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Abstract The estimations and control of Julia sets
of the SIS(susceptible-infectious-susceptible) model
under noise perturbation are studied. At first, a discrete
SIS model is introduced, and the effects of additive and
multiplicative noises on the fractal characteristics of the
SIS model are discussed. Then, estimations of the Julia
sets of the SIS model under additive and multiplica-
tive noise perturbations are given, respectively. At last,
the feedback control method is used to set appropriate
controllers to realize control of the Julia set, and the
influence of noise on the Julia set of the SIS model is
reduced. The reasonwhy thismethod is effective is also
explained.

Keywords Julia sets · Additive noise · Multiplicative
noise · Estimations · The feedback control

1 Introduction

With the continuous development of human civiliza-
tion, the medical and health care level has been greatly
improved compared with the past. However, there
are still new infectious diseases posing challenges
to humanity. In 2020, the outbreak of COVID-19
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took many innocent lives and brought unprecedented
impacts on the global economy and trade. To better pre-
vent and control infectious diseases, many researchers
should analyze them fromamathematical point of view.
In fact, infectious disease models have been studied
since the 20th century [1–3].Newmathematicalmodels
are built based on classical models to study the trans-
mission mechanism and coping strategies of infectious
diseases, computer viruses, and rumors in groups. Fat-
mawati et al. [4] considered a novel fractional model
to investigate the (tuberculosis) TB model dynamics
with two age groups of humans. Liu et al. [5] proposed
a mechanism considering the co-evolution between
information states and network topology simultane-
ously. Alshammari andKhan [6] established a complex
SIR epidemic dynamicsmodel based on nonlinear inci-
dence and nonlinear recovery considering the impact of
available hospital beds and reduction interventions on
the spread of infectious diseases. In recent years, many
scholars have focused on the stability and existence
of periodic solutions, the equilibrium position of equi-
librium points, and the search for bifurcation points.
Pastor and Vespignani [7] studied epidemic dynamics
in bounded scale-free networks with soft and hard con-
nectivity cut-offs. Amine et al. [8] proposed the global
dynamics of a SIRI epidemic model with latency and
a general nonlinear incidence function. Khan et al. [9]
formulated a new mathematical model for the dynam-
ics of COVID-19 with quarantine and isolation. On
account of the effect of limited treatment resources on
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the control of epidemic disease, a saturated removal
rate is incorporated into Hethcote’s SIR epidemiologi-
cal model by Zhang and Suo [10].

Nature is full of randomness, the human society
is. In some economic and physical models, stochastic
perturbation exists widely, leading to the complexity
and uncertainty of some factors in the models. When
the influence brought by these disturbances cannot be
ignored, designing the system according to the deter-
ministic theory will make the system behavior deviate
from the original requirements, which requires people
to analyze the model in an uncertain sense. Zhang and
Chen [11] discussed the H∞ control problem for a class
of nonlinear stochastic systems with both state- and
disturbance-dependent noise.Ugrinovskii andPetersen
[12] studied existence and optimality properties of so-
called guaranteed cost controllers for an uncertain sys-
tem subject to structured uncertainty. They consider the
effects of random disturbances on the system. In addi-
tion, noise also has a significant influence on chaos and
fractals. Argyris and Andreadis [13] studied the influ-
ence of noise on a mathematical model which contains
the coexistence of chaotic attractors. Inspired by the
study of noise of the Mandelbrot map in two param-
eter deformation families, Negi and Rani [14] intro-
duced a new noise criterion and analyzed its effect
on the usual and superior Mandelbrot maps. Wang et
al. [15] researched on the structural characteristic and
the fission-evolution law of the generalized Mandel-
brot set (generalized M set in short) perturbed by com-
posing noise of additive and multiplicative, analyzed
the effect of random perturbation to the generalized M
set. Wang et al. [16] researched the structural charac-
teristic and the fission-evolution law of four different
kinds of generalized Julia set (generalized J set in short)
with different parameter c, analyzed the effect of ran-
dom perturbation to the generalized J set, and illumi-
nated the stability of the generalized J set. Due to the
widespread existence of random disturbance, filtering
is vital to observe the true value of the model better.
Fridman et al. [17] considered the problem of robust
H2 estimation of a combination of states of a station-
ary linear systemwith time delays. Nkwayep et al. [18]
developed an integrated Kalman filter (EnKf) method
to estimate immeasurable state variables and unknown
parameters in COVID-19models. Nguang and Shi [19]
considered the problemof designing a delay-dependent

robust H∞ filter for time delay Takagi-Sugeno fuzzy
models. Inspired by the denoising effect of filtering in
the noise-affected system, estimations of the Julia sets
of the noise-affected model are given to observe better
the impact of noise on the overall shape of the Julia set
of the SIS(susceptible-infectious-susceptible) model.

AfterMandelbrot published an epoch-making paper
entitled “How Long Is the Coast of Britain?” in the
20th century [20], people realized that fractals could
be used to explain some irregular or not smooth figures
or sets. More and more scholars devoted themselves to
the study of fractals. Gujar andBhavsar [21] considered
the generalized transformation function z → zα+C for
generating fractal images. The symmetries of Julia sets
of Newton’s method is investigated by Yang [22]. Sun
and Zhang [23] studied the forced Brusselator model
from the fractal viewpoint. Zhang et al. [24] introduced
a visualization of Julia sets of the complex Henon map
system with two complex variables. In recent years,
some scholars have tried to study the fractal character-
istics of some fractional models and discuss the fractal
dynamics of models from the perspective of fractional
order. Sun and Liu [25] introduced the fractional Potts
model on diamond-like hierarchical lattices. Wang et
al. [26] investigated the structures and properties of
the spatial Julia set generated by a fractional com-
plex Lotka-Volterra system with noise. In nature and
science, fractals are still a new field, and it has more
functions and significance to be studied. Therefore, the
fractal characteristics of the SISmodel under noise dis-
turbance are considered.

Due to the importance of the SIS model in the
infectious disease model, the fractal characteristics of
the SIS model under noise disturbance are discussed.
Firstly, the discrete form of the SIS model is given,
and the Julia set of the SIS model is made according to
it. Secondly, additive and multiplicative noise effects
on Julia sets of discrete-form SIS models are consid-
ered respectively. Thirdly, to more clearly observe the
impact of noise on the overall shape of the Julia set of
the SIS model, estimations of the Julia sets of the SIS
model under the influence of noise are given. Finally,
according to the matrix disturbance theory, two con-
trollers are designed using the feedback control method
to control the Julia set of the model. After control, the
Julia set of the model has a larger attractive domain and
becomes more stable under noise interference.
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2 The SIS model in discrete form and the Julia set

In the SIS model, the birth rate and death rate are not
considered, and the population is divided into infected
and susceptible people. Susceptible people have a cer-
tain chance to become infected after exposure to the
virus, and infected people become susceptible after
effective treatment. The two types of people will carry
out transformation between each other [27], thus{

dx
dt = cxy − ux,
dy
dt = −cxy + ux,

(1)

where x is the infected persons, y is the susceptible per-
sons, c is the transmission rate of infected persons con-
tacting susceptible persons, and u is the effective cure
rate of infected persons becoming susceptible persons.

Discretized the model (1) and approximate differ-
ence form of the SIS model is obtained{ x(t+Δt)−x(Δt)

Δt = cxy − ux,
y(t+Δt)−y(Δt)

Δt = −cxy + ux,
(2)

of course, the smaller Δt is, the closer (2) is to (1).
After the transformation, then we have{
x(t + Δt) = ax(t)y(t) − bx(t) + x(t),
y(t + Δt) = −ax(t)y(t) + bx(t) + y(t).

(3)

where a = cΔt and b = uΔt .
Using xn+1 for x(t + Δt), yn+1 for y(t + Δt), xn

for x(t), yn for y(t), then (3) becomes{
xn+1 = axn yn − bxn + xn,
yn+1 = −axn yn + bxn + yn .

Definition 2.1 [23,24] The filled-in Julia set of func-
tion f on the complex plane is defined as: K ( f ) =
{z ∈ C | f k(z) � ∞, k → ∞}, the Julia set of the
function f is defined to be the boundary of K ( f ), i.e,
J ( f ) = ∂K ( f ).

The image of the Julia set of the SIS model is
given in Fig.1 when a = 0.008, b = 0.016. In all
the images that follow in this article, we always set
a = 0.008, b = 0.016. Fig.1 is the Julia set of the
SIS model, and the area surrounded by the curve is the
filled-in Julia set. Suppose the initial values of the num-
ber of infected persons x and the number of susceptible
persons y are in the filled-in Julia set. In this case, the
infectious disease is relatively stable, and the number
of both parties does not increase to infinity over time.
Suppose the initial values of the number of infected per-
sons and the number of susceptible persons exceed this
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Fig. 1 Original Julia set of the SIS model when a = 0.008, b =
0.016

area. In this case, at least one of the number of infected
persons and the number of susceptible persons tends to
infinity [28].

3 Julia sets of the SIS model perturbed by noise

In real life, there will always be noise to disrupt the
model due to the presence of random interference. In
some cases, the effect of noise on the model cannot be
ignored. In the following discussion, the impact of dif-
ferent additive and multiplicative noises on the fractal
characteristics of the SIS model will be observed by
adjusting parameters to change the noise.

3.1 The SIS model perturbed by the additive noise

Additive noise has nothing to do with the designed
signal, but always interferes with the designed signal.
Noise is present whether there is a signal or not. Some
random factors, such as seasonal changes, population
movements, etc., may lead to random changes in the
number of infected and susceptible people with the dis-
ease. The SIS model with the additive noise [15] is{
xn+1 = axn yn − bxn + xn + μn,

yn+1 = −axn yn + bxn + yn + ωn,
(4)

where a and b are still described above, μn is the noise
obeying N (θ1, σ

2
1 ), ωn is the noise obeying N (θ2, σ

2
2 ).

xn and μn are mutually independent, yn and ωn are
mutually independent.
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To better observe the influence of additive noise on
Julia sets of the SISmodel, normal additive noises with
different mean and variance are added to the model.
Images of each Julia set of the SISmodel with different
additive noises are shown in Fig. 2.

It can be seen from Fig. 2 that when the model is
affected by normal additive noise with mean zero and
slight variance, the Julia set of the SIS model and the
filled-in Julia set do not change basically (Fig. 2(a)).
With the increase of noise variance, the Julia set of the
SIS model under the influence of noise is no longer a
series of curves and is composed of a large number of
irregular points (Fig. 2(b) and 2(c)). However, when the
mean value of noise is not 0 and its value is significant,
the overall shape of the Julia set changes significantly
(Fig. 2(e), 2(d) and 2(f)).

3.2 The SIS model perturbed by the multiplicative
noise

The relationship between multiplicative noise and the
signal is multiplicative. If the signal exists, it exists. If
the signal does not exist, it does not exist. The random-
ness of multiplicative noise is considered to be caused
by the time-varying or nonlinearity of the system, and it
has stronger time-varying and anti-filtering properties
than additive noise. Assuming that the cure rate will
increase or decrease due to virus mutation or vaccine
development, the multiplicative noise model [15] can
be obtained as follows.{
xn+1 = axn yn − bxn + xn + αnxn,
yn+1 = −axn yn + bxn + yn − αnxn,

(5)

where αn is the noise obeying N (θ3, σ
2
3 ) , which is

independent of xn and yn .
Normal multiplicative noise with zeromean and dif-

ferent variance is added to the model to better observe
the effect of multiplicative noise on the Julia set of the
SIS model. Images of each Julia set of the SIS model
with different multiplicative noises are shown in Fig.
3.

It can be seen from the images that under the influ-
ence of multiplicative noise, the Julia set of the SIS
model changes to some extent, and some randomly dis-
tributed points show an unstable state of the Julia set
of the SIS model. It’s not difficult to see that the noise
has a more significant impact on the Julia set near the
x − axis than the Julia set in the rest of the image

(Fig. 3(a) and 3(b)) because the multiplicative noise
random terms is related to xn . When the variance of
multiplicative noise is gradually increased, similar to
the influence of additive noise on the model, the Julia
set of the SIS model becomes more and more unstable
(Fig. 3(a), 3(b), 3(c) and 3(d)).

In general, with the increase of variance of both
additive noise and multiplicative noise, the Julia set
of the SIS model tends to expand outward and squeeze
inward, indicating that the influence of noise will make
the Julia set of the SISmodel become “unstable”.When
the added noise variance is slight and the mean is zero,
the overall shape of the Julia set will not change much.
When the noise variance is further increased, the Julia
set is composed of many points instead of smooth
curves.

We will analyze the effect of the Julia set per-
turbation on epidemics from the fractal perspective.
The filled-in Julia set can be thought of as stable
domains within which epidemics do not suddenly
become uncontrollable. The Julia set can be seen as the
“threshold” at which the epidemic will not break out,
but once this “threshold” is exceeded, the epidemicwill
get out of control. The Julia set after noise perturbation
is in a “random” state, and the “threshold” becomes
uncertain, which is very unfavorable for our prediction
and control.

4 Estimations of Julia Sets of the SIS Model under
Noise Perturbation

Because in the iterative process of the initial value
points of the SIS model, the output is affected by the
input and the noise disturbance, which makes the out-
put Julia set cannot be accurately observed. To better
observe the Julia set, we suppress the noise signal and
increase the smoothness of the Julia set of the model
perturbed by noise, thereby realizing the estimations of
the Julia sets of the SIS model disturbed by noise.

4.1 Estimations of Julia Sets of the SIS Model under
Additive Noise Perturbation

Write (4) in vector form

ϕn+1 = F(ϕn) + ξn,
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Fig. 2 Julia sets under
different additive noise
perturbations
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(a) μn ∼ N(0, 52); ωn ∼ N(0, 52)
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(b) μn ∼ N(0, 202); ωn ∼ N(0, 202)
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(c) μn ∼ N(0, 402); ωn ∼ N(0, 402)
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(d) μn ∼ N(−40, 202); ωn ∼ N(40, 202)
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(e) μn ∼ N(40, 202); ωn ∼ N(−40, 202)
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(f) μn ∼ N(−50, 202); ωn ∼ N(0, 202)
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Fig. 3 Julia sets of under
different multiplicative
noise perturbations
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(a) αn ∼ N(0, 0.082)

-1000 -800 -600 -400 -200 0 200 400 600 800 1000
-1000

-800

-600

-400

-200

0

200

400

600

800

1000

(b) αn ∼ N(0, 0.152)
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(c) αn ∼ N(0, 0.252) (d) αn ∼ N(0, 0.502)

where ϕn =
[
xn
yn

]
, F(ϕn) =

[
axn yn − bxn + xn

−axn yn + bxn + yn

]
,

ξn =
[
μn

ωn

]
. In this subsection, let μn be the noise

obeying N (0, σ 2
1 ), ωn be the noise obeying N (0, σ 2

2 ).
Referring to Hu’s construction in [29], we design{
ϕk+1|k = F(ϕk|k),
ϕk+1|k+1 = ϕk+1|k + g(

∑n
i=1 ϕi

k+1
N − ϕk+1|k),

whereϕk+1|k is the one-step prediction ofϕk atmoment
k and ϕk|k is the estimation of ϕk at moment k, N is the
number of runs of the whole model and ϕi

k+1 is the i
the run of the whole model at ϕk+1, g is a constant with
0 < g < 1.

The explanation is given below. It is natural to use
F(ϕk|k) to get the one-step prediction of ϕk+1|k at
moment k according to [29]. Next we explain how to

get ϕk+1|k+1. For each Julia set to be iterated at the

initial point, namely

[
x1
y1

]
. In this case, to make sure

it’s unbiased, we directly take the value of ϕ1|1 here

(ϕ1|1 =
[
x1
y1

]
). By adding noise, the observed value

ϕ2, ϕ3, · · · , ϕn with noise can be obtained. Run the
whole model N times at ϕ1 to get ϕk

2 , ϕ
k
3 , · · · , ϕk

n ,
where k = 1, 2, · · · , N . According to Gaussian’s
least squares estimate, the most likely value of ϕn|n is∑n

i=1 ϕi
k+1

N . Although the value of ϕn|n as
∑n

i=1 ϕi
k+1

N can
minimize the error between the estimated value and the

observed value, the value of ϕn|n as
∑n

i=1 ϕi
k+1

N still has
great inaccuracy since ϕk

n is the observed value con-
taining noise. ϕk+1|k is the one-step prediction of ϕk

at moment k. ϕk+1|k contains the information of ϕk|k ,
in order to better estimate the real value of the model
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(a) before estimation
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(b) after estimation

Fig. 4 Comparison of Julia sets of SIS model affected by additive noise before and after estimation when μn ∼ N (0, 152); ωn ∼
N (0, 152)

at monent k + 1, ϕk+1|k is used to construct ϕk+1|k+1.
One way is to carry out weighted processing, then we
have

ϕk+1|k+1

= (1 − g)ϕk+1|k + g

∑n
i=1 ϕi

k+1

N
= ϕk+1|k

+g(

∑n
i=1 ϕi

k+1

N
− ϕk+1|k).

When μn ∼ N (0, 152) and ωn ∼ N (0, 152), the
Julia sets of SISmodel affected by additive noise before
and after estimation are given in Fig. 4.

4.2 Estimations of Julia Sets of the SIS Model under
Multiplicative Noise Perturbation

Write (5) in vector form

ϕn+1 = F(ϕn) + ξn,

where ϕn =
[
xn
yn

]
, F(ϕn) =

[
axn yn − bxn + xn

−axn yn + bxn + yn

]
,

ξn =
[

αnxn
−αnxn

]
. In this subsection, let αn be the noise

obeying N (0, σ 2
3 ).

Referring to Hu’s construction in [29], we design⎧⎨
⎩

ϕk+1|k = F(ϕk|k),

ϕk+1|k+1 = ϕk+1|k + g

(∑n
i=1 ϕi

k+1
N − ϕk+1|k

)
,

whereϕk+1|k is the one-step prediction ofϕk atmoment
k and ϕk|k is the estimation of ϕk at moment k, N is the
number of runs of the whole model and ϕi

k+1 is the i
th run of the whole model at ϕk+1, g is a constant with
0 < g < 1.

When αn ∼ N (0, 0.082), the Julia sets of SISmodel
affected by multiplicative noise before and after esti-
mation are given in Fig. 5.

As can be seen from the image comparison (Fig. 4(a)
and 4(b), Fig. 5(a) and 5(b)), the number of some ran-
dom points in the photo is significantly reduced after
estimation, which indicates that the noise signal is sup-
pressed. In addition, the smoothness of the Julia set of
the model perturbed by noise is improved, and we can
more clearly observe the effect of additive noise and
multiplicative noise on the overall shape of the model,
respectively.
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(a) before estimation
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(b) after estimation

Fig. 5 Comparison of Julia sets of SIS model affected by multiplicative noise before and after estimation when αn ∼ N (0, 0.082)

5 Control of Julia set of the SIS model under noise
disturbance

In a chaotic system, feedback control can effectively
control the chaotic system to the unstable equilibrium
point or periodic solution, and the control effect has
strong robustness under weak noise interference [30].
In the following, we apply the feedback control method
to the noise-affected system to better control the Julia
set.

The original model of the system is{
xn+1 = axn yn − bxn + xn,
yn+1 = −axn yn + bxn + yn .

(6)

Let

f (xn, yn) = axn yn − bxn . (7)

Substitute (7) into the original system (6) and we get{
xn+1 = f (xn, yn) + xn,
yn+1 = − f (xn, yn) + yn .

(8)

(x∗, y∗) is a equilibrium point of the system if and only
if{
x∗ = f (x∗, y∗) + x∗,
y∗ = − f (x∗, y∗) + y∗.

Then we have

f (x∗, y∗) = 0.

The equilibrium points of the system are

{(x, b
a

) | ∀x ∈ R}, {(0, y) | ∀y ∈ R}.
The following first considers the control of the orig-

inal model, then adds noise, and uses images to show
whether the Julia set of the controlled model has good
robustness.

5.1 Linear feedback control

Here, we only consider the case where a �= 0, b �= 0
and the equilibrium point (x∗, y∗) = (0, b

a ) is consid-
ered.

In the system, the first coordinate of the equilibrium
point is set to 0 in the hope that the number of infected
personswill approach 0 as far as possible under control,
and the second coordinate is set to b

a for the convenience
of subsequent eigenvalues calculation.

Add controllers to the system (8), then we get{
xn+1 = f (xn, yn) + xn + u1,
yn+1 = − f (xn, yn) + yn + u2.

(9)

Using linear feedback controllers{
u1 = −k(xn − x∗),
u2 = −k(yn − y∗). (10)
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Then we get{
xn+1 = f (xn, yn) + (1 − k)xn + kx∗,
yn+1 = − f (xn, yn) + (1 − k)yn + ky∗. (11)

Consider the following mapping

B(x, y) =( f (x, y) + (1 − k)x + kx∗,
− f (x, y) + (1 − k)y + ky∗)

=(axy + (1 − k − b)x + kx∗,
− axy + bx + (1 − k)y + ky∗).

(12)

The Jacobian matrix of (12) is

J (B) =
[
ay + (1 − k − b) ax

−ay + b −ax + (1 − k)

]
.

At the equilibrium point (x∗, y∗) = (0, b
a ), the Jaco-

bian matrix of (12) becomes

J (B) =
[
1 − k 0
0 1 − k

]
. (13)

The eigenvalues of the matrix(13) are

λ1,2 = 1 − k.

It is well known that |λ1,2| < 1 is one of the conditions
to guarantee the stability of the equilibrium.Then 0 <

k < 2.
Under linear feedback control, the Julia sets of the

SISmodel affected by noise are given in Fig. 6. Among
them, Fig. 6(a) 6(b) are the effect images of the con-
trolled system perturbed by the additive noise when
μn ∼ N (0, 152);ωn ∼ N (0, 152). Fig. 6(c) 6(d) are
the effect images of the controlled system perturbed by
the multiplicative noise when αn ∼ N (0, 0.082).

5.2 Nonlinear feedback control

Here, the equilibrium point (x∗, y∗) = (0, b
a ) is con-

sidered and a �= 0, b �= 0
The controlled system is{
xn+1 = f (xn, yn) + xn + u1,
yn+1 = − f (xn, yn) + yn + u2.

(14)

Using nonlinear feedback control, the controllers are
designed as{
u1 = −k( f (xn, yn) + xn − x∗),
u2 = k( f (xn, yn) − yn + y∗). (15)

Put (15) into (14) and we obtain{
xn+1 = (1 − k) f (xn, yn) + (1 − k)xn + kx∗,
yn+1 = (−1 + k) f (xn, yn) + (1 − k)yn + ky∗.(16)

Consider the following mapping

B(x, y) = ((1 − k) f (x, y) + (1 − k)x

+ kx∗, (−1 + k) f (x, y) + (1 − k)y + ky∗)

= ((1 − k)(axy − bx) + (1 − k)x

+ kx∗, (−1 + k)(axy − bx) + (1 − k)y + ky∗).

(17)

The Jacobian matrix of the system (17) is

J (B) =
[
(1 − k)(ay − b) + (1 − k) (1 − k)ax

(−1 + k)(ay − b) (−1 + k)ax + (1 − k)

]
.

At the equilibrium, the Jacobian matrix of the system
(17) becomes

J (B) =
[
1 − k 0
0 1 − k

]
. (18)

The eigenvalues of the matrix (18) are

λ1,2 = 1 − k.

Then we get |λ1,2| < 1, that is 0 < k < 2 to guar-
antee the equilibrium to be stable.

Under nonlinear feedback control, the Julia sets of
the SIS model affected by noise are given in Fig. 7.
Among them, Fig. 7(a) 7(b) are the effect images of the
controlled system perturbed by the additive noise when
μn ∼ N (0, 152);ωn ∼ N (0, 152), Fig. 7(c) and 7(d)
are the effect images of the controlled system perturbed
by the multiplicative noise when αn ∼ N (0, 0.082).

Fig. 6(b), 6(d) and Fig. 7(b) 7(d) show that some
random points in the Julia set of the SIS model per-
turbed by noise are significantly reduced after feedback
control, indicating that the Julia set of the system has
better robustness after control. In addition, the filled-
in Julia set becomes larger. The points in the filled-in
Julia set will not tend to infinity under iteration, which
means that after control, there is a larger stable region
for infectious diseases. In this region, the number of
infected people is relatively stable and will not rapidly
become uncontrollable. In conclusion, the controllers
adopted achieve the desired control effect.

The effectiveness of the feedback control method
used in this model is explained below. It is easy to cal-
culate that the eigenvalues at the fixed point (0, b

a ) are
1. Under noise disturbance, the modulus of the eigen-
values of the jacobianmatrix at (x∗, y∗)may be greater
than or less than 1. Whether the fixed point is attrac-
tive or not may change in the iteration process. Still,
the Julia set is the boundary of the attractive domain
for attractive fixed points, which finally leads to the
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Fig. 6 The Julia sets of SIS model perturbed by noise after the linear control

unstable state of the Julia set. By the feedback con-
trol method, the control coefficient k can be reasonably
taken so that the modulus of the eigenvalues of the con-
trolled system is less than 1. According to matrix per-

turbation theory, the system’s eigenvalues will slightly
changewhen subjected to small perturbations. The sys-
tem’s stability will not change when its equilibrium
point is of a non-central type. In other words, in this

123



Estimations and Control of Julia Sets 4941

-1500 -1000 -500 0 500 1000 1500
-1500

-1000

-500

0

500

1000

1500

(a) k = 1
2

-1500 -1000 -500 0 500 1000 1500
-1500

-1000

-500

0

500

1000

1500

(b) k = 1
3

-1500 -1000 -500 0 500 1000 1500
-1500

-1000

-500

0

500

1000

1500

(c) k = 1
2

-1500 -1000 -500 0 500 1000 1500
-1500

-1000

-500

0

500

1000

1500

(d) k = 1
3

Fig. 7 The Julia sets of SIS model perturbed by noise after nonlinear control

system, the feedback control method is used to make
themodulus of the eigenvalues of the controlled system
less than 1, so that (x∗, y∗) is the attractive equilibrium

point to reduce the interference of noise on the Julia set
of SIS model.

From the comparison of images(Fig. 6(b) and 6(d),
Fig. 7(b) and 7(d)), it can be seen that after feedback
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control, the control effect of additive noise is better
than that of multiplicative noise. This is because the
random terms of additive noise have nothing to do with
xn and yn and thus have little effect on the Jacobian
of the system. Unlike additive noise, the random term
selected when multiplicative noise is added is related
to xn , so the Jacobian matrix of the system will also
be strongly influenced by the random term. In this way,
themodulus of the eigenvalues of the controlled system
may be greater than 1, so the equilibrium point is not
stable.

6 Conclusion

This paper mainly introduces the estimations and con-
trol of the Julia set of the SIS model under noise dis-
turbance. It is very realistic and meaningful to present
the SIS model in discrete form and discuss the pertur-
bation of noise on its fractal characteristics. To observe
the effect of noise on the overall shape of the Julia set
of the SIS model, we present estimates for the Julia set
of the SIS model perturbed by noise. In addition, two
kinds of controllers are set up according to the feed-
back control method. The image results show that the
controllers can effectively control the fractal character-
istics of the model and increase the anti-interference of
the model. Finally, the reasons why the feedback con-
trol method is effective for the model are explained.
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