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Abstract In this paper, we focus on particle–particle
and particle–wall interactions considering tiny parti-
cle dimensions and the processes and phenomena aris-
ing from the contact dynamics. This has the important
implication that the discrete element method can be
used for large-scale computations as well as for tiny
particles, i.e. particles with fine and ultrafine dimen-
sions. Particular attention is paid to the granular cohe-
sion dynamics where the particles interact prior to their
physical stick. We investigate the sensitivity of the
interactions, i.e. we assess how particle size distribu-
tion, frictional forms of particle–particle and particle–
wall collisions and Van der Waals or liquid cohesive
forces shape the particle motions. Through computa-
tions, we show how neglecting the above features influ-
ences computations of particle positions and particle
linear and angular velocities over time.
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1 Introduction

Discrete element method (DEM) [1] is one of the most
popular research tools that models the dynamics of
granular flows. Unlike the continuous approach [2],
DEM distinguishes between trajectories and rotations
over time for individual particles, where linear and
angular velocities are recorded versus time. The main
advantage of this approach is that it more accurately
reflects the real dynamics of granular flows. However,
itsmain disadvantage involves high computational time
values, especially for large-scale computations where
a massive number of particles are involved. The prob-
lem of high computational time becomes greater and is
exacerbated when we need to consider the behaviour
of fine or ultrafine particles. Commercial codes, for
example, Altair EDEM [3], ROCKY-DEM Ansys [4],
reduce high computations by using specific computer
hardware such as multi-Graphical Processor Units as
well as parallel computing. Another useful tool, MFiX
[5], like the previous ones, also involves many hard-
ware/software tricks that reduce computational time.
The above codes are of great interest to the scien-
tific [6] and engineering [7] communities. However,
the codes listed above do not pay particular attention
to tiny particles where their interactions involve not
only collision-repulsive forces [8] but also cohesive
forces [9] where the interaction begins before the phys-
ical contact. As the particle size decreases, we observe
qualitatively different effects, i.e. the phenomenon of
cohesion dominates during the interaction of the parti-
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cles. Such particle cohesion is of interest in many engi-
neering applications, for example: in 3D jet printings
[10], particulate matter in polluted air [11], fluidised
bed [12,13], toner particles in laser printers and pho-
tocopiers [14] and a growing number of medical treat-
ments [15,16]. Therefore, neglecting particle cohesion
becomes a shortcoming in the fundamental approach
for mathematical modelling of the granular dynamics
of fine and ultrafine particle interactions.

In this study, particle–particle and particle–wall
interactions play the dominant role, and many simplifi-
cations given in the modelling process could not reflect
the real dynamics of particle motions. These improper
dynamics are highly visible in particles having very
low dimensions—so-called fine or ultrafine particles,
and for high particle concentrations in space where
multi-particle collisions occur. According to our previ-
ous experience [17,18], we show how simplifications
in the mathematical modelling have a strong influence
on the dynamic’s particle motions, i.e. drastic changes
of particle trajectories and particle velocities. Here, we
refer to these simplifications or/and extensions as sen-
sitivity analysis.

2 Mathematical illustration

According to own investigations [17],we assumepopu-
lation of particles where n indicates the total number of
particles which one considers in computer simulations.
The individual motion of the centre mass of a particle
“k” is described by the following system of ordinary
differential equations:
⎧
⎨

⎩

mk ẍk = ∑

l
Fl

Jkω̇k = ∑

l
Ml

(1)

for particles moving individually, i.e. without particle–
particle or particle–wall interactions and
⎧
⎪⎪⎨

⎪⎪⎩
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j (k), j (k) �=k
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rep
j (k) + Matt

j (k)

)
+∑
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(2)

considering particle–particle or/and particle–wall col-
lisions. The above expressions describe the motion
for the particle k, where: mk—mass of the particle,
Jk—mass moment of inertia, xk—position of the cen-
tre of mass, ωk—angular velocity, Fl - force act-
ing on the particle, Ml—torque acting on the par-
ticle, P

rep
j (k)—repulsive/friction forces resulting from

a collision, Pattrj (k) - cohesive/friction forces resulting

from short-range interactions, M
rep
j (k)—torques result-

ing from repulsive/friction forces, Mattr
j (k)—torques

resulting from the action of cohesion/friction forces.
More explanations can be found in our own work [17].
Figure 1 illustrates the concept of the interaction of two
particles. We understand the interaction between parti-
cles in a broader sense, i.e. particles can collide as well
as interact with each other due to cohesion. This is an
extension of the concept of the “soft sphere method”
[19] with interactions resulting from the interaction of
short-range forces and occurring before the collision
itself. Figure 1a shows the radius of the rk particle and
the virtual radius of the rattrk particle resulting from the
forces of attraction/cohesion. Figure 1b explains the
local particle collisions as particle overlapping ζ j (k) as
well as local coordinates. We will form a cohesion and
contact forces system in these local coordinates.

In the existing literature, the rebound force model
of spring-damping [20] is assumed. Given the lack
of multi-particle contacts [21], we assume fractional
rebound force model [17], where its component in
the direction of ζ j (k) is defined by local coordinates(
ξ j (k), η j (k), ζ j (k)

)
(Fig. 1b) as

P
rep
ζ j (k)

=
⎧
⎨

⎩

C
α j (k)
j (k) K

1−α j (k)
j (k) tbej (k)

Dα j (k)

tenj (k)

(
ζ j (k)

)
for ζ j (k) ≥ 0

0 for ζ j (k) < 0

(3)

where
tbej (k)

Dα j (k)

tenj (k)

(
ζ j (k)

)
denotes left-sided fractional

derivation defined in the Caputo sense [22], tbej (k) and

tenj (k) represent times where the collision begins and
ends, α j (k) is the fractional order of the fractional
derivative, ζ j (k) is the particle’ overlap as shown by
Fig. 1b, C j (k) and K j (k) reflect the material properties
of two colliding bodies, i.e. damping and spring coef-
ficients.

Regarding the cohesive forces, we use Rump’s for-
mula [23] for the Van der Waals force
Pattr−vW
ζ j (k)

=

⎧
⎪⎪⎪⎨
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Ĥ j (k)r̂ j (k)
6C2

5

⎛

⎜
⎝
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1+ r̂ j (k)
R̂ j (k)

+ 1
(

1+ R̂ j (k)
C5

)2

⎞

⎟
⎠ for ζ vW

j (k) ≥ 0

0 for ζ vW
j (k) < 0

(4)

where ζ vW
j (k) is the overlap of particle cohesion as shown

by Fig. 1, C5 is the smallest distance between con-
tacting particles and according to [24] C5 = 0.4nm,
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Fig. 1 Diagram of two
interacting particles: a
Pre-contact interaction due
to cohesion; b Virtual
overlap illustrates the
collision/contact of two
particles

(a) (b)

r̂ j (k) = rattrk rattrj (k)

rattrk +rattrj (k)

is the mean radius of the colliding

particles (see Fig. 1), Ĥ j (k) = √
HkHj (k) is the average

value of the Hamaker’ constants for the two interacting
particles and R̂ j (k) = √

Rk R j (k) represents the aver-
age roughness value for the two interacting particles.
Hamaker constants for selected granular materials can
be found In [25].

Another cohesive force arises from the surrounding
moisture of the particle’s surface. According to [26],
we use the following expression

Pattr-LBζ j (k)
=

⎧
⎪⎨

⎪⎩

πς j (k)r̂ j (k)
r I Ij (k)

(
r Ij (k)+r I Ij (k)

)

r I Ij (k)
for ζLBj (k) ≥ 0

0 for ζLBj (k) < 0

(5)

where ζLBj (k) is the overlap of particle cohesion as shown

by Fig. 1, r̂ j (k) = rattrk rattrj (k)

rattrk +rattrj (k)

is the mean radius of

colliding particles (see Fig. 1), ς j (k) denotes surface
tension and the quantities r Ij (k), r

I I
j (k) are functions of

the wetting angleψ j (k) and are related by the following
expressions

r Ij (k) = 1 + Z j (k) − cos
(
ψ j (k)

)

cos
(
ψ j (k)

)

r I Ij (k) =
(
1 + Z j (k)

) (
sin
(
ψ j (k)

)− 1
)+ cos

(
ψ j (k)

)

cos
(
ψ j (k)

)

(6)

where

Z j (k) = max

⎡

⎣0,− ζLBj (k)

2r̂ j (k)

⎤

⎦ (7)

To find the wetting angle ψ j (k), we need to solve the
following equation

f
(
ψ j (k)

) = 3

2

((
r Ij (k)

)2 ((
1 + Z j (k)

)

−
(
r Ij (k) + r I Ij (k)

) (π

2
− ψ j (k)

))
−

Z2
j (k)

(
Z j (k) + 3

)

3

)

− Φ j (k) = 0 (8)

where the function Φ j (k) = VLBj (k)

V̂ j (k)
is the quotient of the

volume VLB
j (k) of themoisture layer surrounding the par-

ticles to the volume of the particles V̂ j (k) = Vk +Vj (k).
Before applying Eq. (5), the nonlinear expression (8)
must be solved to obtain wetting angle ψ j (k). As noted
in [26], the wetting angle is ψ j (k) ∈ [0, Π

2

)
. However,

the frictional force comprehensively described in the
author’s work [17] includes the normal force, in which
all forces acting along the normal direction are taken
into account, including the cohesive forces described
above. This increases the friction force.

All other forces and torques derived from these
forces, including those involving various forms of fric-
tion, are presented in the author’s study [17] and omit-
ted in this paper.

The systems of Eqs. (1) and (2) are strictly nonlinear
and cannot be solved except by numericalmethods. The
Runge–Kutta–Fehlberg method of 4-5 order [27] was
used to solve these equations. From the definition of
this method, it follows that it is always convergent and
has an accuracy of O

(
(Δt)5

)
. Based on [27], one can
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estimate the calculation time step as a function

Δt ≤
(

2err

max [ẍk, ω̇k]

) 1
5

(9)

where err is the user-assumed precision of the com-
putation. The linked cell method [28,29] was used to
determine the start time of tbej (k) and the contact dura-

tion tenj (k) − tbej (k). According to Allen [28], this method
is simple, discrepant and the most effective. In jumping
from expression (1) to (2) and vice versa, the leapfrog
method [28] was used.

In conclusion, it is stated that the proposed math-
ematical notation (1)–(9) together with our own pre-
cise description [17] allows us to carry out computer
simulations of the flow dynamics of granular material,
considering the phenomena of cohesion and friction.

3 Results

We rely heavily on previous experience when assess-
ing the uncertainty of the calculations. Our previous
studies [17] show, by comparing four different repul-
sive force models, that the fractional repulsive force
model given by Eq. (3) is a reliable model. This model
reflects the viscoelastic properties for the contacting
bodies, the contact start and end times, as well as the
coefficientα j (k). This coefficient is responsible for the
degree of conversion of the impact energy into rebound
and dissipation energies. Looking at Eq. (3), it can be
seen that for α j (k) = 0 all impact energy is converted
into rebound energy, and formula (3) takes the form
of P

rep
ζ j (k)

= K j (k)ζ j (k). This is well known in the lit-
erature as a linear-spring model. On the other hand,
for α j (k) = 1 all the impact energy dissipates and for-

mula (3) takes the form of P
rep
ζ j (k)

= C j (k)ζ̇ j (k). This is
also well known in the literature as a linear-damping
model. It seems to be that α j (k) is like the restitution
coefficient, which is frequently used in the hard sphere
event-driven molecular dynamics [30]. As noted in my
own study [17], α j (k) is called the conversion degree,
which has more significant meaning for the roughness
of contacting particle surfaces. In this paper, we gener-
ally rely on previous experience and do notmake a local
scale comparison with different repulsive force models
and friction force forms, which can be found in [17].
Comparison on a global scale requires many assess-
ments of particle motion dynamics and an assessment
of the effects of self-scaling. This is a very difficult

task, and in this work, we will limit ourselves to the
dynamics of particle outflow from a container. In this
regard, we stretch our previous considerations given in
work [18], where the outflow dynamics of 3000 parti-
cles were considered, to the outflow dynamics of 4000
particles from the container. In this case, we refer to
comparing the experiment results with computer sim-
ulations for invariant material data and increasing the
quantity by only 1000 grains. Figure 2 shows such a
comparison, i.e. the input and output effects. Experi-
mental studieswere carried out according to the follow-
ing parameters given by Fig. 2a.We consider two cases
of the particle size distribution that reflect the height of
the particle bed in good agreement with experimental
data. In the second case, we achieved greater compati-
bility of the computer simulation with the experimental
data, i.e. the time of emptying the grains from the tank
was 1.08 s for the computer simulation and 1.16 s ±
0.04 s for the experiment. In conclusion, we note that
it is sufficient to record two observations to check the
DEMmodel on a global scale: the height of the particle
bed and the time it takes for the particles to flow out of
the container.

Initial comparisons of computer simulations with
the results of the experiment allow a smooth transition
to the sensitivity analysis. Thus, we start all over again.
Figure 3 shows the influence of the conversion degree
α value (3) on the dynamics of 3 particle collisions in
1D. In the strong repulsion regime, (α < 0.3), the par-
ticle positions are observed to be very far apart. On the
other hand, in the weak repulsion regime (α > 0.5), the
particle positions are not far apart. Extending our anal-
ysis, we show how weak and strong repulsion affect
the dynamics of particle collisions. Figure 4 presents a
similar situation to the previous one but in 2D. Here,
we observe that the trajectories of the particles are
almost linear in a strong repulsion regime. However,
the particle trajectories change as the α conversion
ratio approaches unity. Thus, the particle trajectories
are curve-linear in a weak repulsion regime. Conse-
quently, formula (3) of the repulsive force makes it
possible to control the dissipation energy during the
collision of single particles as well as during the colli-
sion of multi-particles with each other. The nonlinear
trajectories of the grains extend their contact time. On
a macro scale, this manifests itself in the formation of
grain clusters, which affects the dynamics of the move-
ment of the entire population of grains.
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Sensitivity analysis of the dynamics 2595

Fig. 2 Comparison of themodel experiment on a global scale of particle flow from the container: aData necessary to run the simulation;
b Images of the particles flowing from the container in successive time steps
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Fig. 3 Visualisation in 1D
of parameter α’s influence
on 3-particle collision
dynamics

Fig. 4 Particle trajectories
in 2D for different
parameter α values without
inter-particle frictions
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Fig. 5 Particle collision
dynamics with disregard or
consideration of sliding
friction. 2D images after
0.5 s of observation

Extending our case study, we focus on assessing the
effect of friction on particle trajectories. All forms of
friction (sliding, rolling, torsional) are included in [17].
Here, we limit our considerations to the sliding/rolling
of particle–particle or particle–wall friction. Figure 5
shows two scenarios where inter-particle friction is
turned on and off. Here, we consider the 500 parti-
cles that lie at the bottom of the container forming a
layer of particles. The particle dimensions are as noted
in case II in Fig. 2. The crosses on the particles indi-
cate the positions of individual points on the particle
surface and show the particle rotation resulting from
the friction force. We deliver air from the bottom of
the container at an average velocity of 1.5m/s and then
record images of the positions of individual particles in
a 3D space. However, Fig. 5 shows images of the par-
ticle positions flattened down to 2D. The left image in
Fig. 5 shows particle positions where we ignore inter-
particle friction. It can be observed that the crosses on
the particles do not change their position, i.e. the par-
ticles do not rotate. On the other hand, the right image
shows the particle positions in which we consider the
inter-particle friction. It canbeobserved that the crosses
on the particles change their position, i.e. the parti-
cles rotate. Without taking friction into account, the
dynamics of particle motion appear to be a splash type
dynamics, i.e. the particles rebound more strongly off
each other. However, the particle dynamics are more
consistent and compact when inter-particle friction is
taken into account. In the images presented above, one
may observe the formation of entirely different struc-
tures. Taking the friction process into account during
the collision of particles converts the kinetic energy
of the collision into the kinetic energy of translational

and rotational forms of motion. This well-known and
obvious fact significantly changes the image of particle
movement, which, considering the collisions of many
particles with each other, has a significant impact on
the formation of particle clusters and other forms of
colliding particles.

The next simulations show the interaction dynamics
between the particles, considering the Van der Waals
cohesion at the nanometric scale. Figure 6 presents 4
scenarios of the formation of particle clusters depend-
ing on the initial velocities of these particles and the
energy conversion degree α value. It can be observed
that the values of the initial particle velocities have a
significant effect on the formation and spattering of
particle clusters only for the strong replication regime
α = 0.09. However, we do not notice a significant
influence of the initial particle velocities on the dis-
tribution of particle clusters for the weak reflections
regime, α = 0.85, which are enhanced by the Van der
Waals cohesion force (4). This analysis has a significant
impact on 3D printing [10].

Another example presents computer simulations of
particle elutriation dynamics under the influence of
mean air velocity. Figure 7 shows 3 scenarios depend-
ing on the type or absence of cohesive force. Here,
three different behaviours of the same population of
particles acting under the same conditions can be seen.
The image on the left shows floating particles where
the mutual cohesion between the particles is switched
off. In this case, the particles are fully raised and do not
form any particle clusters. The middle image shows
the particle float, considering only the cohesion in the
form of the Van der Waals force (4). We notice that
the particles float more slowly and form small clus-
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Fig. 6 Dynamics of
formation of particle
clusters on the nanometric
scale during observation
5 · 10−6s for
H = 4 · 10−20J, μst = 0.1,
μdy = 0.05, � = 1100
kg/m3

ters. However, their lifting force is so great that they all
move up the container. The picture on the right shows
the behaviour of the particles, taking in to account the
Van der Waals cohesion force (4), as well as the capil-
lary cohesion force (5). As can be seen, almost all the
particles stay at the bottom of the container forming
a sticky cluster, i.e. a coherent fluidised layer. The air
only filters the resulting layer of agglomerated grains.
The individual agglomerates are detached from this flu-
idised bed and lifted into the top of the container.

By extending our considerations and considering the
scenario presented in Fig. 2, we can simulate emptying
the container of nano-particles, where we can also turn
off cohesion or gradually turn it on by increasing the

value of theHamaker constant aswe introduce capillary
cohesion. Figure 8 presents 5 scenarios. In this case,
we can control the cohesion value, which can lead to a
scenario of total outflow of particles from the container
(left image—no cohesion) or a slowoutflowof particles
from the container (middle images—increasing theVan
der Waals cohesion level) or to a complete blockage of
the outflow of particles from the container (image on
the right—capillary cohesion).

The latest analysis assesses the effect of capillary
cohesion on the Brazil nut effect [31]. Figure 9 shows
4 images of a vibrating container with a population of
fine particles and one coarse particle. The particle data
is the same as in Fig. 5 The large particle size is 10mm.
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Fig. 7 Dynamics of
ultrafine particles carried
from the fluidised bed
through the fluid flowing
through the bed for the same
parameters as previously
noted (α = 0.1) and 10%
moisture content in the last
image, and for the 5 · 10−1 s
observation

Fig. 8 Granular cohesion dynamics of particles emptying the container during the 2 · 10−1s observation

The container was vibrated at 100 Hz but with different
amplitudes. The first two images on the left show the
behaviour of the particles for the container vibration
amplitude A = 3 · 10−4 m. The following two images
show the behaviour of the particles with an increased
container vibration amplitude A = 4 · 10−4 m. Here,
we can see that the non-cohesive particles more easily
push the large particle into the top of the container,
which perfectly illustrates the Brazil nut effect [31].
However, considering the capillary cohesion between

the particles significantly reduces the Brazil nut effect,
i.e. it is more difficult for the large particle to reach the
top of the container.

4 Conclusions

The use of the discrete element method (DEM) in com-
puter simulations of granularmatter dynamics provides
valuable information about the behaviour of particles
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Fig. 9 Dynamics of the Brazil nut effect considering a cohesion-less system and capillary cohesion for the 5 · 10−1s observation

and significantly strengthens our knowledge in this
field. However, before using theDEM, it should always
be verified both on a local scale, e.g. by comparing var-
ious forms of rebound strength, and on a global scale,
e.g. by the dynamics of emptying the particles from the
container. In this study, we used the fractional repul-
sive forcemodel to illustrate strong and weak repulsion
regimes of colliding particles. Our sensitivity analysis
made it possible to turn the friction force on or off,
which significantly distorted the positions and veloci-
ties of the particles. In addition, we analysed the sensi-
tivity of granular matter on a nanometric scale, which
allowed us to present the effect of mutual cohesion
between particles on the behaviour of the entire par-
ticle population. Depending on the type of cohesion
(Van der Waals cohesion or capillary cohesion), vari-
ous particle motion scenarios were observed, e.g. the
formation or disintegration of particle agglomerates.
Depending on the size scale considered for the adopted
grain population, we suggest that a sensitivity analy-
sis be performed each time to assess the qualitative
and quantitative influence of processes and phenom-
ena important from our point of view on the behaviour
of granular matter. More advanced sensitivity analysis
can be found in [32], where an iterative Bayesian filter-
ing approach was used for automated calibration. This
study is limited to the local or small-scale behaviour of
granular matter. The properties of particles in the nano-
and microscale can encompass countless regimes of

granular matter to illustrate the properties of bulkmate-
rial. Note the significant influence of the nano/micro
scale on the actual state of the bulk material. However,
this topic goes beyond the purpose and scope of this
study.
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Appendix

Let us complete some definitions that fully explain the
model. According to Fig. 1, we calculate the virtual
pre-contacts between particles k and j (k) as
∥
∥
∥ζ

attr
j (k)

∥
∥
∥ = rattrk + rattrj (k) − ∥

∥x j (k) − xk
∥
∥ (10)

where ‖·‖ denotes a norm calculated from the relative
coordinate x j (k) −xk . If there is cohesion between par-

ticles then
∥
∥
∥ζattrj (k)

∥
∥
∥ ≥ 0. We also calculate the particle

collision as a virtual overlap
∥
∥ζ j (k)

∥
∥ = rk + r j (k) − ∥

∥x j (k) − xk
∥
∥ . (11)

If there is collision between particles then
∥
∥ζ j (k)

∥
∥ ≥ 0.

Weassignglobal coordinates (x1, x2, z3) and local ones(
ξ j (k), η j (k), ζ j (k)

)
The index k is the number of the

particle whose centre-of-mass movement is described
by Eqs. (1) and (2). Thus, the set (k, j (k)), where j (k)
is variable, denotes a pair of contacting particles. Let
us define the unit normal vector as

eζ j (k) =
[
ex1ζ j (k)

, ex2ζ j (k)
, ex3ζ j (k)

]
= x j (k) − xk
∥
∥x j (k) − xk

∥
∥

(12)

that connects the particles’ centres of mass. On a tan-
gent plane, we define tangential unit vectors as

eξ j (k) =
[
ex1ξ j (k)

, ex2ξ j (k)
, ex3ξ j (k)

]
=
[
ex2ξ j (k)

,−ex1ξ j (k)
, 0
]

∥
∥x j (k) − xk

∥
∥

∥
∥x j (k) − xk

∥
∥
x1x2

(13)

and

eη j (k) =
[
ex1η j (k)

, ex2η j (k)
, ex3η j (k)

]
= eζ j (k) × eξ j (k) (14)

where ||·||x1x2 denotes the norm which is calculated
in the tangent plane. Given the above expressions, the
unit vector matrix for the two interacting particles can
be built as

eattrj (k) = e j (k) = [
eξ j (k) eη j (k) eζ j (k)

]
(15)

Assuming spherical forms of contacting particles, we
obtain a point determining the temporary mass centre
of the overlapping particles (10) and (11) as

xC−attr
j (k) = xk

+
⎛

⎝rattrk −
∥
∥
∥ζattrj (k)

∥
∥
∥

(
r j (k) −

∥
∥
∥ζattrj (k)

∥
∥
∥

)

rattrk + rattrj (k) −
∥
∥
∥ζattrj (k)

∥
∥
∥

⎞

⎠ eζ j (k) (16)

for particles in the pre-contact regime, i.e. when
Eq. (10) is less than or equal to zero and

xCj (k) = xk +
(

rk −
∥
∥ζ j (k)

∥
∥
(
r j (k) − ∥

∥ζ j (k)

∥
∥
)

rk + r j (k) − ∥
∥ζ j (k)

∥
∥

)

eζ j (k)

(17)

for colliding particles, i.e. when Eq. (11) is less than or
equal to zero. We expand the local coordinate system(
ξ j (k), η j (k), ζ j (k)

)
for the above points as illustrated

by Fig. 1b. For
∥
∥
∥ζattrj (k)

∥
∥
∥ = 0, we obtain the begin of

pre-contact and Eq. (16) simplifies to

xC−attr
j (k) = rattrk x j (k) + rattrj (k)xk

rattrk + rattrj (k)

(18)

Also, for
∥
∥ζ j (k)

∥
∥ = 0weobtain the start of the collision

and Eq. (17) simplifies to

xCj (k) = rkx j (k) + r j (k)xk
rk + r j (k)

(19)

Next we define the relative particle velocities. At the
point xC−attr

j (k) , we have

w
′attr
j (k) = w

′lin−attr
j (k) − w

′rot−attr
j (k) (20)

where

w
′lin−attr
j (k) = eattrj (k) · (ẋk − ẋ j (k)

)
(21)

is the relative translational velocity of the contacting
particles (sometimes called the sliding velocity in the
contacting regime) and

w
′rot−attr
j (k) = −ω

′
k × a

′attr
j (k) + ω

′
j (k) × a

′attr
k (22)

is the relative rotational velocity of the contacting parti-
cles in the contacting regime, where ω

′attr
k = eattrj (k) ·ωk

and ω
′attr
j (k) = eattrj (k) ·ω j (k) are angular velocities defined

in the local coordinates in the contacting regime and
a

′attr
k , a

′attr
j (k) are branch vectors connecting the centres

of contacting particles xk , x j (k) with the temporary

point xC−attr
j (k) given by formula (18). We define such

vectors in local coordinates as follows

a
′attr
k =

[
0, 0,

∥
∥
∥xC−attr

j (k) − xk
∥
∥
∥

]
(23)

and

a
′attr
j (k) =

[
0, 0,

∥
∥
∥xC−attr

j (k) − x j (k)

∥
∥
∥

]
(24)
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In the collision regime, i.e.
∥
∥ζ j (k)

∥
∥ ≤ 0 we define once

again the relative particle velocities at the point xCj (k)
as

w
′
j (k) = w

′lin
j (k) − w

′rot
j (k) (25)

where

w
′lin
j (k) = e j (k) · (ẋk − ẋ j (k)

)
(26)

is the relative translational velocity of the colliding par-
ticles (sometimes called the sliding velocity in the col-
liding regime) and

w
′rot
j (k) = −ω

′
k × a

′
j (k) + ω

′
j (k) × a

′
k (27)

is the relative rotational velocity of the colliding par-
ticles in the colliding regime, where ω

′
k = e j (k) · ωk

and ω
′
j (k) = e j (k) · ω j (k) are angular velocities defined

in the local coordinates in the contacting regime and
a

′
k , a

′
j (k) are branch vectors connecting the centres of

colliding particles xk , x j (k) with the temporary point
xCj (k) given by formula (19). Such vectors we define in
the local coordinates as follows

a
′
k =

[
0, 0,

∥
∥
∥xCj (k) − xk

∥
∥
∥

]
(28)

and

a
′
j (k) =

[
0, 0,

∥
∥
∥xCj (k) − x j (k)

∥
∥
∥

]
(29)

Next we define a set of long-range interacting forces
Fl , for l = 1, ..., 3 as:

– Gravity, for l = 1

F1 = [0, 0,−mkg] (30)

where mk is the particle mass, g = 9.81 m/s2

denotes the gravitational constant,
– Hydraulic resistance force, for l = 2

F2 = −Vk∇ p (31)

where Vk = πd2k /4 is the particle volume, p rep-
resents fluid pressure

– Drag force, for l = 3

F3 = βVk
(
Ug − ẋk

)
(32)

where β denotes drag coefficient and Ug is the gas
velocity.

Simplifying the mathematical illustration, we assume
all torques issued from the long-range interaction
forces are zero, i.e. Ml = 0 for l = 1, ..., 3.
A set of repulsive forces P

rep
j (k) involves all particle–

particle collisions, but the force components include

all interactions acting in the normal direction and the
tangent plane. Thus, the symbolic notation Prep

j (k) has
the following meaning

P
rep
j (k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pstaj (k) for
∥
∥
∥w

′lin
j (k)

∥
∥
∥
t
=
∥
∥
∥w

′rot
j (k)

∥
∥
∥
t
= 0

Pslij (k) for
∥
∥
∥w

′lin
j (k) − w

′rot
j (k)

∥
∥
∥
t
> 0

Prolj (k) for
∥
∥
∥w

′lin
j (k) − w

′rot
j (k)

∥
∥
∥
t
= 0

(33)

where ‖·‖t denotes a norm calculated only in the tan-
gent plane

(
ξ j (k), η j (k)

)
and Pstaj (k) = eTj (k) · P′sta

j (k),

Pslij (k) = eTj (k) · P′sli
j (k), P

rol
j (k) = eTj (k) · P′rol

j (k), where the

symbolic notation eTj (k) indicates transposition of the
matrix of unitary vectors e j (k) and several forces are
defined in the local coordinates

(
ξ j (k), η j (k), ζ j (k)

)
as

P
′sta
j (k) =

[
T staξ j (k)

, T staη j (k)
,−P

rep
ζ j (k)

]T
(34)

P
′sli
j (k) =

[
T sliξ j (k)

, T sliη j (k)
,−P

rep
ζ j (k)

]T
(35)

P
′rol
j (k) =

[
T rolξ j (k)

, T rolη j (k)
,−P

rep
ζ j (k)

]T
(36)

where [·]T denotes thevector transposition,T staξ j (k)
, T staη j (k)

are components of static friction force, T sliξ j (k)
, T sliη j (k)

rep-
resent components of the coupled sliding-torsion fric-
tion force and T rolξ j (k)

, T rolη j (k)
denote components of the

rolling friction, whereas P
rep
ζ j (k)

represents the compo-
nent of repulsive force along the ζ j (k) direction and
was defined previously by Eq. (3). The static friction
force is defined in the local coordinates as

T
′sta
j (k) =

[
T staξ j (k)

, T staη j (k)
, 0
]T =

[
−μstaj (k)P

rep
ζ j (k)

,−μstaj (k)P
rep
ζ j (k)

, 0
]T

(37)

whereμstaj (k) denotes the static friction coefficient deter-
mined between a pair of colliding particles xk , x j (k).
Following to [33], we propose a mathematical illustra-
tion for a joint sliding-spinningmotion of two-colliding
particles in the form of sliding-torsion friction force

T
′sli
j (k) = −μ

(∥
∥
∥w

′lin
j (k)

∥
∥
∥
t

)
F
(
λ j (k)

)
P
rep
ζ j (k)

⎡

⎢
⎢
⎣

sgn
(
wlin

ξ j (k)
− wrot

ξ j (k)

)

sgn
(
wlin

η j (k)
− wrot

η j (k)

)

0

⎤

⎥
⎥
⎦ (38)

where μ is the joint-friction coefficient

μ
(∥
∥
∥w

′lin
j (k)

∥
∥
∥
t

)
= μkinj (k) +

(
μstaj (k) − μkinj (k)

)
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exp
(
−C1

∥
∥
∥w

′lin
j (k)

∥
∥
∥
t

)
(39)

and μstaj (k), μkinj (k) are static and kinetic coefficients of
friction,C1 is an empirical constant, ‖·‖t represents the
norm of a vector calculated in the local-tangent plane.
The function F

(
λ j (k)

)
issues from spinning motions

of a pair of colliding particles. Farkas et al [33] define
this function as

F (λ j (k)
)

=

⎧
⎪⎪⎨

⎪⎪⎩

4
3

(
λ2j (k)+1

)
E I I (λ j (k))+

(
λ2j (k)−1

)
E I (λ j (k))

πλ j (k)
for λ j (k) ≤ 1

4
3

(
λ2j (k)+1

)
E I I

(
1

λ j (k)

)

−
(
λ2j (k)−1

)
E I
(

1
λ j (k)

)

π
for λ j (k) > 1

(40)

where E I , E I I are elliptic functions of the first and
second kind and

λ j (k) =
∥
∥
∥w

′lin
j (k) − w

′rot
j (k)

∥
∥
∥
t

1
2

∥
∥η j (k)

∥
∥
∣
∣ωζ j (k)

∣
∣

(41)

For F (′) = 0, we have torsion friction without slid-
ing friction but F

(
λ j (k) → ∞) = 1 we obtain sliding

friction without torsion friction.
With regard to the rolling friction force P

′rol
j (k), we have

considered the two-dimensional form in the paper [34]
and extend it to the three-dimensional one as

T
′rol
j (k) =

s
′
j (k)×N

′
j (k)×a

′
k

Jk
− s

′
j (k)×N

′
j (k)×a

′
j (k)

J j (k)

1
mk

+ 1
m j (k)

+
(∥
∥
∥a

′
k

∥
∥
∥

)2

Jk
+

(∥
∥
∥a

′
j (k)

∥
∥
∥

)2

J j (k)

(42)

whereN
′
j (k) is the normal reaction being perpendicular

to the local-tangent plane and has the following form

N
′
j (k) =

[
0, 0, P

rep
ζ j (k)

]T
(43)

and s
′
j (k) represents the rolling friction arm and is

expressed by

s
′
j (k) =

[
1

2

∥
∥η j (k)

∥
∥ sgn

(
wrot

η j (k)

)
,

1

2

∥
∥η j (k)

∥
∥ sgn

(
wrot

ξ j (k)

)
, 0

]T

(44)

Next we consider a set of attractive/cohesive forces
Pattrj (k). Taking into account the local coordinates

(
ξ j (k),

η j (k), ζ j (k)
)
and using the transformation matrix eattrj (k)

given by Eq. (15), we have Pattrj (k) = eTj (k) ·P
′attr
j (k) and the

cohesive forces defined in the local coordinates look as
follows

P
′attr
j (k) = P

′attr−vW
j (k) + P

′attr−LB
j (k) (45)

The above formula includes the vectored form of two
types of cohesive forces, where

P
′attr−vW
j (k) =

[
0, 0, Pattr−vW

ζ j (k)

]
(46)

is the Van der Waals cohesive force where its compo-
nent Pattr−vW

ζ j (k)
is expressed by Eq. (4) and

P
′attr−LB
j (k) =

[
0, 0, Pattr−LB

ζ j (k)

]
(47)

is the capillary force where its component Pattr−LB
ζ j (k)

is expressed by Eq. (5). Here, we finish mathematical
illustration of all forces acting on contacting/colliding
particles.
Next we define torques resulting from the forces. Thus,
we have

M
rep
j (k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for
∥
∥
∥w

′lin
j (k)

∥
∥
∥
t
=
∥
∥
∥w

′rot
j (k)

∥
∥
∥ = 0

Msli
j (k) for

∥
∥
∥w

′lin
j (k) − w

′rot
j (k)

∥
∥
∥ > 0

Mrol
j (k) for

∥
∥
∥w

′lin
j (k) − w

′rot
j (k)

∥
∥
∥ = 0

(48)

where Msli
j (k) is the coupled torsion-sliding torque and

Mrol
j (k) represents the coupled torsion-rolling torque.

Using transformation between global and local coor-
dinates, we obtain

Msli
j (k) = eTj (k) ·

(
M

′sli
j (k) + M

′tor
j (k)

)
(49)

and

Mrol
j (k) = eTj (k) ·

(
M

′rol
j (k) + M

′tor
j (k)

)
(50)

The sliding torqueM
′sli
j (k) is defined in the local coordi-

nates as

M
′sli
j (k) = a

′
j (k) × T

′sli
j (k) (51)

The rolling torqueM
′rol
j (k) is determined by the following

formula

M
′rol
j (k) = a

′
j (k) × T

′rol
j (k) − s

′
j (k) × N

′
j (k) (52)

The torsion torque M
′tor
j (k) =

[
0, 0, M tor

ζ j (k)

]T
is respon-

sible for particle spins. Its component M tor
ζ j (k)

is defined
in the work [33] as

M tor
ζ j (k)

= −1

2
T
(
λ j (k)

) ∥
∥η j (k)

∥
∥μ

(∥
∥
∥w

′lin
j (k)

∥
∥
∥
t

)

Nζ j (k)sgn
(
ωζ j (k)

)
(53)

where the function T
(
λ j (k)

)
is defined as

T
(
λ j (k)

) =
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⎧
⎪⎪⎨

⎪⎪⎩

4
9

(
4−2λ2j (k)

)
E I I (λ j (k))+

(
λ2j (k)−1

)
E I (λ j (k))

π
for λ j (k) ≤ 1

4
9

(
4−2λ2j (k)

)
E I I

(
1

λ j (k)

)

+
(

2λ2j (k)+ 3
λ2j (k)

−5

)

E I
(

1
λ j (k)

)

πλ j (k)
for λ j (k) > 1

(54)

and E I , E I I denotes elliptic functions of the first
and second kind, λ j (k) is defined by Eq. (41). For
T (0) = 3

2 , we have torsion without sliding. However,
for T (λ j (k) → ∞) = 0 we have sliding without tor-
sion.
For simplicity, we assume all torques issued from
attractive/cohesion forces are equal to zero. Thus, we
obtain Mattr

j (k) = 0. Now we have a complete mathe-
matical illustration of the dynamics for multiparticle
contacts/collisions.
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