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Abstract We study the dynamic behavior of a lattice
of bristle-like elastic elements disposed at the interface
between a rigid still substrate and a rigid sliding slab, in
steady conditions. Due to normal and frictional interac-
tions with the moving slab, complex bristles dynamics
occur, which may eventually alter the overall frictional
response of the structured interface. Indeed, up to three
main mechanisms of friction control can be identified,
dependingon the specificbristles dynamics: the relative
velocity-dependent modulation of local friction force;
the misalignment between the local relative velocity
and the slab velocity, due to the emergence of trans-
verse vibration; the local friction coefficient variation
due to the normal load acting on the bristle. Results
show that, depending on the interface dynamic proper-
ties (i.e., bristles stiffness, normal load, slab velocity,
etc.), a significant reduction of the friction force oppos-
ing the slab motion can be achieved, also involving
self-excited bristle vibration. Since the present formu-
lation is scale independent, this result may suggest pos-
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sible mechanisms of friction control in different practi-
cal application fields, ranging from bio-inspiredmicro-
structured interfaces to macro-scale features, such as
brush seals in electric motors.
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1 Introduction

The study of the interactions between bodies is one of
the most crucial topic in modern applied science. The
field of possible interfacial interactions is very broad
involving, for instance, interatomic/intermolecular
adhesion, chemical links, electrostatic and electromag-
netic potentials. Among them, frictional interactions
are of primary importance in modern engineering, as
these interactions are basically related to energy dissi-
pation. Therefore, controlling the frictional interaction
between bodies has always been of great interest, for
both micro-, meso-, and macro-scale applications.

Several studies have focused on the frictional
response of deformable rough interfaces in relative
sliding. Interestingly, most of these studies investi-
gate quasi-static interfacial conditions, where dynamic
effect are neglected and gross slip conditions are fully
developed. Investigations are performed by exploiting
both Boundary Element Methods (BEM) and Finite
Element Method (FEM) techniques [1–3], also focus-
ing on hysteretic friction arising due to cyclic defor-
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mation in viscoelastic materials during sliding [4–6],
and on viscoelastic damping in dynamic systems [7,8].
Moreover, the effect of the tangential deformations of
asperities have been recently taken into account [9,10],
showing that an additional friction term may arise due
to this peculiar feature in thin interfacial coatings.

Furthermore, interfacial sliding friction between
rough surfaces may also be affected by the super-
imposition of in-plane microscopic transverse vibra-
tions. The first studies on this topic were focusing on
rigid rough interfaces [11,12]. In this case, a friction
reduction is predicted, which is mainly ascribed to the
vibration-induced misalignment between the interfa-
cial relative velocity and themacroscopic sliding. Since
the interface is assumed as rigid, the transverse vibra-
tion cannot emerge spontaneously, therefore it has to
be forced by an external source of energy. Moreover,
a recent experimental investigation on stiff materials
(so that surface asperities can be assumed as rigid)
has shown that, in order to appreciate a considerable
reduction of friction, high-frequency transverse vibra-
tions are required, thus involving a likely huge impact
on the overall energy efficiency of the system [13].
On the contrary, deformable rough interfaces offer an
additional mechanism of friction reduction, i.e., the
dynamic interplay between the static/kinetic friction
transition and the asperity shear deformation. Indeed,
while in gross sliding the kinetic friction force is strictly
prescribed by the specific friction model (e.g., the
Amontons/Coulomb model), under static friction con-
ditions the actual friction force depends on the overall
momentum balance and on the asperity dynamics. In
this case, instantaneous very low “static-like” friction
may occur. Indeed, due to the non-uniform distribu-
tion of gap and normal pressure, rough interfaces may
experience a sequences of local stick–slip transitions
in the contact domain. Since the contact of rough inter-
faces can be summarized as the interactions between
incommensurate lattices [14,15], where the stick–slip
transitions are non-synchronized and non-uniformly
distributed, the overall friction at the interface may
be lower than the kinetic friction value related to the
ideally rigid case. Usually, this phenomenon is mod-
eled by means of dynamic friction models, which are
specifically designed in order to take into account for
the reaction force caused by the asperity deformation.
It is the case of the Dahl friction model [16], which
relies on a purely elastic description of the asperity
deformation by introducing an equivalent stiffness, and

the LeGru friction model, which also encompass an
equivalent dashpot to describe the material damping
associated with the asperity deformation (see [17] and
references therein). A few recent studies have inves-
tigated the frictional behavior of sliding rough inter-
faces in the presence of transverse vibration, estimat-
ing the effect of interfacial deformations by means of
the aforementioned dynamic friction models [18–20].
It has been shown that a large friction reduction is
expected. However, a more accurate description of the
dynamic frictional behavior may offer the chance to
further extend these investigations. This is the case, for
instance, of Refs. [21,22], where the macroscopic fric-
tional response of the interface is calculated averaging
the local results over a large population of asperities
with different dynamic properties.

Althoughmore accurate than those considering rigid
interfaces, these studies still investigate a mechanisms
of friction control relying on externally forced trans-
verse vibrations. On the other hand, the development of
in-plane spring-block models has allowed to simulate
the propagation of attachment (and detachment) fronts
through the interface. Of course, a lumped (i.e., can-
tilever) description of the asperity dynamics is required
in this case. It is the case, for instance, of Refs. [23,24]
where the contact interface is modeled as a regu-
lar lattice of Burridge–Knopoff spring-block elements.
Results show that, depending on the bulk elasticity of
the lattice, the macroscopic friction coefficient may
result as low as half of the local one, as the directions
of distributed contact ruptures compared to the slid-
ing direction play a key role. Reference [25] extends
the previous studies to the case of anisotropic distribu-
tion of spring-block elements, showing similar results.
Also, in Ref. [26] the in-plane dynamics of bristle-
like elastic elements has been investigated, assum-
ing a regular lattice in macroscopic sliding conditions
against a rigid flat surface. Differently from Burridge–
Knopoff spring-block models, bristle-like interfacial
features are described as non-interacting spring-mass
elements, with both axial and bending deformability,
so that self-excited in-plane transverse vibration may
spontaneously emerge. In addition to the dynamics of
contact rupture fronts, this offers a further mechanism
of macroscopic friction reduction.

In the present study,we focus on the frictional behav-
ior of 3D bristle-like interfacial features, arranged in
a regular lattice. Bristle-like interfacial features are
modeled as beam elements, whose dynamic behavior
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Fig. 1 The schematic of the
system at hand: a rigid slab
in sliding contact with a
lattice of bristle-like elastic
elements. A top view (a) of
the system, showing the
azimuthal stiffness kθ ; a
side view (b) of a generic
bristle-like elastic element
of mass m, showing the
radial and polar stiffnesses
kr and kϕ . A 3D
representation (c) of the
bristle-like element,
allowing to appreciate the
geometric quantities in the
bristle reference frame.
Notably, z0 is the normal
gap between the slab and
the ground

is modeled as mass-spring-damper systems with axial
elongation, and polar and azimuthal bending degrees of
freedom.This formulation allows to directly investigate
the effect of the features 3D dynamics on the interfa-
cial frictional behavior, also considering the effect of
the local distribution of normal load on each bristle and
the emergence of in-plane andout-of-plane self-excited
vibration. Possible applications of the results here pre-
sentedmay range from friction reduction inmechanical
systems at the macro-scale (e.g., brush seals [27,28])
to bio-inspired functional interface development in
micro-/meso-scale systems [29,30].

2 Formulation

As shown in Fig. 1a, in this study we consider the case
of a rigid slab sliding at constant velocity V0, under
the action of a force R, over a lattice of elastic bristles
(with�x = �y = �). Each bristle is modeled as a 3D
lumped element. The mass m is localized at the bristle
tip, whereas, with reference to Fig. 1c, we define kr ,
kθ , and kϕ as the elastic stiffness of the bristle in the
radial, azimuthal, and polar coordinates, respectively.

The undeformed length of each element is r0, whereas
the undeformed azimuthal and polar angles are indi-
cated as θ0 and ϕ0, respectively. The bristle damping
arising from the bulk polymeric material is modeled by
means of lumped dampers, with damping coefficients
cθ and cϕ , acting on the azimuthal and polar compo-
nents of the bristle angular velocity, respectively.

Moreover, we neglect any interaction between bris-
tles, and between bristles and ground; therefore, each
bristle tip is only subjected to normal and in-plane
frictional forces arising at the contact interface with
the rigid moving slab (see Fig. 1c). More in details,
we observe that calculations are performed assuming
a given normal gap z0 < r0 between the rigid slab
and the ground, so that the equilibrium normal force
Rn = R · k̂ occurring on the moving slab results as the
sum of the bristles normal contact forces. However, in
the limit of a sufficiently large number Nc of contacting
bristles, we expect Rn (t) = Rn in steady sliding con-
ditions, given the value of z0. Notably, due to bristles
deformation, we may have Nc > N0 = Lx L y/�

2.
According to Fig. 1c, the equation of motion of the

bristle can be written as
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mr̈ = −kr (r − r0)êr − 1

s

[
kθ (θ − θ0) + cθ θ̇

]
êθ

−1

r

[
kϕ(ϕ − ϕ0) + cϕϕ̇

]
êϕ + F f +φ (r) êl + Fn,

(1)

where r = x î+ y ĵ+ zk̂ = r êr is the radius vector with
r = √

x2 + y2 + z2, and s = x î + y ĵ = sês is the in-
plane projection of r, with s = √

x2 + y2. Moreover,

êr = 1

r
(x, y, z) ,

êθ = 1

s
(−y, x, 0) ,

êϕ = 1

rs

(
−xz,−yz, x2 + y2

)
,

ês = 1

s
(x, y, 0) . (2)

In order to model the contact interaction between
the bristle tip and the rigid slab, in Eq. (1) we adopt
a short-range (i.e., hard-wall) repulsive interaction, so
that Fn = −Fn (z) k̂ where

Fn (z) = βmV 2
0

2λz
e−(z0−z)/λz (3)

with β being a constant of order unity, and λz � 1
being a range parameter.

Similarly, the term

φ (r) = αmV 2
0

2λ
e−s/λ (4)

in Eq. (1) represents an additional short-range repulsive
force necessary to avoid the singular behavior of Eq.
(1) in r = (0, 0, z). Specifically, we assumeα = β = 1
and λ = λz = 0.001r0.

The term F f in Eq. (1) represents the in-plane fric-
tion interaction occurring between the rigid slab and
the bristle head. Specifically,

F f = −Ff ê f (5)

where

ê f = VR

|VR | (6)

with VR = (ẋ − V0) î + ẏ ĵ being the in-plane relative
velocity between the bristle and the rigid slab (notably,
VR = |VR |). Since the bristle is modeled as an elastic
body, the dependence of the friction force on the bristle
deformation is intrinsically provided byEq. (1). In rigid
body simulations, this task is accomplished by dynamic

friction models, such as the Dahl model [16]. On the
contrary, for a proper description of the bristle dynam-
ics, a key feature is the transition from static (VR = 0)
to kinetic friction occurring as VR > 0. In the origi-
nal Coulomb model, this is nominally associated with
a friction force discontinuity. However, in real appli-
cations, such a discontinuity is actually smoothened
due to several speed-dependent phenomena occur-
ring at the interface (e.g., material elastic/viscoelastic
deformability, intermolecular bonding/debonding pro-
cess, etc.) [14,31,32], therefore a “regularized,” or
“continuous,” speed-dependent non-monotonic fric-
tion model is commonly assumed [17,33,34]. Specif-
ically, in agreement with Refs. [35–37], we define a
speed-dependent characteristic function in the form

χ (VR) = A sin
(
B tan−1 {VR/Vs − C

[
VR/Vs − tan−1(VR/Vs)

]})
, (7)

where A and C are empirical coefficients, and B =
2

[
1 − sin−1 (1/A) /π

]
. Notably, Vs is the so-called

threshold speed between static and kinetic friction. We
observe that Eq. (7) prescribes vanishing friction for
VR → 0, whereas for VR � Vs the kinetic friction
plateau is achieved (see Ref. [26]).

In terms of specific friction models, we compare
two different cases. The first one is the well-known
Amontons-Coulomb model, with

Ff = χ (VR) μcFn (8)

where μc is the kinetic friction coefficient.
The second case, also referred to as Nominal Shear

Stress (NSS) model [30,38,39], mostly applies to rel-
atively soft polymers where the frictional shear stress
τ f can be assumed uniform on the contact area Ac and
independent of the applied normal load, so that

Ff = χ (VR) τ f Ac (9)

In this case, since the bristle tips are spherical cups of
radius Rc,Hertzian contactmechanics canbe employed
to calculate the effective contact area Ac between the
tips and the rigid slab. Indeed,

Ac = π

(
3RcFn
4E∗

)2/3

(10)

where E∗ = E/
(
1 − ν2

)
, with E and ν being the

Youngmodulus and Poisson’s ratio of the bristlesmate-
rial, respectively.
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Exploiting surface textures dynamics 3103

Finally, in Eq. (1), the damping coefficients take the
form

cθ = ζθcθ,cr

cϕ = ζϕcϕ,cr (11)

where ζθ and ζϕ are the damping ratios, and

cθ,cr = 2
√
kθm (r0 cosϕ0)

2

cϕ,cr = 2
√
kϕmr20 (12)

are the linearized critical damping coefficients for the
azimuthal and polar degrees of freedom. Notably, we
neglect any other source of damping, such as that aris-
ing from bristles collision and rebound. Indeed, we
assume the contact size between the bristle heads and
the moving slab to be sufficiently small to neglect
any viscoelastic damping associated with the impact
dynamics.

2.1 Dimensionless quantities and closing equations

Equation (1) can be made non-dimensional by adopt-
ing the following dimensionless parameters: k̃r =
r20 kr/

(
mV 2

0

)
, k̃θ = kθ /

(
mV 2

0

)
, k̃ϕ = kϕ/

(
mV 2

0

)
,

c̃ϕ = cϕ/ (mV0r0), c̃θ = cθ / (mV0r0), τ̃ f =
τ f r30/

(
mV 2

0

)
. Moreover, the forces are made non-

dimensional by the factor r0/
(
mV 2

0

)
, the lengths by the

factor 1/r0, and the dimensionless time is t̃ = tV0/r0.
Therefore, we have that ã = r̈r0/V 2

0 is the dimen-
sionless acceleration, and θ ′ = dθ/dt̃ = θ̇r0/V0 and
ϕ′ = dϕ/dt̃ = ϕ̇r0/V0 are the dimensionless compo-
nents of the bristle angular velocity.

After some algebra, Eq. (1) takes the form

ã = −k̃r (r̃ − 1)êr − 1

s̃

[
k̃θ (θ − θ0) + c̃θ θ

′] êθ

−1

r̃

[
k̃ϕ(ϕ − ϕ0) + c̃ϕϕ′] êϕ + F̃ f +φ̃ (r) êl + F̃n

(13)

Notably, in the case of Coulomb friction, we have
that

F̃ f = χ (VR) μc F̃n, (14)

whereas for NSS friction we have

F̃ f = χ (VR) τ̃ f Ãc, (15)

with

Ãc = A

r20
= π

(
3R̃c F̃n

4Ẽ∗

)2/3

(16)

where R̃c = Rc/r0 and Ẽ∗ = E∗r30/
(
mV 2

0

)
.

In order to solve Eq. (13), two additional clos-
ing equations are required to enforce the congruence
between r (t) and the angles θ (t) and ϕ (t). These can
be easily derived as first-order ODE, thus

θ ′ = x̃ ṽy − ỹṽx
r̃2

(17)

ϕ′ = 1
√
x̃2 + ỹ2

(
ṽz − z̃

x̃ ṽx + ỹṽy + z̃ṽz
x̃2 + ỹ2 + z̃2

)
(18)

with ṽx = ẋ/V0, ṽy = ẏ/V0, and ṽz = ż/V0.

2.2 Forces acting on the slab

While sliding over the bristles lattice, the rigid slab is
in contact with a certain number Nc of bristle tips. By
integrating the equations ofmotion (13) and the closing
equations (17, 18) derived in the previous sections, the
dynamics of each bristle can be calculated, so that the
time-history of the normal Fn and friction force F f

occurring at the interface between the bristle and the
sliding slab are known.Thedetailed procedure to derive
the steady equilibrium force R̄ acting on the rigid slab
in steady sliding conditions is given in “Appendix A.”

Notably,

Rx = R̄ · î
Ry = R̄ · ĵ
Rn = −R̄ · k̂ (19)

and, since we are interested in highlighting the effect of
the bristles deformability and dynamics on the possi-
ble reduction of the global friction force opposing the
slab motion, we define the normalized friction force
components as

Řx = Rx

Rrigid
(20)

Řy = Ry

Rrigid
(21)

123
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where Rrigid is the overall friction force corresponding
to the limiting case of rigid bristles at the interface.
Notably, Rrigid depends on the specific friction model
postulated at the interface. Indeed, for the NSS friction
model, using Eqs. (9, 10) we have

RNSS
rigid = Nc,0τ f π

(
3Rc

4E∗
Rn

Nc,0

)2/3

; (22)

whereas, for the Amontons-Coulomb friction model,
using Eq. (8) we have

RC
rigid = μc Rn (23)

3 Results

As shown in the previous section, the bristles dynamics
is governed by nonlinear equations ofmotion, therefore
we expect the dimensionless elastic parameters and the
local frictional behavior to play a key role . The range
of possible values of such parameters span over orders
of magnitude, depending on the actual bristles geom-
etry and material; however, since this study aims at
qualitatively highlighting the possible mechanisms of
friction reduction in real-life applications, we explore a
parameters range close to the values related to existing
bristle-like interfaces, such as those of low-friction arti-
ficial ski slopes [40]. Specifically, without any loss of
generality of the presented dynamic model, we assume
r0 = 17 mm, Rc = 1 mm. Moreover, in the framework
of linear beam elasticity, due to the bristle bending, one
can estimate kϕ ≈ kθ ≈ 3πER4/4r0 and kr ≈ 10kϕ .
Assuming polymeric bristles (e.g., E ≈ 102 MPa and
ν ≈ 0.4) with m ≈ 10−4 kg, and slab sliding veloc-
ity V0 = 10 m/s, we have k̃ϕ ≈ k̃θ ≈ 1, k̃r ≈ 10.
We also assume ζθ = ζϕ = 0.1, � = 0.2r0, and
Lx = Ly = 5r0.

Furthermore, since the initial orientation θ0 of each
bristle may depend on many factors (e.g., fabrication
techniques, bristle buckling under normal load, etc.),
we assume the values of θ0 to be randomly distributed
in the interfacial lattice. As already shown in Ref. [26],
for a sufficiently large value of Nc, this leads to in-plane
isotropic lattice response and to Ry = 0. In the same
study, quantitative insights have been provided about
the effect of non-uniform distributions of θ0 among the
bristle lattice.

Fig. 2 A qualitative representation of the time-history of three
bristles with different initial orientation θ0. Notably, at time t0,
t1, and t2, low relative velocity occurs at the bristle–slab interface

3.1 NSS model

In this section, we present the bristles dynamics and the
frictional response of the structured interface assuming
NSS local friction model. In agreement with Ref. [38],
we estimate τ̃ f = 3 × 104.

In this case, we identify three different mecha-
nisms able to alter the instantaneous friction regime at
the bristle tip-sliding slab interface. Consequently, we
define three dimensionless integral parameters calcu-
lated from the time-history of the i-th bristle and, then,
averaged among the whole set of bristles in contact.
Therefore, we have

γ̃1 =
〈∫ �ξi

0 dξFn (ξ) χ (VR (ξ))
∫ �ξi
0 dξFn (ξ)

〉

i

(24)

to take into account the effect of the modulation of the
friction force, according to Eq. (7), depending on the
modulus of the relative velocity VR between the i-th
bristle tip and the slab;

γ̃2 =
〈

−
∫ �ξi
0 dξFn (ξ)

(
ê f (ξ) · ı̂)

∫ �ξi
0 dξFn (ξ)

〉

i

(25)

to quantify the effect of transverse vibration (i.e.,
sideslip in Fig. 2) with respect to the direction of the
slab motion (i.e., ı̂);

γ̃3 =
〈 1

�ξi

∫ �ξi
0 dξFn(ξ)2/3

[
1

�ξi

∫ �ξi
0 dξFn(ξ)

]2/3

〉

i

(26)

to capture the effect of the instantaneous contact area
size at the bristle tip-rigid slab interface as a function
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Fig. 3 The normalized dimensionless slab sliding height z̃0 as
a function of the dimensionless normal force R̃n/Nc,0 acting
on the sliding slab. Dashed lines represent the hysteretic limit-
ing circle associated with blisters nonlinear bending behavior.
The thick line represents the stable conditions. Schematics on
the right represent qualitative blisters deformation mechanisms
associatedwith different z̃0 values (i.e., compression for z̃0 → 1,
and bending for z̃0 → 0). Notably, R̃n = Rnr0/

(
mV 2

0

)

of the normal force Fn (t) acting on the i-th bristle (see
Eq. (10)). Notably, in Eqs. (24–26), �ξi represents the
total contacting time of the i-th bristle against the rigid
moving slab (see “Appendix A”), whereas, the symbol
〈〉i indicates the ensemble average over the whole set
of bristles in contact.

Figure 3 shows the normalized dimensionless nor-
mal force R̃n/Nc,0 acting on the slab as a function of
the dimensionless gap z̃0, for different values of the
bristle dimensionless radial stiffness k̃r . Interestingly,
regardless of the specific value of k̃r , three different
regimes can be defined. At both very large and very low
values of R̃n/Nc,0, linear trends are reported between
the normal force and the slab sliding height, with dif-
ferent slopes. Indeed, for z̃0 → 1, the main deforma-
tion mechanism of the bristle is the axial compression
(mainly governed by k̃r ), and the normal behavior turns
out very stiff. On the other hand, for z̃0 → 0, bristle
bending occurs in the polar plane, so that R̃n/Nc,0 is
proportional to k̃ϕ . At intermediate values of the dimen-
sionless normal force R̃n/Nc,0, a nonlinear trend of z̃0
is reported. In this regime, depending on the specific
value of the elastic parameters (i.e., k̃r , k̃θ , and k̃ϕ),
unstable branches can be identified in the R̃n/Nc,0 vs
z̃0 equilibrium curve which, in case of oscillations of
the normal force R̃n acting on the slab, may lead to hys-
teretic cycles (see the dashed lines in Fig. 3). In this ref-
erence, for each set of elastic parameters, we consider a
monotonically increasing loading transient phase until
the target normal load is reached; therefore, in case of
non-monotonic R̃n/Nc,0 vs z̃0 trends (i.e., red curve

in Fig. 3), the stable equilibrium branch corresponds to
the A-B-C-D path shown in Fig. 3. Notably, we observe
that, depending on the specific value of R̃n/Nc,0, the
effect of k̃r on the value of z̃0 at equilibriummay signif-
icantly change as, at low values of R̃n/Nc,0 the larger
the value of k̃r , the larger the value of z̃0 at equilib-
rium, whereas at low values of R̃n/Nc,0 the scenario is
reversed.

The main results, in terms of frictional behavior
of the blisters array, are shown in Fig. 4. Specifically,
Fig. 4a shows the normalized friction force compo-
nent ŘNSS

x opposing the slab motion as a function of
both the dimensionless radial and azimuthal stiffness
k̃r and k̃θ . Similarly, Fig. 4b–d reports, respectively,
the γ̃1, γ̃2, γ̃3 dimensionless parameters as functions of
k̃r and k̃θ . We observe that increasing the value of k̃r
leads to lower normalized friction force ŘNSS

x oppos-
ing the slab motion, mostly due to the reduction of
the effective contact area between the bristles tips and
the sliding slab, as suggested by the sharp reduction
of the dimensionless parameter γ̃3. Such a result can
be qualitatively explained by observing that, accord-
ing to Fig. 3, increasing k̃r may lead to an increase of
z̃0 which roughly represents the lever arm of the fric-
tion force Ff acting on each bristle in the l,z plane
(see Fig. 1c). In dynamic conditions, this may lead to
enhanced bristle oscillations in the l,z plane (see bristle
rebound in Fig. 2) and to wider fluctuations in the time-
history of the bristle normal force Fn . Since, according
to NSS friction model [see Eqs. (9, 10)], we have that
Ff (t) ∝ [Fn (t)]2/3, this leads to a lower normalized
friction force component ŘNSS

x . Furthermore, increas-
ing k̃r also leads to smaller bristles elongation and to
a lower number of bristles Nc in contact with the slab
at the same time (as shown in Fig. 5a). Since from Eqs.
(9, 10), given the normal force Rn acting on the slab,
we can estimate ŘNSS

x ∝ (
Nc/Nc,0

)1/3, a reduction of
Nc also entails lower friction opposing the slabmotion.
Interestingly, the value of k̃r also affects the values of
γ̃1 and γ̃2. Indeed, according to Fig. 3, reducing k̃r leads
to a thinner dimensionless gap z̃0, which, in turn, sig-
nificantly increases the elongation of the bristle in the
radial direction (notably, for z̃0 → 0, both the friction
force and the radial elastic reaction force act in the x,y
plane). Under these conditions, according to Eq. (7), a
long-lasting “ sticky” phase occurs between the bristle
and the slab (i.e., VR ≈ 0 for a relatively long time
interval), thus leading to “ static-like” conditions, with
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3106 N. Menga et al.

Fig. 4 The frictional response of the bristles arraywithNSS fric-
tion model. A 3D representation of the normalized friction force
component in the x-direction ŘNSS

x (a), and the dimensionless

parameters γ̃1 (b), γ̃2 (c), γ̃3 (d), as functions of the radial k̃r
and torsional k̃θ bristles stiffnesses. Results are for k̃ϕ = 1.9 and
R̃n/Nc,0 = 2

low friction force and γ̃1 values. It is worth to note
that a similar mechanism of friction reduction has been
numerically predicted in Ref. [26], and experimentally
observed in Refs. [41,42] for interfaces with compliant
polymeric nanofiberswith high aspect-ratio.Moreover,
increasing k̃r also leads to a reduction of the lever arm
s of the friction force Ff acting on each bristle in the
x,y plane (see Fig. 1c). Since themodal mass associated
with the azimuthal degree of freedom θ can roughly be
estimated as mθ ≈ ms2, increasing k̃r eventually leads
to higher transverse vibration frequency (i.e., in the
x,y plane), thus reducing both γ̃2 and ŘNSS

x . In conclu-
sion, the analysis of the friction reduction mechanisms
described by γ̃1, γ̃2, γ̃3 indicates that increasing k̃r leads
to thick gaps (i.e., large value of z̃0), which eventually
entails lower friction opposing the slab motion.

The results presented in Fig. 4 suggest that the fric-
tional behavior of the bristles array is less sensitive to
the value of k̃θ . Indeed, k̃θ mainly affects the friction
reduction mechanism relying on transverse vibration
superimposed on the macroscopic slab motion. Under
a given friction force Ff acting on the bristle, reduc-
ing k̃θ entails two competing effects on γ̃2 and ŘNSS

x :
on one hand, according to the previous discussion, a
reduction of the transverse vibration frequency occurs,
whichmay induce higher values of γ̃2 and ŘNSS

x ; on the
other hand, it also entails wider amplitude of transverse
oscillation, thus suggesting a possible reduction of γ̃2
and ŘNSS

x . Figure4c shows that reducing k̃θ leads to an
overall reduction of the normalized friction force com-
ponent ŘNSS

x , thus indicating that the dominant mech-
anism is the latter one.
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Fig. 5 The normalized number Nc/Nc,0 of contacting bristles
(a), and the normalized friction force component ŘNSS

x (b) as
functions of the blisters radial stiffness k̃r , for different values of
the blister bending stiffness k̃ϕ . Results refer to the NSS friction
model, with R̃n/Nc,0 = 2

The effect of the bristle bending stiffness k̃ϕ on the
normalized friction force component ŘNSS

x is, instead,
explored in Fig. 5b. We observe that, projecting Eq.
(13) along k̂, the elastic reaction forces related to bris-
tle axial compression (governed by k̃r ) and polar bend-
ing (governed by k̃ϕ) synergically contribute to balance
the normal force F̃n ≈ R̃n/Nc,0 acting on each bristle.
Therefore, under a given normal force, in order to keep
constant the dimensionless gap z̃0, reducing k̃ϕ requires
increasing k̃r . Now, recalling that ŘNSS

x monotonically
decreases with z̃0 increasing (see previous discussion
about γ̃3 behavior), the results shown in Fig. 5b qualita-
tively indicate that reducing k̃ϕ shifts the same frictional
response of the interface toward higher values of k̃r .

3.2 Amontons-Coulomb model

In this section, we investigate the interface behavior
assuming localAmontons-Coulomb friction, i.e., Equa-
tion (8), with μc = 1. Also, a detailed analysis of the
results sensitivity to the value ofμc is provided in what
follows. Notably, in this case the local friction force
does not depend on the actual contact area between
the bristles tips and the slab; therefore, only two of the
three previously defined friction reductionmechanisms
are effective: the velocity-dependent modulation of the
friction force Ff ; and the misalignment between the
friction force and slab velocity directions, due to bris-
tle in-plane transverse vibration. Respectively, these
are quantified by the dimensionless parameters γ̃1 and
γ̃2 defined through Eqs. (24, 25).

The array behavior is shown in Fig. 6 in terms of
normalized friction force component ŘC

x and dimen-
sionless parameters γ̃1 and γ̃2 as functions of both the
dimensionless radial and azimuthal stiffness k̃r and k̃θ .
As expected, the trends in Fig. 6 are qualitatively sim-
ilar to those reported in Fig. 4a–c for interface with
local NSS friction. Indeed, the effects of k̃r and k̃θ on
γ̃1 and γ̃2, as qualitatively discussed in the previous sec-
tion, do not strictly depend on the specific local friction
mechanics. Nonetheless, since friction control mecha-
nism related to the local contact area is heremissing,we
observe that the friction mitigation reported in Fig. 6a
with k̃r increasing presents a smoother trend, compared
to the case of NSS local friction model.

This result is even more clearly shown in Fig. 7
where, varying k̃r , we compare the interface responses
related to NSS and Amontons-Coulomb local friction
models. In Fig. 7a, the comparison shows a steep reduc-
tion of Řx in the case of NSS friction; whereas, in the
case of Amontons-Coulomb friction, the reduction of
Řx occurs over a broader range of k̃r . Figure7b con-
firms that z̃0 plays a key role in determining the inter-
face frictional behavior, with larger values of z̃0 entail-
ing lower values of Řx , regardless of the specific fric-
tion model. These latter results prove that the mecha-
nism of friction control highlighted in the present study
are poorly affected by the local frictionmodel. Since the
latter is usually scale dependent (i.e.,NSS is best suited
for softmicro-scale interfaces, andAmontons-Coulomb
for hard macro-ones), our qualitative conclusion can
reasonably be extended to bristle-like structured inter-
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Fig. 6 The frictional response of the bristles interface with local
Amontons-Coulomb friction model. A 3D representation of the
normalized friction force component in the x-direction ŘC

x (a),

and the dimensionless parameters γ̃1 (b), γ̃2 (c), as functions of
the radial k̃r and torsional k̃θ bristles stiffnesses. Results are for
k̃ϕ = 1.9 and R̃n/Nc,0 = 2

face ranging over a broad scales spectrum, such as soft
polymeric micro-fibers [41,42] and metallic brushes
[28]. Of course, at the nano-scale, frictional interac-
tionsmay becomediscrete (i.e., atomistic friction), thus
entailing different friction mechanisms [43,44] (e.g.,
adsorption, inter-locking, etc.) which could eventually
alter the results.

The effect of the local friction coefficient μc on the
overall interface frictional response is investigated in
Fig. 8, for two different values of k̃r . According to the
results shown in Fig. 6a, we confirm that, at low val-
ues of k̃r , the structured interface generates a slightly
lower normalized friction force component ŘC

x com-
pared to the rigid case (see blue curve). Things change
when considering interfaces of stiffer bristles, as the

red curve in Fig. 8 shows that, in this case, increas-
ing μc leads to a saturation of the friction force com-
ponent Rx opposing to a slab motion, which keeps a
constant value even for further increase of μc. Interest-
ingly, these results seem to indicate that the maximum
friction force opposing the slab motion is an intrin-
sic property of the interface, which depends on the
geometry and elasticity of the interfacial features (i.e.,
on the dimensionless elastic bristle parameters), rather
than on the local friction behavior and intensity. Such a
result could be of key importance in several engineer-
ing applications involving sliding contacts with interfa-
cial structures (e.g., brush seals, bio-inspired soft inter-
facial features): in these cases, indeed, the interface
elastic parameters might be tuned in order to limit the
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Fig. 7 The comparison between the bristles array behaviors
associated to Coulomb and NSS friction models, referring to the
normalized friction force component Řx (a), and the dimension-

less slab sliding height z̃0 (b) as functions of the blisters radial
stiffness k̃r . Results are for R̃n/Nc,0 = 2

Fig. 8 The component in the x-direction ŘC
x of the normalized

friction force opposing the slab sliding as a function of the local
Coulomb friction coefficient μc at the bristles-slab interface. In
the same figure, gray lines represent the ŘC

x trends related to the
limiting rigid case and constant friction force Rx opposing the
slab motion. Results refer to R̃n/Nc,0 = 2

maximum friction force, regardless of the specific local
frictional behavior.

4 Conclusions

In this work, we focus on a structured interface with
a lattice of bristle-like elastic features attached to a
rigid still foundation in steady sliding contact with a

sliding slab. Due to the time-varying normal and fric-
tion forces, complex bristle dynamics occurs during
the contact, which may eventually alter the overall
interface frictional behavior, i.e., macroscopic friction
opposing the moving slab. We assumed two different
local friction models at the interface between bristles
tips and the moving slab: the well-known Amontons-
Coulomb friction model, commonly adopted for stiff
materials; and the Nominal Shear Stress model, usu-
ally applied to soft polymers. Notably, the latter model
predicts the friction force as a nonlinear function of the
local normal force.

Results show that both the friction models share two
physical mechanisms of possible reduction of the over-
all interface friction, which arises due to local effects
in the bristles dynamics: the local friction force modu-
lation as a function of the relative velocity between the
bristles tips and the moving slab; and the misalignment
between the local friction force direction and the slab
sliding direction. Moreover, due to the nonlinear effect
of the local normal force acting on each bristle on the
local friction force, the NSS friction model also offers
an additional mechanism of possible friction reduction.

We report that increasing the axial (elongation) and
polar (bending) stiffness of the blister leads to a sig-
nificant reduction of the friction force opposing the
slab motion. Similarly, also reducing the azimuthal
(i.e., in-plane bending) stiffness of the bristles reduces
the overall interfacial friction due to the emergence
of self-excited in-plane transverse vibrations. Interest-
ingly, sincemost of the physics behind the reported fric-
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tion reduction is common across the two local friction
models, these results appear qualitatively independent
on the specific frictional interactions occurringbetween
the surfaces. This makes the results peculiarly robust
and independent of the problem scale, thus allowing for
a generalizationof themechanismsof friction control in
structured interfaces to several engineering application
(e.g., brush seals in electric motors, and bio-inspired
micro-fibers coatings).
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Appendix A: Forces acting on the rigid slab

In this section, we define a procedure to calculate the
reaction force R (t) acting on the slab to balance the

Fig. 9 A representation of the time evolution in the sliding pro-
cess of a bristle against the rigid slab. Notably, Ff,x = F f · ı̂

time-varying actions produced by the time-varying set
of bristles in contact with the slab, by summing up the
specific normal Fn (t) and friction Ff (t) force result-
ing from each bristle. Notably, since all the bristles
composing the array share the same elastic and fric-
tional properties, and since the array is homogeneous
with respect to the initial undeformed angles θ0 and
ϕ0, in the limit of sufficiently large Nc, we expect the
slab to experience a steady mean force R̄, after a quick
transient phase.

As shown in Fig. 9, due to the array spacing, succes-
sive rows of bristles come into contact with the rigid
slab at different times. In this regard, we define two
different time systems: (i) the global time system t ,
governing the slab sliding process (slab motion starts
at t = 0); and (ii) the local bristle time system ξi asso-
ciatedwith the generic i th bristle, which enters the con-
tact with the slab leading edge at ξi = 0 and leaves the
contact at the slab trailing edge at ξi = �ξi . Therefore,
referring to Fig. 9, we have

ξi = t − [h (i) − 1]
�

V0
(A1)

where h (i) is the bristle row containing the i th bristle,
as shown in Fig. 1a. The dynamics of the generic i th
bristle can be calculated by means of Eqs. (13, 17, 18),
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whereas the contacting time �ξi can be calculated as

Lx = −
∫ �ξi

0
dξ (VR)i · ı̂. (A2)

Moreover, since for ξi < 0 and ξi > �ξi no inter-
action occurs between the generic i th bristle and the
rigid slab (i.e., (Fn)i = (

Ff
)
i = 0), the momentum

equilibrium of the slab at a generic time t is given by

R (t)=
∑

i∈�(t)

[
Fn (ξ) + F f (ξ)

]
i (A3)

where �(t) is the set of Nc (t) bristles in contact with
the slab at time t , and the time-transformation ξi → t
is provided by Eq. (A1).

Finally, the mean reaction force acting on the slab
can be calculated as

R̄ = 1

t2 − t1

∫ t2

t1
dtR (t) (A4)

where t1 ≈ Lx/V0 is the time at which the transient
effects can be neglected, and t2 can be arbitrarily chosen
provided that t2 � t1.
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