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Abstract This paper is devoted to a detailed analysis
of the appearance of frequency combs in the dynamics
of a micro-electro-mechanical systems (MEMS) res-
onator featuring 1:2 internal resonance. To that pur-
pose, both experiments and numerical predictions are
reported and analysed to predict and follow the appear-
ance of the phononic frequency comb arising as a
quasi-periodic regime between two Neimark-Sacker
bifurcations. Numerical predictions are based on a
reduced-order model built thanks to an implicit con-
densation method, where both mechanical nonlinear-
ities and electrostatic forces are taken into account.
The reduced order model is able to predict a priori,
i.e. without the need of experimental calibration of
parameters, and in real time, i.e. by solving one or two
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degrees-of-freedom system of equations, the nonlinear
behaviour of the MEMS resonator. Numerical predic-
tions show a good agreement with experiments under
different operating conditions, thus proving the great
potentiality of the proposed simulation tool. In particu-
lar, the bifurcation points and frequency content of the
frequency comb are carefully predicted by the model,
and themain features of the periodic and quasi-periodic
regimes are given with accuracy, underlining that the
complex dynamics of suchMEMS device is effectively
driven by the characteristics of the 1:2 internal reso-
nance.

Keywords MEMS · 1:2 internal resonance · Numeri-
cal modelling · Resonators · Frequency comb

1 Introduction

The spread ofMEMS in the consumermarket is rapidly
increasing thanks to their small dimensions, high per-
formances and low costs. At the same time, new appli-
cation fields for MEMS devices are emerging and
rapidly evolving, e.g. Internet of Things, Aerospace,
high-end applications, virtual or augmented reality.
This is posing an important challenge toMEMSdesign-
ers that have to simultaneously improve the effective-
ness of actual devices and find innovativeworking prin-
ciples that go beyond the actual state of the art mainly
limited to linear dynamic behaviours of mechanical
components. In this context, nonlinear phenomena usu-
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ally avoided by design [28,68] are starting to emerge as
promising solutions to improve performances of exist-
ing MEMS devices [4,61] and/or to design a new gen-
eration of sensors and actuators [37,73].

Among other nonlinear phenomena, phononic fre-
quency combs, which are the mechanical counterparts
of photonic frequency combs largely studied in the
literature with specific reference to optic metrology
[85], are attracting interest from the MEMS commu-
nity since they can be employed as efficient sensing
mechanisms [23] or promising solutions for vibration
energy harvesting [6].

Phononic frequency combs canbegenerated through
contact mechanisms [29], mutual synchronization of
resonators [56,94] or internal resonance [10]. Internal
resonance is defined in nonlinear vibration theory as an
existing commensurate frequency relationship, which,
in turn, gives rise to important coupling and energy
exchange between the internally resonant modes. It is
also known as favouring the appearance of phononic
frequency combs, see e.g. [11,72].

In [22], thefirst experimental evidence for a phononic
frequency comb is reported. In particular, through the
intrinsic coupling of the driven phonon mode with a
subharmonic mode, the authors generated a phononic
frequency comb. Other works in the same direction
confirmed thefinding; for example, in [64,65], focusing
on a piezoelectric resonator, a frequency comb based
on non-degenerate parametric pumping is studied in
depth. Furthermore, in [7] a tunable resonator using a
suspended MoS2 monolayer is employed to generate
frequency combs.

Although several works present experimental evi-
dences of phononic frequency combs inMEMSdevices,
only few contributions focus on the modelling of these
and other nonlinear phenomena [33,34,44,49,67,80].
Most of these works utilize structural theories for
beams and analytical expressions for electrostatics.
However, it has been recently shown [92] that even for
simple beam-like structures a quantitative agreement
with experiments is difficult to achieve. As a conse-
quence, the main aim of this investigation is to propose
a general technique, applicable also to complex and
realistic MEMS, for which simplified theories are not
applicable.

To simulate a full order model, i.e. finite element
models, a number of numerical methods are available.
These approaches represent an appealing alternative
to analytical models that exploit simplified beams and

shells structural theories, whose applicability to com-
plexMEMS devices is limited [53,62]. Despite the ver-
satility of full order models, the computational bur-
den remains the major drawback even using highly
efficient methods like harmonic balance techniques
or shooting procedures[69]. Consequently, the cre-
ation of fast, a-priori, reliable and nonlinear multi-
physics tools for dynamic simulation would represent a
ground-breaking milestone in MEMS design and test-
ing [37,43,77].

MOR techniques allow in principle to reduce the
full-order model to a few degrees of freedom system,
thus significantly lowering the computational cost. Dif-
ferent strategies that make use of linear normal modes
as an optimal projection basis upon which the equa-
tions of motion can be reduced are actually routinely
applied in linear problems arising from vibratory sys-
tems likeMEMS.However, their extension to nonlinear
dynamic problems is still an open issue that is attracting
an increasing attention from the scientific community.
In general and as done, for example, in [26,84], one can
distinguish between linear and nonlinear techniques
for model order reduction.

Linear ROMs are typically Galerkin projections
onto low-dimensional linear subspaces. Among this
class of methods, one of the simplest solutions is pro-
vided by the STiffness Evaluation Procedure (STEP)
[58], which uses a selection of linear eigenmodes to
compute the coupling coefficients. In order to deter-
mine all the coupling terms, the STEP method requires
identifying and considering all the high-frequency
modes [24,87], e.g. axial and lateral contraction in
beams, thus making its application to 3D FEMmodels
very critical. Suchmodes are indeed difficult to identify
and compute without a deep a-priori knowledge of the
structural behaviour of the system under study. Never-
theless, among Linear ROMs, the system eigenmodes
are not the only choice for the identification of sub-
space bases.Avalid alternative is represented by proper
orthogonal decomposition (POD) methods that gener-
ates the linear basis through a data-driven approach.
Subspace bases are built from data obtained through
simulations of a limited amount of configurations of
the system by optimizing their orientation to better fit
the curvatures of the nonlinear manifold underlying the
dynamics [2,3,45].

Among the nonlinear ROMs available so far in
the literature, one can mention the quadratic mani-
fold built from modal derivatives [42,71], that takes
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into account the amplitude dependence of mode shapes
and eigenfrequencies. However, since the nonlinear
mapping defined in that case is by definition velocity-
independent, this approach is limited tomoderate trans-
formations and apply only in the presence of sufficient
slow/fast separation between the slave andmaster coor-
dinates [39,84,88]. Another class of nonlinear ROMs
that deserves attention is represented by the methods
based on the concept of nonlinear normalmode (NNM)
firstly proposed by Rosenberg [70]. A NNM has been
firstly defined as a synchronous vibration of the sys-
tem and then generalized by the notion of invariant
manifold [75,81–83] and spectral submanifold [38,66].
Despite the generation of ROMs based on the con-
cept of NNM has been proposed for both small sys-
tems with few degrees of freedom (dofs) and complex
structures involving inertia and geometrical nonlineari-
ties [63,89], its extension tomultiphysic problems (e.g.
electromechanics in MEMS) has not been addressed
yet and poses important computational challenges.

The implicit condensation (IC) approach is a versa-
tile method that can be used in a non-intrusive manner
to derive efficiently accurate ROMswhen a small num-
ber of master modes are needed [21,41,60]. It is a non-
linear method in the sense that the nonlinear relation-
ship between the coordinates is deduced from a stress
manifold built by applying series of static loads. This
method has been recently tailored for MEMS struc-
tures exhibiting damping, geometric and electrostatic
nonlinearities. In particular, a very good agreement
between experiments and numerical predictions has
been shown in [92] for two double-ended-tuning-fork
resonators electrostatically actuated according to their
first bending mode and in [27] for a MEMS gyroscope
test structure exhibiting 1:2 internal resonance.

In this work, we take a step further by applying the
proposed simulation technique to design aMEMS arch
resonator exhibiting a 1:2 internal resonance leading to
a phononic frequency comb.

MEMSArch resonators have been extensively stud-
ied in the literature, e.g. [1,35,36] and theoretical and
experimental analyses on 1:2 internal resonance are
available as well [25,32,51,74,90]. Nevertheless, only
few applications target their numerical simulation and
focus on the 1:2 internal resonance as a way to gener-
ate a frequency comb [44]. In particular, the analytical
results presented in [27] and the preliminary numerical
experiences reported in [25] are deepened to demon-
strate that the proposed ab initio simulation process

allows predicting in real-time the complex nonlinear
dynamics of MEMS resonators and at the same time
guides the electro-mechanical design. Interestingly, the
ROM is obtained directly from the FE model in a non-
intrusive manner, without any tuned parameter fitted
from the experiments, and provides excellent predic-
tions when compared to experiments, underlying the
accuracy of the method.

The paper is organized as follows: in Sect. 2,
the MEMS arch resonator mechanical design is dis-
cussed together with the electrostatic actuation/readout
scheme, while the electromechanical IC ROM is intro-
duced in Sect. 3. Experimental data measured on the
fabricatedMEMS arch resonator are reported in Sect. 4
in comparison with numerical results obtained by solv-
ing the IC ROM through different techniques. Conclu-
sions are finally reported in Sect. 5.

2 Arch resonators

Toguarantee the activation of the 1:2 internal resonance
able to generate phononic frequency combs by design,
we optimized the geometry of aMEMS resonator start-
ing from the topology reported in Fig. 1. An electro-
statically actuatedMEMS arch resonator is indeed cho-
sen as a very promising candidate thanks to the simple
geometry and the strong nonlinear dynamic behaviour.
In particular, the asymmetric shape of the arch guaran-
tees non-vanishing quadratic contributions in the elas-
tic force, the clamped–clamped condition is respon-
sible of cubic terms, while the parallel-plate scheme
employed for the electrostatic actuation and readout
provides electrostatic nonlinearities (see Sect. 3.3).

The arch resonator has been fabricated with the
Thelma process of STMicroelectronics [9] and is made
of polysilicon, with E = 167 GPa, ν = 0.22 and
ρ = 2330 kg/m3. It consists of two curved parallel
clamped–clamped beams coupled through a vertical
rigid connection of length 27µm and in-plane thick-
ness of 10 µm. Each beam has a cross section of 5µm
x 24µm, a rectified length of 532µm and is suspended
with respect to the substrate through the two lateral
anchors.

To guarantee electrostatic actuation and readout,
fixed electrodes are also properly designed, as shown
in Fig. 1. At rest, the distance between the MEMS arch
resonator and the fixed electrodes is equal to 1.8 µm
according to fabrication constraints. When a voltage
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Fig. 1 a Scanning electron
microscopy (SEM) image of
the MEMS arch resonator
fabricated through the
Thelma process of
STMicroelectronics. b
Schematic view of the
electrostatic
actuation/detection
electrodes: (1) resonator
(VDC), (2) tuning electrodes
(VT), (3) driving electrodes
(VAC), (4) sensing
electrodes (ground) and (5)
dummy electrodes (VDC)

(a)

(b)

difference is applied between theMEMS resonator and
the fixed electrodes, an electrostatic force is generated.
Depending on the frequency of the applied voltage and
on the employed polarization scheme, it is possible to
actuate the arch mechanical modes reported in Fig. 2.

As an example, the polarization scheme reported in
Fig. 1b is used to actuate the first flexural mode of
the resonator (Fig. 2a). A time-varying bias voltage
VAC sinωt is imposed on the drive electrodes (coloured
in green in Fig. 1b), while the mechanical structure
(coloured in blue in Fig. 1b) is kept at a constant VDC
voltage. Sense electrodes (coloured in red in Fig. 1b)
are grounded to allow for the readout, while tuning
electrodes (coloured in light blue in Fig. 1b) are kept
at voltage VT to shift the resonance frequency of the
excitedmechanicalmode through the electrostatic soft-
ening effect [8]. Finally, dummy electrodes (coloured
in orange in Fig. 1b) are kept at the same DC voltage of
the MEMS arch resonator. The numbering associated
with the different coloured portions in Fig. 1b will be
utilized in Sect. 3.3 to define electrostatic forces.

In the following, we will focus on the first (Fig. 2a)
and sixth (Fig. 2f) eigenmodes of the arch resonator
whose natural frequencies are estimated through afinite
element method (FEM) modal analysis performed in
COMSOL Multiphysics and read 416.66 kHz and
834.15 kHz, respectively. We will refer to these modes
as the first and second in-plane flexural modes of the
MEMS, while the mode shown in Fig. 2c is an out-of-
plane flexural mode and the modes reported in Fig. 2b,
d, e are all related to localised bending modes of the
curved half-beams. It is worth mentioning that the cen-
tral clamp between the curved beams has shifted the

anti-symmetric bending mode to much higher frequen-
cies.

Since the natural frequencies of the first and second
bending modes of the resonator are in a ratio close to
1:2 by design and tuning electrodes can be exploited to
slightly modify the ratio as desired through the elec-
trostatic softening effect, the 1:2 internal resonance
between the first and the second bending modes can
be easily activated for reasonable amplitudes of the
drive voltage as demonstrated by the authors in [93].
Differently from [93], we are here able to activate the
phononic frequency comb for specific combinations of
the actuation voltages, thanks to the proper design of
the MEMS arch resonator and guided by the proposed
ROM technique.

3 Modelling strategy

In order to develop and validate a general ab initio pro-
cedure, we start from a fully 3D FEM discretization of
the MEMS without resorting to structural theories or
semi-analytical approximations. The proposed method
is a specific form of the implicit condensation (IC)
approach [54,55] which has been recently validated
for MEMS applications in [21,27,92]. The underlying
assumption is that it is possible to describe the steady-
state nonlinear oscillation of a resonator as a combina-
tion of few low-frequency master modes. In the case
under study, the two master modes are the first and
second bending modes previously discussed.

The specific limitations of the IC technique have
been deeply analysed in [76,84] and are twofold.
First, only moderate transformations can be addressed,
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Fig. 2 Eigenmodes of the
MEMS arch resonator
shown in Fig. 1. The
contour of the normalized
displacement field is shown
in colour. Eigenmodes (a)
and (f) have frequency ratio
close to 2 and are coupled
through the internal
resonance of interest in this
investigation

(a)

(b)

(c)

(d)

(e)

(f)

meaning that inertia nonlinearities cannot be included.
This implies, for instance, that IC in the proposed form
cannot be applied, for example, to micromirrors in
large rotations [63], nor to cantilevers with large tip
deflections. Secondly, a slow/fast decomposition of the
system is required, which means that the active slave
coordinates should have eigenfrequencies well above
those of the master coordinates. If these assumptions
are respected, the IC technique is powerful and can be
readily generalised to multiphysics problems, as dis-
cussed in the following sections. Interestingly, it can
be used in a non-intrusive manner with any finite ele-
ment code, and it gives good results when a small sub-
set of master modes are selected (typically one or two).
On the other hand, the generalization of the method to
larger number of master modes comes with computa-
tional and accuracy issues.

3.1 Training phase

Let ψ i (x) denote the non-dimensional linear modal
shape functions of the master modes, mass normalized

according to:

∫
Ω0

ρψ i (x) · ψ j (x) dΩ = Mδi j , (1)

whereM denotes a referencemass that is set to unity in
all the numerical experiments but helpsmaking explicit
the consistency of units.

In a first training phase, a stress manifold is built by
statically forcing the structurewith body forces per unit
volumeρF(x) = ρ(β(1)ψ1(x)+β(2)ψ2(x))whereβ(i)

are load multipliers (with the dimensions of an accel-
eration) of the i-th mode, similarly to what proposed in
[54]. It is worth stressing that the space of these body
forces represents a notable approximation of the space
of inertia forces that near resonance are essentially in
equilibrium with elastic internal stresses. For this spe-
cific reason, the resulting stress manifold, as discussed
next, proves very accurate near the resonance peak.

Once the body forces are defined, several static non-
intrusive nonlinear analyses are runwith any FEMcode
to sample the (β(1), β(2)) space through:

∫
Ω0

P[u] : ∇T w dΩ

123



2996 G. Gobat et al.

=
∫

Ω0

ρβ( j)ψ j (x) · w dΩ, ∀w ∈ C(0), (2)

where P is the first Piola–Kirchhoff stress and equi-
librium is imposed in the reference configuration. The
range of the load-multipliers β( j) is suitably prescribed
so as to cover a predefined range of expected displace-
ments in the structure. For instance, considering the
resonator shown in Fig. 1, a fraction of the gap between
the resonator beams and the electrodes will be covered.

Let u(β, x) denote the solution to Eq. (2) for a
given β = (β(1), β(2)). In the linear limit u(β, x)

is only a combination of the modal shapes, but as
the load increases, it also contains contributions from
other modes, typically high-frequency axial or stric-
tion modes which relax significantly the elastic energy.
The computed stresses P[u] define a manifold P . We
remark that, setting w = ψ i in (2), we have:

Mβ(i) =
∫

Ω0

P[u(β, x)] : ∇Tψ i (x) dΩ, (3)

thanks to the ortho-normality properties of the linear
modal basis. In order to set up the necessary tools for
the weak form of equilibrium, we first define the gen-
eralized modal coordinates qi , with the dimensions of
a displacement, as:

Mqi (β) =
∫

Ω0

ρu(β, x) · ψ i (x) dΩ i = 1, 2, (4)

and invert the map q(β) sampling the β space to obtain
a discrete version of the function β(q). Invertibility
is a reasonable assumption with mild nonlinearities
and, practically, the inversion is performed numerically
through fitting procedures. Consequently a continuous
version of the stress manifold can be defined. In our
case, we adopt a cubic interpolation for β(i) as follows:

β(i)(q1, q2) = c(i)
0 + c(i)

1 q1 + c(i)
2 q2 + c(i)

3 q21 + c(i)
4 q1q2

+ c(i)
5 q22 + c(i)

6 q31 + c(i)
7 q21q2

+ c(i)
8 q1q

2
2 + c(i)

9 q32 , (5)

where the coefficients are collected in Table 1 and a
visualization of the modelled manifolds is presented in
Fig. 3. In particular, the linear and constant components
of the β(i)(q1, q2) are removed in Fig. 3b and d in order

Table 1 Coefficients of the mechanical nonlinear manifold
numerically computed for the two master modes

β(1) [µm/µs2] β(2) [µm/µs2]
(i = 1) (i = 2)

c(i)
0 −9.72 10−9 −1.34 10−7

c(i)
1 6.85 −2.23 10−6

c(i)
2 1.08 10−6 27.47

c(i)
3 9.55 10−2 −5.52 10−2

c(i)
4 −0.11 0.20

c(i)
5 9.98 10−2 0.40

c(i)
6 3.62 10−4 −4.86 10−4

c(i)
7 −1.46 10−3 3.00 10−3

c(i)
8 3.00 10−3 −7.51 10−3

c(i)
9 −2.52 10−3 1.01 10−2

Numerical values of the c(i)
j coefficients are consistent with qk

expressed in [µm] and β(i) in [µm/µs2]

to provide a clear view of the nonlinear contributions
β

(i)
NL.
Coefficients in Table 1 reveal some interesting prop-

erties of the structure under study. First, important
quadratic coefficients are present, as a consequence of
the curvature of the structure. Second, these nonlin-
ear coefficients arise from the mechanical part of the
structure which should derive from an elastic potential,
such that for example, the quadratic coefficients should
fulfil the two following relationships: c(1)

4 = 2c(2)
3 ,

c(2)
4 = 2c(1)

5 , and the cubic coefficients should be

related through: c(1)
7 = 3c(2)

6 , c(2)
7 = c(1)

8 and c(2)
8 =

3c(1)
9 [58,87]. One can notice that these five relation-

ships are almost perfectly verified by the IC procedure,
despite not being imposed directly, highlighting that
the method recovers important features of the internal
forces. Finally, it is important to remark that between
the six quadratic coefficients, two of them—namely
c(1)
4 and c(2)

3 —are particularly relevant in the case of
1:2 resonance, since being related to second-order res-
onant monomials [25,83]. It is interesting to remark
in particular that c(2)

3 has not a large value; however,
as it will be shown next, this value is absolutely non-
negligible and plays a fundamental role in the dynamics
of the 1:2 internally resonant system.

It should be remarked that functions β(i)(q1, q2)
could be fitted with other interpolating function like
splines. Furthermore, the polynomial only has cubic
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Fig. 3 Nonlinear β(i)

manifolds for the two
master modes. (a) and (c)
plot the complete manifolds
while in (b) and (d) only the
nonlinear contributions are
highlighted, setting
c(i)
0 = c(i)

1 = c(i)
2 = 0

order because the displacement levels, limited by the
electrostatic pull-in effects, see Sect. 3.3, make higher-
order contributions negligible. It is hence apparent that
the IC method works at best and in great efficiency
when only few clearly identified master modes are
interacting. In the presence of several master modes,
the IC method might rapidly lose its appeal.

3.2 Generation of the ROM

At this point, following a standard practice, we impose
the weak form of the equilibrium condition (Principle
of Virtual Power) for two specific choices of the test
velocity field, i.e. w = ψ i :

∫
Ω0

ρü·ψ i dΩ +
∫

Ω0

P[u] :∇Tψ i dΩ

=
∫
S0

fe ·ψ i dS, i = 1, 2, (6)

where fe are electrostatic forces.
In order to express all the terms as a function of the

master coordinates q, we now introduce several sim-
plifications.

– We assume that the tensor P[u] is constrained to
evolve, during the oscillations, over the stress man-
ifold P as a function of β and hence of q. Using
Eq. (3) the second term in Eq. (6) simplifies to
βi (q).

– Inertia forces are taken as a combination of linear
modes:

ρü(x) = ρψ1(x)q̈1(t) + ρψ2(x)q̈2(t).

It is worth stressing that this statement limits the
applicability of the approach to moderate transfor-
mations, as it rules out the possibility to describe,
for example, large rotations (micromirrors) or large
deflections of cantilever beams.

– We finally assume that also the electrostatic forces
can be expressed in terms of q, as commented in
detail in the next section, and we introduce the load
participation factors:

Fi (q) =
∫
S0

fe(q) · ψ i dS. (7)

As a consequence, Eq. (6) yields a ROM in the form of
a system of two nonlinear differential equations:

Mq̈i + Mβi (q) = Fi (q), i = 1, 2. (8)
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As anticipated, the reference massM is only needed to
correctly specify the dimensions of all the terms, and
it will henceforth set to unity.

3.3 Electrostatic forces

Since we aim at developing a numerical technique for
moderate transformations, similarly to what proposed
for inertia forces, we compute the manifold of elec-
trostatic forces assuming that, for this specific task,
the displacement field can be approximated by a lin-
ear combination of modes:

u � ψ1(x)q1(t) + ψ2(x)q2(t),

i.e. we assume that the error will have a minor impact
on the electrostatic forces despite being critical for
the stress field. The efficient generation of the mani-
fold still remains a complex task. At present, the most
performing numerical tool is represented by integral
equations suitably accelerated, e.g. with fast multipole
methods that have been intensively investigated in the
last decades [19].

In our applications, the potentials of the conduc-
tors Ωi are imposed. According to the numbering of
conductors introduced in Fig. 1, Φ1 = Φ5 = VDC,
Φ2 = VT, Φ3 = VAC sinωt , Φ4 = 0 and the distribu-
tion of charge surface density σ on the conductors is
obtained solving the first-kind integral equation:

Φ(x) =
∫
S

1

4π

1

r

σ(y)

ε0
dS, ∀x ∈ S, (9)

where σ denotes the unknown surface charge density,
S is the collection of the surfaces Si and the data Φ

has been defined such that Φ = Φi on Si . It is worth
recalling that the electrostatic force per unit surface
fe exerted on the conductor at point x of unit normal
vector n is directly associated to the main unknown of
the problem:

fe = σ 2/(2ε0)n. (10)

The second major benefit of the approach is that since
only the conductor surfaces need to be discretized,
it is straightforward to repeat the analysis following
the motion of the device, assuming that the dynamics
of electromagnetic forces is much faster than the fre-
quency of oscillation of the resonators.

For a given q, let σ̃i (x, q) denote the charge distribu-
tion corresponding to a fictitious problem where a unit
potential is imposed only on Ωi : Φi = 1 and Φ j = 0,
j �= i . Each field σ̃i (x, q) is the solution of (9) with the
specified potentials. Thanks to the linearity of Eq. (9)
at fixed q, the total charge on every conductor can be
expressed as:

σ(x, q) =
5∑

i=1

σ̃i (x, q)Φi . (11)

The nonlinear load participation factor (7) is thus:

Fi (q) =
∫
S1

σ 2

2ε0
ψ i · ndS

=
5∑

m,n=1

(∫
S1

σ̃m σ̃n

2ε0
ψ i · ndS

)
ΦmΦn, i = 1, 2,

(12)

where the integration is limited to the surface of the
resonator as ψ i vanishes elsewhere.

Since typically VAC is much smaller than VDC and
VT, terms in V 2

AC are neglected and hence

Fi (q) = f (i)
DD(q)V 2

DC + f (i)
TT (q)V 2

T

+ 2 f (i)
DT(q)VDCVT + 2 f (i)

DA(q)VDCVAC sinωt,
(13)

where also the term f (i)
ATVACVT has been considered

negligible due to the specific topology of the resonator.
In the present case, a cubic interpolation for f (i)

αβ (q) is
selected and the computed coefficients, with the same
ordering as in Eq. (5), are collected in Table 2, while
the corresponding manifolds are illustrated in Fig. 4.
Also in this case, due to the limited displacements at
hand, we opted for a polynomial expression truncated
at third order.

3.4 Current equation

The IC ROM allows computing the displacements of
the structure under given loading conditions. Neverthe-
less, theMEMS device here considered is near-vacuum
encapsulated and direct displacement measurements
are not available. Experimental data are on the con-
trary provided in the form of current I flowing out of
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Table 2 Coefficients of the electrostatic nonlinear manifold numerically computed for the two modes under study

f (1)
DD/ε0 f (1)

DA/ε0 f (1)
DT /ε0 f (1)

TT /ε0 f (2)
DD/ε0 f (2)

DA/ε0 f (2)
DT /ε0 f (2)

TT /ε0
(i = 1) (i = 2)

c(i)
0 96.08 −91.81 −94.50 93.94 −41.01 −202.73 34.82 −34.79

c(i)
1 21.11 −5.52 −10.27 10.27 8.34 −6.05 3.88 −3.89

c(i)
2 8.51 −6.10 3.80 −3.80 37.76 −17,62 −1.63 1.63

c(i)
3 1.28 −0.38 −1.26 1.26 −0.51 −0.32 0.50 −0.50

c(i)
4 −1.06 −0.60 1.05 −1.05 0.41 −1.05 −0.46 0.46

c(i)
5 0.25 −0.51 −0.28 0.28 −0.25 −1.62 0.13 −0.13

c(i)
6 0.14 −0.02 −0.11 0.11 −0.02 −0.01 0.04 −0.04

c(i)
7 −0.06 −0.04 0.13 −0.13 0.16 −0.05 −0.06 0.06

c(i)
8 0.16 −0.05 −0,06 0.06 0.19 −0.11 0.03 −0.03

c(i)
9 0.059 −0.03 0.01 −0.01 0.25 −0.12 −0.01 0.01

Numerical values of the c(i)
j coefficients are consistent with qk expressed in [µm] and f (i)

αβ /ε0 in [µNµm/(V 2 pF)]

the sense electrodes (Ω4). However, following [92], the
current can be expressed in terms of modal coordinates
as:

I (q) =
2∑

i=1

3∑
n=1

(∫
S1

σ̃4σ̃n

2ε0
ψ i · ndS

)
Φn q̇i , (14)

which can be simplified retaining the only meaningful
contribution from VDC:

I (q) =
2∑

i=1

(∫
S1

σ̃4σ̃1

2ε0
ψ i · ndS

)
VDC q̇i

�
2∑

i=1

f (i)
DA(q)VDC q̇i . (15)

Equation (15), known as current equation, will thus be
used in the following sections to transform the output
of the IC ROM simulations and perform direct com-
parisons with experimental data.

3.5 Quality factor

Dissipation has been neglected in the derivation of
Eq. (8) and is now added at the level of the reduced
order model considering different sources [46,91].

In slender MEMS with minimum thickness in the
order of few microns the spread of elastic energy

through the anchors (i.e. anchor losses) and surface
effects can be safely neglected [5,18] and only two
major independent contributions need to be accounted
for: thermoelastic dissipation and fluid damping. The
overall quality factor Q, related to the ratio of the max-
imum stored energy over the dissipation in one cycle,
is thus expressed as the summation of two independent
contributions:

1

Q
= 1

Qfluid
+ 1

QTED
, (16)

where Qfluid refers to the dissipation introduced by the
interaction of the gas with the MEMS moving parts,
while QTED refers to the frequency-dependent ther-
moelastic quality factor. In our application, the device
is encapsulated in near vacuum at a nominal pressure
of 70 mbar in Argon, yet fluid damping cannot be
neglected. In these conditions, the gas flow develops in
the so-called free-molecule regime and its effects can
be computed through the integral equation model pro-
posed in [20] and extended in [17] to the high working
frequencies typical of the resonators of interest herein.
The resulting quality factor values are reported in Table
3. It is worth stressing that in the free molecule flow
Qfluid is proportional to the inverse of the package pres-
sure which in principle is fixed by the fabrication pro-
cess at the bonding level, but in practice is strongly
affected by technological spreads. Since the displace-
ments of the resonator are limited, we ignore here the

123



3000 G. Gobat et al.

Fig. 4 Nonlinear
electrostatic force manifolds
for the two master modes,
first bending modes in
column 1 and second
bending mode in column 2

Table 3 Quality factor numerical predictions and experimental estimates

Mode Qfluid QTED Q (simulations) Q (experiments)

1 2740 103248 2699 2860±150

2 7522 26408 5855 4799±200
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dependence of Qfluid on the actual configuration. See,
however, [92] for further comments on this issue.

The frequency-dependent thermoelastic quality fac-
tor QTED refers to damping induced by the process
in which part of the vibration energy of the resonator
is dissipated into thermal energy, through irreversible
heat conduction induced by elastic vibrations [5,40].
This contribution is broadly studied in the literature on
MEMS and can be evaluated using standard numeri-
cal approaches [5] implemented in several commercial
codes and will not be discussed herein. The thermal
properties considered in the calculations are reported
in Table 4, and the quality factor is reported in Table 3
for the two master modes. It can be appreciated, in par-
ticular, that thermoelastic damping has non-negligible
effect on the second bending mode.

The aforementioned values can be compared with
experimental estimates of the quality factors of the
system. This can be done resorting to the approxi-
matemethod developed in [13] for nonlinear frequency
response functions (FRFs)withDuffing-like behaviour.
Performing this procedure on different points of the
FRF reported in Fig. 5 (see Sect. 4 for the experimental
setup details), one obtains the values reported in the last
column of Table 3. Considering all the uncertainties
affecting the encapsulation pressure and the material
properties, in the following we adopt the intermediate
values 2800 and 5200 for the first and the secondmaster
modes, respectively.

3.6 Integration of the final ROM

The resulting nonlinear system describing the dynam-
ics of the arch resonator biased at VDC and tuned with
a potential VT eventually reads:

q̈1 + ω01

Q1
q̇1 + β1(q) − f (1)

DD(q)V 2
DC

− 2 f (1)
DT (q)VDCVT − f (1)

TT (q)V 2
T

= 2VDCVAC f (1)
AC (q) sin(ωt), (17)

q̈2 + ω02

Q2
q̇2 + β2(q) − f (2)

DD(q)V 2
DC

− 2 f (2)
DT (q)VDCVT − f (2)

TT (q)V 2
T = 0, (18)

where some simplifications of the electrostatic load are
included. The VDCVAC term is only meaningful for
the lowest frequency oscillator, as ω ≈ ω01, while

it is neglected in Eq. (18) since ω02 ≈ 2ω. Further-
more, the V 2

AC terms are neglected as VDC � VAC
in the applications. The only exception is represented
by the preliminary uncoupled simulation of the FRF
of the second mode in Fig. 5c, d where ω ≈ ω02

and the 2VDCVAC f (2)
AC (q) sin(ωt) forcing term must be

included in Eq. (18). The aforementioned simplifica-
tions are customary for MEMS as they are character-
ized by sharp peaks in the FRFs due to the high quality
factors involved.

To enable a direct comparison with the output of
experiments, the response obtained fromEqs. (17)-(18)
in terms of modal coordinates is transformed in terms
of current flowing out of the sense electrodes, using
Eq. (15).

In standard operating conditions, we are interested
in the steady-state periodic solutions and a number of
available numerical packages can be fruitfully applied
to generate a rich portrait of the dynamics perform-
ing continuation of solutions with bifurcation analy-
sis. Alongside the well-established Auto07p [16], a
Fortran package that uses collocation methods, an
alternative common choice is Matcont, a Matlab
numerical continuation tool for the interactive bifurca-
tion analysis of dynamical systems [15]. Among oth-
ers, one can mention: Manlab, a Matlab package
that implements an Harmonic Balance (HB) technique
coupledwith theAsymptotic NumericalMethod devel-
oped in [30,31]; Nlvib that also exploits HB meth-
ods [48]; COCO based on collocation approaches [12].
Another excellent package is BifurcationKit
[86], an emerging toolkit for continuation methods
in ODEs and PDEs. These packages usually provide
the ability to distinguish between stable and unstable
branches, locate bifurcation points and follow alterna-
tive branches of the solution. We stress that the same
versatility is difficult to achieve with a FOM. Indeed,
even if a HB formulation with continuation has been
recently proposed in [14,62] for large-scale problems,
computing times are not compatible with their applica-
tion at the design or prototyping levels. In the upcom-
ing sections, unless differently specified, the analysis
of the steady-state periodic solutions and their stability
is performed with Manlab.
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Table 4 Thermal properties of the polysilicon

Thermal expansion (◦C−1) Thermal conductivity (Wm−1◦C−1) Heat capacity (J/K) Reference temperature (K)

3.029462 · 10−6 144.905 708.855 298.15

Fig. 5 Frequency response
of the MEMS arch resonator
around the frequency of the
first flexural mode in terms
of a amplitude and b phase
for VDC = 2, 3, 4V,
VT = 0V and
VAC = 177.8mV.
Frequency response of the
MEMS arch resonator
around the frequency of the
second bending mode in
terms of c amplitude and (d)
phase for VDC = 4V,
VT = 4V and
VAC = 79.4mV.
Experiments are reported in
dotted lines and numerical
predictions in continuous
lines
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Fig. 6 Typical pattern of the frequency response in presence of
a 1:2 IR. Upward and downward sweeps in frequency control
can only follow stable branches and are superposed to the com-
plete frequency response. Saddle-node (SN) bifurcations delimit
the unstable branches which are plotted in thin lines. Upward
(orange) and downward (blue) sweeps have been slightly shifted
to improve readability

4 Experimental campaign and simulations

This section is devoted to the comparison between
the a-priori predictions provided by the IC method
and experiments. Since the design aims at controlling
both internal resonance and quasi-periodic regimes, the
two aspects are investigated separately using dedicated
experimental setups.

4.1 Periodic response and internal resonance

A standard probe station has been employed to per-
form the experiments. The resonator is excited through
an AC signal generated by the Network Analyzer Agi-
lent 4395A while DC voltages (VDC, VT) are provided
by two power suppliers: Yokogawa GS 610 and Agi-
lent E3631A. The output current, measured through the
probe connected to the sensing electrodes, is amplified
and converted to voltage through the Stanford Current
Pre-Amplifier SR570, and it is readout by the network
analyser. Finally, the data are post-processed inMatlab.

123



Frequency combs in a MEMS resonator featuring 1:2 internal resonance 3003

IC model Experiments Saddle-Node 
bifurcation

Neimark-Sacker
bifurcation

416.9 417
Frequency [kHz]

416.8

8

10

12

14

16

A
m

pl
itu

de
 [n

A
]

6

4

416 417
Frequency [kHz]

10

20

30

40

50

A
m

pl
itu

de
 [n

A
]

-220

-200

-180

-160

-140

-120

-100

-80

-60

416 417
Frequency [kHz]

P
ha

se
 [°

]

V    = 7 VDC V   = 5 V
T

416 417
Frequency [kHz]

10

20

30

40

50

A
m

pl
itu

de
 [n

A
]

-220

-200

-180

-160

-140

-120

-100

-80

-60

416 417
Frequency [kHz]

P
ha

se
 [°

]

ACV    = 316.2 mV

ACV    = 446.7 mV

ACV    = 562.3 mV

416 417
Frequency [kHz]

10

20

30

40

50

A
m

pl
itu

de
 [n

A
]

-220

-200

-180

-160

-140

-120

-100

-80

-60

416 417
Frequency [kHz]

P
ha

se
 [°

]

416.9 417

Frequency [kHz]
416.8

8

10

12

14

16

A
m

pl
itu

de
 [n

A
]

6

4

Fig. 7 Frequency response in terms of amplitude and phase for VDC = 7V,VT = 5V and variable VAC. The NS bifurcation regions are
zoomed in the insets
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Fig. 8 Frequency response in terms of amplitude and phase for VDC = 10V, VAC = 316.2mV and variable VT
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Fig. 9 Frequency response in terms of amplitude and phase for VT = 5V,VAC = 316.2mV and variable VDC
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A preliminary characterisation of the MEMS arch
resonator is performed by analysing the frequency
response of the first and second bending modes (Fig. 5)
for limited actuation levels, calibrated in order not to
activate the internal resonance. The dynamic response
of the arch resonator around the natural frequency of
the first mode is reported in Fig. 5a, b in terms of
amplitude and phase for VT = 0V, VAC = 177.8mV
and VDC = 2, 3, 4V. A standard softening response
is obtained, as expected, with an increasing frequency
shift at larger VDC.

It is worth stressing that in these tests the intensity
of the measured output current is very limited, i.e. in
the order of few nA, and a large noise level due to
wires, instrument limitations and non-ideal connection
between probes and MEMS-pads is expected. In par-
ticular, the response for VDC = 2V is very noisy far
from resonance, as the oscillation amplitudes are low
and the noise of the experimental setup overcomes the
system sensitivity.

For this reason, the phase has been plotted only near
resonance which is the frequency range of interest.
Numerical predictions obtained by solving Eqs. (17)-
(18) for the aforementioned voltages levels are also
reported in Fig. 5 using continuous lines. A very good
agreement between experiments and numerical pre-
dictions is found thus providing a strong preliminary
validation of ROM adopted. Figure 5c, d displays the
response of the MEMS resonator when excited near
the second bending mode, for VDC = 4V, VT = 4V and
VAC = 79.4mV.

A second phase of the experimental campaign has
been devoted to investigate the 1:2 internal resonance
between the two bending modes. This is achieved by:
(i) selecting a proper combination of the tuning voltage
VT and of the bias voltage VDC applied on the resonator
and (ii) increasing the AC signal applied on the driv-
ing electrodes. The former acts on the ratio between
the natural frequencies of the two modes under study
in order to bring it sufficiently close to 2. The latter
activates the nonlinear behaviour of the arch resonator,
thus promoting the coupling between the two modes of
the structure. In order to allow a better understanding
of the plots, in Fig. 6 we first present a typical pattern of
the FRF for the amplitude of the first mode in presence
of a 1:2 IR.

The shape of the frequency response is typical when
the 1:2 internal resonance is excited, and is organized
around two peaks corresponding to two different cou-

pled solutions, as highlighted for example in [25]. Each
peak corresponds to the contribution of one of the two
existing coupled solutions. The two backbones that
underlie the dynamics of the FRF reported in Fig. 6
onset from the frequency ω01 and ω02/2. In this cam-
paign, experiments are run in frequency control with an
upward sweep and cannot follow the unstable branches
delimited by Saddle Node (SN) bifurcations.

When considering the left-hand part of the curve,
i.e. the softening peak, the measurement point follows
the lower part of the branch and jumps to the upper
part at the SN point. When considering the right-hand
part of the curve, i.e. the hardening peak, the forward
frequency sweep should in principle allow to travel
on the upper part of the bifurcated branch up to the
peak. Nevertheless, the expected experimental jump is
always found before the theoretical SN point. This is
a classical feature in such problems, which is due to
the fact that the basin of attraction of the upper solu-
tion is dramatically shrinking when approaching the
SN point. Consequently, the system is very sensitive
to non-idealities, e.g. noise or parasitic capacitances
coming from the set-up, e.g. wires or instruments, are
always present and hardly controllable in a determin-
istic way with the standard set-up utilized.

Tracking the response beyond the critical bifurcation
regime is in principle possible through variable-phase
feedback loop similar to the one proposed in [92], but
the implementation of such a control scheme is out-
side the scope of the present work. On the contrary, the
numerical solution of the ROM is performed with con-
tinuation techniques allowing to reproduce both stable
and unstable branches.

Figures 7, 8, 9 present, in terms of both current
amplitude and phase, the frequency response of the
arch resonator measured for different combinations of
VDC, VT and VAC. Note that only the upward frequency
sweep is reported for the sake of clarity. As anticipated,
starting from low frequencies and following the upward
sweep, the experimental data present a jump to the
upper branch at the first SNpoint,while they should fol-
low the second peak before falling to the lower branch.
Continuous lines illustrate numerical predictions show-
ing a remarkable accuracy. In Fig. 7, the actuation level
VAC is varied while keeping VDC = 7V and VT = 5V
fixed. In these conditions, the amplitude of the motion
increases and the frequency peaks become sharper and
clearly visible. Regarding the bifurcation portrait, both
simulations and experiments highlight the existence
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of the different stable and unstable branches delim-
ited by the saddle-node points. Furthermore, with a
VAC > 446.7mV, Neimark-Sacker bifurcation points
appear in between the two peaks. Here, the system
response becomes quasi-periodic and further insight
will be provided in what follows. The experimental
measurements with the current setup cannot display
the QP regime because the output signal is filtered
assuming that only the forcing frequency is present. An
accurate investigation of the QP regime is performed
in Sect. 4.2 recording the output signal in time. It is
also worth noticing that for VAC = 446.7mV four NS
points are identified, while on the VAC = 562.3mV
curves only two exist. This is a consequence of the
peculiar shape of the so-called NS boundary region,
analysed in [25] and shown in Fig. 16 of Appendix A,
having two local minima.

In Fig. 8 VDC = 10V and VAC = 316.2mV are
kept fixed while VT is varied highlighting the effect
of the tuning electrode that is here used to control
the frequency ratio of the coupled modes. In fact, as
one may infer from Eqs. (17) and (18), tuning elec-
trodes allow controlling the eigenfrequency mismatch
through the variation of the bias difference |VT − VDC|
with respect to the resonator. When VT = 0V the fre-
quencies have a mismatch that reduces the interaction.
With VT = 9V, i.e. VDC − VT = 1V, frequencies
are close enough to provide a strong IR and small NS
regions are detected by the numerical approximation.
Finally, for VT = 15V, i.e. VT − VDC = 5V, the fre-
quency mismatch starts increasing again; the IR effects
are still present, but the NS regions disappear. An anal-
ysis of the evolution of the ratio between the eigenfre-
quencies as a function of the bias and tuning potentials
is reported in Appendix B.

In Fig. 9 VT = 5V and VAC = 316.2mV are kept
fixed while VDC is varied. The VDC parameter strongly
affects the response as it directly controls the forcing
and induces an electrostatic shift on both modes. The
results reported highlight the outstanding capabilities
of the IC method as a tool to design devices tailored to
display internal resonance behaviour.

4.2 Quasi-periodicity and frequency combs

As mentioned in previous sections, the system con-
sidered might encounter Neimark-Sacker bifurcations
along the FRF and, more specifically, due to the
1:2 internal resonance a quasi-periodic (QP) regime

Fig. 10 FRF for the mid-span displacement uMID. Numeri-
cal solution of the IC model for VDC = 7V, VT = 5V and
VAC = 0.562V. The red line denotes the IC model continuation
of periodic solutions. Bifurcation points of this solution are high-
lighted by the green star markers for saddle Node bifurcations
and by green squaremarkers forNS bifurcations. Time-marching
solutions of the IC model are reported as dot markers in terms of
stroboscopic maps at different frequencies. Inside the NS bifur-
cation region the continuation of periodic orbits solution and the
time marching solution depart from each other. This is due to the
QP regime that onset in such regions as highlighted by the cloud
of points given by the stroboscopic maps

can be observed under certain conditions. As well
known from classical nonlinear dynamics [59], and as
recently investigated, e.g. in [25], when the 1:2 inter-
nal resonance is present and proper conditions of forc-
ing, damping and frequency mismatch are verified,
Neimark-Sacker (NS) bifurcations can be observed in
between the two frequency peaks of the response. As a
consequence, the periodic response becomes unstable.
Thanks to the design of the arch resonators and the IC
ROMEqs. (17), (18), such regime can be predicted and
some of its features reproduced.

Let us consider the FRF of the mid-span displace-
ment uMID plotted in Fig. 10. The bifurcation analysis
performed on the IC model reveals two NS bifurca-
tion points. Specific algorithms and packages could be
in principle used to perform continuation of different
branches [15]. Nevertheless, we opt herein for a more
straightforward time-marching solution, obtained with
a Runge–Kutta scheme of order 4 and 5..

In Fig. 10, thePoincarémapof themidspan displace-
ment uMID is plotted with black dots. Numerical data
are generated by recording the system response, after a
transient, at equally spaced time instants tk = t0 + kT
with k = 1, 2...n, where T is the external forcing period
and t0 is a reference time corresponding, for example,
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Fig. 11 Poincaré sections
of the IC model mid-span
displacement time histories
for VDC = 7V, VT = 5V,
VAC = 0.562V for different
frequency values

Fig. 12 Experimental (a) and simulated (b) time history of the normalised signal output considering VDC = 7V, VT = 5V, VAC =
0.562V and Ω = 416.90kHz

to a maximum in the periodic response. Before and
after the NS bifurcation points, the timemarching solu-
tion is perfectly overlappedwith the one obtained using
the approaches detailed in the previous section, while
inside the QP region the stroboscopic map provides a
cloud of points as expected froma non-periodic regime.

The NS bifurcation, sometimes also called sec-
ondary Hopf bifurcation, is met when a limit cycle
loses stability with a pair of Floquet multipliers cross-
ing simultaneously the unit circle [50]. In these condi-
tions, the system dynamics bifurcates to a QP regime

where the forcing frequencyΩ is pairedwith an incom-
mensurate frequency ωNS that modulates the system
time response. Furthermore, the frequency spectrum
of the system is altered and, instead of presenting only
isolated peaks corresponding to the multiples of Ω ,
also displays secondary, equally spaced peaks placed
around the main ones. This spacing is a consequence
of the combination of Ω with the ωNS multiples. More
insight is provided by the 3D stroboscopic map of the
numerical solution represented in Fig. 11, where f is
the forcing frequency and uMID, u̇MID are themid-span
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Fig. 13 Frequency spectra
of the experimental time
histories for VDC = 7V,
VT = 5V, VAC = 0.562V
and different excitation
frequencies. For each
spectrum the forcing
frequency as well as the
comb spacing (if present) is
reported. Frequency peaks
are highlighted with bullet
markers
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displacement and velocity. The result is a collection
of points that can be used to characterise the system
regime: for a fixed f , a single point in the phase space
corresponds to a periodic motion; a closed curve corre-
sponds to a quasi-periodic regime with a single incom-
mensurate frequency; more complex patterns denote

the coexistence of several incommensurate frequencies
and a route to chaos [79].

To provide an insight into the behaviour of the sys-
tem in such regions, we recorded the output signal in
time using an oscilloscope Tektronix MSO 454. An
example of experimental measurements of the signal
performed inside the predicted QP region is reported

123



3010 G. Gobat et al.

Fig. 14 Frequency spectra
of the simulated time
histories for VDC = 7V,
VT = 5V, VAC = 0.562V
and different frequencies.
For each spectrum the
forcing frequency as well as
the comb spacing (if
present) is reported.
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in Fig. 12a. Due to the measurement noise in the sig-
nal, the typical amplitude modulation expected for a
QP regime, and predicted by the IC model in Fig. 12b,
is not clearly visible and a post-processing is required.

To better analyse these data, we perform a spectrum
analysis of experimental data obtained at various forc-
ing frequencies spanning the region of interest setting

VDC = 7V, VT = 5V, VAC = 0.562V, corresponding
to the FRFs of Figs. 7 and 10. The results are collected
in Fig. 13. Even though the time signal is noisy, using
sufficiently long time windows to operate the Fourier
transform allows us to recover a good accuracy in the
spectrum and to put in evidence the structure of the
frequency combs. We notice that, for points lying out-

123



Frequency combs in a MEMS resonator featuring 1:2 internal resonance 3011

Fig. 15 a FFT heatmap with varying excitation frequency. The
power spectral density (PSD) of each FFT is normalized with
respect to its maximum so that all the peaks correspond to red
regions. The comb spacing tends to shrink inside the QP region
enriching with more than one incommensurate frequency after a

certain value. b Plot of the incommensurate frequency trend esti-
mated from the FFTs using the average value encountered (red
line). The comb spacing is decreasing along the path. Along the
path some dispersion on the estimated values can be observed
and is highlighted by the grey shaded region

side the NS region predicted by the IC simulation, the
response has a sharp peak at the forcing frequency.
Entering into the predictedQP region, frequency combs
appear in the spectrum. The spacing between the peaks
varies depending on the forcing frequency and ranges
from 103 Hz up to 725 Hz.

Following the branch of QP solutions, the second
frequency of the torus ωNS is known to vary with the
parameters (here the forcing frequency), see e.g. [25].
Even though ωNS should change smoothly in the fre-
quency window, we detect experimentally an irregular
pattern, as a consequence of the stability of theQP solu-
tion [52]. This aspect has not been deeply investigated
during our experiments as the analysis of alternative
states as a consequence of the torus stability is out of
the scope of this work.

Numerical frequency combs obtained by solving
the IC model through time marching techniques are
reported in Fig. 14. The clear transition from a periodic
response with a single sharp peak in the spectrum to a
QP regime with FCs obtained experimentally is indeed
well predicted by the ROM model here proposed. The
numerical FC spacing ranges from 125 to 500 Hz and
tends to change along the frequency path till becoming
almost chaotic, in satisfactory agreement with exper-
imental data. This behaviour is compatible with what
observed in Fig. 11where, in a certain range of the forc-
ing frequency, the Poincarémap changes from a pattern
with simple closed curves towards a more complicate

one denoting the presence of several incommensurate
frequencies.

Results are further elaborated in Fig. 15. Here, we
consider the 40 numerical output-signal time histo-
ries used to generate Fig. 11, corresponding to equally
spaced forcing frequencies. Their spectral amplitudes
are plotted in Fig. 15a as a heatmap in the ( fFFT, f )
plane, where fFFT denotes the FFT component and f
the forcing frequency. Colours correspond to the FFT
amplitude values. One can identify the same pattern
as in Fig. 11. Below f ≈ 416.75kHz, the spectrum
is characterised by one single peak typical of a peri-
odic regime. After the onset of the NS bifurcation, the
incommensurate frequency adds equally spaced peaks
around the forcing frequency value. Initially, the peak
spacing is quite large and clear peaks can be identified.
Proceeding further, for f ≈ 416.85 :416.95kHz, some
peaks disappear and the spacing progressively reduces.
After f ≈ 416.95kHz the portrait changes abruptly
and additional peaks arise suggesting a more compli-
cate behaviour possibly associated with the appearance
of several incommensurate frequencies.

Such representation allows estimating the trend
of the incommensurate frequency fNS reported in
Fig. 15b. Since the FFT resolution is limited by the
simulated time-series toΔ f ≈ 20.8Hz and due to diffi-
culties in identifying peaks position, we plot an average
peak value (thick red line) and themaximum–minimum
frequency spacing range (grey shaded region). The
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global trend shows a decrease of the incommensurate
frequency value compatible with the experimental data
and a spread after f ≈ 416.95kHz, as previously high-
lighted.

5 Conclusions

This paper presents an electromechanical reducedorder
model based on the implicit condensation approach,
that is able to describe the complex nonlinear dynamics
of a MEMS resonator. Importantly, this is an ab initio
approach in the sense that, starting from general princi-
ples, it takes into account themechanics of the arch res-
onator, the electrostatic actuation/readout schemes and
the different dissipation mechanisms without resorting
to simplified and problem-dependent semi-analytical
approximations. The ROM has thus been generated
from an a priori modelization, without any need to
resort to a fitting procedure to tune some of its param-
eter on the basis of experimental measurements.

By comparing numerical simulations and experi-
ments performed on aMEMS arch resonator fabricated
by STMicroelectronics under different operating con-
ditions, we have demonstrated that the ROM model is
able to correctly reproduce the 1:2 internal resonance
arising from the interaction of the first and second bend-
ing modes of the arch resonator. Moreover, we have
brought the simulation technique to an unprecedented
level of complexity by reproducing the phononic fre-
quency comb observed experimentally. The location of
the Neimark-Sacker bifurcations points has been accu-
rately predicted and an in-depth analysis of the quasi-
periodic regime arising from these points has been
indeed carried out. Also the simulation of the spac-
ing between the secondary peaks of the comb has been
addressed, showing that the correct trend and range can
be reproduced.

The technique is fairly general and can be applied
to a broad family of resonating microstructures expe-
riencing moderate transformations. It only requires the
a-priori identification of the master modes and can be
applied with reasonable computing cost provided that
the number of interacting modes is limited.

Thanks to its ab initio and reduced order nature, the
proposed simulation approach represents a powerful
tool to support the design process of a new class of
complex nonlinear MEMS devices. The intricate non-
linear dynamics phenomena of such sensors/actuators

are indeed very difficult to predict without simple ROM
models and consequently were avoided by design. The
development of refined numerical tools is thus expected
to be a key enabling technology for a new family of
MEMS devices built with and for nonlinearities that
could potentially revolutionise their applications.
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A Comparison with an analytical approach

All the results presented in Sect. 4 show the potential
of the IC method in predicting QP states in MEMS
systems. Nevertheless, an analytical model might be
helpful in obtaining a direct control on the nonlinear
parameters. In the literature many contributions have
addressed the topic of internal resonances from an ana-
lytical perspective, including e.g. 1:3 [47] 1:1:2 [78]
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Fig. 16 Comparison between the analytical model and experi-
ments for VDC = 7V, VT = 5V and VAC = 0.562V. a experi-
mental FRF compared with the analytical one and NS boundary.

b enlarged view of the QP region and the NS boundary crossing
points. c incommensurate frequency predicted by the analytical
model along the NS boundary

and 1:2:4 [57] cases. In particular, we discuss herein the
analyticalmodel for 1:2 internal resonance discussed in
[25] and we compare its results with the experiments.
Themodel is given by a set of two nonlinear ODEs rep-
resenting the two eigenmodes as coupled oscillators:

q̈1 + ω01

Q1
q̇1 + k1q1 + k3q1q2 = f1 sin(ωt), (19)

q̈2 + ω02

Q2
q̇2 + k2q2 + k4q

2
1 = 0, (20)

with qi , i = 1, 2 modal coordinates and the coeffi-
cients ki defined as a combination of the coefficients
in Tables 1 and 2. Referring to the c j coefficient of
each table by means of the notation �c j the values in
Eqs. (19) and (20) are taken as:

k1 = β(1)
c1 − f (1)

DD,c1
V 2
DC,

k2 = β(2)
c2 − f (2)

DD,c2
V 2
DC,

k3 = β(1)
c4 − f (1)

DD,c4
V 2
DC − 2 f (1)

DT,c4
VDCVT − f (1)

TT,c4
V 2
T ,

k4 = β(2)
c3 − f (2)

DD,c3
V 2
DC − 2 f (2)

DT,c3
VDCVT − f (2)

TT,c3
V 2
T

f1 = 2VDCVAC f (1)
DA,c0

.

The analysis of Eqs. (19) and (20) allows tracing the
FRCs, but also to address the stability of the system
through the inspection of the Jacobian of the modula-
tion equation. In particular, the NS bifurcation points
can be identified and their envelope, i.e. the NS bound-
ary curve, can be defined, see [25] for the analyti-
cal expressions. Along such a curve, it is possible to
provide an estimate of the incommensurate frequency.
Such a value can be expressed as [25]:

ω2
NS = 1

2(μ1 + μ2)

(
q2k3
k1

(μ1 + μ2)

√
μ2
2 + (k2 − 2ω)2 − q22k

2
3μ2

8k21
+2μ1(μ

2
2 + (ω02 − 2ω)2)

+2μ2(ω − k1)
2 + 2μ2μ

2
1

)
, (21)

with μ1 = ω01/(2Q1) and μ2 = ω02/(2Q2) and q2
corresponding to the values predicted for the NS bifur-
cation point [25]. The results of the analytical model,
comparedwith the experiments, are reported in Fig. 16.
The FRF is almost superimposed with the experiments.
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Fig. 17 Behaviour of the ratio ω2/ω1 of the eigenfrequencies,
with respect to the applied potentials (VT, VDC). a Behaviour of
the ω2/ω1 ratio as a function of VT with given values of VDC. In

these conditions theminimum frequencymismatch is reached for
VT = VDC. b contour plot of the function ω2/ω1 in a (VT, VDC)

plane

For the frequencies corresponding to the NS bifurca-
tions on the FRC, themodel predicts a spacing between
500 and 350 Hz. These values are compatible with the
ones of the IC model and the experiments.

B Effect of the bias and tuning voltages on the res-
onance frequencies

The crucial role played by VDC and VT has been high-
lighted in experiments and simulations. They generally
induce a negative shift of the eigenfrequencies, and the
arch resonator is designed to provide a certain level of
flexibility in the frequency match between the coupled
bending modes by suitably tuning VDC and VT. Indeed,
data reported in Figs. 7,8 and 9 clearly show that cer-
tain combinations of VDC and VT allow for a better fre-
quency match. This can be easily justified on the basis
of Eqs. (17) and (18). Performing a linearization with
respect to the reduced coordinate q1 and q2 in Eqs. (17)
and (18), respectively, an analytical expression for ω1

and ω2 can be readily obtained:

ω2
1 = c(1)

1 − c(1)
1DDV

2
DC − c(1)

1TTV
2
T − 2c(1)

1DTVDCVT

ω2
2 = c(2)

2 − c(2)
2DDV

2
DC − c(2)

2TTV
2
T − 2c(2)

2DTVDCVT
(22)

The ratio between the two frequencies ω2/ω1 with
varying VDC and VT is plotted in Fig. 17. These plots
highlight how the ideal ratio of 2 between the two res-
onance frequencies cannot be reached exactly. Never-
theless, a value of VT close to VDC allows reducing the
mismatch, see the marker point in Fig. 17a.
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