) and (14).

4 Three-timescales perturbation method

In the previous section, it was shown that (under certain
condition on the external frequency ω1) resonances in

the transverse direction can occur around time s =
1

εv0
ln( kπ

ω1l0
), and that resonances in the longitudinal

direction dependon the solutions Tk ofEq. (20). For this
reason, we rescale s by defining s = s̃ + 1

εv0
ln( kπ

ω1l0
).

Thus, problem (20) can be rewritten in s̃ as follows:

Tk,s̃ s̃ + k2π2Tk

= ε

[

v0Tk,s̃ − c1,0l̂Tk,s̃ −
∞∑

n=1

c1n,kμ0l̂(nπ)2Tn

+
∞∑

n=1

c2n,k(−2v0nπTn,s̃ − μ0l̂nπTn)

+
∞∑

n=1

c3n,k2v0nπTn,s̃

+ E Aπ3

2εmgl̂

∞∑

p=k+1

kp(k − p)YpTp−k

− E Aπ3

2εmgl̂

k−1∑

p=1

kp(k − p)YpTk−p

− E Aπ3

2εmgl̂

∞∑

p=1

kp(k + p)YpTk+p

+β1,0dkω
2
1 l̂

2 cos (ω1χ (s̃

+ 1

εv0
ln

(
kπ

ω1l0

))

+ α

)]

+ h.o.t.,

Tk

(

− 1

εv0
ln

(
kπ

ω1l0

))

= Fk,

Tk,s̃

(

− 1

εv0
ln

(
kπ

ω1l0

))

= Gk, (30)

and problem (21) can be rewritten in s̃ as follows:

Yk,s̃ s̃ + λ2kYk

= ε(v0 − c2,0l̂)Yk,s̃ +
∞∑

n=1

2εv0nπd1n,kYn,s̃

−
∞∑

n=1

E A

mg
μl̂nπd3n,kYn

+
k−1∑

j=1

d4k− j, j Tk− j Tj +
∞∑

j=k+1

d4j−k, j Tj−kTj

−
∞∑

j=1

d4j+k, j Tj+kTj

+β1d̃
4
k,kTk cos

(

ω1χ

(

s̃ + 1

εv0
ln

(
kπ

ω1l0

))

+ α

)

+β2ω
2
2 l̂

2d1,k cos

(

ω2χ

(

s̃ + 1

εv0
ln

(
kπ

ω1l0

))

+ α

)
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+h.o.t.,

Yk

(

− 1

εv0
ln

(
kπ

ω1l0

))

= fk ,

Yk,s̃

(

− 1

εv0
ln

(
kπ

ω1l0

))

= gk . (31)

Next, we study problems (30) and (31) in detail under
the assumption that ω1 is such that a resonance zone
exits for the kth oscillation mode. The application of
the straightforward expansionmethod to solve (30) and
(31) will result in the occurrence of so-called secular
terms which cause the approximations of the solutions
to become unbounded on long timescales. For this rea-
son, to remove secular terms, and to obtain approxi-
mations which are valid on long timescales, we intro-
duce three timescales s0 = s̃, s1 = √

εs̃, s2 = εs̃. The
timescale s1 = √

εs̃ is introduced because of the size of
the resonance zone which has been found in the previ-
ous section, and the other two timescales are the natural
scalings for nonlinear equations such as (30) and (31).
By using the three-timescales perturbation method, the
functions Tk(s̃;√

ε) and Yk(s̃;√
ε) are supposed to be

functions of s0, s1 and s2,

Tk(s̃;√
ε) = T̃k(s0, s1, s2),

Yk(s̃;√
ε) = Ỹk(s0, s1, s2).

By substituting T̃k(s0, s1, s2) and Ỹk(s0, s1, s2) into the
differential Eq. (20), we obtain the following equations
up to O(ε

√
ε):

∂2T̃k
∂s20

+ k2π2T̃k + 2
√

ε
∂2T̃k

∂s0∂s1

+ε

(

2
∂2T̃k

∂s0∂s2
+ ∂2T̃k

∂s21

)

+ 2ε
√

ε
∂2T̃k

∂s1∂s2

= ε

[

(v0 − c1,0l̂)
∂ T̃k
∂s0

−
∞∑

n=1

c1n,kμ0l̂(nπ)2T̃n

+
∞∑

n=1

c2n,k

(

−2v0nπ
∂ T̃n
∂s0

− μ0l̂nπ T̃n

)

+
∞∑

n=1

c3n,k2v0nπ
∂ T̃n
∂s0

]

+ε
√

ε

[

(v0 − c1,0l̂)
∂ T̃k
∂s1

+
∞∑

n=1

c2n,k(−2v0nπ
∂ T̃n
∂s1

+
∞∑

n=1

c3n,k2v0nπ
∂ T̃n
∂s1

]

+ E Aπ3

2mgl̂

∞∑

p=k+1

kp(k − p)YpTp−k

− E Aπ3

2mgl̂

k−1∑

p=1

kp(k − p)YpTk−p

− E Aπ3

2mgl̂

∞∑

p=1

kp(k + p)YpTk+p

+β1dkω
2
1 l̂

2 cos(ω1χ(s0 − a) + α),

T̃k(a, b, c;√
ε) = Fk = ε F̃k,

∂ T̃k
∂s0

(a, b, c;√
ε) + √

ε
∂ T̃k
∂s1

(a, b, c;√
ε)

+ε
∂ T̃k
∂s2

(a, b, c;√
ε)

= Gk = εG̃k, (32)

where F̃k = O(1) and G̃k = O(1). Similarly, by sub-
stituting T̃k(s0, s1, s2), Ỹk(s0, s1, s2) into the differen-
tial Eq. (21), we obtain the following equations up to
O(ε

√
ε):

∂2Ỹk
∂s20

+ λ2k Ỹk + 2
√

ε
∂2Ỹk

∂s0∂s1

+ε

(

2
∂2Ỹk

∂s0∂s2
+ ∂2Ỹk

∂s21

)

+ 2ε
√

ε
∂2Ỹk

∂s1∂s2

= ε

[

(v0 − c2,0l̂)
∂Ỹk
∂s0

+
∞∑

n=1

2v0nπd1n,k
∂Ỹk
∂s0

−
∞∑

n=1

E A

mg
μ0l̂nπd3n,k Ỹn

+β1,0d̃
4
k,k T̃k cos(ω1χ(s0 − a) + α)

]

ε
√

ε

[

(v0 − c2,0l̂)
∂Ỹk
∂s1

+
∞∑

n=1

2v0nπd1n,k
∂Ỹk
∂s1

]

+
k−1∑

j=1

d4k− j, j T̃k− j T̃ j +
∞∑

j=k+1

d4j−k, j T̃ j−k T̃ j

−
∞∑

j=1

d4j+k, j T̃ j+k T̃ j

Ỹk(a, b, c;√
ε) = fk = ε2 f̃k,

∂Ỹk
∂s0

(a, b, c;√
ε) + √

ε
∂Ỹk
∂s1

(a, b, c;√
ε)

+ε
∂Ỹk
∂s2

(a, b, c;√
ε)
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= gk = ε2 g̃k, (33)

where λk =
√

E A
mg kπ , f̃k = O(1), g̃k = O(1), and

a = − 1

εv0
ln

(
kπ

ω1l0

)

,

b = −
√

ε

εv0
ln

(
kπ

ω1l0

)

,

c = − 1

v0
ln

(
kπ

ω1l0

)

. (34)

Since the functions T̃k and Ỹk can increase in s
from the initial state orders to O(

√
ε) as has been

shown in the previous section, a three-timescales per-
turbation method will be used, and T̃k(s0, s1, s2) and
Ỹk(s0, s1, s2) will be approximated by the following
formal asymptotic expansions:

T̃k(s0, s1, s2) = √
εT̃k,0(s0, s1, s2) + εT̃k,1(s0, s1, s2)

+ε
√

εT̃k,2(s0, s1, s2) + O(ε2), (35)

Ỹk(s0, s1, s2) = √
εỸk,0(s0, s1, s2) + εỸk,1(s0, s1, s2)

+ε
√

εỸk,2(s0, s1, s2) + O(ε2), (36)

where T̃k,0, T̃k,1, T̃k,2, Ỹk,0, Ỹk,1, Ỹk,2 are all functions
of O(1). In the transverse direction, by substituting
(35) and (36) into problem (32), and after equating
the coefficients of like powers in

√
ε, we obtain: the

O(
√

ε)-problem:

∂2T̃k,0
∂s20

+ k2π2T̃k,0 = 0,

T̃k,0(a, b, c) = 0,
∂ T̃k,0
∂s0

(a, b, c) = 0, (37)

the O(ε)-problem:

∂2T̃k,1
∂s20

+ k2π2T̃k,1 + 2
∂2T̃k,0
∂s0∂s1

= E Aπ3

2mgl̂

∞∑

p=k+1

kp(k − p)Ỹp,0T̃p−k,0

− E Aπ3

2mgl̂

k−1∑

p=1

kp(k − p)Ỹp,0T̃k−p,0

− E Aπ3

2mgl̂

∞∑

p=1

kp(k + p)Ỹp,0T̃k+p,0

+β1,0dkω
2
1 l̂

2 cos(ω1χ(s0 − a) + α),

T̃k,1(a, b, c) = F̃k,
∂ T̃k,1
∂s0

(a, b, c)

+∂ T̃k,0
∂s1

(a, b, c) = G̃k, (38)

and the O(ε
√

ε)-problem:

∂2T̃k,2
∂s20

+ k2π2T̃k,2 + 2
∂2T̃k,1
∂s0∂s1

+ 2
∂2T̃k,0
∂s0∂s2

+ ∂2T̃k,0
∂s21

= (v0 − c1,0l̂)
∂ T̃k,0
∂s0

−
∞∑

n=1

c1n,kμ0l̂(nπ)2T̃n,0

+
∞∑

n=1

c2n,k

(

−2v0nπ
∂ T̃n,0

∂s0
− μ0l̂nπ T̃n,0

)

+
∞∑

n=1

c3n,k2v0nπ
∂ T̃n,0

∂s0
,

T̃k,2(a, b, c) = 0,

∂ T̃k,2
∂s0

(a, b, c) + ∂ T̃k,1
∂s1

(a, b, c)

+∂ T̃k,0
∂s2

(a, b, c) = 0. (39)

The solution of the O(
√

ε)-problem (37) can be
written as:

T̃k,0(s0, s1, s2) = Ak(s1, s2) cos(kπs0)

+Bk(s1, s2) sin(kπs0), (40)

where Ak(b, c) = 0, Bk(b, c) = 0, and where
Ak(s1, s2), Bk(s1, s2) can be obtained explicitly by
solving the O(ε)-problem (38) and the O(ε

√
ε)-

problem (39). We will study these problems later in
this section.

In the longitudinal direction, by substituting (35) and
(36) into problem (33), and after equating the coef-
ficients of like powers in ε, we obtain: the O(

√
ε)-

problem:

∂2Ỹk,0
∂s20

+ λ2k Ỹk,0 = 0,

Ỹk,0(a, b, c) = 0,
∂Ỹk,0
∂s0

(a, b, c) = 0, (41)

the O(ε)-problem:

∂2Ỹk,1
∂s20

+ λ2k Ỹk,1 + 2
∂2Ỹk,0
∂s0∂s1

=
⎡

⎣
k−1∑

j=1

d4k− j, j Tk− j,0Tj,0

+
∞∑

j=k+1

d4j−k, j Tj−k,0Tj,0
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−
∞∑

j=1

d4j+k, j Tj+k,0Tj,0

⎤

⎦ ,

Ỹk,1(a, b, c) = 0,
∂Ỹk,1
∂s0

(a, b, c)

+∂Ỹk,0
∂s1

(a, b, c) = 0, (42)

and the O(ε
√

ε)-problem:

∂2Ỹk,2
∂s20

+ λ2k Ỹk,2 + 2
∂2Ỹk,1
∂s0∂s1

+ 2
∂2Ỹk,0
∂s0∂s2

+ ∂2Ỹk,0
∂s21

= (v0 − c2,0l̂)
∂Ỹk,0
∂s0

+
∞∑

n=1

2v0nπd1n,k
∂Ỹn,0

∂s0

−
∞∑

n=1

E A

mg
μ0l̂nπd3n,k Ỹn,0

+β1,0d̃
4
k,k T̃k,0 cos(ω1χ(s0 − a) + α),

Ỹk,2(a, b, c) = 0,
∂Ỹk,2
∂s0

(a, b, c)

+∂Ỹk,1
∂s1

(a, b, c) + ∂Ỹk,0
∂s2

(a, b, c) = 0, (43)

where λk =
√

E A
mg kπ .

The solution of the O(
√

ε)-problem (41) can be
written as:

Ỹk,0(s0, s1, s2) = Ck(s1, s2) cos(λks0)

+Dk(s1, s2) sin(λks0), (44)

where Ck(s1, s2), and Dk(s1, s2) are still unknown
functions in the slowvariables s1 and s2, and these func-
tions can be determined by avoiding secular terms in
the O(ε)− problem (42) and in the O(ε

√
ε)− problem

(43). By using the initial conditions in (41), it follows
that Ck(b, c) = Dk(b, c) = 0. Now, we shall solve the
O(ε)− problem (42). By using (40) for T̃k,0, and by
using d1k,k = − 1

2kπ , which is given in (22), problem
(42) can be written as:

∂2Ỹk,1
∂s20

+ λ2k Ỹk,1

= 2λk
∂Ck

∂s1
sin(λks0) − 2λk

∂Dk

∂s1
cos(λks0)

+1

2

k−1∑

j=1

d4k− j, j [(Ak− j A j − Bk− j B j ) cos(kπs0)

+(Ak− j B j + Bk− j A j ) sin(kπs0)

+(Ak− j A j + Bk− j B j ) cos((k − 2 j)πs0)

+(Ak− j B j − Bk− j A j ) sin((k − 2 j)πs0)]

+1

2

∞∑

j=k+1

d4j−k, j [(A j−k A j + Bj−k B j )

× cos(kπs0) + (A j−k B j − Bj−k A j ) sin(kπs0)

+(A j−k A j − Bj−k B j ) cos((2 j − k)πs0)

+(A j−k B j + Bj−k A j ) sin((2 j − k)πs0)]

−1

2

∞∑

j=1

d4k+ j, j [(Ak+ j A j + Bk+ j B j ) cos(kπs0)

+(A j B j+k − Bj A j+k) sin(kπs0)

+(Ak+ j A j − Bk+ j B j ) cos((k + 2 j)πs0)

+(A j B j+k + Bj A j+k) sin((k + 2 j)πs0)],

Ỹk,1(0, 0, 0) = 0,
∂Ỹk,2
∂s0

(0, 0, 0)

+∂Ỹk,1
∂s1

(0, 0, 0) + ∂Ỹk,0
∂s2

(0, 0, 0) = 0. (45)

It is obvious that the right-hand side of (45) con-
tains resonant terms, such as sin(λks0) and cos(λks0).
But the term in the right-hand side of (45) involving
sin((2 j − k)πs0), cos((2 j − k)πs0), sin((k +2 j)πs0)
or cos((k + 2 j)πs0) is also a resonant term when

there exist k, j1, j2, s.t.,
2 j1
k =

√
E A
mg + 1 + O(ε) or

2 j2
k =

√
E A
mg −1+O(ε). Actually, for any fixed param-

eter value of
√

E A
mg with assumptions

√
E A
mg = O(1)

and
√

E A
mg − 1 > O(ε), there always exist k s.t.

2 j1
k =

√
E A
mg + 1 + O(ε) or 2 j2

k =
√

E A
mg − 1 + O(ε)

with j1 = (1+
√

E A
mg )k

2 and j2 = (
√

E A
mg −1)k

2 . Therefore,
to avoid secular terms in (45) the functions Ck(s1, s2)
and Dk(s1, s2) have to satisfy the following:

• When k does not satisfy the conditions that there

always exist j1, j2 s.t.
2 j1
k =

√
E A
mg + 1 + O(ε) or

2 j2
k =

√
E A
mg − 1 + O(ε), then:

∂Ck

∂s1
= 0,

∂Dk

∂s1
= 0, (46)

and Ck(s1, s2) and Dk(s1, s2) are given by:

Ck(s1, s2) = Ck(s2), Dk(s1, s2) = Dk(s2). (47)

• When k satisfies the conditions that there always

exist j1, j2 s.t. 2 j1
k =

√
E A
mg + 1 + O(ε) or 2 j2

k =
√

E A
mg − 1 + O(ε), then:

123



5092 J. Wang, W. T. van Horssen

∂Ck

∂s1
= −d4j1−k, j1

4λk
(A j1−k B j1 + Bj1−k A j1)

+d4k+ j2, j2

4λk
(A j2Bj2+k + Bj2 A j2+k)

= P̃2(s1, s2),

∂Dk

∂s1
= d4j1−k, j1

4λk
(A j1−k A j1 − Bj1−k B j1)

−d4k+ j2, j2

4λk
(Ak+ j2 A j2 − Bk+ j2Bj2)

= Q̃2(s1, s2), (48)

and Ck(s1, s2) and Dk(s1, s2) can be obtained as:

Ck(s1, s2) =
∫ s1

b
P̃2(τ̄ , s2)d τ̄ + Ck(s2),

Dk(s1, s2) =
∫ s1

b
Q̃2(τ̄ , s2)d τ̄ + Dk(s2), (49)

where the functions P̃2 and Q̃2 are given by (48),
and where Ck(s2) and Dk(s2) in (47) and (49) are
still unknown functions in the slow variable s2. By
Ck(b, c) = 0 and Dk(b, c) = 0, we obtain that
Ck(c) = 0 and Dk(c) = 0. The undetermined
behaviour with respect to s2 can be used to avoid sec-
ular terms in the solution of the O(ε

√
ε)− problem

(43).
According to (45), taking into account the secularity

conditions, the general solution of the O(ε)− problem
(42) is given by

Yk,1(s0, s1, s2;√
ε) = Ek(s0, s1, s2) cos(λks0)

+Hk(s0, s1, s2) sin(λks0), (50)

where

Ek(a, b, c) = 0, Hk(a, b, c) = −∂Yk,0
∂s1

(a, b, c).

(51)

Then, the O(ε
√

ε)− problem (43) can be written as:

∂2Ỹk,2
∂s20

+ λ2k Ỹk,2

=
[

− 2
∂2Ek

∂s0∂s1
− 2λk

∂Hk

∂s1
− 2λk

∂Dk

∂s2
− ∂2Ck

∂s21
+(v0 − c2,0l̂)λk Dk + 2v0kπd

1
k,kλk Dk

− E A

mg
μ0l̂kπd

3
k,kCk

]

cos(λks0)

+
[

− 2
∂2Hk

∂s0∂s1
+ 2λk

∂Ek

∂s1
+ 2λk

∂Ck

∂s2
− ∂2Dk

∂s21

−(v0 − c2,0l̂)λkCk − 2v0nπd1k,kλkCk

− E A

mg
μ0l̂kπd

3
k,k Dk

]

sin(λks0),

+β1,0d̃
4
k,k[Ak cos(kπs0)

+Bk sin(kπs0)] cos(ω1χ(s0 − a) + α)

Ỹk,2(a, b, c) = 0,

∂Ỹk,2
∂s0

(a, b, c) = −∂Ỹk,1
∂s1

(a, b, c)

−∂Ỹk,0
∂s2

(a, b, c). (52)

Note that in the analysis of Sect. 3, the last term includ-
ing cos(ω1χ(s0 − a) + α) in (52) can not affect the
function Ỹk,0. So, to avoid secular terms in the solution
Ỹk,2 in Eq. (52), the following different cases have to
be considered:

• When k does not satisfy the conditions that there

always exist j1, j2 s.t.
2 j1
k =

√
E A
mg + 1 + O(ε) or

2 j2
k =

√
E A
mg − 1 + O(ε), then:

−2
∂2Ek

∂s0∂s1
− 2λk

∂Hk

∂s1

= 2λk
∂Dk

∂s2
− (v0 − c2,0l̂)λk Dk

−2v0kπd
1
k,kλk Dk + E A

mg
μ0l̂kπd

3
k,kCk,

−2
∂2Hk

∂s0∂s1
+ 2λk

∂Ek

∂s1

= −2λk
∂Ck

∂s2
+ (v0 − c2,0l̂)λkCk

+2v0kπd
1
k,kλkCk + E A

mg
μ0l̂kπd

3
k,k Dk . (53)

• When k satisfies the conditions that there always

exist j1, j2 s.t. 2 j1
k =

√
E A
mg + 1 + O(ε) or 2 j2

k =
√

E A
mg − 1 + O(ε), then:

−2
∂2Ek

∂s0∂s1
− 2λk

∂Hk

∂s1

−2λk
∂
∫ s1
0 Q̃2(τ̄ , s2)d τ̄

∂s2
− ∂ P̃2

∂s1

+(v0 − c2,0l̂)λk

∫ s1

0
Q̃2(τ̄ , s2)d τ̄

+2v0kπd
1
k,kλk

∫ s1

0
Q̃2(τ̄ , s2)d τ̄
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− E A

mg
μ0l̂kπd

3
k,k

∫ s1

0
P̃2(τ̄ , s2)d τ̄

= 2λk
∂Dk

∂s2
− (v0 − c2,0l̂)λk Dk

−2v0kπd
1
k,kλk Dk + E A

mg
μ0l̂kπd

3
k,kCk,

−2
∂2Hk

∂s0∂s1

+2λk
∂Ek

∂s1
+ 2λk

∂
∫ s1
0 P̃2(τ̄ , s2)d τ̄

∂s2
− ∂ Q̃2

∂s1

−(v0 − c2,0l̂)λk

∫ s1

0
P̃2(τ̄ , s2)d τ̄

−2v0kπd
1
k,kλk

∫ s1

0
P̃2(τ̄ , s2)d τ̄

− E A

mg
μ0l̂kπd

3
k,k

∫ s1

0
Q̃2(τ̄ , s2)d τ̄

= −2λk
∂Ck

∂s2
+ (v0 − c2,0l̂)λkCk

+2v0kπd
1
k,kλkCk + E A

mg
μ0l̂kπd

3
k,k Dk . (54)

Solving (53) and (54) for Ek and Hk , we observe that
the solution will be unbounded in s0 and s1, due to
terms which are only depending on s2. Therefore, to
have secular-free solutions for Ek and Hk , the following
conditions have to be imposed independently:

2λk
dDk

ds2
− (v0 − c2,0l̂)λk Dk − 2v0kπd

1
k,kλk Dk

+ E A

mg
μ0l̂kπd

3
k,kCk = 0,

−2λk
dCk

ds2
+ (v0 − c2,0l̂)λkCk + 2v0kπd

1
k,kλkCk

+ E A

mg
μ0l̂kπd

3
k,k Dk = 0. (55)

Due to d2k,k = − 1
2kπ , we then obtain from (55):

Ck(s2) = e− 1
2 c2,0 l̂(s2−c)

[

Ck(c) cos

(
E Aμ0l̂kπd3k,k

2mgλk
(s2 − c)

)

−Dk(c) sin

(
E Aμ0l̂kπd3k,k

2mgλk
(s2 − c)

)]

,

Dk(s2) = e− 1
2 c2,0 l̂(s2−c)

[

Ck(c) sin

(
E Aμ0l̂kπd3k,k

2mgλk
(s2 − c)

)

+Dk(c) cos

(
E Aμ0l̂kπd3k,k

2mgλk
(s2 − c)

)]

.

Since Ck(c) = 0 and Dk(c) = 0, this implies that

Ck(s2) = 0, Dk(s2) = 0. (56)

Now, all unknown functions in (44) can be determined,
and the solution of the O(

√
ε)-problem (41) can be

written as:

Ỹk,0(s0, s1, s2) = Ck(s1, s2) cos(λks0)

+Dk(s1, s2) sin(λks0), (57)

where Ck(s1, s2) and Dk(s1, s2) are given by (47), (49)
and (56).

Now, substituting (40) and (57) into the O(ε)-
problem (38) for T̃k,1, together with c1k,k = 1

2 , c
2
k,k = 0

and c3k,k = − 1
2kπ in (19), problem (38) becomes a non-

linear ordinary differential equation without coupling
term:

∂2T̃k,1
∂s20

+ k2π2T̃k,1

= 2kπ
∂Ak

∂s1
cos(kπs0) − 2kπ

∂Bk

∂s1
cos(kπs0)

︷ ︸︸ ︷

+ E Aπ3

2mgl̂

∞∑

p=k+1

kp(k − p)

·
[
Ap−k Dp + Bp−kCp

2
sin((λp + (p − k)π)s0)

+ Ap−kCp − Bp−k Dp

2
cos((λp + (p − k)π)s0)

+ Ap−k Dp − Bp−kCp

2
sin((λp − (p − k)π)s0)

+ Ap−kCp + Bp−k Dp

2
cos((λp − (p − k)π)s0)

]

− E Aπ3

2mgl̂

k−1∑

p=1

kp(k − p)

·
[
Ak−pDp + Bk−pCp

2
sin((λp + (k − p)π)s0)

+ Ak−pCp − Bk−pDp

2
cos((λp + (k − p)π)s0)

+ Ak−pDp − Bk−pCp

2
sin((λp − (k − p)π)s0)

+ Ak−pCp + Bk−pDp

2
cos((λp − (k − p)π)s0)

]

− E Aπ3

2mgl̂

∞∑

p=1

kp(k + p)

·
[
Ak+pDp + Bk+pCp

2
sin((λp + (k + p)π)s0)
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+ Ak+pCp − Bk+pDp

2
cos((λp + (k + p)π)s0)

+ Ak+pDp − Bk+pCp

2
sin((λp − (k + p)π)s0)

+ Ak+pCp + Bk+pDp

2
cos((λp − (k + p)π)s0)

]

︸ ︷︷ ︸
I

+β1,0dkω
2
1 l̂

2cos(ω1χ(s0 − a) + α)
︸ ︷︷ ︸

I I

, (58)

where Cp and Dp are given by (47) and (49). The
right-hand side of Eq. (58) contains resonant terms: for
instance, at least one of the I terms is a resonant term

when there exist k, p1, p2 s.t. 2k
p1

=
√

E A
mg + 1 + O(ε)

or 2k
p2

=
√

E A
mg − 1+ O(ε). The II term with ω1 can be

resonant when kπ −ω1χ̇(s) ≈ 0 or kπ +ω1χ̇(s) ≈ 0.
Obviously, the terms in (58) involving sin(kπs0) or
cos(kπs0) are resonant.

Outside the resonance zone (or equivalently the res-
onance manifold), the corresponding timescales are
s0 = s̃ and s2 = εs̃ (without s1 = √

εs̃). So to avoid
secular terms in (58), Ak and Bk have to satisfy the fol-
lowing equations depending on the parameter values:

∂Ak

∂s1
= 0,

∂Bk

∂s1
= 0, (59)

which implies that:

Ak(s1, s2) = Ak(s2), Bk(s1, s2) = Bk(s2), (60)

where Ak(s2) and Bk(s2) are still unknown functions
in the slow variable s2. Since Ak(b, c) = 0 and
Bk(b, c) = 0,weobtain that Ak(c) = 0 and Bk(c) = 0.
The undetermined behaviour with respect to s2 can be
used to avoid secular terms in the O(ε

√
ε)− problem

(39). According to (58), taking into account the sec-
ularity conditions, the general solution of the O(ε)−
problem (38) can be written as

Tk,1(s0, s1, s2;√
ε) = Lk(s0, s1, s2) cos(kπs0)

+Mk(s0, s1, s2) sin(kπs0),

(61)

where

Lk(a, b, c) = Fk, Mk(a, b, c)

= −∂Tk,0
∂s1

(a, b, c) + Gk . (62)

Then, together with c1k,k = 1
2 , c

2
k,k = 0 and c3k,k =

− 1
2kπ in (19), the O(ε

√
ε)− problem (39) can be writ-

ten as

∂2T̃k,2
∂s2

+ (kπ)2T̃k,2

=
[

−2
∂2Lk

∂s0∂s1
− 2kπ

∂Mk

∂s1

−2kπ
∂Bk

∂s2
− ∂2Ak

∂s21

−c1,0l̂kπBk − μ0l̂(kπ)2

2
Ak

]

cos(kπs0)

+
[

−2
∂2Mk

∂s0∂s1
+ 2kπ

∂Lk

∂s1

+2kπ
∂Ak

∂s2
− ∂2Bk

∂s21

+c1,0l̂)kπ Ak − μ0l̂(kπ)2

2
Bk

]

sin(kπs0),

Ỹk,2(0, 0, 0) = 0,
∂Ỹk,2
∂s

(0, 0, 0) = 0. (63)

To avoid secular terms in T̃k,2 in Eq. (63), the following
conditions have to be imposed

−2
∂2Lk

∂s0∂s1
− 2kπ

∂Mk

∂s1

= 2kπ
∂Bk(s2)

∂s2
+ c1,0l̂kπBk(s2)

+μ0l̂(kπ)2

2
Ak(s2),

−2
∂2Mk

∂s0∂s1
+ 2kπ

∂Lk

∂s1

= −2kπ
∂Ak(s2)

∂s2
− c1,0l̂kπ Ak(s2)

+μ0l̂(kπ)2

2
Bk(s2). (64)

By solving (64) for Lk andMk ,weobserve that the solu-
tion will be unbounded in s0 and s1, due to terms which
are only depending on s2. Therefore, to have secular-
free solutions for Lk and Mk , the following conditions
have to be imposed independently

2kπ
dBk(s2)

ds2
+ c1,0l̂λk Bk(s2)

+μ0l̂(kπ)2

2
Ak(s2) = 0,

−2kπ
d Ak(s2)

ds2
− c1,0l̂λk Ak(s2)

+μ0l̂(kπ)2

2
Bk(s2) = 0, (65)
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we then obtain

Ak(s2)

= e− 1
2 c2,0 l̂(s2−c)

[

Ak(c) cos

(
kπμ0l̂

4
(s2 − c)

)

−Bk(c) sin

(
kπμ0l̂

4
(s2 − c)

)]

,

Bk(s2)

= e− 1
2 c2,0 l̂(s2−c)

[

Ak(c) sin

(
kπμ0l̂

4
(s2 − c)

)

+Bk(c) cos

(
kπμ0l̂

4
(s2 − c)

)]

. (66)

Since Ak(c) = 0 and Bk(c) = 0, together with (66),
this implies that

Ak(s2) = 0, Bk(s2) = 0. (67)

Now, outside the resonance zone, all these unknown
functions in (40) have been determined in (60). So the
solution of the O(

√
ε)-problem (37) is T̃k,0(s0, s1, s2)

≡ 0.
Inside the resonance zone around s = s(k) (or equiv-

alently, in the resonance manifold), according to the
inner analysis as presented in Sect. 3, and to avoid sec-
ular terms in (58), Ak , Bk have to satisfy the following
equations:

• When k does not satisfy the conditions that there

always exist p1, p2 s.t. 2k
p1

=
√

E A
mg + 1 + O(ε) or

2k
p2

=
√

E A
mg − 1 + O(ε), then:

∂Ak

∂s1
= β1,0dkω2

1 l̂
2

2

sin

(
1

2
ω1l0v0e

v0τ
(k)
s21 + ψk(s

(k))

)

,

∂Bk

∂s1
= −β1,0dkω2

1 l̂
2

2

cos

(
1

2
ω1l0v0e

v0τ
(k)
s21 + ψk(s

(k))

)

, (68)

which implies that

Ak(s1, s2) =
√
2β1,0dkω2

1 l̂
2

√
α̃

sin(ψk(s
(k)))C̄Fr (s1)

+
√
2β1,0dkω2

1 l̂
2

√
α̃

cos(ψk(s
(k)))S̄Fr (s1)

+Ak(s2),

Bk(s1, s2) = −
√
2β1,0dkω2

1 l̂
2

√
α̃

cos(ψk(s
(k)))C̄Fr (s1)

+
√
2β1,0dkω2

1 l̂
2

√
α̃

sin(ψk(s
(k)))S̄Fr (s1)

+Bk(s2), (69)

where α̃ = ω1l0v0ev0τ
(k)
, and

C̄Fr (s) =
∫
√

α̃
2 s

√
α̃
2 b

cos(x2)dx, and

S̄Fr (s) =
∫
√

α̃
2 s

√
α̃
2 b

sin(x2)dx, (70)

which are the well-known Fresnel integrals. The pres-
ence of Fresnel functions CFr (s1) and SFr (s1) causes
resonance jumps in the system. In (69), Ak(s2) and
Bk(s2) are still unknown functions in the slow variable
s2. Since Ak(b, c) = 0 and Bk(b, c) = 0, we obtain
that Ak(c) = 0 and Bk(c) = 0. The undetermined
behaviour with respect to s2 can be used to avoid sec-
ular terms in the solutions of the O(ε

√
ε)− problem

(39). Following the derivation of (61)–(67) together
with (69), we obtain

Ak(s2) = 0, Bk(s2) = 0. (71)

• When k satisfies the conditions that there always

exist p1, p2 s.t. 2k
p1

=
√

E A
mg + 1 + O(ε) or 2k

p2
=

√
E A
mg − 1 + O(ε), then there exist j1 = k, j2 =

kp1
p2

= θk s.t. 2 j1
p1

=
√

E A
mg + 1 + O(ε) or 2 j2

p1
=

√
E A
mg − 1 + O(ε); and there exist j1 = kp2

p1
=

ϑk, j2 = k s.t. 2 j1
p2

=
√

E A
mg + 1 + O(ε) or 2 j2

p2
=

√
E A
mg −1+O(ε). Then, the functions of Ak(s1, s2)

and Bk(s1, s2) have to satisfy:

∂Ak

∂s1
= E Aπ3

4mgl̂
(1 − θ)θk3

Aθk Dp1(k) − BθkCp1(k)

2

+ E Aπ3

4mgl̂
(ϑ − 1)ϑk3

Aϑk Dp2(k) − BϑkCp2(k)

2

+β1,0dkω2
1 l̂

2

2
sin

(
1

2
ω1l0v0e

v0τ
(k)
s21 + ψk(s

(k))

)

,
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∂Bk

∂s1
= − E Aπ3

4mgl̂
(1 − θ)θk3

AθkCp1(k) + Bθk(τ )Dp1(k)

2

− E Aπ3

4mgl̂
(ϑ − 1)ϑk3

AϑkCp2(k) + Bϑk Dp2(k)

2

−β1,0dkω2
1 l̂

2

2
cos

(
1

2
ω1l0v0e

v0τ
(k)
s21 + ψk(s

(k))

)

,

(72)

where

Cp1(k) = 1

4λp1
(d4k,θk − d4θk,k)

∫ s1

b
(Aθk(τ )Bk(τ ) + Bθk(τ )Ak(τ ))dτ ,

Dp1(k) = 1

4λp1
(d4k,θk − d4θk,k)

∫ s1

b
(Aθk(τ )Ak(τ ) − Bθk(τ )Bk(τ ))dτ ,

Cp2(k) = 1

4λp2
(d4ϑk,k − d4k,ϑk)

∫ s1

b
(Ak(τ )Bϑk(τ ) + Bk(τ )Aϑk(τ ))dτ ,

Dp2(k) = 1

4λp2
(d4ϑk,k − d4k,ϑk)

∫ s1

b
(Ak(τ )Aϑk(τ ) − Bk(τ )Bϑk(τ ))dτ ,

(73)

and p1(k) = 2k

1+
√

E A
mg

, p2(k) = 2k√
E A
mg −1

, θ =
√

E A
mg −1

1+
√

E A
mg

,

ϑ =
√

E A
mg +1

√
E A
mg −1

.

By noting that Aϑk = 0 and Bϑk = 0 inside the
resonance zone around s(k), it follows that system (72)
can be written as

∂Ak

∂s1
= E Aπ3

4mgl̂
(1 − θ)θk3

Aθk Dp1(k) − BθkCp1(k)

2

+β1,0dkω2
1 l̂

2

2
sin

(
ω1l0v0ev0τk

2
s21 + ψk(sk)

)

,

∂Bk

∂s1
= − E Aπ3

4mgl̂
(1 − θ)θk3

AθkCp1(k) + Bθk Dp1(k)

2

−β1,0dkω2
1 l̂

2

2
cos

(
ω1l0v0ev0τk

2
s21 + ψk(sk)

)

,

(74)

where Cp1(k)(s1, s2) and Dp1(k)(s1, s2) are given by
(73). For anymode k satisfying the conditions that there

exist p1, p2 s.t. 2k
p1

=
√

E A
mg + 1 or 2k

p2
=
√

E A
mg − 1, we

can always find k1 (k1 is an integer), s.t. θn−1k = k1,
and θnk is not an integer, n = 1, 2, ... From that, we
get a mode sequence (k1, ϑk1, ϑ2k1, . . . , k, ϑnk1, ...).
We firstly solve the ordinary differential equations (74)
for mode k1, which can be rewritten as (68) (here the
mode k1 is denoted by k), and it can be solved as in
(69). For the mode k2 in (74), k = k2, Aθk = Ak1 and
Bθk = Bk1 , thereby inside the resonance zone around
s(k2), we can obtain the solutions Ak2 and Bk2 from
(74). Next, by using an iterative method we can predict
and obtain the functions Ak and Bk . Note that (74) is a
nonlinear perturbation problem. It is hard to obtain the
analytical, explicit solution, but we can find properties
of Ak and Bk by the above analysis, which can be used
to describe the behaviour of the solution T̃k,0(s0, s1, s2)
of the O(

√
ε)-problem (37). Moreover, the solution of

(74) can be obtained by numerical calculations. Now,
inside the resonance zone around s(k) in (26), the solu-
tion of the O(

√
ε)-problem (37) is given by (69) and

(74).
To summarize, the solution ŵ(ξ, s) of Eq. (13) read-

ily follows:

ŵ(ξ, s) =
∞∑

n=1

[An(
√

ε(s − s(n)), ε(s − s(n)))

cos(nπ(s − s(n)))

+Bn(
√

ε(s − s(n)), ε(s − s(n)))

sin(nπ(s − s(n)))]sin(nπξ)

+O(ε), (75)

where s(n) is given by (26), and An and Bn are given
by (60), (67), (69), and (74).

In the longitudinal direction, according to the anal-
ysis of (44)–(57), Ỹk,0 in Eq. (44) can be approximated
as:

Ỹk,0(s0, s1, s2) = Ck(s1, s2) cos(λks0)

+Dk(s1, s2) sin(λks0). (76)

• When k does not satisfy the conditions that there

always exist j1, j2 s.t.
2 j1
k =

√
E A
mg + 1 + O(ε) or

2 j2
k =

√
E A
mg − 1 + O(ε), then:

Ck(s1, s2) = Dk(s1, s2) = 0, (77)

which follows from (47) and (56).
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Fig. 2 a Transverse displacements w(0.25, t). b Longitudinal displacements u(0.25, t)

• When k satisfies the conditions that there always

exist j1, j2 s.t. 2 j1
k =

√
E A
mg + 1 + O(ε) or 2 j2

k =
√

E A
mg − 1 + O(ε), then:

Ck(s1, s2) =
∫ s1

b
−d4j1−k, j1

4λk
(A j1−k B j1 + Bj1−k A j1)

+d4k+ j2, j2

4λk
(A j2Bj2+k + Bj2 A j2+k)d τ̄ ,

Dk(s1, s2) =
∫ s1

b

d4j1−k, j1

4λk
(A j1−k A j1 − Bj1−k B j1)

−d4k+ j2, j2

4λk
(Ak+ j2 A j2 − Bk+ j2Bj2)d τ̄ ,(78)

which follows from (49) and (56). And inside the res-
onance zone around s(k), Ak and Bk are given by (69)
and (74); outside the resonance zone, Ak and Bk are
given by (60) and (67).

The solution û(ξ, s) of Eq. (14) readily follows:

û(ξ, s) =
∞∑

n=1

[Cn(
√

ε(s − s(n)), ε(s − s(n)))

cos(nπ(s − s(n)))

+Dn(
√

ε(s − s(n)), ε(s − s(n)))

sin(nπ(s − s(n)))]sin(nπξ)

+O(ε), (79)

where s(n) is given by (26), Cn and Dn are given by
(77) and (78).

By the three-timescales perturbation method, we
obtained that for special frequencies in the boundary
excitations and for certain parameter values of the lon-
gitudinal stiffness and the conveyance mass, the trans-
verse solution ŵ(ξ, s) of Eq. (13) jumps up from O(ε)

to O(
√

ε), and the longitudinal solution û(ξ, s) of
Eq. (14) jumps up from O(ε2) to O(

√
ε). We can-

not (always) construct formal approximations of the
solutions, but we can get properties and predictions of
solution behaviours analytically on timescales ofO( 1

ε
).

Based on the properties and equations in the analysis,
the approximated solutions for transverse and longitu-
dinal motions will be computed by using an iterative
method as well as by using a numerical method in the
next section.Also the approximationswill be computed
by using a central finite difference scheme in the next
section to verify the analytical results in this section.

5 Numerical results

Since the initial boundary value problem (1) for the
transverse vibration and the initial boundary value
problem (2) for the longitudinal vibration are com-
plicated with nonlinear and coupled terms and a lot
of parameters, we cannot construct formal explicit
approximations of the solutions. To make the problems
easier to analyse and simulate, we transform the prob-
lems (1)–(2) to the problems (13)–(14) by putting the
problems dimensionless, by converting the problems to
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Fig. 3 a The first mode displacement, b the second mode displacement, and c the third mode displacement as functions of time for
ξ = 0.25

a fixed spatial domain, and by Liouville–Green trans-
formation. So, on the one hand, we can compute the
transverse and the longitudinal motions of the cable for
(13) and (14) by computingnumerically the solutions of
the ordinary differential Eq. (75) and (79). On the other
hand, we can compute numerically the solutions of the
problem (13) and the problem (14) straight-forwardly
by applying a finite difference method. By comparing
the results (the displacements and the energy) in the
above two different methods, the obtained analytical
results in the last section can be verified.

5.1 Analytical approximations

The numerical results simulating the transverse and the
longitudinal vibration responses are computed based
on the analytical expression (75) for ŵ(ξ, s) and the
expression (79) for û(ξ, s). The computations are per-
formed by using the following parameters:

ε = 0.01,
E A

mg
= 9, μ0 = 1,

cu,0 = 1, c1,0 = 1, c2,0 = 1,

β1,0 = 1, β2,0 = 1,

ω1 = 0.5π, ω2 = 0.6π, l0 = 1, v0 = 1, (80)
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Fig. 4 a Transverse displacements w(0.25, t), ε = 0.01. b Transverse vibratory energy

Fig. 5 a Longitudinal displacements u(0.25, t), ε = 0.01. b Longitudinal vibratory energy

and the initial conditions are taken to be:

ŵ(ξ, 0) = 0.01 sin(1.5ξ), ŵs(ξ, 0) = 0,

û(ξ, 0) = 0.0001 sin(1.5ξ),

ûs(ξ, 0) = 0, 0 ≤ ξ ≤ 1. (81)

By using the Liouville–Green transformation with
ds
dt = 1

l(t) = 1
l0+vt , we have

t = l0evs − l0
v

. (82)

It follows from (82) and the resonance times given by
(26) that the resonance zones (in the transverse direc-
tion) are located around the times

tk = kπ

ω1v
− l0

v
, (83)

where the resonance time depends on themode number
k. For the first three oscillation modes of transverse
motions, resonance emerges at times t1 ≈ 100, t2 ≈
300, t3 ≈ 500. The displacements of the first and third
mode are given by (69) and (75), the displacements of
the second mode are given by (74) and (75). Around
the first resonance time t1, the displacement amplitudes
jump up from initial states O(ε) to O(

√
ε). Around the

second resonance time t2 and the third resonance time
t3, the amplitudes jump up again from the O(ε) level
to the O(

√
ε) level. They are all illustrated in Fig. 2a.

The displacements of the longitudinal motion are
given by (79), which are illustrated in Fig. 2b.
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Fig. 6 a The total mechanical energy based on analytical results. b Analytical approximations The total mechanical energy based on
numerical results

Fig. 7 a Transverse displacements w(0.25, t), ε = 0.02, ω1 = 0.5. b Transverse vibratory energy

Also, to observe the displacement amplitudes of
transverse motion clearly, Fig. 3 shows the close-up
of the fragments of Fig. 2a. Figure3a, b, and c shows
the first mode displacement, the secondmode displace-
ment, and the thirdmode displacement of the transverse
motions, respectively.

5.2 Numerical approximations

In this subsection, the finite difference method is
applied in both the time and the space domain for
both PDEs and boundary conditions in (6) and (7)

with space grid size dξ = 5 × 10−2, and time step
dt = 5× 10−3. We rewrite the so-obtained discretized
Eq. (6) and (7) in matrix forms and use as numerical
time integration method, the Crank–Nicolson method
(see Appendix B). Note that the same parameter values
as for the analytic approximations in Sect. 5.1 are used
here for the computations.

In Fig. 4, the transverse displacements and the vibra-
tory energy of the cable on timescales up to t = 600 are
presented. In Fig. 4, one can see that the transverse res-
onances emerge around times t1 = 100, t2 = 300 and
t3 = 500. In the resonance zones, the displacements

123



On resonances and transverse and longitudinal oscillations 5101

Fig. 8 a Transverse displacements w(0.25, t), ε = 0.01, ω1 = 0.75π . b Transverse vibratory energy

and the energy increase, and in between these zones,
stay constant (approximately). Around the first reso-
nance time t1, the displacement amplitudes jump up
from O(ε) to O(

√
ε). Around the second resonance

time t2 and the third resonance time t3, the amplitudes
change again at the O(

√
ε) level, where ε is a small

parameter with ε = 0.01.
In Fig. 5, the longitudinal displacements and the

vibratory energy of the cable on timescales up to t =
600 are given. In Fig. 5, one can see that the longitu-
dinal displacements increase from O(ε2) to O(

√
ε),

and that the vibratory energy increases from O(ε4) to
O(ε). In Fig. 6, the total mechanical energy (see also
Appendix C for definitions) based on the analytical
results and the total energy based on the numerical
results can be compared. Based on the Figs. 2, 4, 5,
and 6, we can draw the conclusion that the general
dynamic behaviour of the solution as approximated by
direct numerical integration of the problem is in agree-
ment with the analytic approximations as obtained by
applying perturbation methods.

Moreover, in Fig. 7, we make different choices for
ε in the numerical approximations to see the influ-
ence of the values of ε on the system dynamics. For
ε = 0.02, the first three resonance times become
t1 = 50, t2 = 150, and t3 = 250, and the displacement
amplitudes also change. In Fig. 8, we make different
choices for the frequencies of boundary excitations in
the numerical approximations. For ω1 = 0.75π , the
first three resonance times become t1 = 33, t2 = 167,

and t3 = 300, and the displacement amplitudes also
change.

6 Conclusion

In this paper,we studied the coupled transverse and lon-
gitudinal vibrations and associated resonances induced
by boundary excitations in a hoisting system. The prob-
lem is described by nonlinear coupled partial differen-
tial equations on a time-varying spatial interval with
small harmonic disturbances at one end and a mov-
ing nonclassical boundary condition at the other end.
Assuming that the transverse harmonic boundary dis-
turbances and the corresponding initial values are of
order ε, and the longitudinal harmonic boundary dis-
turbances and the corresponding initial values are of
order ε2, it is shown in this paper that for special
frequencies in the boundary excitations and that for
certain parameter values of the longitudinal stiffness
and the conveyance mass, many large oscillations arise
in transverse and longitudinal directions. The oscilla-
tion modes for transverse motion jump up from O(ε)

to O(
√

ε), and the oscillation modes for longitudi-
nal motion jump up from O(ε2) to O(

√
ε). To obtain

these results, the method of separation of variables
is presented, and perturbation methods (such as aver-
aging methods, and singular perturbation techniques)
are used. Furthermore, since the initial-boundary value
problems for the transverse motion and the longi-
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tudinal motion are nonlinearly coupled, we cannot
(always) construct formal approximations of the solu-
tions but we can get properties and predictions of solu-
tion behaviour analytically on timescales of order ε−1.
Furthermore, approximations of the solutions are com-
puted by using an iterative method as well as by using
a numerical method. Also approximations of the solu-
tions of the initial-boundary value problems are com-
puted by using a central finite difference scheme. The
numerical approximations are in agreement with the
analytically obtained approximations. The analytical
scheme in this problem can be extended to study other,
and more complicated types of moving cable systems
and also to other types of gyroscopic systems, where
transverse and longitudinal motions are both involved
and are governed by coupled differential equationswith
in time slowly varying coefficients.
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Appendix A: The derivation of Eqs. (1) and (2)

According to Fig. 1, the partial differential equation
(PDE) can be derived by the extended Hamilton’s prin-
ciple:
∫ t2

t1
(δEk(t) − δEp(t) + δWc(t))dt = 0. (A1)

The kinetic energy Ek(t) can be represented as

Ek(t) = 1

2
ρ

[∫ l(t)

eu(t)

(
Du

Dt
+ v

)2

dx

+
∫ l(t)

eu(t)

(
Dw

Dt

)2

dx

]

+1

2
m

[(
Du

Dt
+ v

)2

|x=l(t)

+
(
Dw

Dt

)2

|x=l(t)

]

, (A2)

where the operator Du
Dt is defined as

Du
Dt = ∂u

∂t +v ∂u
∂x =

ut + vux , and the operator Dw
Dt is defined as Dw

Dt =
∂w
∂t + v ∂w

∂x = wt + vwx . The potential energy Ep(t)
can be expressed as

Ep(t) = 1

2
E A
∫ l(t)

eu(t)
z2dx +

∫ l(t)

eu(t)
T zdx

+Egs −
∫ l(t)

eu(t)
ρgudx − mgu |x=l(t), (A3)

where z = ux + 1
2w

2
x , and

δEk(t) − δEp(t)

= ρ

∫ l(t)

eu(t)

(
Du

Dt
+ v

)

δ
Du

Dt
dx

+m

(
Du

Dt
+ v

)

δ
Du

Dt
|x=l(t)

+ρ

∫ l(t)

eu(t)

(
Dw

Dt

)

δ
Dw

Dt
dx

+m

(
Dw

Dt

)

δ
Dw

Dt
|x=l(t)

−
[

E A
∫ l(t)

eu(t)
zδzdx +

∫ l(t)

eu(t)
T δzdx

−
∫ l(t)

eu(t)
ρgδudx − mgδu |x=l(t)

]

. (A4)

The virtual work δWc done by the distributed and the
lumped damping force is given as

δWc(t) = −
∫ l(t)

eu(t)
c2

Du

Dt
δudx

−
∫ l(t)

eu(t)
c1

Dw

Dt
δwdx − cu

Du

Dt
δu |x=l(t) .

(A5)
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By substituting equation (A2)–(A5) into (A1), we
obtain
∫ t2

t1

∫ l(t)

eu(t)
ρ

(
Du

Dt
+ v

)

δ
Du

Dt
dxdt

+
∫ t2

t1
m

(
Du

Dt
+ v

)

δ
Du

Dt
|x=l(t) dt

+
∫ t2

t1

∫ l(t)

eu(t)
ρ

(
Dw

Dt

)

δ
Dw

Dt
dxdt

+
∫ t2

t1
m

(
Dw

Dt

)

δ
Dw

Dt
|x=l(t) dt

−E A
∫ t2

t1

∫ l(t)

eu(t)
zδzdxdt −

∫ t2

t1

∫ l(t)

eu(t)
T δzdxdt

+
∫ t2

t1

∫ l(t)

eu(t)
ρgδudxdt

+
∫ t2

t1
mgδu |x=l(t) dt

−
∫ t2

t1

∫ l(t)

eu(t)
c2

Du

Dt
δudxdt

−
∫ t2

t1
cu

Du

Dt
δu |x=l(t) dt

−
∫ t2

t1

∫ l(t)

eu(t)
c1

Dw

Dt
δwdxdt = 0. (A6)

By integrating by parts, it follows from (A6) that
∫ t2

t1

∫ l(t)

eu(t)
[−ρ(utt + 2vuxt + v2uxx + âux + â)

+E Azx + Tx + ρg − c2(ut + vux )]δudxdt
+
∫ t2

t1

∫ l(t)

eu(t)
[−ρ(wt t + 2vwxt + v2wxx + âwx )

+E A(zwx )x + (Twx )x − c1(wt + vwx )]δwdxdt

+
∫ t2

t1
[−m(utt + 2vuxt + v2uxx + âux + â)

−E Az − T + mg − cu(ut + vux )]δu |x=l(t) dt

+
∫ t2

t1
[−m(wt t + 2vwxt + v2wxx + âwx )

−E Azwx − Twx ]δw |x=l(t) dt

+
∫ t2

t1
[−ρv(ut + vux + v) + E Az

+T ]δu |x=eu(t) dt

+
∫ t2

t1
ėu(t)ρ(ut + vux + v)δu |x=eu(t) dt

+
∫ t2

t1
[−ρv(wt + vwx ) + E Azwx

+Twx ]δw |x=eu(t) dt

+
∫ t2

t1
ėu(t)ρ(wt + vwx )δw |x=eu(t) dt = 0.

So, the governing equations of motion are given by

ρ(utt + 2vuxt + v2uxx + âux + â)

−E Azx − Tx − ρg + c2(ut + vux ) = 0,

eu(t) < x < l(t), t > 0. (A7)

ρ(wt t + 2vwxt + v2wxx + âwx )

−E A(zwx )x − (Twx )x + c1(wt + vwx ) = 0,

eu(t) < x < l(t), t > 0. (A8)

The corresponding boundary conditions on the upper
end at x = eu(t) are given by:

[−ρv(ut + vux + v) + E Az

+T + ėu(t)ρ(ut + vux + v)] |x=eu(t)= 0,

[−ρv(wt + vwx ) + E Azwx

+Twx + ėu(t)ρ(wt + vwx )] |x=eu(t)= 0,

t ≥ 0, (A9)

and the boundary conditions at x = l(t) are given by:

[m(utt + 2vuxt + v2uxx + âux + â

+E Az + T − mg + cu(ut + vux )] |x=l(t)= 0,

[m(wt t + 2vwxt + v2wxx + âwx )

+E Azwx + Twx ] |x=l(t)= 0, t ≥ 0. (A10)

Note that (A9) and (A10) are the natural boundary con-
ditions. But (A9) is not appropriate for our problem,
since the string is excited at the top boundary with the
fundamental excitations eu(t) and ew(t). Thus, the cor-
rect boundary condition at the upper end are:

u(eu(t), t) = eu(t), w(eu(t), t) = ew(t), t ≥ 0,

(A11)

where eu(t) and ew(t) are given in Nomenclature in
section 2.1, and at the bottom boundary, the string is
assumed to be fixed in horizontal direction. Thus, the
corresponding transverse boundary condition at x =
l(t) is:

w(l(t), t) = 0, t ≥ 0. (A12)

Considering

T (x, t) = [m + ρ(l(t) − x)]g,
eu(t) ≤ x ≤ l(t), (A13)

togetherwith the governing equations given in (A7) and
in (A8), the boundary excitations conditions given in
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(A10), (A11), and (A12), we obtain the initial bound-
ary value problem (1) for the transverse vibration and
(2) for the longitudinal vibration. The reader is also
referred to the papers [21–24] for detailed derivations
of the dynamic models for strings, beams, plates, and
membranes.

Appendix B: Discretization and time integration

To solve (13) numerically, it is convenient to rewrite the
second order partial differential equation as a system of
two coupled, first-order partial differential equations:

w̌t = ζ̌ ,

ζ̌t = 1

l2
[1 + μl(1 − ξ)]w̌ξξ

+2v

l
(ξ − 1)ζ̌ξ − c1ζ̌ − μ

l
w̌ξ

+(1 − ξ)ω2
2β2 cos(ω2t + α). (B14)

Next, let us use the mesh grids ξ j = ( j − 1)�ξ for
j = 1, 2, ldots, n, n + 1 with n�ξ = 1. By introduc-

ing the differences, w̌ξξ (ξ j , t) = w̌ j+1−2w̌ j+w̌ j−1

(�ξ)2
+

O((�ξ)2), ζ̌ξ (ξ j , t) = ζ̌ j+1−ζ̌ j−1
2�ξ

+ O((�ξ)2), it fol-
lows how system (B14) can be discretized, yielding:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dw̌
dt (ξ j , t) = ζ̌ j ,

d ζ̌
dt (ξ j , t) = r j (w̌ j+1 − 2w̌ j + w̌ j−1)

+q j (ζ̌ j+1 − ζ̌ j−1) − c1ζ j
−p(w̌ j+1 − w̌ j−1) + (1 − ξ)ω2

2β2

× cos(ω2t + α),

where r j = 1+μl(1−ξ j )

l2(�ξ)2
, q j = v(ξ j−1)

l�ξ
, p = μ

2 l�ξ
for

j=1,2,..,n. Further,

R =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2r1 r1 − p 0 · · · · · · 0
r2 + p −2r2 r2 − p · · · · · · 0

.

.

.
. . .

. . .
. . .

. . .
.
.
.

0 · · · · · · rn−1 + p −2rn−1 rn−1 − p
0 · · · · · · 0 rn + p −2rn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ R
n×n , and

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−c1 q1 0 · · · · · · 0
−q2 −c1 q2 · · · · · · 0

.

.

.
. . .

. . .
. . .

. . .
.
.
.

0 · · · · · · −qn−1 −c1 qn−1
0 · · · · · · 0 −qn −c1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ R
n×n ,

The four matrices ∅, I , R, and P compose the system
matrix M :

M =
(∅ I
R P

)

∈ R
2n×2n,

where ∅ is the zero matrix, and I is the identity matrix.
In addition, let us introduce the following
vectors: w = (w1(ξ1, t), w2(ξ2, t), . . . , wn(ξn, t),
ζ1(ξ1, t), ζ2(ξ2, t), ..., ζn(ξn, t))T , s = (0, 0, . . . , 0

︸ ︷︷ ︸
n times

,

s̄1, s̄2, . . . , s̄n︸ ︷︷ ︸
n times

)T , where s̄i = (1 − ξi )ω
2
2β2 cos(ω2t +

α). So, system (B14) can be written in the follow-
ing matrix form: dw

dt = Mw + s. In order to per-
form a time integration, we apply the Crank–Nicolson
method. Introducing the mesh grid in time, tk = k�t
for k=1,2,…,n, we obtain

wk+1 = Dwk

+�t

2

(

I − �t

2
Mk+1

)−1

(sk+1 + sk), (B15)

where wk = (w1(ξ1, tk), w2(ξ2, tk), . . . , wn(ξn, tk),
ζ1(ξ1, tk), ζ2(ξ2, tk), ...,
ζn(ξn, tk))T , sk = (0, 0, . . . , 0

︸ ︷︷ ︸
n times

, s̄k1 , s̄
k
2 , . . . , s̄

k
n︸ ︷︷ ︸

n times

)T with

s̄ki = (1 − ξi )ω
2
2β2 cos(ω2tk + α), I is the identity

matrix and I ∈ R
2n×2n , and D = (I− �t

2 Mk+1)−1(I+
�t
2 Mk). Similarly, we can also directly integrate prob-
lem (7) with the above numerical scheme.

Appendix C: Energy

The mechanical energy of the initial-boundary value
problem (2) related to the transverse motion is given
by

E1(t) = 1

2

∫ l(t)

0
[ρ(wt + vwx )

2 + Tw2
x ]dx,

where T is given by (3). Using the dimensionless quan-
tities, we rewrite the energy in a dimensionless form:

E1(t) = 1

2

∫ l(t)

0
[(wt + vwx )

2

+(1 + μ(l(t) − x))w2
x ]dx .

In order to define the energy on the interval (0,1), we
change the variables by using the following transfor-
mation ξ = x

l(t) :

E1(t) = 1

2l(t)

∫ 1

0
[(l(t)w̃t + (1 − ξ)vw̃ξ )

2

+(1 + l(t)μ(1 − ξ))w̃2
ξ ]dξ. (C16)

The mechanical energy of the initial-boundary value
problem (1) related to the longitudinal motion is given
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by

E2(t) = 1

2

∫ l(t)

0
[ρ(ut + vux )

2 + E Au2x ]dx

+m

2
[ut (l(t), t) + vux (l(t), t)]2.

Using the dimensionless quantities, we rewrite the
energy in a dimensionless form:

E2(t) = 1

2
E AL

∫ l(t)

0
[(ut + vux )

2 + u2x ]dx

+ E Am

2ρ
[ut (l(t), t) + vux (l(t), t)]2.

In order to define the energy on the interval (0,1), we
change the variables by using the following transfor-
mation ξ = x

l(t) :

E2(t) = E AL

2l(t)

∫ 1

0
[(l(t)ũt + (1 − ξ)vũξ )

2 + ũ2ξ ]dξ

+ E Am

2ρl2(t)
[l(t)ũt (1, t)

+(1 − ξ)vũξ (1, t)]2. (C17)

The total mechanical energy is now given by

E(t) = 1

2l(t)

∫ 1

0
[(l(t)w̃t + (1 − ξ)vw̃ξ )

2

+(1 + l(t)μ(1 − ξ))w̃2
ξ ]dξ

+ E AL

2l(t)

∫ 1

0
[(l(t)ũt + (1 − ξ)vũξ )

2 + ũ2ξ ]dξ

+ E Am

2ρl2(t)
[l(t)ũt (1, t)

+(1 − ξ)vũξ (1, t)]2. (C18)
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